Quantum Field Theory 1 - Problem set 2

Lectures: Jan Pawlowski
Problem sets: Michael Scherer
Institut für Theoretische Physik, Uni Heidelberg
pawlowski@thphys.uni-heidelberg.de scherer@thphys.uni-heidelberg.de due date: 2 November 2016

Suggested reading before solving these problems: Chapters 2.3 in the script and/or Chapters 2.3 to 2.4 of Peskin \mathcal{B} Schroeder.

Problem 1: Commutation relations

For a real scalar field $\phi(x)$ the Lagrangian density is

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} .
$$

The canonical momentum density is $\pi=\partial \mathcal{L} / \partial \dot{\phi}=\dot{\phi}$. The theory is quantized by promoting ϕ and π to operators in the Schrödinger picture with the commutation relations

$$
\begin{aligned}
{[\phi(\boldsymbol{x}), \pi(\boldsymbol{y})] } & =i \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}), \\
{[\phi(\boldsymbol{x}), \phi(\boldsymbol{y})] } & =[\pi(\boldsymbol{x}), \pi(\boldsymbol{y})]=0 .
\end{aligned}
$$

Introduce now the operators a and a^{\dagger} by

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\boldsymbol{p}}}\left\{a(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}+a^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\}, \\
\pi(\boldsymbol{x}) & =\frac{-i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{a(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}-a^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\}
\end{aligned}
$$

and derive the commutation relations

$$
\left[a(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right], \quad[a(\boldsymbol{p}), a(\boldsymbol{q})], \quad\left[a^{\dagger}(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right] .
$$

Problem 2: Complex scalar field: quantization

Consider the Lagrangian density for a free complex scalar field

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi .
$$

a) Show that the canonical momenta of ϕ and ϕ^{*} are

$$
\pi=\dot{\phi}^{*}, \quad \pi^{*}=\dot{\phi} .
$$

and derive an expression for the Hamiltonian H.
b) Proceed to quantization by promoting ϕ, ϕ^{*} and π, π^{*} to operators ϕ, ϕ^{\dagger} and π, π^{\dagger} (in the Schrödinger picture). What would you postulate as their commutation relations?
c) Introduce now creation and annihilation operators by writing

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\boldsymbol{p}}}\left\{a(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}+b^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\} \\
\pi(\boldsymbol{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{-i}{2}\left\{-a^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}+b(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}\right\} .
\end{aligned}
$$

Why do we now need operators b, b^{\dagger} in addition to a, a^{\dagger} ? Convince yourself that the commutation relations

$$
\begin{aligned}
{\left[a(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right] } & =\left[b(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=2 \omega_{\boldsymbol{p}}(2 \pi)^{3} \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}), \\
{[a(\boldsymbol{p}), a(\boldsymbol{q})] } & =[b(\boldsymbol{p}), b(\boldsymbol{q})]=0 \\
{[a(\boldsymbol{p}), b(\boldsymbol{q})] } & =\left[a(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=0
\end{aligned}
$$

are consistent with the ones postulated in part b).
d) Show that the Hamiltonian can be written as

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2}\left\{a^{\dagger}(\boldsymbol{p}) a(\boldsymbol{p})+b^{\dagger}(\boldsymbol{p}) b(\boldsymbol{p})\right\}+\text { const. }
$$

Why is the positive sign in front of the $b^{\dagger} b$ term important? What is the physical interpretation of b and b^{\dagger} ?
e) Switch now to the Heisenberg picture

$$
\phi_{H}(t, \boldsymbol{x})=e^{i H t} \phi(\boldsymbol{x}) e^{-i H t} .
$$

Show that

$$
\begin{align*}
e^{i H t} a(\boldsymbol{p}) e^{-i H t} & =a(\boldsymbol{p}) e^{-i \omega_{\boldsymbol{p}} t}, & & e^{i H t} a^{\dagger}(\boldsymbol{p}) e^{-i H t}=a^{\dagger}(\boldsymbol{p}) e^{i \omega_{p} t} \\
e^{i H t} b(\boldsymbol{p}) e^{-i H t} & =b(\boldsymbol{p}) e^{-i \omega_{\boldsymbol{p}} t}, & & e^{i H t} b^{\dagger}(\boldsymbol{p}) e^{-i H t} \tag{1}
\end{align*}=b^{\dagger}(\boldsymbol{p}) e^{i \omega_{p} t},
$$

and therefore

$$
\phi_{H}(t, \boldsymbol{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\boldsymbol{p}}}\left\{a(\boldsymbol{p}) e^{-i p x}+b^{\dagger}(\boldsymbol{p}) e^{i p x}\right\}
$$

