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Suggested reading before solving these problems: Chapter 1 in the script and/or chap-
ter 9.1-9.3 in Peskin € Schroeder.

Problem 1: Wick’s theorem reloaded

By employing the generating functional
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with the Lagrangian density
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of the free theory of a real scalar field ¢(z), we can write:
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where D(x —y) is the free propagator. Use this expression to prove Wick’s theorem, i.e.,
show that for odd n the correlator (T'¢(x1)--- ¢(x,)) vanishes, whereas for even n

(To(x1) -+ p(wn)) = D(@1 — 22) D(w3 — 4) -+ - D(T21 — Tog) + -+, (4)

where k = n/2 and the dots indicate the sum over all possible remaining contractions
such that the right-hand-side is symmetric under the exchange of any two indexes like
the left-hand side (there are 1 x 3 x --- x (2k — 1) = (2k)!/(2*k!) terms altogether).

Problem 2: Feynman rules for real scalar field

Consider the generating functional for a real scalar field ¢(z):
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with the Lagrangian density £(¢,0,¢) being given by
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Derive the Feynman rules for this theory including the numerical factors from the path
integral. Determine the symmetry factors for the diagrams contributing to the two-point
function (T'¢(z)d(y)) up to O(X?).

Problem 3 (Optional): Quantum statistical mechanics

a) Consider the quantum statistical partition function of the canonical ensemble
7 =TrePH, (7)

where § = 1/T is the inverse of the temperature 7" and H is the Hamiltonian.

Use the same strategy that led to the path integral formula for matrix elements of

e~ in terms of the Lagrangian to derive a similar formula for Z. Show that one

has to integrate over functions that are periodic in the “time argument” 7 with
range from 0 to 1/7. Note that a Euclidean version of the action
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appears in the weight, with Lg being interpreted as the Euclidean version of the
Lagrangian.

b) Consider now a one-dimensional harmonic oscillator of mass m and charge e in the
presence a constant electric field £. The Hamiltonian is
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Show that the Euclidean action appearing in the path integral formula reads
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¢) Use the Fourier decomposition
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to rewrite Sg in terms of the amplitudes or “fields” x,,.

d) By computing now the path integral show that

Z = ¢ exp {25;?:2} (11)

where ¢ is independent of the electric field E, and derive an expression for the
susceptibility x = d(ex)/0E.



e) Generalize now the construction of part a) to field theory. Derive an expression for
the quantum statistical partition function of a scalar field in terms of a functional
integral. Show for a free theory that the value of this integral is proportional to
the formal expression

[det(—8 +m?)] "2,
where the operator acts on functions in Euclidean space that are periodic in the
time direction with periodicity f.



