Quantum Field Theory 1 - Problem set 8

Lectures: Jan Pawlowski
Problem sets: Michael Scherer
Institut für Theoretische Physik, Uni Heidelberg
pawlowski@thphys.uni-heidelberg.de scherer@thphys.uni-heidelberg.de due date: 14 December 2016

Suggested reading before solving these problems: Chapters 4.2 in the script and/or Chapters 3.2 of Peskin © Schroeder.

Problem 1: Lorentz symmetry $S O(3,1)$ and $S L(2, \mathbb{C})$
Consider te 2×2 matrices

$$
\sigma^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For a space-time coordinate x^{μ} consider the matrix

$$
\hat{x}=x_{\mu} \sigma^{\mu}=\left(\begin{array}{cc}
x^{0}-x^{3} & -x^{1}+i x^{2} \tag{1}\\
-x^{1}-i x^{2} & x^{0}+x^{3}
\end{array}\right) .
$$

a) Show that every hermitian 2×2 matrix can be written in the form (1) for some real x^{μ}.
b) Show that $\operatorname{det} \hat{x}=x_{\nu} x^{\nu}$ and that this implies

$$
\eta_{\mu \nu} x^{\mu} y^{\nu}=\frac{1}{4}[\operatorname{det}(\hat{x}+\hat{y})-\operatorname{det}(\hat{x}-\hat{y})] .
$$

c) Show for a complex 2×2 matrix N with unit determinant, $N \in S L(2, \mathbb{C})$, that

$$
\hat{x}^{\prime}=N \hat{x} N^{\dagger}
$$

is again of the form (1) with x^{\prime} linear in x,

$$
x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} .
$$

d) By considering the relations in b) for the matrices $\hat{x}^{\prime}=N \hat{x} N^{\dagger}$ and $\hat{y}^{\prime}=N \hat{y} N^{\dagger}$ show that

$$
\eta_{\mu \nu} x^{\mu} y^{\nu}=\eta_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\tau} x^{\rho} x^{\tau}=\eta_{\mu \nu} x^{\mu} y^{\nu}
$$

and that Λ has therefore the properties of a Lorentz-transformation.
e) Define $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{i}\right)$ and show the identities

$$
\begin{gathered}
\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}=2 \eta^{\mu \nu} \mathbb{1}_{2} \\
\operatorname{tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)=2 \eta^{\mu \nu}
\end{gathered}
$$

f) For a given $N \in S L(2, \mathbb{C})$ show that the corresponding matrix Λ is given by

$$
\begin{equation*}
\Lambda^{\mu}{ }_{\nu}=\frac{1}{2} \operatorname{Tr}\left(\bar{\sigma}^{\mu} N \sigma_{\nu} N^{\dagger}\right) . \tag{2}
\end{equation*}
$$

From Eq. (2) you can see that there is a unique matrix $\Lambda \in S O(3,1)$ for every matrix $N \in S L(2, \mathbb{C})$. On the other side, N and $-N$ correspond to the same Λ. In fact, there is a isomorphism from $S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ (the complex 2×2 matrices with N and $-N$ identified) to the orthochronous Lorentz group $S O(3,1)^{\uparrow}$ consisting of of matrices Λ that conserve the metric tensor with $\Lambda^{0}{ }_{0}>0$ and $\operatorname{det} \Lambda=1$.

Problem 2: Dirac algebra

a) Show that the Dirac gamma matrices

$$
\gamma^{\mu}=\left(\begin{array}{cc}
& \sigma^{\mu} \\
\bar{\sigma}^{\mu} &
\end{array}\right)
$$

satisfy the anticommutation relations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4} .
$$

b) A representation of the Lorentz algebra (see Sheet 7) is given by

$$
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

Calculate the explicit form of $S^{0 i}$ and $S^{i j}$.
c) With the notation of Sheet 7, problem 2, show that

$$
\left[\gamma^{\mu}, S^{\rho \sigma}\right]=\left(M^{\rho \sigma}\right)^{\mu}{ }_{\nu} \gamma^{\nu}
$$

and that this implies the infinitesimal form of

$$
\Lambda_{\frac{1}{2}}^{-1} \gamma^{\mu} \Lambda_{\frac{1}{2}}=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}
$$

where $\Lambda_{\frac{1}{2}}=\exp \left(-\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}\right)$ is a 4×4 matrix in spinor space and $\Lambda=\exp \left(-\frac{i}{2} \omega_{\alpha \beta} M^{\alpha \beta}\right)$ is a $4 \times{ }_{4}^{2}$ matrix in Lorentz space.

