Quantum Field Theory 2 – Tutorial 13

Lectures: Jan Pawlowski Tutorials: Eduardo Grossi Institut für Theoretische Physik, Uni Heidelberg

j.pawlowski@thphys.uni-heidelberg.de e.grossi@thphys.uni-heidelberg.de due date: 11 July 2017

Problem 1: Wilson-Fisher Fixed Point

Consider a scalar field theory in 3 dimension, with a quartic interaction $\frac{1}{4!}\lambda\phi^4$. The beta function of the coupling λ in this case is given by:

$$\Lambda \frac{\mathrm{d}}{\mathrm{d}\Lambda} \lambda = \beta_{\lambda} = -\lambda + \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3).$$

Show that for a particular value of the coupling λ_* the beta function vanish $\beta(\lambda_*) = 0$. This particular value of the coupling is called fixed point.

Describe the behavior of the coupling in the UV $(\Lambda \to \infty)$ and in the IR $(\Lambda \to 0)$ with plotting the $\beta(\lambda)$ and indicating the RG-flow.