Problems for Quantum Field Theory 2
 4. Tutorial

Problem 1: Legendre transform
Consider a real function $f(x)$ of an real variable x. The Legendre transform is defined by

$$
g(y)=\sup _{x}(x y-f(x)) .
$$

How can one construct the function $g(y)$ graphically? Do this for $f(x)=\lambda x^{4}-\mu x^{2}$. What is the Legendre transform of $g(y)$?

Problem 2: Effective action for Gaussian theory
Consider a probabilistic theory for a N-dimensional vector \mathbf{x}. The partition function is given by

$$
Z(\mathbf{J})=e^{W(\mathbf{j})}=\int d \tilde{\mathbf{x}} e^{-S(\tilde{\mathbf{x}})+J_{n} \tilde{x}_{n}}
$$

The effective action is defined as the Legendre transform of the Schwinger function $W(\mathbf{J})$,

$$
\Gamma(\mathbf{x})=\sup _{\mathbf{J}}\left(J_{n} x_{n}-W(\mathbf{J})\right) .
$$

Calculate $\Gamma(\mathbf{x})$ for the Gaussian theory $S(\mathbf{x})=\frac{1}{2} P_{m n} x_{m} x_{n}$.

