Quantum Field Theory 1 - Problem set 3

Lectures: Jan Pawlowski
Problem sets: Michael Scherer
Institut für Theoretische Physik, Uni Heidelberg
pawlowski@thphys.uni-heidelberg.de scherer@thphys.uni-heidelberg.de due date: 9 November 2016

Suggested reading before solving these problems: Chapter 2.3, 3.1 in the script and/or Chapters 2.2, 2.3 and 2.4 of Peskin E3 Schroeder.

Problem 1: A commutation relation for the three-momentum operator

Consider a real scalar field with Lagrangean density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

and conjugate momentum $\pi=\partial \mathcal{L} / \partial \dot{\phi}$. You have learned how to quantize the system by promoting ϕ and π to operators with the commutation relations

$$
\begin{align*}
& {[\phi(\boldsymbol{x}), \pi(\boldsymbol{y})]=i \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}),} \tag{1}\\
& {[\phi(\boldsymbol{x}), \phi(\boldsymbol{y})]=[\pi(\boldsymbol{x}), \pi(\boldsymbol{y})]=0 .} \tag{2}
\end{align*}
$$

The associated Hamiltonian and the three-momentum operators read

$$
\begin{aligned}
H & =\int d^{3} x\left[\frac{1}{2} \pi^{2}+\frac{1}{2}(\boldsymbol{\nabla} \phi)^{2}+\frac{m^{2}}{2} \phi^{2}\right] \\
\boldsymbol{P} & =\int d^{3} x(\pi \boldsymbol{\nabla} \phi)
\end{aligned}
$$

Show that these operators commute: $[H, \boldsymbol{P}]=0$ by only using the commutation relations (1) and (2).

Problem 2: Charge of a complex scalar field

Consider the Lagrangean density for a free complex scalar field

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi .
$$

and define the associated conjugate momenta π and π^{*}. The Noether theorem leads to a conserved charge, given in terms of 0 -component of the Noether current:

$$
Q \equiv \int d^{3} x j^{0}
$$

For a complex scalar field, the four-vector associated with the current j reads

$$
j^{\mu}=i\left[\left(\partial^{\mu} \phi\right)^{*} \phi-\phi^{*}\left(\partial^{\mu} \phi\right)\right]
$$

from which an expression for the corresponding charge Q can be easily obtained.
The theory is quantised by promoting ϕ, ϕ^{*} and their conjugate momenta to operators. To that end it is convenient to introduce the creation and annihilation operators

$$
\begin{align*}
\phi(\boldsymbol{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\boldsymbol{p}}}\left\{a(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}+b^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\} \tag{3}\\
\pi(\boldsymbol{x}) & =\frac{-i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{b(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}-a^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\} \tag{4}
\end{align*}
$$

with commutation relations

$$
\begin{aligned}
{\left[a(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right] } & =\left[b(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=2 \omega_{\boldsymbol{p}}(2 \pi)^{3} \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}), \\
{[a(\boldsymbol{p}), a(\boldsymbol{q})] } & =[b(\boldsymbol{p}), b(\boldsymbol{q})]=0 \\
{[a(\boldsymbol{p}), b(\boldsymbol{q})] } & =\left[a(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=0
\end{aligned}
$$

Express the charge Q in terms of the operators a, a^{\dagger} and b, b^{\dagger}, carrying out all the details of the calculation.

Remark: The normalization of the quantum fields is chosen to be consistent with second problem from the previous problem set. Please note, that you have used a different normalization in the lecture.

