Quantum Field Theory 1 - Problem set 7

Lectures: Jan Pawlowski
Problem sets: Michael Scherer
Institut für Theoretische Physik, Uni Heidelberg
pawlowski@thphys.uni-heidelberg.de scherer@thphys.uni-heidelberg.de due date: 7 December 2016

Suggested reading before solving these problems: Chapters 4.1 in the script and/or Chapters 3.1 of Peskin © Schroeder.

Problem 1: Infinitesimal and finite Lorentz transformations

Under a Lorentz transformation the coordinates transform as

$$
x^{\mu} \rightarrow x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu},
$$

with a matrix Λ that leaves the metric tensor unchanged

$$
\eta_{\mu \nu}=\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu} \eta_{\rho \sigma} .
$$

a) An infinitesimal Lorentz transformation has the form

$$
\Lambda^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}+\omega^{\mu}{ }_{\nu} .
$$

Show that $\omega_{\mu \nu}=-\omega_{\nu \mu}$.
b) Write down the matrix $\omega^{\mu}{ }_{\nu}$ that correspond to a rotation through an infinitesimal angle ϑ around the z-axis. Do the same for a boost along the z-axis by an infinitesimal velocity v. In both cases, check the validity of the relation shown in part a).
c) By exponentiating, deduce the form of $\Lambda^{\mu}{ }_{\nu}$ for a finite rotation around or a finite boost along the z-axis.

Problem 2: Generators of the Lorentz group

a) Verify that the infinitesimal Lorentz transformations found in problem 1 can be written as

$$
\Lambda=\mathbb{1}-\frac{i}{2} \omega_{\alpha \beta} M^{\alpha \beta}
$$

where the matrix $M^{\alpha \beta}$ has the components

$$
\left(M^{\alpha \beta}\right)^{\mu}{ }_{\nu}=i\left(\eta^{\mu \alpha} \delta_{\nu}^{\beta}-\eta^{\mu \beta} \delta_{\nu}^{\alpha}\right) .
$$

b) Show that the generators $M^{\alpha \beta}$ of infinitesimal Lorentz transformations satisfy the commutation relations (Lie algebra brackets)

$$
\left[M^{\alpha \beta}, M^{\gamma \delta}\right]=i\left(\eta^{\beta \gamma} M^{\alpha \delta}+\eta^{\alpha \delta} M^{\beta \gamma}-\eta^{\alpha \gamma} M^{\beta \delta}-\eta^{\beta \delta} M^{\alpha \gamma}\right) .
$$

c) Show that

$$
\left[M^{01}, M^{23}\right]=0
$$

and that this holds for all permutations of $0,1,2,3$.
d) The generators of rotations are

$$
J_{1}=M^{23}, \quad J_{2}=M^{31}, J_{3}=M^{12}
$$

Check that the J_{k} satisfy the angular momentum commutation relation

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}
$$

e) The generators of Lorentz boosts are

$$
K_{1}=M^{10}, \quad K_{2}=M^{20}, \quad K_{3}=M^{30} .
$$

Check the commutation laws

$$
\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}
$$

f) Show that the differential operators

$$
\tilde{M}^{\alpha \beta}=i\left(x^{\alpha} \partial^{\beta}-x^{\beta} \partial^{\alpha}\right)
$$

(with $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$) satisfy the commutation relations of the generators of Lorentz transformations in part b).

Problem 3: Transformation of fields

A scalar field $\phi(x)$ transforms under a Lorentz transformation

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

according to

$$
\phi(x) \rightarrow \phi^{\prime}(x)=\phi\left(\Lambda^{-1} x\right) .
$$

In contrast, a vector field $A^{\mu}(x)$ transforms as

$$
A^{\mu}(x) \rightarrow A^{\prime \mu}(x) \rightarrow \Lambda^{\mu}{ }_{\nu} A^{\nu}\left(\Lambda^{-1} x\right) .
$$

a) What is the transformation behaviour of a tensor field $T^{\mu \nu}(x)$ or more general $T^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}{ }_{\beta_{1} \beta_{2} \ldots \beta_{m}}(x)$?
b) An example for a tensor field is the electromagnetic field strength $F^{\mu \nu}$ while the current j^{μ} is a vector field. Show that Maxwells equation

$$
\partial_{\mu} F^{\mu \nu}=j^{\nu}
$$

is invariant under Lorentz transformations.
c) Show that the following special "field configurations" are invariant:

$$
\phi(x)=\text { const. }, \quad A^{\mu}(x)=x^{\mu}, \quad T^{\mu \nu}(x)=\eta^{\mu \nu}, \quad T_{\nu}^{\mu}(x)=x^{\mu} x_{\nu} .
$$

