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Suggested reading before solving these problems: Chapters 2.1 and 2.2. in the script
and/or Chapters 2.1 to 2.2 of Peskin & Schroeder.

Problem 1: Lagrangian “String Theory”

Consider a series of one-dimensional coupled oscillators yi, i = 1, ..., N with distance a,
boundary conditions y0 = yN+1 = 0, and the Lagrange function
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Show that the Lagrange function becomes that of a (clamped) string
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in the limit N → ∞, a → 0 with R = N · a fixed. Here σ = m/a is the mass per unit
length and τ = t/a is the string tension. By expanding the displacement as a Fourier
expansion in the form
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show that
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Use the variational principle with this form of the Lagrangian to obtain the Euler-
Lagrange equations
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Hence show that the string is equivalent to an infinite set of harmonic oscillators with
frequencies
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R
.

What happens in the limit R→∞?
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Problem 2: Complex scalar field

Consider the following action for a complex scalar field

S =

∫
d4xL =

∫
d4x

{
∂µφ

∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2

}
.

It is easiest to consider φ and φ∗ as independent, rather than the real and imaginary
parts of φ.

a) Derive the Euler-Lagrange equations for φ and φ∗.

b) Show that S is invariant under the infinitesimal transformation

φ(x) → (1 + iα) φ(x)

φ∗(x) → (1− iα) φ∗(x). (1)

c) Derive an expression for the Noether current jµ = (j0, j) associated with this
symmetry transformation and show that it is conserved for fields φ, φ∗ that satisfy
the Euler-Lagrange equations.

d) Show that the invariance of S under infinitesimal space and time translations leads
to four conserved currents. Give interpretations for the components of the energy-
momentum tensor

T µν =
∂L

∂(∂µφ)
∂νφ+

∂L
∂(∂µφ∗)

∂νφ
∗ − L δµ ν

and derive explicit expressions.
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