Problems for Quantum Field Theory 2
 11. Sheet

Suggested reading before solving these problems: Chapter $6.1 \& 6.2$ in the script and/or chapter 3 in Rothe: Lattice Gauge Theories.

Problem 1: Discrete derivatives

Consider a smooth function $f(x)$. Assume that for some reason you have access to this function only on a discrete set of points, say $x, x \pm a, x \pm 2 a, x \pm 3 a, \ldots$. Prove the following relations

$$
\begin{aligned}
& \frac{f(x+a)-f(x)}{a}=\frac{f(x)-f(x-a)}{a}=f^{\prime}(x)+\mathcal{O}(a), \\
& \frac{f(x+a)-f(x-a)}{2 a}=f^{\prime}(x)+\mathcal{O}\left(a^{2}\right), \\
& \frac{f(x+a)+f(x-a)-2 f(x)}{a^{2}}=f^{\prime \prime}(x)+\mathcal{O}\left(a^{2}\right) .
\end{aligned}
$$

By using more points, find expressions for $f^{\prime \prime}(x)+\mathcal{O}\left(a^{3}\right)$ and $f^{\prime}+\mathcal{O}\left(a^{3}\right)$.

Problem 2: Scalar field on the lattice

Consider the action for a free scalar field in Euclidean space

$$
S=\int d^{4} x \frac{1}{2} \phi(x)\left(-\partial_{\mu} \partial_{\mu}+M^{2}\right) \phi(x)
$$

A lattice formulation is obtained by making the following substitutions

$$
\begin{aligned}
& x \rightarrow n a \quad \text { with } \quad n=\left(n_{1}, n_{2}, n_{3}, n_{4}\right), \\
& \phi(x) \rightarrow \phi_{n}=\phi(n a), \\
& \int d^{4} x \rightarrow a^{4} \sum_{n} \\
& \partial_{\mu} \partial_{\mu} \phi(x) \rightarrow \frac{1}{a^{2}} \widehat{\Delta} \phi(n a) .
\end{aligned}
$$

a) Convince yourself that a useful choice for the discrete Laplace operator is

$$
\widehat{\Delta} \phi_{n}=\sum_{\mu=1,2,3,4}\left\{\phi_{n+e_{\mu}}+\phi_{n-e_{\mu}}-2 \phi_{n}\right\},
$$

and that the action becomes with this choice

$$
S=-\frac{a^{2}}{2} \sum_{n, \mu} \phi_{n} \phi_{n+e_{\mu}}+\frac{a^{2}}{2}\left(8+a^{2} M^{2}\right) \sum_{n} \phi_{n} \phi_{n} .
$$

What is here the summation range of μ ?
b) This action can be written in the form

$$
S=\frac{a^{4}}{2} \sum_{n, m} \phi_{n} K_{n m} \phi_{m}
$$

Derive an explicit expression for the matrix $K_{n m}$.
c) Use the following representation of the Kronecker delta

$$
\frac{1}{a^{4}} \delta_{n m}=\int_{-\pi / a}^{\pi / a} \frac{d^{4} q}{(2 \pi)^{4}} e^{i q \cdot(n-m) a}
$$

to obtain the inverse propagator in momentum space which is defined by

$$
K_{n m}=\int_{-\pi / a}^{\pi / a} \frac{d^{4} q}{(2 \pi)^{4}} K(q) e^{i q \cdot(n-m) a}
$$

Problem 3: Gauge invariance
In the lecture we have introduced the link variables $U_{\mu}(n) \in S U(N)$ with the transformation properties

$$
U_{\mu}(n) \xrightarrow{G} G(n) U_{\mu}(n) G^{\dagger}(n+\hat{\mu})
$$

a) Show that

$$
\hat{\phi}_{n}^{\dagger} U_{\mu}(n) \hat{\phi}_{n+\hat{\mu}}
$$

is gauge invariant with the complex scalar field $\hat{\phi}$ having the transformation properties

$$
\hat{\phi}_{n} \xrightarrow{G} G(n) \hat{\phi}_{n}, \quad \hat{\phi}_{n}^{\dagger} \xrightarrow{G} \hat{\phi}_{n}^{\dagger} G_{n}^{\dagger} .
$$

b) Follow the steps is the lecture and show that the scalar action

$$
\begin{equation*}
S[\hat{\phi}, U]=-\sum_{n, \mu>0}\left(\hat{\phi}_{n}^{\dagger} U_{\mu}(n) \hat{\phi}_{n+\hat{\mu}}+\phi_{n}^{\dagger} U_{\mu}^{\dagger}(n-\hat{\mu}) \hat{\phi}_{n-\hat{\mu}}+2 \hat{\phi}_{n}^{\dagger} \hat{\phi}_{n}\right)+\hat{m}^{2} \sum_{n} \hat{\phi}_{n}^{\dagger} \hat{\phi}_{n} \tag{1}
\end{equation*}
$$

is gauge invariant. Here $\hat{m}^{2}=a^{2} m^{2}$.
c) Determine the continuum limit of (1).

