PROBLEMS FOR QUANTUM FIELD THEORY 2 4. Tutorial

PROBLEM 1: Legendre transform

Consider a real function f(x) of an real variable x. The Legendre transform is defined by

$$g(y) = \sup_{x} \left(xy - f(x) \right).$$

How can one construct the function g(y) graphically? Do this for $f(x) = \lambda x^4 - \mu x^2$. What is the Legendre transform of g(y)?

PROBLEM 2: Effective action for Gaussian theory

Consider a probabilistic theory for a N-dimensional vector \mathbf{x} . The partition function is given by

$$Z(\mathbf{J}) = e^{W(\mathbf{j})} = \int d\tilde{\mathbf{x}} \ e^{-S(\tilde{\mathbf{x}}) + J_n \tilde{x}_n}.$$

The effective action is defined as the Legendre transform of the Schwinger function $W(\mathbf{J})$,

$$\Gamma(\mathbf{x}) = \sup_{\mathbf{J}} \left(J_n x_n - W(\mathbf{J}) \right)$$

Calculate $\Gamma(\mathbf{x})$ for the Gaussian theory $S(\mathbf{x}) = \frac{1}{2} P_{mn} x_m x_n$.