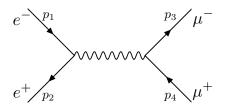
Quantum Field Theory 1 – Problem set 12


Lectures: Jörg Jäckel J.Jaeckel@thphys.uni-heidelberg.de Jan Pawlowski J.Pawlowski@thphys.uni-heidelberg.de Tutorials: Malo Tarpin M.Tarpin@thphys.uni-heidelberg.de Institut für Theoretische Physik, Uni Heidelberg tutorial date: 13 January 2020

Suggested reading before solving these problems: Chapter 6.2 in the script and/or Chapter 5.1 of *Peskin & Schroeder*.

Problem 1: Tree-level cross section for $e^+e^- \rightarrow \mu^+\mu^-$

In the lecture course you have made a lot of formal developments and you are now equipped to perform calculations for real processes in QED. For example, the QED process $e^+e^- \rightarrow \mu^+\mu^-$ is an important reaction to calibrate e^+e^- colliders and therefore it constitutes a fundamental building block for the understanding and experimental study of more complicated processes in particle physics. So, ...

... take a deep breath and calculate the tree-level differential cross section¹ for the reaction $e^+e^- \rightarrow \mu^+\mu^-$ in the highly relativistic limit² where $s = (p_1 + p_2)^2 \gg m_{\mu}^2, m_e^2$.

¹ General strategy: Draw the diagram \rightarrow use Feynman rules to write down $\mathcal{M} \rightarrow$ square the amplitude and average or sum over spins \rightarrow evaluate traces and simplify \rightarrow choose a particular frame of reference \rightarrow plug expression for $|\mathcal{M}|^2$ into cross-section formula and obtain differential cross section.

² You can follow the notes given on the lecture's website: Cross section for e+e- to mu+mu-).