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Problem 1: Dimensional regularization

Dimensional regularization is a method to regularize expressions that formally diverge
in d = 3 4+ 1 dimensions. One takes d to be a real number, for example d = 4 — 2¢. A
typical example is a (Euclidean or Wick-rotated) integral of the form
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a) The first integral in Eq. (1) contains the area of a unit sphere in d dimensions. By
d
using (y/7)4 = (f dx e“’”Q) — [diz e~ T show that
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b) By substituting x = m?/(¢® +m?) show that the remaining integral in Eq. (1) can
be written as
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Use now the formula fol dr 22711 — )P~ = T'(a)[(B)/T(a + B) to show
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c¢) Derive from Eq. (2)
/ d’q 1 I'(n— g) 1
(

2m)* (¢ +m? +2q-p)"  (4m)2T(n) (m2 — p2)n=3’
and use this together with properties of the Gamma function to show
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Problem 2: Vacuum polarization of QED

In this problem we calculate a one-loop contribution to the photon propagator
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a) Use the Feynman rules of QED to show that this amplitude reads
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b) Use now the trace identity
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the Feynman trick
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an appropriate shift in the integration variable and Wick rotation to show
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with A = m? — a(1 — a)p*.
c) You can now use the results of problem 1 as well as the expansion (d = 4 — 2¢)
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with v ~ 0.5772 the Euler-Mascheroni constant to show that II*”(p) is of the form
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