Problems for Quantum Field Theory 2

4. Sheet

Suggested reading before solving these problems: Chapter 2.2-3.1 in the script and/or chapter 11.3-11.5 in Peskin \& Schroeder.

Problem 1: Effective action

Consider a scalar field theory in d Euclidean dimensions. The partition function is given by

$$
e^{W[J]}=Z[J]=\int d \varphi e^{-S[\varphi]+\int d^{d} x J(x) \varphi(x)}
$$

The effective action $\Gamma[\phi]$ is defined as the Legendre transform of the Schwinger functional $W[J]$.

$$
\Gamma[\phi]=\sup _{J}\left(\int d^{d} x J(x) \phi(x)-W[J]\right) .
$$

a) Show that this definition implies

$$
\begin{aligned}
\phi(x) & =\frac{\delta W[J]}{\delta J(x)} \\
J(x) & =\frac{\delta \Gamma[\phi]}{\delta \phi(x)}
\end{aligned}
$$

and

$$
\int d^{d} z \Gamma^{(2)}(x, z) W^{(2)}(z, y)=\delta^{(d)}(x-y) .
$$

In a symbolic notation the last line reads

$$
\Gamma^{(2)}=\left(W^{(2)}\right)^{-1}
$$

b) Show that the effective action can be written as an implicit functional integral in the presence of a "background field" ϕ

$$
\begin{equation*}
e^{-\Gamma[\phi]}=\int D \varphi e^{-S[\phi+\varphi]+\int d^{d} x \frac{\delta \Gamma}{\delta \phi}(x) \varphi(x)} \tag{1}
\end{equation*}
$$

c) A perturbative expansion treats the fluctuations φ about the background ϕ in a saddle point approximation. In the lowest order (tree approximation) one has (up to an additive constant)

$$
\Gamma[\phi]=S[\phi] .
$$

At one-loop order one expands

$$
\begin{aligned}
S[\phi+\varphi]= & S[\phi]+\int d^{d} x \frac{\delta S[\phi]}{\delta \phi(x)} \varphi(x) \\
& +\frac{1}{2} \int d^{d} x d^{d} y S^{(2)}[\phi](x, y) \varphi(x) \varphi(y)+\ldots
\end{aligned}
$$

Show that this leads to the one-loop expression

$$
\Gamma[\phi]=S[\phi]+\frac{1}{2} \operatorname{Tr} \ln S^{(2)}[\phi]+\ldots
$$

d) Often one is interested in the expansion of $\Gamma[\phi]$ for small values of the fields ϕ. One can then expand $S^{(2)}$

$$
\begin{aligned}
S^{(2)}[\phi]= & S^{(2)}[0]+\int d^{d} x S^{(3)}[0](x) \phi(x) \\
& +\frac{1}{2} \int d^{d} x d^{d} y S^{(4)}[0](x, y) \phi(x) \phi(y)+\ldots
\end{aligned}
$$

By expanding also the logarithm in Eq. (1) show that the effective action has the expansion
$\Gamma[\phi]=S[\phi]+\Delta \Gamma^{(0)}+\int d^{d} x \Delta \Gamma^{(1)}(x) \phi(x)+\frac{1}{2} \int d^{d} x d^{d} y \Delta \Gamma^{(2)}(x, y) \phi(x) \phi(y)+\ldots$, with

$$
\begin{gathered}
\Delta \Gamma^{(0)}=\frac{1}{2} \operatorname{Tr}\left\{\ln S^{(2)}[0]\right\}, \\
\Delta \Gamma^{(1)}(x)=\frac{1}{2} \operatorname{Tr}\left\{\left(S^{(2)}[0]\right)^{-1} S^{(3)}[0](x)\right\}
\end{gathered}
$$

and

$$
\Delta \Gamma^{(2)}(x, y)=\frac{1}{2} \operatorname{Tr}\left\{\left(S^{(2)}[0]\right)^{-1} S^{(4)}[0](x, y)-\left(S^{(2)}[0]\right)^{-1} S^{(3)}[0](x)\left(S^{(2)}[0]\right)^{-1} S^{(3)}[0](y)\right\} .
$$

e) Can you interpret these expressions in terms of Feynman diagrams?

Problem 2: Vacuum polarization of Yukawa theory

Consider Yukawa theory in d Euclidean dimensions

$$
S[\psi, \bar{\psi}, \varphi]=\int d^{d} x\left\{-\bar{\psi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi-h \bar{\psi} \psi \varphi+\frac{1}{2} \varphi\left(-\partial_{\mu} \partial_{\mu}+m_{\varphi}^{2}\right) \varphi\right\}
$$

Following the steps performed in the lecture, show that the boson two-point function has a contribution at one-loop level

$$
\langle\varphi(-q) \varphi(p)\rangle_{\text {connected }}=(2 \pi)^{d} \delta^{(d)}(p-q) G_{\varphi}(p) \Pi(p) G_{\varphi}(p),
$$

with

$$
\Pi(p)=-h^{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{\operatorname{tr}\left[\left(-i \gamma^{\mu} q_{\mu}+m\right)\left(-i \gamma^{\nu}\left(p_{\nu}+q_{\nu}\right)+m\right)\right]}{\left(q^{2}+m^{2}\right)\left((p+q)^{2}+m^{2}\right)}
$$

Use $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \delta^{\mu \nu}$ for showing that

$$
\Pi(p)=-h^{2} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{-d q \cdot(q+p)+d m^{2}}{\left(q^{2}+m^{2}\right)\left((q+p)^{2}+m^{2}\right)} .
$$

