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1 Introduction

It has been recognized that intertemporal planning may yield results that are inconsis-

tent with a revised plan which is performed after a certain period of time (see, e.g.,

[Strotz 1955, Peleg and Yaari 1973, Blackorby et al. 1973, Kohlberg 1976], and

[Thaler and Shefrin 1981]).

In particular, in models of altruistic generations, some generation’s optimal future

consumption path is inconsistent with the following generations’ optimal plans. In the

literature, two possibilities to deal with this problem are discussed.

First, each generation acts according to its optimal plan. Thus, it ignores that the plan

will not be fulfilled by the following generations. Each generation revises the intertemporal

plan. Only the first period of each plan is realized. This is known as the naive society

[Blackorby et al. 1973]. As no plan is actually realized, each generation may suffer some

loss of welfare. This aspect is analyzed by [Grout 1982].

Secondly, each generation takes into account the preferences and the behaviour of the

following generation. Thus, the last (if it exists) generation determines its plan as a

response to its initial endowments. Then the plans are recursively determined. It is obvious

that this procedure yields time-consistent plans. In other words, the first generation’s plan

will be accepted to be optimal by all the following generations. The result of this procedure

is a subgame-perfect Nash equilibrium in the game between the generations.1 Note that

this approach requires perfect information about future preferences. However, the problem

of time-consistent planning under uncertainty has also been discussed in the literature (see,

e.g., [Johnsen and Donaldson 1985]).

Time inconsistency in naive intertemporal planning is very likely. However, for the finite

time horizon case, [Blackorby et al. 1973] characterize the sequences of intertemporal

utility functions that yield time-consistent optima, even in the case of naive planning.

1 For a discussion of this so-called Strotz-Pollak equilibrium see, e.g. [Strotz 1955, Pollak 1968,
Peleg and Yaari 1973, Goldman 1980, Leininger 1986].
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In this work we extend this characterization to the infinite time horizon case. Due to

the lack of a starting point for the backward induction procedure and a different topological

situation, several modifications are necessary. Relying on fixed point arguments, we classify

the time-consistent sequences of intertemporal utility functions on the set of consumption

streams (of infinite length).

We analyze the monotonicity and concavity properties of these time-consistent se-

quences of utility functions.

This article is organized as follows. Section 2 develops a criterion for time-consistent

preferences in the infinite time horizon case. In Section 3 we deal with monotonicity and

concavity of the intertemporal utility functions. Some examples illustrate our findings in

Section 4. Section 5 summarizes the results. An appendix contains some technical details.

2 Time Consistency

We consider discrete time and denote consumption at time t by ct. In our model we do

not allow for unbounded consumption. That is, we consider the case ct ∈ [0, 1] (after some

rescaling, if necessary). The complete consumption sequence starting at time t is denoted

by Ct = (ct, ct+1, ...) ∈ [0, 1]T−(t−1) for a finite time horizon T < ∞ as well as infinite

horizon T = ∞.

Generation t’s preferences are described by an intertemporal utility function wt which

we normalize on the interval [0, 1]:

wt : [0, 1]T−t+1 → [0, 1]

Ct 7→ wt(Ct).
(1)

That is, only present and future consumption enter each generations’ preferences (i.e. in-

dependence of history).

For T < ∞ we get from [Blackorby et al. 1973] that the sequence of utility func-

tions wt is time-consistent if and only if there are functions Ft : [0, 1]2 → [0, 1] (for
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t ∈ {1, 2, ..., T − 1}) such that for all Ct ∈ [0, 1]T−(t−1)

wt(Ct) = Ft[ct, wt+1(Ct+1)]. (2)

We now consider the infinite time horizon case. In an appendix we give a brief sketch

of how to modify the proof of [Blackorby et al. 1973, theorem 3] for the infinite time

horizon case. Again, a sequence of intertemporal utility functions wt is time-consistent if

there are functions Ft such that (2) holds.

We assume that the preferences do not depend on calendar time.2 That is, the prefer-

ences for each generation are identical in the sense that

∀t, t′ ∈ lN ∀C ∈ [0, 1]∞ : wt(C) = wt′(C). (3)

Therefore, we may skip the time index of the utility function and define the universal

intertemporal utility function w := wt. The consistency criterion is then

w(Ct) = Ft[ct, w(Ct+1)]. (4)

We will now prove that the functions Ft also have to be identical.

The utility functions of periods t and t+ i are given by

w(Ct) = Ft[ct, w(Ct+1)]

w(C ′
t+i) = Ft+i[c

′
t+i, w(C ′

t+i+1)].
(5)

with arbitrary consumption paths Ct, C
′
t+i ∈ [0, 1]∞. Now we choose

c′t+j+i = ct+j for j ≥ 0. (6)

With T = ∞ we get

C ′
t+i = Ct

w(C ′
t+i) = w(Ct) = Ft[ct, w(Ct+1)].

(7)

On the other hand, we have

w(C ′
t+i) = Ft+i[c

′
t+i, w(C ′

t+i+1)] = Ft+i[ct, w(Ct+1)] (from (6)). (8)

2 Note that this assumption is not possible in the finite time horizon case.
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As (7) and (8) hold for arbitrary paths Ct we get

Ft[x, y] = Ft+i[x, y] for x ∈ [0, 1], y ∈ w([0, 1]∞). (9)

For w([0, 1]∞) = [0, 1] we get Ft = Ft+i. In the case w([0, 1]∞) 6= [0, 1], however, Ft, Ft+i

might differ on the set [0, 1]× ([0, 1] \w([0, 1]∞)). The values of Ft, Ft+i on this set do not

matter; so we can simply set Ft := F0 for all t on this set.

This enables us now to define F := Ft and write the criterion of time consistency in

the form

w(Ct) = F [ct, w(Ct+1)]. (10)

So far we have shown that for a time-consistent sequence of preferences characterized by

the intertemporal utility function w there is a function F with the property (10). We may

ask now whether for a given F : [0, 1]2 → [0, 1] there is a solution w.

The utility functions we are interested in should give more weight to present rather

than future consumption. To be more precise let’s consider C1
t 6= C2

t with c1t = c2t = ct.

The difference in the consumption paths gives rise to a difference in the level of welfare3

Generation t+ 1 faces the difference in consumption earlier then generation t. Generation

t discounts the value of the utility difference due to the difference in future consumption.

We will reflect this by assuming

|w(C1
t ) − w(C2

t )| ≤ L |w(C1
t+1) − w(C2

t+1)|

|F [ct, w(C1
t+1)] − F [ct, w(C2

t+1)]| ≤ L |w(C1
t+1) − w(C2

t+1)|
(11)

with a constant L ∈ (0, 1).4

In the following we confine the functions F to the set

S = {F ∈ C([0, 1]2, [0, 1]) | |F [x, y1] − F [x, y2]| ≤ L · |y1 − y2|,

∀x, y1, y2 ∈ [0, 1] with L ∈ (0, 1)}
(12)

3Here we use cardinal utility in order to speak about utility levels and differences between them.
4 To illustrate the impact of our assumption (11) we consider two consumption paths C1

t
= (1, 0, 0, 0, ...)

and C2
t

= (0, 1, 0, 0, ...). If generation t discounts future consumption we get wt(C
1
t
) > wt(C

2
t
). On

the other hand, the constraint (11) leads to wt(1, 0, 0, 0, ...) − wt(0, 0, 0, 0, ...) > L · [wt(1, 0, 0, 0, ...) −
wt(0, 0, 0, 0, ...)] ≥ wt(0, 1, 0, 0, ...) − wt(0, 0, 0, 0, ...). That gives wt(1, 0, 0, 0, ...) > wt(0, 1, 0, 0, ...), i.e. dis-
counting wt(C

1
t
) > wt(C

2
t
).
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where we use the notation C(A,B) for the set of all continuous mappings f : A → B. We

consider the product topology of [0, 1]∞ and define the mapping

ΦF : C([0, 1]∞, [0, 1]) → C([0, 1]∞, [0, 1])

w 7→ ΦF [w]
(13)

with

ΦF [w](Ct) := F [ct, w(Ct+1)]. (14)

Hence, the criterion for time consistency (10) turns out to be a fixed point equation, i.e.,

ΦF [w] = w. (15)

Thus, the question whether a utility function w exists for a given F ∈ S, is now the

question of the existence of a fixed point in (15).

We approach the problem by use of Banach’s fixed point theorem. Therefore we need

the following

Definition 1 For a non-empty subset A of a normed space, a mapping f : A → A is

called contracting if there is a L ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ L ‖x − y‖ for all

x, y ∈ A.

Of course, a contracting mapping is continuous.

Now we can state the following fixed point theorem (see, e.g., [Heuser 1981]).

Theorem 1 (Banach) Let X be a non-empty closed subset of a Banach space. If there

is a contracting mapping f : X → X , then the equation f [x] = x has one and only one

solution (i.e., the fixed point).

In order to apply Banach’s Theorem to our problem, we have to prove

Proposition 1 For all F ∈ S the mapping ΦF is contracting.
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Proof: Let u, w ∈ C([0, 1]∞, [0, 1]) and F ∈ S. From (12) we know that there is an

L ∈ (0, 1) such that

‖ΦF [u] − ΦF [w]‖∞ = sup
C1∈[0,1]∞

|ΦF [u](C1) − ΦF [w](C1)|

= sup
C1∈[0,1]∞

|F [c1, u(C2)] − F [c1, w(C2)]|

≤ L · sup
C2∈[0,1]∞

|u(C2) − w(C2)|

= L · ‖u− w‖∞.

(16)

Thus, ΦF is contracting.

Now we can formulate

Proposition 2 For all F ∈ S there is exactly one function w such that for all Ct ∈ [0, 1]∞

the equation w(Ct) = F [ct, w(Ct+1)] is fulfilled.

Proof: Let F ∈ S. Then ΦF is contracting (Proposition 1). Thus, we may apply Banach’s

theorem and get a unique solution to ΦF [w] = w. This proves the Proposition.

3 Quasiconcavity and Monoticity

The utility functions w generated by F ∈ S should be strictly quasiconcave and non-

decreasing. In order to achieve this we define the set

S∗ := {F ∈ S| F strictly monotonically increasing and strictly concave}. (17)

We formulate the following Proposition.

Proposition 3 If F ∈ S∗ and w = ΦF [w], then w is strictly monotonically increasing and

strictly concave.

Proof: By means of w = ΦF [w] we write w in the iterative form

w(C1) = F [c1, F [c2, F [c3, ...F [cn, w(Cn+1)]...]]]. (18)
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We define functions F n for n ∈ lN to write (18) in a compact form:

F 1[C1, x] := F [c1, x]

F n[C1, x] := F [c1, F
n−1[C2, x]].

(19)

As F is strictly increasing the functions F n are strictly increasing with respect to the

first n components of the vector C1 ∈ [0, 1]∞ and also with respect to the last argument

x ∈ [0, 1].5 Now equation (18) takes the form

w(C1) = F n[C1, w(Cn+1)]. (20)

Thus, we get from (20) and 0 ≤ w[Cn+1] ≤ 1:

F n[C1, 0] ≤ w[C1] ≤ F n[C1, 1]. (21)

As F ∈ S∗ has a Lipschitz constant L ∈ (0, 1) we can show that F n has the Lipschitz

constant Ln with respect to the second entry. We show this by induction. For any C1 ∈

[0, 1]∞ and x, x′ ∈ [0, 1] we have

|F 1[C1, x] − F 1[C1, x
′]| = |F [c1, x] − F [c1, x

′]|

≤ L · |x− x′|.
(22)

Assume now that F n−1 has the Lipschitz constant Ln−1. Then for any x, x′ ∈ [0, 1] we get

|F n[C1, x] − F n[C1, x
′]| = |F [c1, F

n−1[C2, x]] − F [c1, F
n−1[C2, x

′]]|

≤ L · |F n−1[C2, x] − F n−1[C2, x
′]|

≤ Ln · |x− x′|.

(23)

Thus we get F n[C1, 1] = F n[C1, 0] + |F n[C1, 1] − F n[C1, 0]| ≤ F n[C1, 0] + Ln. From (21)

we get

F n[C1, 0] ≤ w[C1] ≤ F n[C1, 0] + Ln (24)

for all n ∈ lN. As L ∈ (0, 1) the term Ln vanishes in the limit n→ ∞. Thus, we get

F∞[C1, 0] ≤ w[C1] ≤ F∞[C1, 0] (25)

5 Therefore we split the support D of Fn as follows: D = [0, 1]n × [0, 1]∞ × [0, 1].
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Hence,

w[C1] = F∞[C1, 0]. (26)

Now it remains to be shown that F∞ has the desired monotonicity and concavity properties.

We show this by intermediate results on the properties of F n for n ∈ lN. We know already

that F n is strictly increasing in the first n components of C1, as F is strictly increasing.

Next we show that the F n are strictly concave in the first n components by complete

induction. F 1 is concave on [0, 1]∞ and strictly concave in c1 ∈ [0, 1] as F is strictly

concave. Now we assume F n−1 to be strictly concave in the first n− 1 components of C1.

For any C1, C
′
1 ∈ [0, 1]∞ (with ci 6= c′i for some i ∈ {1, ..., n}) , x, x′ ∈ [0, 1] and λ ∈ (0, 1)

we get

F n[λC1 + (1 − λ)C ′
1, λx+ (1 − λ)x′]

= F [λc1 + (1 − λ)c′1, F
n−1[λC2 + (1 − λ)C ′

2, λx+ (1 − λ)x′]]

≥ F [λc1 + (1 − λ)c′1, λF
n−1[C2, x] + (1 − λ)F n−1[C ′

2, x
′]]

≥ λF [c1, F
n−1[C2, x]] + (1 − λ)F [c′1, F

n−1[C ′
2, x

′]]

= λF n[C1, x] + (1 − λ)F n[C ′
1, x

′].

(27)

Thus, F n is concave. Moreover, as F is strictly concave, the second inequality in (27)

becomes strict, if c1 6= c′1. If c1 = c′1, there is an i ∈ {2, ..., n} such that for ci 6= c′i. Then,

as F is strictly increasing and F n−1 strictly concave, the first inequality becomes strict.

This proves the strict concavity of F n in the first n arguments for all n ∈ lN.

This shows the strict concavity of F∞ in C1 ∈ [0, 1]∞.

We conclude (see (26)) that w is strictly concave and strictly increasing, which proves

Proposition 3.

Any strictly concave function is strictly quasiconcave. So each fixed point of ΦF for F ∈ S∗

is an intertemporal utility functions with the usual properties.

In the following we confine ourselves to differentiable functions, for the sake of simplicity.

We use the notation: Fi[x1, x2] := ∂F/∂xi for i = 1, 2 and ∂iw[C1] := ∂w[C1]/∂ci for the
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partial derivatives of F and w.

We showed already that w with w = ΦF [w] is strictly increasing for all F ∈ S∗. In the

case of differentiable functions F we formulate this as follows.

Proposition 4 Let w = ΦF [w]. If F1, F2 > 0, ∀x, y ∈ [0, 1], then ∀n ∈ lN : ∂nw > 0.

Proof: Proposition 3

However, we can also show the other direction, that non-decreasing w can only be the

solution to the fixed point equation w = ΦF [w] if F is non-decreasing.

Proposition 5 Let w = ΦF [w]. If ∂1w, ∂2w > 0, then for all n ∈ lN we have ∂nw > 0 and

F1, F2 > 0 ∀x, y ∈ w([0, 1]).

Proof: Let C1 ∈ [0, 1]∞. Then ∂2w(C1) = F2[c1, w(C2)] · ∂1w(C2). As ∂1w, ∂2w > 0 we get

also F2 > 0. From F1[c1, w(C2)] = ∂1w(C1) > 0 we get F1 > 0. Thus, the requirements of

Proposition 4 are met which proves wn ≥ 0 ∀n ∈ lN.

Remark: Proposition 5 says that altruism for the next generation (i.e. ∂2w > 0) implies al-

truism for all generations (i.e. ∂nw > 0 for n ≥ 2) if the criterion for time consistency holds.

This is a generalization of the result known from the discussion of maximin-optimal plans in

[Dasgupta 1974, Calvo 1978, Rodriguez 1981, Leininger 1985, Leininger 1986,

Rodriguez 1990]. If each generation cares for its direct successor but not for other future

generations, then the behaviour is time-inconsistent.

4 Examples

In order to give some intuition for the problem of time-(in)consistent utility functions, we

give some simple examples:
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1. w[Ct] = u(ct) + λu(ct+1) with a discount factor λ ∈ (0, 1) and some instantaneous

utility function u (with u′ > 0) is time-inconsistent. We get this by use of the

contraposition of Proposition 5 (∂nw = 0 for n ≥ 2).

On the other hand, we can see directly that w is time-inconsistent, as there is no

function F which fulfills (10).

2. We consider the separable function F [x, y] := u(x) + λy with λ ∈ (0, 1). The corre-

sponding utility function is defined by

w[Ct] = u(ct) + λw[Ct+1]. (28)

This is solved by the present value of future utility

w[Ct] =
∞∑

τ=0

λτ · u(ct+τ ). (29)

The convergence of the sum is guaranteed if we assume u to be bounded above. This

intertemporal utility function w represents the simple present value of future utility,

with a constant discount factor.

3. The case F [x, y] = u(x) ·yλ gives w[Ct] = u(ct) ·w[Ct+1]
λ. For λ ∈ (0, 1) and bounded

u, the solution is w[Ct] =
∏∞

τ=0 u(ct+τ )
λτ

. Taking the logarithm yields a form as given

by (29).

5 Conclusions

In this article we investigated the problem of time consistency in intertemporal decision

making. In particular, we considered an infinite sequence of intertemporal utility functions,

and looked for criteria for time consistency.

The article by [Blackorby et al. 1973] provides a criterion for the finite time horizon

case. Under the assumption that calendar time does not matter, we extended the criterion

to the case of an infinite time horizon. The homogeneity of time allowed us to characterize
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the set of time-consistent utility functions by the solutions of a fixed point equation in the

space of functions C([0, 1]∞, [0, 1]). The assumption of bounded consumption enabled us

to apply Banach’s fixed point theorem to the problem.

Under the assumptions above, we proved the following statement:

For each strictly increasing and strictly concave function F : [0, 1]2 → [0, 1] that is

contracting in the second argument, there is one and only one time-consistent utility func-

tion w. Furthermore, every bounded utility function w is the fixed point of a mapping

ΦF : C([0, 1]∞, [0, 1]) → C([0, 1]∞, [0, 1]), where F is contracting in the second compo-

nent. We emphasize that the assumptions made on F do not restrict us essentially. Our

classification contains all cases of interest.

Furthermore, we analyzed the impact of properties of the functions F on the utility

functions w. Both monotonicity and concavity properties are inherited in a very intuitive

manner. This close link between F and w restricts considerably the set of economically

meaningful functions F which characterize time-consistent preferences.

6 Appendix

We want to answer the question, whether the proof of theorem 36 can be extended to the

case of an infinite time horizon.

The prior maximization problem is

max
Ct

wt[Ct] s.t.
∞∑

s=0

ps+t · cs+t ≤ mt (30)

where mt > 0 is the wealth of generation t. The infinite sum in (30) cannot diverge to

infinity as the wealth mt is finite.

Depending on the exogenous price path Pt and the intertemporal utility function wt

there might be both interior and boundary solutions to the maximization program (30).

6 All references to theorems, equations and pages in this appendix refer to [Blackorby et al. 1973].



6 Appendix 14

We can exclude the possibility of boundary solutions with zero consumption in a period

by assuming that wt goes to −∞ for any of its arguments approaching 0. Upper boundary

solutions (i.e. consumption in some period equals unity) can be excluded by assuming that

marginal utility goes to 0 for consumption level approaching 1. In the following we consider

interior solutions only.

The dual problem of (30) is

h = min
Ct

∞∑

s=0

ps+t · cs+t s.t. wt[Ct] ≥ w̄t (31)

where w̄t is a certain level of utility.

Now, we can follow the analysis given in [Blackorby et al. 1973]. We do this in a

slightly different notation.

By solving the dual problem (31) for the tth generation we get the compensated demand

functions

c(t)s = ψ(t)
s [Pt, w̄t] for s ≥ t (32)

or, in vector notation,

C
(t)
t = Ψ

(t)
t [Pt, w̄t]. (33)

The expenditure function is

et[Pt, w̄t] =
∞∑

s=t

ps · ψ
(t)
s [Pt, w̄t]. (34)

The compensated demand functions can be expressed by the partial derivatives of the

expenditure function:

c(t)s =
∂et[Pt, w̄t]

∂ps

. (35)

Intertemporal consistency is defined as

c(t)s = c(t+1)
s for s ≥ t+ 1 (36)
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or, in vector notation,

C
(t)
t+1 = C

(t+1)
t+1 . (37)

Thus, in terms of the partial derivatives of the expenditure function we get

∂et[Pt, w̄t]

∂ps

=
∂et+1[Pt+1, w̄t+1]

∂ps

for s ≥ t+ 1. (38)

We can decompose the expenditure function for the tth generation into present and future

expenditure:

et[Pt, w̄t] = pt · ψ
(t)
t [Pt, w̄t] + et+1[Pt+1, w̄t+1]. (39)

We take the total derivative of the above:

∂et

∂pt

dpt +
∞∑

s=t+1

∂et

∂ps

dps +
∂et

∂wt

∂wt

∂ct
dct +

∂et

∂wt

∞∑

s=t+1

∂wt

∂cs
dcs

= ctdpt + ptdct +
∞∑

s=t+1

∂et+1

∂ps

dps +
∂et+1

∂wt+1

∞∑

s=t+1

∂wt+1

∂cs
dcs.

(40)

From (35) the first terms on both sides are equal. The third term on the left-hand side

cancels with the second term on the right-hand side because of the first-order conditions

of the dual problem:

pt =
∂et

∂wt

∂wt

∂ct
(41)

where ∂et/∂wt = λt is the solution for the Lagrange multiplier. Intertemporal consistency

(38) requires that the second term on the left and the third term on the right are equal.

After these cancellations, we get

∂wt

∂cs
=

λt+1

λt

∂wt+1

∂cs
for s ≥ t+ 1. (42)

These conditions entail that the intertemporal utility function wt is Leontief separable

[Leontief 1947]. From [Gorman 1959] we get that there are functions Ft such that (2)

wt(Ct) = Ft[ct, wt+1(Ct+1)]. (43)

The generalization to infinite dimension of this result does not cause any problems as

for each t ∈ lN we we might set an artificial time horizon T > t and can use the finite

time-horizon result.
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