Equation of state and phase structure of

ultracold quantum gases in 2 & 3 dimensions

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

INT Seattle, May 15th 2014

Boettcher, JMP, Wetterich, in preparation

Boettcher, JMP, Wetterich, arXiv:1312.0505 [cond-mat.quant-gas]

Boettcher, Diehl, JMP, Wetterich, Phys.Rev. A87, 023606 (2013)

Outline

BEC - BCS cross-over & the functional RG

• 2d & 3d phase structure

Summary and outlook

Phase diagram of cold quantum gases

BEC-BCS cross-over

Eagles '69, Leggett '80

Fermions with attractive interactions

(CHO@SCIENCE'03)

Strongly-correlated set-up

Relevant degrees of freedom

 ϕ

stable fermionic atom field $~\psi$

bosonic molecule field /Cooper pair

$$(\hbar = k_B = 2M = 1)$$

Strongly-correlated set-up

Relevant degrees of freedom

 ϕ

Effective action

$$\begin{split} \Gamma[\psi,\phi] &= \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi \right. \\ &+ \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi \\ &+ \lambda_{\psi} (\psi^{\dagger} \psi)^{2} + U(\phi) \\ &- \frac{h_{\phi}}{2} (\phi^{*} \psi^{\mathrm{T}} \epsilon \psi - \phi \psi^{\dagger} \epsilon \psi^{*}) + \dots \end{split}$$

stable fermionic atom field $~\psi$

bosonic molecule field /Cooper pair

Effective action

Fierz transformation

Effective action

$$\dots + m_{\phi}^{2} \phi^{*} \phi + \lambda_{\psi} (\psi^{\dagger} \psi)^{2} - \frac{h_{\phi}}{2} (\phi^{*} \psi^{\mathrm{T}} \epsilon \psi - \phi \psi^{\dagger} \epsilon \psi^{*}) + \dots$$

relevant terms

Relation to microphysics via Hubbard-Stratonovich

$$m_{\phi}^2 = \bar{\mu}(B - B_0) - 2\mu$$

chemical potential of molecule

$$\lambda_{\psi} = \frac{4\pi a_{\rm bg}}{M}$$

$$\lambda_{\psi,\text{eff}} = \lambda_{\psi} - \frac{h^2}{m_{\phi}^2}$$

$$a(B) = \frac{M}{4\pi} \left(\lambda_{\psi} - \frac{h^2}{m_{\phi}^2} \right)$$

 $h_{\phi}^2 = \Delta B$

Functional RG

Functional RG

Functional RG

Functional RG

Effective action

$$\Gamma[\psi,\phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi + \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi + \frac{\lambda_{\psi}}{2} (\psi^{\dagger}\psi)^{2} + \frac{U(\phi)}{2} (\phi^{*}\psi^{T}\epsilon\psi - \phi\psi^{\dagger}\epsilon\psi^{*}) \right\} + \cdots$$

Approximation

Effective action

$$\Gamma[\psi,\phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi + \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi + \frac{\lambda_{\psi}}{2} (\psi^{\dagger}\psi)^{2} + \frac{U(\phi)}{2} (\phi^{*}\psi^{T}\epsilon\psi - \phi\psi^{\dagger}\epsilon\psi^{*}) \right\} + \cdots$$

Approximation

Why?

Effective action

$$\Gamma[\psi,\phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi + \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi + \frac{\lambda_{\psi} (\psi^{\dagger} \psi)^{2}}{2} + \frac{U(\phi)}{2} (\phi^{*} \psi^{T} \epsilon \psi - \phi \psi^{\dagger} \epsilon \psi^{*}) \right\} + \cdots$$

Approximation

$$n(\mu, T) = 2 \int_{\vec{p}} \left(\frac{1}{2} - \int_{p_0} G_{\psi^* \psi}(P) \right)$$

Effective action

$$\Gamma[\psi,\phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi + \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi + \frac{\lambda_{\psi} (\psi^{\dagger} \psi)^{2}}{2} + \frac{U(\phi)}{2} (\phi^{*} \psi^{T} \epsilon \psi - \phi \psi^{\dagger} \epsilon \psi^{*}) \right\} + \cdots$$

Approximation

Why? density!

$$n(\mu,T) = 2 \int_{\vec{p}} \left(\frac{1}{2} - \int_{p_0} \frac{[i \, p_0 + \vec{p}^2 - \mu + \Sigma_{\psi^*\psi}(P)]^*}{|i \, p_0 + \vec{p}^2 - \mu + \Sigma_{\psi^*\psi}(P)|^2 + |\Sigma_{\psi^T\psi}|^2} \right)$$

Effective action

$$\Gamma[\psi,\phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} \left(Z_{\psi} \partial_{\tau} - A_{\psi} \nabla^{2} - \mu \right) \psi + \phi^{*} \left(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^{2}}{2} \right) \phi + \frac{\lambda_{\psi}}{2} (\psi^{\dagger} \psi)^{2} + \frac{U(\phi)}{2} (\phi^{*} \psi^{T} \epsilon \psi - \phi \psi^{\dagger} \epsilon \psi^{*}) \right\} + \cdots$$

Approximation

Bound molecules of two atoms on microscopic scale

Fermions with attractive interactions

Phase diagram of cold quantum gases

Bound molecules of two atoms on microscopic scale

Fermions with attractive interactions

Regal et al '04

Birse, Krippa, McGovern, Walet, Phys.Lett. B605, 287 (2005) Diehl, Gies, JMP, Wetterich, Phys. Rev. A 76, 021602; 053627 (2007) Diehl, Krahl, Scherer, Phys.Rev. C78 (2008) 034001 Floerchinger, Scherer, Diehl, Wetterich, Phys. Rev. B 78, 174528 (2008) Diehl, Floerchinger, Gies, JMP, Wetterich, Annalen der Physik 522, 615 (2010) Floerchinger, Scherer, Wetterich, Phys. Rev. A 81, 063619 (2010) Schmidt, Enss, Phys.Rev. A83 (2011) 063620 Scherer, Floerchinger, Gies, Phil. Trans. R. Soc. A 368, 2779 (2011) Boettcher, JMP, Diehl, Nucl.Phys.Proc.Suppl. 228, 63 (2012) Boettcher, Diehl, JMP, Wetterich, Phys.Rev. A87, 023606 (2013) Boettcher, JMP, Wetterich, arXiv:1312.0505 [cond-mat.quant-gas] three & four-body

Floerchinger, Moroz, Schmidt, Wetterich, Phys. Rev. A 79, 013603; 042705 (2009) Schmidt, Floerchinger, Wetterich, Phys.Rev. A79 (2009) 053633 Schmidt, Moroz, Rev. A 81, 052709 (2010) Birse, Krippa, Walet, Rev.A81, 043628 (2010); Phys.Rev.A83, 023621 (2011) Floerchinger, Moroz, Schmidt, Few-Body Syst. 51, 153 (2011) Jaramillo Avila, Birse, Phys. Rev. A 88, 043613 (2013)

Phase diagram of cold quantum gases

Bound molecules of two atoms on microscopic scale

Fermions with attractive interactions

Phase diagram of cold quantum gases

Phase diagram of QCD

Experimental realisation

Jochim group in Heidelberg

 $\omega_r / \omega_z \approx 1:310$ $rightarrow 50\ 000\ radial\ states\ in\ transversal\ ground\ state$

Experimental realisation

 $ω_r / ω_z \approx 1:310$ rightarrow 50 000 radial states in transversal ground state

Measurements

Jochim group in Heidelberg

$$\left(\langle \hat{\psi}^{\dagger}(r_0)\hat{\psi}(r_0+r)\rangle\propto r^{-\eta}\right)$$

Measurements

Measurements

EoS & phase structure

Boettcher, JMP, Wetterich, in preparation

$$\mu \to \mu_{\rm mb} = \mu - \frac{\epsilon_b}{2} = \mu + \frac{1}{a^2}$$

$$\epsilon_F = 2\pi n(\mu, T)$$

$$k_F = \sqrt{\epsilon_F}$$

---- : mean field

$$\frac{\mu}{\epsilon_F} = \frac{\log(k_F a)}{1 + \log(k_F a)}$$

EoS & phase structure

Boettcher, JMP, Wetterich, in preparation

Scaling

Boettcher, JMP, Wetterich, in preparation

$$\begin{split} & \Gamma_k[\psi,\phi] = \dots + \int_{\tau,\vec{x}} \phi^* \left(Z_{\phi,k} \partial_\tau - A_{\phi,k} \frac{\nabla^2}{2} \right) \phi + \dots \\ & \eta_k = -\frac{\partial_t A_{\phi,k}}{A_{\phi,k}} \end{split}$$

$$g_1(r) \sim \langle \hat{\psi}^{\dagger}(r_0) \hat{\psi}(r_0 + r) \rangle$$
$$C^2(r) = \frac{1}{\pi r^2} \int_0^r d^2 r' |g_1(r')|^2 \propto r^{-2\eta}$$

17

Summary & Outlook

Summary & outlook

•Eos & phase structure in two dimensions

Tan contact & BKT scaling

