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Suggested reading before solving these problems: Chapters 2.1 and 2.2. in the script
and/or Chapters 2.1 to 2.2 of Peskin & Schroeder.

Problem 1: Lagrangian “String Theory”

Consider a series of one-dimensional coupled oscillators y;, ¢ = 1, ..., N with distance a,
boundary conditions yg = yny+1 = 0, and the Lagrange function
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Show that the Lagrange function becomes that of a (clamped) string
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in the limit N — oo,a — 0 with R = N - a fixed. Here 0 = m/a is the mass per unit
length and 7 = t/a is the string tension. By expanding the displacement as a Fourier

expansion in the form
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Use the variational principle with this form of the Lagrangian to obtain the Euler-

Lagrange equations
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Hence show that the string is equivalent to an infinite set of harmonic oscillators with
frequencies

show that
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What happens in the limit R — oo?



Problem 2: Complex scalar field

Consider the following action for a complex scalar field
A
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It is easiest to consider ¢ and ¢* as independent, rather than the real and imaginary
parts of ¢.

a) Derive the Euler-Lagrange equations for ¢ and ¢*.

b) Show that S is invariant under the infinitesimal transformation
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c¢) Derive an expression for the Noether current j* = (j°,7) associated with this
symmetry transformation and show that it is conserved for fields ¢, ¢* that satisfy
the Euler-Lagrange equations.

d) Show that the invariance of S under infinitesimal space and time translations leads
to four conserved currents. Give interpretations for the components of the energy-
momentum tensor

oL oL
v = O,¢ + "
(0u9) 9(0,0*)

and derive explicit expressions.
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