Quantum Field Theory 2 - Problem set 6

Lectures: Jan Pawlowski
Tutorials: Eduardo Grossi
Institut für Theoretische Physik, Uni Heidelberg
j.pawlowski@thphys.uni-heidelberg.de e.grossi@thphys.uni-heidelberg.de due date: 30 May 2017

Suggested reading before solving these problems: Chapter 4.1-4.2 in the script and/or chapter 15 in Peskin 6 Schroeder.

Problem 1: Representations of Lie algebras

An element of a Lie group that is close to the identity can be written as

$$
g(\alpha)=1+i \alpha^{a} T^{a}+\mathcal{O}\left(a^{2}\right) .
$$

The hermitian operators T^{a} are the generators of the Lie algebra. They have the commutation relation

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \tag{1}
\end{equation*}
$$

with $f^{a b c}$ the structure constants. The vector space spanned by the generators with the additional Lie bracket structure in Eq. (1) is called Lie algebra.
a) Prove the identity

$$
\left[T^{a},\left[T^{b}, T^{c}\right]\right]+\left[T^{b},\left[T^{c}, T^{a}\right]\right]+\left[T^{c},\left[T^{a}, T^{b}\right]\right]=0
$$

and that this implies

$$
f^{a d e} f^{b c d}+f^{b d e} f^{c a d}+f^{c d e} f^{a b d}=0 .
$$

b) What is a representation t^{a} of a Lie algebra and what means irreducible?
c) Assume that the generators in some representation r are normalized according to

$$
\operatorname{tr}\left\{t_{r}^{a} t_{r}^{b}\right\}=C(r) \delta^{a b}
$$

Show that this yields the following representation of the structure constants

$$
f^{a b c}=-\frac{i}{C(r)} \operatorname{tr}\left\{\left[t_{r}^{a}, t_{r}^{b}\right] t_{r}^{c}\right\},
$$

and that $f^{a b c}$ is totally antisymmetric.
d) Consider now $\mathrm{SU}(\mathrm{N})$ with generators t_{r}^{a}. The fundamental representation is given by

$$
\phi \rightarrow\left(1+i \alpha^{a} t_{r}^{a}\right) \phi
$$

Show that the matrices $t_{\bar{r}}^{a}=-\left(t_{r}^{a}\right)^{*}$ also lead to a representation (the conjugate representation).
e) Similarly, show that the matrices $\left(t_{G}^{b}\right)_{a c}=i f^{a b c}$ define a representation (the adjoint representation).

Problem 2: Field strength tensor

For a non-abelian gauge theory the covariant derivative is given by $D_{\mu}=\partial_{\mu}+i g A_{\mu}^{a} t^{a}$. The field strength tensor can be defined by

$$
\left[D_{\mu}, D_{\nu}\right]=i g F_{\mu \nu}^{a} t^{a} .
$$

a) Derive the more explicit form of the field strength tensor

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

b) How do the the field A_{μ}^{a} and the field strength tensor $F_{\mu \nu}^{a}$ transform under infinitesimal and finite local gauge transformations?
c) Show that $F_{\mu \nu}^{a} F^{a \mu \nu}$ is invariant.

