Quantum Field Theory 2 – Problem set 1

Lectures: Jan Pawlowski
Tutorials: Aleksandr Mikheev
A.Mikheev@thphys.uni-heidelberg.de
A.Mikheev@thphys.uni-heidelberg.de
tutorial date: week of 17.04.2023

Suggested reading before solving the problems below: Chapter 1 in the script and/or Sections 9.1-9.3 in Peskin & Schroeder.

Problem 1: Asymptotic series

Consider the following function

$$Z(\lambda) = \int_{-\infty}^{\infty} d\varphi \ e^{-\frac{1}{2}\varphi^2 - \frac{\lambda}{4}\varphi^4},\tag{1}$$

with λ being a non-negative real variable.

a) Calculate the coefficients Z_n of the perturbative series in λ

$$Z(\lambda) = \sum_{n=0}^{\infty} Z_n \lambda^n.$$
 (2)

Hint: You may use the definition $\Gamma(x+1) = \int_0^\infty dt \ e^{-t} t^x$ of the gamma function.

b) The error of the partial sum of order N can can be estimated by an upper bound according to

$$R_{N} = \left| Z(\lambda) - \sum_{n=0}^{N} Z_{n} \lambda^{n} \right|$$

$$\leq \int d\varphi \, e^{-\frac{1}{2}\varphi^{2}} \left| e^{-\frac{1}{4}\lambda\varphi^{4}} - \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{1}{4}\lambda\varphi^{4} \right)^{n} \right|$$

$$\leq \int d\varphi \, e^{-\frac{1}{2}\varphi^{2}} \frac{1}{(N+1)!} \left(\frac{1}{4}\lambda\varphi^{4} \right)^{N+1} = \lambda^{N+1} |Z_{N+1}|. \tag{3}$$

Use the Stirling's formula

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right) \tag{4}$$

to estimate the quantity $\lambda^n Z_n$ for large n and determine the (approximate) order $N = N_{\min}$ for which R_N (rather its upper limit found above) is minimal.

Problem 2: Generating functions

Consider a probabilistic theory for an N-dimensional vector \boldsymbol{x} . The expectation value $\langle x_{i_1} \cdots x_{i_L} \rangle$ of the generic product $x_{a_1} \cdots x_{a_n}$ is defined as

$$\langle x_{i_1} \cdots x_{i_L} \rangle = \frac{\int d^n x \, x_{i_1} \cdots x_{i_L} e^{-S(\boldsymbol{x})}}{\int d\boldsymbol{x} \, e^{-S(\boldsymbol{x})}}.$$
 (5)

where the "action" $S(\boldsymbol{x})$ is defined

$$S(\mathbf{x}) = \frac{1}{2} P_{ab} \ x_a x_b + \frac{1}{3!} \gamma_{abc} \ x_a x_b x_c + \frac{1}{4!} \lambda_{abcd} \ x_a x_b x_c x_d + \cdots$$
 (6)

in terms of the real quantities P_{ab} , γ_{abc} , λ_{abcd} and so on (summation over repeated indexes is implied), which are such that the integrals are convergent and, below, we also assume that the matrix P_{ab} is invertible.

It is useful to introduce the partition function $Z(\boldsymbol{J})$ of the N-dimensional current \boldsymbol{J} as

$$Z(\mathbf{J}) = \int d\mathbf{x} \ e^{-S(\mathbf{x}) + J_a x_a}. \tag{7}$$

a) Show that

$$\langle x_{i_1} \dots x_{i_L} \rangle = \frac{1}{Z(\boldsymbol{J})} \frac{\partial}{\partial J_{i_1}} \dots \frac{\partial}{\partial J_{i_L}} Z(\boldsymbol{J}) \bigg|_{\boldsymbol{J} = \boldsymbol{0}}.$$
 (8)

b) Show that one can formally write

$$Z(\boldsymbol{J}) = \sqrt{\frac{(2\pi)^N}{\det P}} e^{-\left(\frac{1}{3!}\gamma_{abc}\frac{\partial}{\partial J_a}\frac{\partial}{\partial J_b}\frac{\partial}{\partial J_c} + \frac{1}{4!}\lambda_{abcd}\frac{\partial}{\partial J_a}\frac{\partial}{\partial J_b}\frac{\partial}{\partial J_c}\frac{\partial}{\partial J_d} + \dots\right)} e^{\frac{1}{2}J_a P_{ab}^{-1}J_b}.$$
 (9)

c) Derive the expressions of the expectations values or "correlation functions" $\langle x_a \rangle$, $\langle x_a x_b \rangle$, $\langle x_a x_b x_c \rangle$, and $\langle x_a x_b x_c x_d \rangle$ up to linear terms in γ_{abc} and λ_{abcd} . Can you draw corresponding Feynman diagrams?

Note: Ignore the higher-order terms in S(x) corresponding to the dots in Eq. (6).

d) The connected correlation functions are given by

$$\langle x_{i_1} \dots x_{i_L} \rangle_c = \frac{\partial}{\partial J_{i_1}} \dots \frac{\partial}{\partial J_{i_L}} W(\boldsymbol{J}) \bigg|_{\boldsymbol{J} = \boldsymbol{0}},$$
 (10)

with

$$W(\mathbf{J}) = \ln Z(\mathbf{J}). \tag{11}$$

Derive expressions for $\langle x_a \rangle_c$, $\langle x_a x_b \rangle_c$, $\langle x_a x_b x_c \rangle_c$, and $\langle x_a x_b x_c x_d \rangle_c$ up to linear terms in γ_{abc} and λ_{abcd} .

Note: The generating function $W(\mathbf{J})$ of the connected correlation functions is also known as the Schwinger function.