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Suggested reading before solving these problems: Chapter 4.3 in the script and/or
chapter 16.1-16.4 in Peskin & Schroeder.

Problem 1: BRST Symmetry

Consider the action of a Non-Abelian gauge theory after gauge fixing with the Fadeev-
Popov method
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with Dµ = ∂µ − igAµ.

a) Show that eq. (1) is equivalent to
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if the equation of motion for b is used. Note that ba is an auxiliary field (Nakanishi-
Laudrup field). It can be eliminated by solving its field equation or equivalently
by performing the Gaussian integral over it.

b) Show that the action in eq. (2) is invariant under the contiuous symmetry
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with infinitesimal Grassmann-valued parameter ε. Tip: rewrite the BRST-transformations
as matrix equations, i.e. δεAµ = εDµc, δεψ = igεψ, δεc = igεc2, δεc̄ = εb.

c) The BRST charge operator Q is defined by δεφ = εQφ, where φ is one of the fields
Aaµ, ψ, ca, c̄a and ba. Show that

Q2φ = 0.

d) Use the BRST charge operator Q to devide the Hilbert space into three distinct
subspaces and identify the physical Hilbert space.
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