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I. BASICS

The theory of strong interactions, quantum chromodynamics (QCD), has been developed on the basis of scat-
tering experiments that showed an internal SU(3)-symmetry and related charges much the same way quantum-
electrodynamics (QED) shows the U(1)-symmetry related to the electric charge. The corresponding gauge theory,
SU(3) Yang-Mills theory, is non-Abelian and hence self-interacting, i.e. the (quantized) pure gauge theory is already
non-trivial, in contrast to the U(1)-based QED.

A. Yang-Mills theory

We start by constructing the pure gauge part or Yang-Mills part of QCD as an SU(3) gauge theory, fixing our
conventions and repeating the main features known from the QFT II lecture. The weak SU(2)-theory turns out to
have the same qualitative features as QCD (asymptotic freedom and confinement), but is technically simpler. On the
other hand, the SU(2) gauge bosons in the Standard Model are massive, leading to a major modification of this theory.
Instead, we will assume massless gauge bosons throughout this lecture. As for QED, the classical action of QCD can
be derived from the gauge-invariant (minimal) extension of the action of a free spin-one particle. The requirement
of invariance of physics under local SU(Nc) or color rotations with U ∈ SU(Nc), combined with a minimal coupling,
leads us from partial to covariant derivatives,

∂µ → Dµ(A) = ∂µ − i g Aµ . (I.1)

The gauge field Aµ in the adjoint representation is Lie-algebra–valued,

Aµ = Aaµ t
a , with a = 1, ..., N2

c − 1 . (I.2)

The matrices ta are the generators of SU(Nc). In physical QCD the gauge group has eight generators, a = 1, ..., 8,
the Gell-Mann matrices. They are defined through

[ta, tb] = i fabctc , trf (t
atb) =

1

2
δab , (I.3)

where the coefficients fabc are the structure constants of the Lie algebra. and trf is the trace in the fundamental
representation. The covariant derivative (I.1) does not carry any indices. In the adjoint representation it links to
SU(Nc) indices and reads

Dab
µ (A) = ∂µδ

ab − g fabcAcµ . with (tcad)
ab

= −i fabc. (I.4)

The covariant derivative Dµ with its two color indices then has to transform as a tensor under gauge transformations,

Dµ(A)→ Dµ(AU ) = U Dµ U† , with U = eiω ∈ SU(Nc) , (I.5)

where ω ∈ su(Nc) is the corresponding Lie algebra element. The covariance of D under gauge transformations in (I.5)
implies

Aµ → AUµ =
i

g
U (DµU

†) = U Aµ U† +
i

g
U (∂µU†) . (I.6)

From the first term we confirm that in a non-Abelian gauge theory the gauge boson Aµ carries the corresponding
color charge. There are various notations on the market leading to factors i and − in the Lie algebra relations above.
In the present lecture notes we have chosen hermitian generators which leads to the factor +1/2 for the trace in (I.3).
It also entails real structure constants fabc in the Lie-algebra in (I.3).

In analogy to QED the field strength tensor is defined through the commutator of covariant derivatives, it is the
curvature tensor of the gauge theory. Based on the definitions in (I.1) and (I.3) we find

Fµν =
i

g
[Dµ , Dν ] = F aµνt

a with F aµν = ∂µA
a
ν − ∂νAaµ + g fabcAbµA

c
ν . (I.7)
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Defined as in (I.7) the field strength Fµν also transforms covariantly (as a tensor) under gauge transformations,

Fµν(AU ) =
i

g
[Dµ(AU ), Dν(AU )]

=
i

g
U [Dµ(Aµ), Dν(Aν)]U† = U Fµν(A)U† . (I.8)

This allows us to define a gauge-invariant Yang-Mills (YM) action,

SYM[A] =
1

2

∫

x

trf (Fµν Fµν) =
1

4

∫

x

F aµν F
a
µν , (I.9)

with
∫
x

=
∫
ddx. Its gauge invariance follows from (I.8),

SYM[AU ] =
1

2

∫

x

trf

(
U Fµν(A)Fµν(A)U†

)
= SYM[A] , (I.10)

where the last equality holds due to cyclicity of the trace in color space. Clearly, the action (I.9) with the field
strength (I.7) is a self-interacting theory with coupling constant g. It has a quadratic kinetic term and three-gluon
and four-gluon vertices. This is illustrated diagrammatically as

+ +
−1

SYM[A] ∝

This allows us to read off the Feynman rules for the purely gluonic vertices. The full Feynman rules of QCD in
the general covariant gauge are summarized in Fig. 21 in Appendix A. As in QED we can identify color-electric and
color-magnetic fields as the components in the field strength tensor,

Eai = F a0i

Bai =
1

2
εijkF

a
jk. (I.11)

In contrast to QED these color-electric and magnetic fields are no observables, they change under gauge transforma-

tions. Only tr ~E2, tr ~B2 are observables.

A Yang-Mills theory can most easily be quantized through the path integral. Naively, the generating functional of
pure YM-theory would read

Z[J ] =

∫
dA exp

(
−SYM[A] +

∫

x

Jaµ A
a
µ

)
. (I.12)

The fundamental problem is that it contains redundant integrations due to gauge invariance of the action, see (I.10).
These redundant integrations are usually removed by introducing a gauge fixing condition

F [Agf] = 0 (I.13)

Commonly used gauge fixings are

∂µAµ = 0 , covariant or Lorenz gauge ,

∂iAi = 0 , Coulomb gauge ,

nµAµ = 0 , axial gauge . (I.14)

The general covariant gauge has the technical advantage that it does not single out a space-time direction. This prop-
erty reduces the possible tensor structure of correlation functions and hence simplifies computations. The Coulomb
gauge and the axial gauge single out specific frames. At finite temperature (and density) this might be useful as the
temperature singles out the thermal rest frame. In that case the Coulomb gauge and the temporal or Weyl gauge
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(nµ = δµ0) are used often.

Gauge fields that are connected by gauge transformations are physically equivalent, i.e. their actions agree. They
lie in so-called gauge orbits, {AU ,U ∈ SU(N)}, and fixing a gauge is equivalent to choosing a representative of such
an orbit A → Agf , up to potential (Gribov) copies. The occurrence of Gribov copies and how to handle them is
discussed in Appendix B. To keep things simple we ignore them for the time being and continue with the construction
of the QCD Lagrangian.

The path integral measure dA introduced in (I.12) can be split into an integration over physically inequivalent
configurations Agf and the gauge transformations U ,

dA = J dAgf dU (I.15)

In (I.15) J denotes the Jacobian of the transformation A→ (Agf,U), and we include dU as the Haar measure of the
gauge group, see e.g. [1]. The coordinate transformation (I.15) and the computation of the Jacobian J are done using
the Faddeev-Popov quantization, [2]. To separate the integral (I.12) into the two parts shown in (I.15) we insert a
very convoluted unity into the path integral,

1 =

∫
dU δ

[
F [AU ]

]
∆F [A] = ∆F [A]

∫
dU δ

[
F [AU ]

]
⇔ ∆F [A] =

(∫
dU δ

[
F [AU ]

])−1

, (I.16)

where ∆F [A] is gauge-invariant due to the property d(UV) = dU of the Haar measure. For the path integral this
gives us

∫
dA e−SYM[A] =

∫
dA dU δ

[
F [AU ]

]
∆F [A] e−SYM[A] . (I.17)

Let us now consider a general observable O, like e.g. trF 2(x) trF 2(0). Observables are necessarily gauge invariant
and local. The expectation value of O is defined as

〈O〉 =

∫
dAO[A] e−SYM[A]

∫
dA e−SYM[A]

=

∫
dA dU δ

[
F [AU ]

]
∆F [A]O[A] e−SYM[A]

∫
dAdU δ [F [AU ]] ∆F [A] e−SYM[A]

, (I.18)

where we have simply inserted (I.16) into the path integral. In (I.18) all terms are gauge invariant except for the

δ-function. Hence we can absorb the U-dependence via A→ AU
†
. Then the (infinite) integral over the Haar measure

decouples in numerator and denominator, and we arrive at

〈O〉 =

∫
dAδ [F [A]] ∆F [A]O[A] e−SYM[Agf]

∫
dAδ [F [A]] ∆F [A] e−SYM[Agf]

.

To compute the Jacobian ∆F [A] we apply a coordinate transformation to the δ-distribution

δ[F [AU ]] =
δ[ω − ω1]

|det δFδω |
≡ δ[ω − ω1]

|detMF [A]| with U = eiω , (I.19)

combined with a gauge fixing condition in the form (I.13)

F [Agf = AU(ω1)] = 0 . (I.20)

Using the definition (I.16) this leads to

∆F [A] = |detMF [Agf] | with MF [A] =
δF
δω

∣∣∣∣
ω=0

[A] . (I.21)

Here Agf is the solution with the minimal distance to A = 0. The inverse Jacobian detMF of the ansatz (I.15) is called
the Faddeev-Popov determinant. For its computation we consider an infinitesimal gauge transformation U = 1 + i g ω
where we have rescaled the transformation with the strong coupling g for convenience. Such a rescaling gives global
factors of powers of 1/g that drop out in normalized expectation values. Then, the infinitesimal variation of the
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covariant gauge ∂µAµ = 0 follows as

F [AU ] = ∂µA
U
µ = ∂µAµ − ∂µDµω +O(ω2)

!
= 0 . (I.22)

This gives us the Faddeev-Popov matrix

MF [A] = −δ∂µDµω

δω
= −∂µDµ

δω

δω
= −∂µDµ1. (I.23)

We assume that −∂µDµ is a positive definite operator and we arrive at

∆F [A] = detM[A] = det (−∂µDµ) . (I.24)

A useful observation is that determinants can be represented by a Gaussian integral. In regular space such a Gaussian
integral reads

∫

x

e−
1
2x
TMx =

(2π)n√
detM

. (I.25)

We want to use this relation to replace the Faddeev-Popov determinant (I.24) in the Lagrangian. It turns out that the
usual form does not give a useful action or Lagrangian. However, we can instead use two anti-commuting Grassmann
fields C and switch the sign in the exponent to

detMF [A] =

∫
dcdc̄ exp

{∫
ddx ddy c̄a(x)Mab

F (x, y)cb(y)

}
. (I.26)

Finally we slightly modify the gauge by introducing a Gaußian average over the gauges

δ[F [AU ]]→
∫

dC δ[F [AU − C]] exp

{
− 1

2ξ

∫

x

CaCa
}
. (I.27)

In summary, and restricting ourselves to the covariant gauge we then arrive at the generating functional for our
Yang-Mills theory

Z[JA, Jc, J̄c] =

∫
dA dcdc̄ e−SA[A,c,c̄]+

∫
x (JA·A+J̄c·c−c̄·Jc) . (I.28)

The action including a general gauge fixing term and the Faddeev-Popov ghosts ca is

SA[A, c, c̄] =
1

4

∫

x

F aµνF
a
µν +

1

2ξ

∫

x

(
∂µA

a
µ

)2
+

∫

x

c̄a∂µD
ab
µ c

b , (I.29)

where
∫
x

=
∫
ddx and the Landau gauge is achieved for ξ = 0. Note that the ghost action implies a negative

dispersion for the ghost, related to the determinant of the positive operatorMF = −∂µDµ. However, this is a matter
of convention, we might as well use a positive dispersion, the minus sign drops out for all correlation functions which
do not involve ghosts, and only those are related to scattering amplitudes. The source term with all indices reads

∫

x

(
JA ·A+ J̄c · c− c̄ · Jc

)
≡
∫

x

(
JaA,µA

a
µ + J̄ac c

a − c̄aJac
)
. (I.30)

The Feynman rules derived from (I.29) are summarized in Appendix A.

B. QCD

After briefly sketching the gauge part of QCD we now add fermionic matter fields. As before we start with the
classical action, now given by the Dirac action of a quark doublet,

SDirac[ψ, ψ̄, A] = i

∫

x

ψ̄ (D/ + mψ + µγ0) ψ , (I.31)
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where the Dirac matrices are defined through

{γµ , γν} = 2 δµν (I.32)

In (I.31), the fermions carry a Dirac index defining the 4-component spinor, gauge group indices in the fundamental
representation of SU(3), as well flavor indices. The latter we will ignore as long as we only talk about QCD and
neglect the doublet nature of the matter fields in the Standard Model. The Dirac operator D/ is diagonal in the flavor
space as is the chemical potential term. The mass term depends on the current quark masses related to spontaneous
symmetry breaking of the Higgs sector of the Standard Model. The up and down current quark masses are of the
order 2 − 5 MeV whereas the current quark mass of the strange quark is of the order 102 MeV. The other quark
masses are of order 1−200 GeV. In low energy QCD this has to be compared with the scale of strong chiral symmetry
breaking ∆m ≈ 300 MeV. This mass scales are summarized in Table I.

Generation first second third Charge
Mass [MeV] 1.5-4 1150-1350 170×103

Quark u c t 2
3

Quark d s b − 1
3

Mass [MeV] 4-8 80-130 (4.1-4.4)×103

TABLE I: Quark masses and charges. The scale of strong chiral symmetry breaking is ∆m ≈ 300 MeV as is ΛQCD.
This entails that only 2 + 1 flavours have to be considered for most applications to the phase diagram of QCD.

Evidently, for most applications of the QCD phase diagram we only have to consider the three lightest quark flavors,
that is up, down and strange quark, to be dynamical. The current quark masses of up and down quarks are two order
of magnitude smaller than all QCD infrared scales related to ΛQCD. Hence, the up and down quarks can be considered
to be massless. This leads to the important observation that the physical masses of neutrons and protons — and
hence the masses of the world around us — comes about from strong chiral symmetry breaking and has nothing to
do with the Higgs sector.

In turn, the mass of the strange quark is of the order of ΛQCD and has to be considered heavy for application in low
energy QCD. The three heavier flavors, charm, bottom and top, are essentially static they do not contribute to the
QCD dynamics relevant for its phase structure even though in particular the c-quark properties and bound states are
much influenced by the infrared dynamics of QCD. In summary we will consider the Nf = 2 and Nf = 2 + 1 flavor
cases for the phase structure of QCD, while for LHC physics all flavors are relevant.

Again in analogy to the Yang-Mills action we describe the quantized theory using its generating functional. The
full generating functional of QCD is the straightforward extension of the Yang-Mills version in (I.28). The quark
fields are Grassmann fields because of their fermionic nature and we are led to the generating functional

Z[J ] =

∫
dΦ e−SQCD[Φ]+

∫
x
J·φ , (I.33)

As a notation we have introduced super-fields and super-currents

Φ = (A, c, c̄, ψ, ψ̄) J = (JA, Jc, J̄c, Jψ, J̄ψ)

dΦ =

∫
dAdcdc̄dψ dψ̄ J · Φ = JA ·A+ J̄c · c− c̄ · Jc + J̄ψ · ψ − ψ̄ · Jψ . (I.34)

The gauge-fixed action SQCD in (I.33) in the Landau gauge is given by

SQCD[Φ] =
1

4

∫

x

F aµνF
a
µν +

1

2ξ

∫

x

(
∂µA

a
µ

)2
+

∫

x

c̄a∂µD
ab
µ c

b + i

∫

x

ψ̄ (D/ + mψ + µγ0)ψ . (I.35)

The action in (I.35) is illustrated diagrammatically as
For physical observables the gauge dependence entering through the last two graphs in the first line, the ghost terms, is
cancelled by the hidden gauge fixing dependence of the inverse gluon propagator. The Feynman rules are summarized
in Appendix A.
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SQCD ∝ + +
−1

+
-1

+
−1

-1
+

−1
+

FIG. 1: Diagrammatical form of the QCD action.

II. STRONG CHIRAL SYMMETRY BREAKING

In the previous sections we discussed the ultraviolet renomalisation of QCD and its relation to the scale dependence
of physics. This scale dependence is apparent in the momentum dependence of the strong running coupling αs(p

2) =
g2(p2)/(4π) defined in (??). Here p is the relevant momentum/energy scale of a given process. Let us briefly rehash
the main properties of the running coupling: Its momentum dependence is captured by the β-function as leads to a
running coupling which decreases with the momentum scale, i.e. ,

βg =
1

2
p∂pαs = −b0α2 +O(α3

s) with b0 =
α2
s

12π
(11Nc + 2Nf ) . (II.1)

Integrating the β-function (II.1) at one loop leads to the running coup

αs(p) =
αs(µ)

1 + β0αs(µ) log p2

µ2

+O(α2
s) , (II.2)

with some reference (momentum) scale µ2. The running coupling in (II.2) tends to zero logarithmically for p → ∞.
This property is called asymptotic freedom (Nobel prize 2004) and guarantees the existence of the the perturbative
expansion of QCD. Its validity for large energies and momenta is by now impressively proven in various scattering
experiments, see e.g. [3]. These experiments can also be used to define a running coupling (which is not unique beyond
two loop, see e.g. [4]) and the related plot of αs(p

2) in Fig. 2 has been taken from [3].
In turn, in the infrared regime of QCD at low momentum scales, perturbation theory is not applicable any more.

The coupling grows and the failure of perturbation theory is finally signaled by the so-called Landau pole with
αs(ΛQCD) = ∞. We emphasise that a large or diverging coupling does not imply confinement, the theory could still
be QED-like showing a Coulomb-potential with a large coupling. The latter would not lead to the absence of coloured

FIG. 2: Experimental tests of the running coupling, figure taken from [3].
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asymptotic states but rather to so-called color charge superselection sectors as in QED. There, we have asymptotic
charged states and no physics process can change the charge. For more details on this see e.g. [5].

A. Spontaneous symmetry breaking and the Goldstone theorem

In the Standard Model we have two phenomena involving spontaneous symmetry breaking. The first is the sponta-
neous symmetry breaking in the Higgs sector (Englert-Brout-Higgs-Guralnik-Hagen-Kibble) which provides (current)
masses for the quarks and leptons as well as for the W,Z vector bosons, the gauge bosons of the weak interactions. The
corresponding Goldstone boson manifest itself as the third polarisation of the massive vector bosons (Higgs-Kibble
dinner).

The second phenomena is strong chiral symmetry breaking in the quark sector with a mass scale of ≈ 300 MeV. This
mechanism, loosely speaking, lifts the current quark masses to constituent quark masses. For the up and down quarks
the current quark mass is negligible, see Table I. The corresponding Goldstone bosons, the pions ~π, are composite
(quark–anti-quark) states and do not appear in the QCD action.

In the following we discuss similarities of and differences between these two phenomena. Before we come to the
Standard Model, let us recall some basic facts about spontaneous symmetry breaking. Further details can be found
in the literature. As a basic, but important, example we consider a simple scalar field theory with N real scalars and
action

S[φ] =
1

2

∫

x

(∂µφ
a)2 +

∫

x

V (ρ) , with a = 1, ..., N , and ρ =
1

2
φaφa , (II.3)

and the φ4-potential

V (ρ) = −µ2(φaφa) + λ(φaφa)2 . (II.4)

In the following considerations we shall not need the specific form (II.4) but only its symmetries. Still, the simple
potential (II.4) serves as a good showcase. The action (II.3) with the potential (II.4) has O(N)-symmetry. Moreover,
the potential (II.4) has a manifold of non-trivial minima, each of which breaks O(N)-symmetry. This leads us to the
vacuum manifold

V ′(ρ0) = 0 , with ρ0 =
µ2

4λ
, (II.5)

where the prime stands for the derivative w.r.t. ρ. In Fig. 3 the potential is depicted for the O(2)-case with N = 2.

V (⇢)

�2

�1

FIG. 3: Illustration of the Mexican hat potential for N = 2. The radial massive mode ρ is indicated by the arrow.
The angular mode is the Goldstone mode.



10

Without loss of generality we pick a specific point on the vacuum manifold (II.5), to wit

φ0 =




0
...
0√
2ρ0


 . (II.6)

The vacuum vector φ0 in (II.6) is invariant under the subgroup (little group) O(N − 1) with the generators ta,
a = N,N + 1, ...N(N − 1)/2 of O(N) that acts trivially on the Nth component field φN . This subgroup rotates the
first N − 1 component fields into each other. It leaves us with N − 1 generators ta, a = 1, ..., N − 1 (of the quotient
O(N)/O(N − 1)) of the N(N − 1)/2 generators of the group O(N). In turn, a rotation of the vacuum vector within
this quotient generates the full vacuum manifold. Applied to a vector φa = δNa

√
2ρ with length it generates all fields,

φ = e
θa√
2ρ0

ta




0
...
0
σ


 , (II.7)

where the denominator 1/
√

2ρ0 is chosen for convenience. Commonly, the Nth component field φN is expanded about
the minimum σ0 =

√
2ρ0.

In the present lecture we choose a slightly different approach and stick to the Cartesian fields φ which we split into
the radial mode σ and the rest, ~π, i.e.

φ =

(
~π
σ

)
, with φ0 =

(
0
σ

)
. (II.8)

Note that in an expansion about the minimum φ0 in the fields ~θ and ~π agree in leading order. Using the representation
(II.8) in the kinetic term in the action (II.3) we are led to

Skinetic[φ] =
1

2

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
. (II.9)

The mass term of the model is given by the quadratic term of the potential in an expansion about the minimum. It
reads generally

1

2

∫

x

m2 ab(φ0)φa φb , with m2 ab(φ0) = ∂φa∂φbV (ρ0) = δab V ′(ρ0) + φa0φ
b
0 V
′′(ρ0) . (II.10)

Using the expansion point (II.6) leads to the mass matrix

m2 ab(φ0) = δab V ′(ρ0) + 2 δNaδNbρ0V
′′(ρ0) = 8 δNaδNbρ0 λ . (II.11)

Eq.(II.11) entails that in the symmetry-broken phase of the model we have N −1 massless fields, the Goldstone fields.
Note that we have not used the specific form (II.4) of the potential for this derivation.

The occurrence of the massless modes in (II.11) is a specific case/manifestation of the Goldstone theorem. It
entails in general that in the case of a spontaneous symmetry breaking of a continuous symmetry massless modes,
the Goldstone modes, occur. Their number is related to the number of generators in the Quotient G/H, where G is
the symmetry group and H is the subgroup (little group) which leaves the vacuum invariant.

B. Spontaneous symmetry breaking, quantum fluctuations and masses∗

The classical analysis done in chapter II A suffices to uncover the occurrence of massless modes in spontaneous
symmetry breaking. However, it does not unravel the mechanism. The stability of the chosen vacuum, e.g. (II.6),
necessitates, that an infinitesimal rotation on the vacuum manifold costs an infinite amount of energy. This does only
happen (for continuous symmetries) in dimensions d > 2. In d ≤ 2 no spontaneous symmetry breaking of a continuous
symmetry occurs, which is covered by the Mermin-Wagner theorem (Mermin-Wagner-Hohenberg-Coleman). In d = 2
dimensions theories with discrete symmetry can exhibit spontaneous symmetry breaking, e.g. the Ising model.
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Hence, the full analysis has to be done on the quantum level. A convenient way to address these questions is
the quantum analogue of the classical action, the (quantum) effective action. Formally it is defined as the Legendre
transform of the Schwinger functional, W [J ] = logZ[J ]. In the present case this is

Γ[φ] = sup
J

{∫

x

J(x)φ(x)− logZ[J ]

}
, where Z[J ] =

∫
Dϕe−S[ϕ]+

∫
x
Jϕ . (II.12)

In the following we simply assume that (II.12) has a maximum and is differentiable w.r.t. J . Then the definition in
(II.12) leads to

φ =
1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉 , and J =

δΓ

δφ
. (II.13)

The effective action also has a closed path integral representation in terms of a functional integro-differential equation,
which we also quote for later use. For the derivation we substitute the current in (II.12) with (II.13) and use that
Z = exp{−Γ +

∫
x
Jφ}. This leads us to

e−Γ[φ] =

∫
Dϕ′ e−S[φ+ϕ′]+

∫
x
δΓ
δφϕ

′
, with 〈ϕ′〉c = 0 , (II.14)

where we also shifted the integration variable ϕ = ϕ′ + ϕ. Eq.(II.14) leads us immediately to the quantum equations
of motion in general backgrounds φ, the Dyson-Schwinger equations. We simply take the φ-derivatives on both sides
and arrive at

δΓ

δφ
=

〈
δS

δϕ

〉
, (II.15)

the quantum eqautions of motion (EoM) in a given background φ = 〈ϕ〉 triggered by the current J . Evaluated on the
EoM with J = 0,

δΓ

δφ

∣∣∣∣
φ=φEoM

= 0 , (II.16)

The effective action Γ[φEoM] = − logZ[0] it is the free energy of the theory and implies J [φEoM] = 0. It is also a
generating functional and generates the one-particle-irreducible (1PI) diagrams of the theory. As all diagrams can be
constructed from 1PI diagrams, it contains the full information about the correlation functions of the theory. In the
present context, the interesting feature is its relation to the free energy. It allows us to define the effective potential

Veff[φc] = Γ[φc]/vol4 , (II.17)

with constant fields φc and the four-volume vol4 =
∫
d4x. If the effective potential shows the vacuum structure

discussed above in the classical case, the theory exhibits spontaneous symmetry breaking. The Mermin-Wagner
theorem simply entails that in lower dimensions the longe range nature of the quantum fluctuations washes out the
non-trivial vacua.

The rôle of the effective action as the quantum analogue of the classical action is also very apparent in its relation
to the propagator of the theory,

〈φ(p)φ(−p)〉c =
δ2 logZ[J ]

δJ(p)δJ(−P )

∣∣∣∣
J=0

=
1

Z[0]

δ2Z

δJ(p)δJ(−P )

∣∣∣∣
J=0

− 〈φ(p)〉〈φ(−p)〉 , with 〈φ〉 =
1

Z[0]

δZ

δJ
,

(II.18)

where the subscript c stands for connected. Now we use the relation of logZ to the effective action defined in (II.12).
We have

δ(p− q) =
δJ(q)

δJ(p)
=

∫

l

δφ(l)

δJ(p)
· δJ(q)

δφ(l)
=

∫

l

δ2 logZ

δJ(l)δJ(p)
· δ2Γ[φ]

δφ(l)δ(q)
⇒ 〈φ(p)φ(q)〉c =

1

Γ(2)
(p, q) , (II.19)
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with the vertices

δnΓ

δφ(p1) · · ·φ(pn)
= Γ(n)(p1, ..., pn) , with 〈ϕ(p1) · · ·ϕ(pn)〉1PI = Γ(n)(p1, ..., pn) . (II.20)

The proof of the latter identity of the nth ϕ-derivatives with the 1PI n-point correlation functions we leave to the
reader. Instead let us now come back to our simple example for spontaneous symmetry breaking. Let us assume for
the moment that the full effective action resembles the classical action in (II.3). Then the φ4-potential in (II.4) is the
full quantum effective potential of the theory for ρ ≥ ρ0 (why is this not possible for smaller ρ?). The full propagator
of the theory is now given by

〈ϕ(p)ϕ(−p)〉c =
1

Γ(2)[φEoM]
(p,−p) =

1

p2

(
δab − δaNδbN

)
+

1

p2 + 8ρ0λ
δab , (II.21)

which describes the massless propagation of the N − 1 Goldstone modes, and that of one massive one, the radial field
σ, with mass m2

σ = 8ρ0λ. This links the curvature of the effective potential to the masses of the propagating modes
in the theory. Note however, that this is a Euclidean concept and finally we are interested in the pole masses of
the physical excitations. They are defined via the respective (inverse) screening lengths in the spatial and temporal
directions. The latter are defined by

lim
‖~x−~y‖→∞

〈φ(x)φ(y)〉 ∼ e−‖~x−~y‖/ξspat , and lim
|x0−y0|→∞

〈φ(x)φ(y)〉 ∼ e−|x0−y0|/ξtemp . (II.22)

The screening lengths ξspat/temp are inversely related to the pole massmpol = 1/ξtemp and screening massmscreen = 1/ξspat

respectively. In the present example with the classical dispersion p2 these masses are identical and also agree with the
curvature masses mcurv derived from the effective potential. This is easily seen from (II.21). The screening lengths
and masses are derived from the Fourier transform of the propagator in momentum space and we have e.g. for the
radial mode ϕN at ~p = 0

lim
|x0−y0|→∞

∫
dp0

(2π)
〈ϕN (p0, 0)ϕN (−p0, 0)〉ceip0 (x0−y0) ∼ e−|x0−y0|8ρ0λ , (II.23)

and hence mpol = 1/ξtemp = mcurv. Here ~p = 0 has only be chosen for convenience. A similar computation can be made
for the spatial screening length which agrees with the temporal one. In summary this leaves us with the definition of
the pole mass as the smallest value for

Γ(2)(p0 = mpol, ~p = 0) = 0 , (II.24)

related to the pole (or cut) that is closest to the Euclidean frequency axis. A similar definition holds for the screening
mass.

In principle this allows for the extraction of the pole and screening masses from the Euclidean propagators. In
practice this quickly runs in an accuracy problem if the propagator is only known numerically. Moreover, this problem
is tightly related to reconstruction problems of analyticity properties from numerical data which is an ill-posed problem
without any further knowledge.

As a last remark we add that the above identity between screening lengths, and pole, screening and curvature
masses fails in the full quantum theory:

• the coincidence of curvature and screening/pole masses hinges on the classical dispersion proportional to p2,
any non-trivial momentum dependence of the propagator leads to a violation.

• The coincidence of screening and pole mass hinges on the dispersion only being a function of p2. While this is
true in the vacuum (at vanishing temperature T = 0 and density/chemical potential n/µ = 0), finite temperature
and density singles out a rest frame and the dispersion depends on ~p2 and p2

0 separately.

Having said this, in the following we shall first use simple approximations to the full low energy effective action of
QCD for extracting the physics of chiral symmetry breaking and confinement, as well as the mechanisms behind these
phenomena.
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C. Little reminder on the Higgs mechanism

Now we are in the position to discuss the Higgs mechanism in the Standard Model. Again we refer to the literature
for the details. The Higgs mechanisms serves as an example, at which we can discuss similarities and differences for
strong chiral symmetry breaking. Moreover, it is the combination of both mechanisms of mass generation that leads
to the observed world. The action of the Standard Model is given by

SSM[Φ] =
1

4

∫

x

F aµνF
a
µν +

1

4

∫

x

W a
µνW

a
µν +

1

4

∫

x

BµνBµν + (Dφ)†Dφ+ VH(φ) +

∫

x

ψ̄ · (iD/ + imψ(φ) + iµγ0) · ψ ,
(II.25)

where we have introduced the electroweak gauge bosons W,B and the Higgs, a complex scalar SU(2)-doublet φ,

φ =

(
φ1

φ2

)
, (II.26)

with complex components φ1, φ2. The Higgs potential VH is a φ4-potential as (II.4) with

VH(φ) = −µ2φ†φ+ λ(φ†φ)2 . (II.27)

with non-trivial vacuum manifold

ρ0 =
µ2

4λ
with ρ =

1

2
φ†φ . (II.28)

In the spirit of the discussion at the end of chapter II A we should interpret VH as an approximation of the full effective
potential of the theory. The Higgs field couples to the electroweak gauge group with the covariant derivative

Dµφ = (∂µ − igWWµ − igHBµ)φ , (II.29)

The mass term in (II.25) is linear in the Higgs field and vanishes for φ = 0. The left-handed fermions ψL in the
Standard Model, leptons and quarks, couple to the weak isospin (fundamental representation) with weak isospin
± − 1/2, while the right-handed fermions ψR do not couple (trivial representation) with weak isospin 0, that is for
example

WµψR = 0 . (II.30)

The related covariant derivative of the fermions reads

Dµψ = (∂µ − igAµ − igWWµ − igHBµ)ψ . (II.31)

The mass term m(φ) is linear in the Higgs field φ and hence constitues a Yukawa interaction. It relates to the
Cabibbo-Kobayashi-Maskawa-Matrix (CKM) , and is not discussed in further details here. What is important in the

present context, is, that a non-vanishing expectation value of the Higgs field, 〈φ〉 = (0, ρ0/
√

2) provides mass terms
for the weak gauge fields, the W,Z as well as for the (left-handed) quarks an leptons:

As in our O(N)-example in the previous section we expect spontaneous symmetry breaking in the scalar Higgs
sector. The current masses of the leptons and quarks are then generated by the disappearance of the mass term for
φ0 6= 0. Since the structure of the full term is quite convoluted, we illustrate this at a simple example with one Dirac
fermion ψ and a real scalar field σ. Then the Yukawa term reads in a mean field approximation

hψ̄σψ
mean field−−−−−−→ hσ0 ψ̄ψ , (II.32)

with mass m = hσ0 which is proportional to the vacuum expectation value of the scalar field (vacuum expectation
value of the Higgs) and the Yukawa coupling h.

For the masses of the gauge field we cut a long story short and simply note that in a mean field analysis as that
done above for the fermion

(Wµφ)†(Wµφ)
mean field−−−−−−→ (Wµφ0)†(Wµφ0) , (II.33)

leads to mass terms for the gauge fields. Since the vacuum field φ0 has vanishing upper component φ1 it is a
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combination of the generator t3 = σ3/2 of the weak SU(2) and the generator 1l of the hypercharge U(1) which remains
massless: the photon. This also determines the subgroup which leaves the vacuum invariant. The superficial analysis
here also reveals that the quotient involves three generators and hence we have three Goldstone bosons. In summary
we hence start with three gauge bosons with two physical polarisations each together with three Goldstone bosons,
which adds up to nine field degrees of freedom (dof). A convenient reparameterisation (including an appropriate gauge
fixing, e.g. the unitary gauge) of the Standard Model leads us to three massive vector bosons with three polarisations
each, that is again nine dofs.

D. Low energy effective theories of QCD

The Higgs mechanism in the electroweak sector of the Standard Model leads to (current) quark masses for the up
and down quark of a couple of MeVs, (mu/d)cur ≈ 2-5 MeV, see Table I. However, the masses of the nucleons, the
protons and neutrons, is about 1 GeV (proton (uud) ≈ 938 MeV , neutron (udd) ≈ 940 MeV ), that is two orders of
magnitude bigger. In other words, the three constituent quarks in the nucleons must have an effective mass of about
(mu/d)con ≈ 300-4 00 MeV, the constituent quark masses. We already infer from this that there should be a further
mechanism to generate this mass scale.

In low energy QCD with its mass scale ΛQCD ≈ 200 − 300 MeV the electroweak sector of the Standard Model
decouples as do the heavier quarks. We are left with two light (up and down) and one heavy quark (charm), Table I.
Within fully quantitative computations of the QCD dynamics at low energies the strange quark with its current mass
of about 1.2 GeV is also added. Still, its dynamics is very much suppressed at momentum scales of ΛQCD. For the
present structural analysis we first resort to two flavour QCD (Nf = 2) with the Euclidean action

SQCD[Φ] =
1

4

∫

x

F aµνF
a
µν +

∫

x

ψ̄ · (D/ + mψ + iµγ0) · ψ , (II.34)

where ψ is a Dirac spinor with two flavours and Φ is the two-flavour super field, see (I.35). The physics of the matter
sector at low energies and temperatures, and not too large densities is well-described by quark-hadron models, the
most prominent of which is the Nambu-Jona-Lasino model. From the perturbative point of view these models are
seeded in the four-fermi coupling already being generated from the propagators and couplings depicted in Fig. 1 at
tree level. The related tree level diagram is depicted in Fig. 4. Its s-channel has the structure

g2
(
ψ̄γµt

aψ
)

(p) Πµν(p)
1

p2

(
ψ̄γµt

aψ
)

(p) , (II.35)

describing the scattering of quarks. In (II.35) the ta are generators of the color gauge group and the fermions are
summed over the two flavours. Accordingly, (II.35) generates a four-fermi interaction with a non-trivial momentum
structure in the effective action of QCD.

The full momentum- and tensor structure is complicated even for the present simplified Nf = 2 case. As in the
four-fermi theory (Fermi theory) for weak interactions we resort to an approximation with point-like interactions
(no momentum dependence). Then (II.35) can be rewritten in terms of an effective local (point-like) four-fermi
interaction. Such a rewriting in terms of local four-fermi interactions holds for energies that are sufficiently low and
do not resolve the large momentum structure of the scattering in (II.35). Moreover, the coupling is dimensionful
and has the canonical momentum dimension −2 (related to the 1/p2 term in (II.35). In the Fermi theory of weak
interactions this is the electroweak scale. In the present case it has to be related to the QCD mass gap proportional
to ΛQCD.

We postpone the detailed analysis of this scale, and first concentrate on the tensor structure of (II.35). This is
constrained by the symmetries of the theory, for a full discussion of the symmetry pattern we refer to the literature,
e.g. [6, 7] and literature therein. Since the current masses of the light quarks are nearly vanishing we first work in the
chiral limit. Then, any interaction that is generated by the dynamics of QCD carries chiral symmetry: the related
four-fermi interaction is chirally invariant, that is the invariance under the chiral transformations

ψ → ei
1±γ5

2 αψ → ψ̄ → ψ̄ei
1∓γ5

2 α with γ5 = γ0γ1γ2γ3 , and {γ5 , γµ} = 0 , (II.36)

which holds separately for each vector current ψγµt
aψ. Furthermore, in the chiral limit QCD is invariant under

flavour rotations SU(Nf ). For example, for Nf = 2 with up (u) and down (d) quarks and the flavour isospin group
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with SU(2), the transformation reads

ψ =

(
u
d

)
→ V

(
u
d

)
, with V = eiθ

aτa ∈ SU(2) , (II.37)

with a = 1, 2, 3. For the 2+1 flavour case also considered here the respective symmetry is SU(3)F . Chiral symmetry
entails that the flavour rotations are a symmetry for the left- and right-handed quarks separately and the combined

symmetry is SU(2)L × SU(2)R with symmetry transformations VL/R = ei
1±γ5

2 θata . Including also the chiral U(1)
rotations leads us to the full symmetry group

Gsym = SU(Nc)× SU(Nf )V × SU(Nf )A × U(1)V × U(1)A , (II.38)

where we have also taken into account the gauge group SU(Nc). If we approximate (II.35) by a point-like four-fermi
interaction, one has to expand the tensor γµ ⊗ γν multiplied by gauge group and flavour tensors. Then, the most
general symmetric Ansatz is a combination of the tensor structures

(V −A) = (ψ̄γµψ)2 + (ψ̄γµγ5ψ)2

(V +A) = (ψ̄γµψ)2 − (ψ̄γµγ5ψ)2

(S − P ) = (ψ̄fψg)2 − (ψ̄fγ5ψg)2

(V −A)adj = (ψ̄γµtaψ)2 + (ψ̄γµγ5taψ)2 , (II.39)

where f, g are flavour indices and (ψ̄fψg)2 ≡ ψ̄fψgψ̄gψf . While each separate term in the tensors in (II.39) is invariant
under gauge transformation, and under the flavour vector transformations, axial rotations in SU(Nf )A×U(1)A rotate
the terms on the right hand side in (II.39) into each other. For a related full analysis we refer to the literature. However,
below we shall exemplify these computations at the relevant example of the scalar–pseudo-scalar channel

The chiral invariants (II.39) can be rewritten using the Fierz transformations which relates different four-fermi
terms on the basis of the Grassmann natures of the fermions. These transformations are explained and detailed in
the literature, see e.g. [6, 7]. Here we just concentrate on the scalar–pseudo-scalar channels in physical two-flavour
QCD with Nc = 3 and Nf = 2. These channels are related to the scalar σ-meson and the pseudo-scalar pions ~π. The
(S − P )-channel is given by

(S − P ) =
1

2

[
(ψ̄ψ)2 + (ψ̄~τψ)2 − (ψ̄γ5ψ)2 − (ψ̄γ5~τψ)2

]
, (II.40)

where ~τ = (σ1, σ2, σ3) with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (II.41)

The representation (II.40) simplifies the identification of the scalar mode ψ̄ψ related to the scalar σ-meson, and the
pseudo-scalar modes iψ̄γ5~τψ related to the pseudo-scalar (axial-scalar) pions ~π.

We shall use the representation (II.40) in the following investigations of the chiral properties of low energy QCD.
Hence we discuss its symmetry properties in more detail, and show explicitly its invariance under Gsym. To begin
with, the invariance of (S − P ) under gauge and flavour UV (1) transformation is apparent. The flavour SU(2)V
transformations ψ → eiθ

aτaψ trivially leaves ψ̄ψ and ψ̄γ5ψ invariant. For the vector and pseudo-vector bilinears we
concentrate on infinitesimal transformations eiθ

aτa = 1 + iθaτa +O(θ2). Then the second term in (II.40) transforms
as

(ψ̄~τψ)2 −→ (ψ̄~τψ)2 + 2i θa(ψ̄~τψ)(ψ̄[~τ , τa]ψ) = (ψ̄~τψ)2 − 2 θaεbac(ψ̄τ bψ)(ψ̄τ cψ) = (ψ̄~τψ)2 . (II.42)

The invariance of the last term in (II.40) under SU(2)V transformations follows analogously. Finally, axial transfor-
mations related the first two terms to the last two terms. We exemplify this property with the axial UA(1) rotations
ψ → eiγ5αψ, where we consider infinitesimal transformations with eiγ5α = 1l + iγ5α + O(α2). Concentrating on the
scalar and pseudo-scalar terms we have

(ψ̄ψ)2 − (ψ̄γ5ψ)2 −→ (ψ̄ψ)2 − (ψ̄γ5ψ)2 + 4i α
[
(ψ̄ψ)(ψ̄γ5ψ)− (ψ̄γ5ψ)(ψ̄ψ)

]
= (ψ̄ψ)2 − (ψ̄γ5ψ)2 , (II.43)

The invariance for the full expression in (II.40) follows analogously. It is left to study SU(2)A transformations. Now
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FIG. 4: One loop diagrams for the four-fermi coupling λψ in QCD.

we show that (II.40) also carries the SU(2)A-invariance. To that end we consider infinitesimal SU(2)A transformations
eiγ5θ

aτa = 1 + iγ5θ
aτa +O(θ2) of the combination (ψ̄ψ)2 − (ψ̄γ5~τψ)2, and use the Lie algebra identity

τaτ b = δab + iεabcτ c , → {τa , τ b} = 2δab . (II.44)

Then we are led to

(ψ̄ψ)2 − (ψ̄γ5~τψ)2 −→ (ψ̄ψ)2 − (ψ̄γ5~τψ)2 + 2i θa
[
(ψ̄ψ)(ψ̄γ5τ

aψ)− (ψ̄γ5τ bψ)
(
ψ̄{τa , τ b}ψ

)]
= (ψ̄ψ)2 − (ψ̄γ5ψ)2 .

(II.45)

The invariance of the combination (ψ̄γ5ψ)2− (ψ̄~τψ)2 is shown along the same lines. Consequently (II.40) is invariant
under SU(2)A transformation and hence under the full symmetry group Gsym.

In QCD, we have experimental evidence for the breaking of the axial UA(1)-symmetry, i.e. the pseudo-scalar
η′-meson (in Nf = 2 the η) is anomalously heavy. This mass-difference can be nicely explained by the anomalous
breaking of axial UA(1) symmetry. Consequently, giving up axial UA(1)-symmetry we have to consider more four-fermi
interactions as in (II.39) (altogether 10 invariants for Nf = 2), in particular

1

2

[
(ψ̄ψ)2 − (ψ̄~τψ)2 + (ψ̄γ5ψ)2 − (ψ̄γ5~τψ)2

]
. (II.46)

It is the relative minus signs in the scalar and pseudo-scalar terms in comparison to (II.40) that leads to the breaking of
UA(1)-symmetry. This is easily seen by re-doing the infinitesimal analysis (II.43) in (II.46). If also follows easily that
the other symmetries still hold, in particular the SU(2)V × SUA(2)A invariance follows as (II.46) contains the same
SU(2)V × SUA(2)A-invariant combinations of four-quark terms as (II.40). Hence we conclude that the combination
(II.46) only breaks UA(1)-symmetry, and adding up the two channels (II.40) and (II.46) leads to the UA(1)-breaking
combination

1

2

[
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
. (II.47)

Eq.(II.47) is invariant under the remaining symmetries SU(Nc)×SU(Nf )V ×SU(Nf )A×U(1)V . This concludes our
brief discussion of the global symmetries of QCD in the chiral limit.

In summary the following picture emerges: assume we perform a chain of scattering experiments of QCD/Standard
Model starting at the electroweak scale ≈ 90 Gev towards the strong QCD scale ΛQCD. At each scale we can describe
the quantum equations of motion and scattering experiments by a suitably chosen effective action Γ[φ]. On the level
of the path integral for QCD, (I.33), this is described by the Wilsonian idea of integrating out momentum modes
above some momentum scale µ,

Zµ[J ] =

∫
[dΦ]p2≥µ2 e−SQCD[Φ]+

∫
x
J·Φ ⇒ Effective Action Γµ[Φ] , (II.48)

where the path integral measure only contains an integration over fields Φµ that are non-vanishing for p2 ≥ µ2:
Φµ(p2 < µ2) ≡ 0. After Legendre transformation this leads us to an effective action Γµ[Φ] that only contains the
quantum effects of scales larger than the running (RG) scale µ and serves as a classical action for the quantum effects
with momentum scales p2 < µ2. This effective action also carries the symmetries of the fundamental QCD action, as
long as these symmetries are not (anomalously broken by quantum effects.

We know already from the perturbative renormalisation programme that this amounts to adjusting the (running)
coupling in the (classical) action with the sliding (experimental) momentum scale. In such a Wilsonian setting this is
very apparent. The running of the coupling comes from the loop diagrams that are evaluated at the momentum scale
µ. On top of this momentum adjustment of the fundamental parameters of the theory one also creates additional
terms in the -effective- action. The one of importance for us is the four-fermi terms argued for above. It is created
at one-loop with the box diagrams depicted in depicted in Fig. 4. This leads us finally to the following four-fermi
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FIG. 5: One loop diagrams for the four-fermi coupling λψ from the action (II.51).

interaction in the effective action,

Γ4−fermi[φ]|1−loop = −λψ
4

∫ [
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
+ · · · with λψ ∝ α2

s , (II.49)

where it is understood that the coupling λψ carries the running momentum or RG scale µ introduced above. Together
with the kinetic term of the quarks this is the classical action of the Nambu–Jona-Lasinio type model. Eq.(II.49) holds
for massless quarks and two flavours, Nf = 2. The two terms in (II.49) carry the same quantum number as the scalar
and axial-scalar excitations in low energy QCD, the sigma-meson σ and pion ~π respectively. The one loop diagrams
generating the four-fermi coupling λψ are depicted in Fig. 4. In line with the picture outlined above the four-fermi
coupling λψ at a given momentum scale p = µ should be computed with the loop momenta q in the box diagrams in
Fig. 4 being bigger than µ. Than the related diagram is peaked at this scale and we conclude by dimensional analysis
that

λψ(µ) ' α2
s(µ)

1

µ2
. (II.50)

Note that this coupling feeds back into the loop expansion of other correlations functions such as the quark propagator
and quark-gluon vertices. However, in comparison to other (one-loop) diagrams it is suppressed by additional orders
of the strong coupling αs. In turn, in the low momentum regime where αs grows strong it gives potentially relevant
contributions. Indeed, taking as a starting point for a loop analysis the sum of the QCD action (II.34) and the
four-fermi term (II.49)

Γ[φ] ' SQCD[φ] + Γ4−fermi[φ] , (II.51)

we get also self-interaction terms of the four-fermi coupling proportional to λ2
ψ as well as terms proportional to αsλψ.

This is depicted in Fig. 5.
The glue sector of QCD is expected to have a mass gap already present in the purely gluonic theory, related to the

confinement property of Yang-Mills theory. Then this has to manifest itself in a decoupling of the gluonic contribution
to the four-fermi coupling in Fig. 5. In the Landau gauge this mechanism is easily visible due to the mass gap in the
gluon propagators, see Fig. 6 for lattice results and results from non-perturbative diagrammatic methods.

Note that the gluon propagator is gauge dependent, and the careful statement is that the Landau gauge facilitates
the access to the related physics. One should not confuse this with a massive gluon, as the gluon is no physical particle
and shows positivity violation. Moreover, the gluonic sector is certainly relevant for the confining physics and hence
the decoupling discussed above only takes place in the matter sector for the specific question under investigation, the
mechanism of strong chiral symmetry breaking.

E. Strong chiral symmetry breaking and quark-hadron effective theories

Assuming for the moment the gluonic decoupling we are left with a purely fermionic theory. The four-fermi term
(II.49) is the interaction part of the Nambu–Jona-Lasino model, one of the best-studied model for low energy QCD,
see e.g. [6, 7, 9]. It is non-renormalisable as can be seen from the momentum dimension of the four-fermi coupling
which is −2. As shown above, in QCD it is generated by fluctuations with λψ(p) ∝ αs(p) and tends to zero in the
UV, that is for large momenta p→∞. Its momentum dependence is best extracted from the dimensionless coupling

λ̂ψ = λψ(µ)µ2 , (II.52)
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FIG. 6: Gluon propagator for Nf = 2 from the lattice and from non-perturbative diagrammatic methods, taken from
[8].
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FIG. 7: Fixed point structure of λψ for the four-fermi coupling in the NJL model.

where we have introduced the renormalisation group scale µ, here being identical with the momentum scale of the
scattering process described, µ2 = p2. The β-function of the dimensionless four-fermi coupling in (II.52) is given by

βλ̂ψ = µ∂µλ̂ψ = 2λ̂ψ − c λ̂2 with c > 0 , (II.53)

and is depicted in Fig. 7. The first term on the right hand side of (II.53) encodes the trivial dimensional running of

λ̂ = µ2λ. The second term on the right hand side originates in the last diagram in Fig. 5, the pure four-fermi term.
In the absense of other mass scales this loop has to be proportional to µ2 leading to a factor two in the β-function in
comparison to the loop itself. The key feature relevant for the description of chiral symmetry breaking is the sign of

the diagram. It is negative, −cλ̂2, with a positive constant c leading to (II.53).

From the perspective of a one-loop investigation based on the classical fermionic action in (II.51) the coupling in
the loop term on the right hand side of (II.53) is the classical one in this action. As we have done for the β-function
of the strong coupling, e.g. (??), we can elevate this coupling to the full running coupling in terms of a one-loop
RG-improvement. This accounts for a one-loop resummation of diagrams. In the present context the physics behind
such an improvement is very apparent: As already indicated, the NJL-type action was derived within a successive
integrating out of momentum modes, and constitutes an effective action for the UV physics with p2 ≥ µ2. Accordingly,
its couplings depend on this RG-scale. In summary we end up with (II.53) with µ-dependen couplings on the right
hand side. Note that this is only a one-loop RG improvement as we have discarded the µ-dependence of the couplings

in the diagram when taking the µ-derivative. The related terms are proportional to −c/2 λ̂ µ∂µλ̂ψ and can be shuffled

to the left hand side. This accounts for a further resummation leading to (II.53) with a global factor 1/(1 + c/2 λ̂)
on the right hand side. In the following qualitative analysis it is dropped and we strictly resort to the one-loop
improvement.
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FIG. 8: Fixed point structure of λψ of the full β-function

The β-function of (II.53) is depicted in Fig. 7. It divides the positive λ̂ψ-axis into two physically distinct regimes,

I1 = [0, λ̂UV) and I2 = (λ̂UV,∞) with βλ̂ψ (λ̂UV) = 0 with λ̂UV =
2

c
. (II.54)

The zeroes of the β-function are fixed points of the renormalisation group flows, and λ̂UV 6= 0 is a non-trivial fixed

point FP of the β-function while λ̂Gauß = 0 is the trivial Gauian fixed point (related to the free Gaußian theory). Now
we initiate the RG-flow at an initial ultraviolet scale µin with some value of the dimensionless four-fermi coupling

λ̂(µ in) = λ̂ in . (II.55)

If λ̂in < λ̂UV and we lower the running momentum scale, the RG-flow lowers the four-fermi coupling towards 0.

Accordingly λ̂ψ(µ→ 0) = 0. Since the regime of small couplings is governed by the linear term 2λ̂ψ in the β-function

in (II.53) this entails λψ(µ → 0) = λ0. Here λ0 is some finite value which is adjusted by the input λ̂in at the initial
scale µin.

In turn, if λ̂in > λ̂UV, the RG-flow toward smaller µ drives λ̂ψ towards ∞. Then the linear term can be neglected
as it is sub-leading and the RG-flow reads

µ∂µλ̂ = −c λ̂2
ψ , −→ λ̂(µ) =

λ̂(µ0)

1 + λ̂(µ0)c logµ/µ0

, (II.56)

where µ0 is some reference scale at which the approximation in the RG-flow in (II.56) is already valid. We conclude
from (II.56) diverges at

µ = µ0 exp

{
− 1

c λ(µ0)

}
, (II.57)

which signals a resonance in the four-fermi scalar-pseudo–scalar channel.

At this scale chiral symmetry breaking occurs. To make this more apparent we resort to a further rewriting of our
low energy effective theory in terms of the scalar, σ, and pseudo-scalar, ~π, degrees of freedom. This is suggestive
already for the reason that the divergence in (II.56) entails that these resonance are relevant degrees of freedom for
lower momentum scales. For the rewriting of the theory we use the Hubbard-Stratonovich transformation, see e.g.
[6, 7, 9]. With this transformation we a four-fermi interaction using a scalar auxiliary field. Concentrating on the
scalar part of the four-fermi interaction in (II.49) we write at some momentum scale µ,

−λψ
4

(ψ̄ψ)2 =

[
h

2
(ψ̄ψ)σ +

m2
ϕ

2
σ2

]

EoM(σ)

, with λψ =
h2

m2
ϕ

. (II.58)

Accordingly we can extend the effective action Γ[φ] given in (II.51) by the right hand side of (II.58) while dropping
the four-fermi term. For the sake of simplicity we concentrate on the σ-meson first and reduce the four-fermi term to
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its scalar part. Then

Γ[φ]→ Γ[φ, σ] = Γ[φ]|λψ→0 +

[
h

2
(ψ̄ψ)σ +

m2

2
σ2

]

h2/m2=λψ

, (II.59)

This new effective action agrees with the original one on the equation of motion of σ and hence carries the same physics.
As a side remark, note that the 1PI correlation functions of quarks and gluon derived from Γ[φ, σ] at fixed σ do not
agree with the quark and gluon correlation functions derived from Γ[φ] = Γ[φ, σEoM(φ)], the implicit dependences also
contribute.

A similar derivation can be done for the pion part of the four-fermi interaction, and hence the whole four-fermi
interaction can be bosonised. The mesonic equations of motion can be summarised in

σEoM =
h

2m2
ϕ

ψ̄ψ , ~πEoM =
h

2m2
ϕ

ψ̄ iγ5~τψ . (II.60)

On the level of the generating functional of QCD, (II.58) and its extension to pions can be implemented by a Gaußian
path integral with

exp

{
λψ
4

∫ [
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]}
=

∫
dσd~π exp

{
−
∫

x

(
1

2
m2(σ2 + ~π2) +

h

2
ψ̄ [σ + iγ5~τ~π]ψ

)}

h2/m2=λψ

. (II.61)

We also remark that as shift in the σ-field,

σ → − 2

h
mψ + σ , (II.62)

eliminates the quark mass term at the expense of the linear term in σ that can be interpreted as a source term.
Inserting this identity in the path integral for the low energy dofs including the currents for the fundamental fields,
the quarks and gluons (and ghosts) as well as current for the mesonic dofs we have the full generating functional in
this setting. Performing the Legendre transformation we are immediately led to (II.59). Kinetic terms as well as a
potential for σ are generated by further quantum effects. In summary this leads us finally to a low energy effective
theory with a classical action Seff = ΓUV, where ΓUV is the full quantum effective action including quantum fluctuations
above a given cutoff scale Λ. This also entails that Seff carries a Λ-dependence. Seff is given by

Seff[ψ, ψ̄, φ] ∝
∫

x

ψ̄ · (D/ + mψ) · ψ +

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
+

∫

x

h

2
ψ̄ [σ + iγ5~τ~π]ψ +

∫

x

VUV(ρ) (II.63)

with φ = (σ, ~π) and

VUV(ρ) = m2
ϕρ+

λ

2
ρ2 , with ρ =

1

2

(
σ2 + ~π2

)
. (II.64)

As indicated above, the quark mass term can be eliminated at the expense of a linear term in σ by the shift of σ
in (II.62). On the level of the quadratic quark-meson interaction (II.61) this triggers a linear term cσσ and the full
potential reads

VUV(ρ) = m2
ϕρ+

λϕ
2
ρ2 − cσ σ , with cσ =

2

h
m2
ϕmψ . (II.65)

This concludes the derivation of the low energy effective theory with the action (II.63) from QCD by integrating-out
QCD quantum fluctuations above the validity scale of the low energy effective theory. From the gluonic decoupling
scale Λdec . 1 GeV one concludes that (II.63) should be seen as a classical action for quantum fluctuations with
momenta p2 . 1 GeV, see Fig. 6. A more detailed analysis reveals that the initial scale for low energy effective
theories has to be taken far lower for quantitative computations. Nonetheless, for qualitative considerations it is
sufficient, and, as a matter of fact, low energy effective theories even work well quantitatively at surprisingly large
moment scale about 1 GeV.

In (II.63) we have introduced a self-interaction of the mesonic fields proportional to ρ2 as well as an explicit breaking
term linear in σ related to the quark mass term. The question arises, is this the most general φ4-term one can generate
from QCD? As mentioned before, the symmetries of this low energy effective field theory (EFT) are determined by
those of the action of QCD. In the chiral limit the full symmetry group is (II.38). The axial UA(1) symmetry is



21

anomalously broken, hence our restriction to the UA(1)-breaking combination (II.47). In its bosonised quark-meson
mode version the symmetry transformations with Gsym also involve transformations of the mesonic fields. Their
transformation properties can be most easily accessed in the matrix notation for the field. To that end we introduce

φ̂ = 1lσ + iγ5~τ~π with φ̂EoM =
h

2m2
ϕ

(
1l ψ̄ψ − γ5~τ ψ̄γ5~τψ

)
, (II.66)

where we have used (II.60) in the second equation. Now we can read-off the symmetry transformations under
V ∈ SU(Nc)× SU(Nf )V × SU(Nf )A × U(1)V from (II.66) by evoking the symmetry transformations of the quarks.
One easily sees that axial U(1)A-rotations do not close on σ and ~π. For example, σEoM transforms into ψ̄γ5ψ.
Furthermore, φ is invariant under vector UV (1) transformations. Similarly, σ is invariant under transformations with
eiθ

aτa ∈ SU(2)V , while π is rotated, ~π → V ~π with V = eθ
ata ∈ O(3) with (ta)bc = εabc. This follows from

ψ̄γ5~τψ −→ ψ̄γ5~τψ + iθaψ̄γ5[~τ , τa]ψ = ψ̄γ5~τψ − θaεbacψ̄γ5τ
cψ . (II.67)

Finally, transformations with eiγ5θ
aτa ∈ SU(2)A rotate (σ, ~π) into each other. This is read-off from the infinitesimal

transformations of φ̂EoM leading to

σ → σ + 2θaπa , πb → πb − θbσ . (II.68)

Combining all the manifestations of the symmetry group we are led to an O(4) invariance of our low energy effective
field theory, sloppily written as

ψ → V ψ with V ∈ Gsym/UA(1) , φ→ eθ
ataφ , with φ =

(
~π
σ

)
and eθ

ata ∈ O(4) . (II.69)

In conclusion chiral symmetry breaking is in one-to-one correspondence to the breaking of the O(4)-symmetry. More-
over, the formulation with effective mesonic σ and pion degrees of freedom now allows us to discuss strong chiral
symmetry breaking in complete analogy to the Higgs mechanism that served as an introductory example. Let us first
consider the fully symmetric case with cσ = 0. The mesonic sector of (II.63) simply is an O(4)-model, and the QCD
four-fermi coupling are related to the Yukawa coupling and the mesonic mass parameters via the relation (II.58) in the
Hubbard-Stratonovich transformation. Accordingly, a diverging λψ implies a vanishing mϕ if the Yukawa coupling is
fixed. Hence, at the singularity of λψ the mesonic mass parameter m2

ϕ changes sign. For m2
ϕ < 0 we are in the phase

of -spontaneously- broken O(4)-symmetry. We choose the σ direction as our radial mode, and its expectation value
is given by

σ0 =

√
−m2

ϕ

λϕ
, (II.70)

in the chiral limit. This leads to an effective quark mass term with

mψ =
h

2
σ0 =

h

2

√
−m2

ϕ

λϕ
, (II.71)

which in QCD is of the order of 300 MeV.

In summary we have derivated low energy EFTs in QCD by successively integrating out momentum shells of
quantum fluctuations in QCD. The first class of low energy EFTS we encountered are the Nambu-Jona–Lasigno
type four-quark models (in short in a slight abuse of notation NJL-model), baptised after a seminal work of Nambu
and Jona-Lasigno from 1961 introducing a four-fermi model for Nucleons. The NJL-model is not renormlisable and
requires a ultraviolet cutoff scale ΛUV that cannot be removed.

In a second step we have bosonised the resonant scalar–pseudo-scalar channels of the four-quark interaction leading
us to a Yukawa-type model, the Quark-Meson Model (QM-model). This model is renormalisable and its UV cutoff ΛUV

seemingly can be removed to infinity. However, we emphasise that the two models are equivalent on the level of the
respective path integrals via the Hubbard-Stratonovich transformation. In other words, if one considers all quantum
fluctuations in both models the physics results are the same, as must be the necessity of a ultraviolet cutoff scale ΛUV.
In the QM model this necessity is encoded in a UV-instability of the model. In other words, its renormalisability is
of no help if it comes to the existence of the model at large scales.

Finally, despite being low energy EFTs, these models have a complicated dynamics reflecting the strongly-correlated
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nature of low energy QCD. Hence, typically one resorts to approximations within these models. In the reminder of
this chapter we shall discuss different approximations to the Quark-Meson model ranging from a mean-field treatment
to a full non-perturbative renormalisation group study.

F. Low energy quantum fluctuations

In the last chapter we have derived the action of the QM-model by integrating out quantum fluctuations above
a momentum scale Λ ≈ 1 GeV. We have argued that below this scale the gluonic degrees of freedom become less
important and decouple from the theory below the mass gap of QCD. Practically, this can be seen from the results
for gluonic correlation functions such as the gluon propagator displayed in Fig. 6. This entails that the action (II.63)
serves as a classical action for the quantum fluctuations with momenta p2 ≤ Λ2. More explicitly we use the definition
(II.48) with µ = Λ and arrive at the path integral

Z ≈
∫

[dφ dψdψ̄]p2≤Λ2e−Seff,Λ[ψ<,ψ̄<,φ<] with ZΛ ' e−Seff,Λ , (II.72)

where we have dropped the source terms. The fields ψ<, ψ̄<, φ< only carry low momentum modes with momenta
p2 < Λ2. Then the full quark field ψ = ψ< + ψ> is a sum of ψ< = ψp2≥µ2 and ψ> = ψp2≥µ2 . Note also that the path
integral of the large momentum modes in (II.48) is performed in the presence of fields that also carry low momentum
contributions,

ZΛ[ψ<, ψ̄<, φ<] =

∫
[dΦ]p2≥µ2 e−S[φ,Φ] . (II.73)

where S is the QCD action with a bosonised scalar–pseudo-scalar channel. Eq.(II.72) is approximate as we do not
integrate out the low momentum gluons. Therefore low energy quantum effects with momentum scales p2 ≤ Λ are
encoded in loop diagrams with the classical action Seff,Λ ' ΓΛ defined in (II.63). Here, ΓΛ is the effective action that
originates in the integrating-out of QCD fluctuations with momenta p2 ≥ Λ2. Henceforth we drop the supscripts <,>
for the sake of readability.

As we have seen at the end of the last chapter, the coupling parameters in the mesonic potential play a crucial rôle
for chiral symmetry breaking. Here we compute the one-loop correction to the ’classical’ potential V in (II.65) as well
as studying its the renormalisation group or flow equation.

1. Quark quantum fluctuations

First we note that the quark path integral in (II.72) with the action Seff,Λ in (II.63) is Gaußian, and hence the
one-loop computation is exact. This leads to the following representation of (II.72),

Z ≈
∫ ∫

[dφ]p2≤Λ2e−Sφ,eff,Λ[φ] , (II.74)

with

Sφ,eff,Λ[φ] =

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
+

∫

x

VUV(ρ)− ln

[
1

N

∫
[dψdψ̄]p2≤Λ2e

−
∫
x
ψ̄·
(
D/ +mψ

)
·ψ+

∫
x
h
2 ψ̄[σ+iγ5~τ~π]ψ

]
, (II.75)

where 1/N is an appropriate, field-independent normalisation specified later. The quark path integral can be rewritten
as follows,

1

N

∫
[dψdψ̄]p2≤Λ2 e

−
∫
x
ψ̄·
(
D/ +h

2 [σ+iγ5~τ~π]
)
·ψ

=
1

N det Λ

(
D/ +

h

2
[σ + iγ5~τ~π]

)
, (II.76)

where det Λ is the determinant from momentum modes with p2 ≤ Λ2. Expanded in powers of the field, the logarithm
of (II.76) adds to the kinetic term in (II.75) as well as to the potential V . It also leads to terms with higher order
derivatives or derivative couplings such as Z(ρ)(∂µφ)2, (φ∆φ)2. As we work at low energies we drop these terms in
the spirit of an expansion in p2/m2

gap where m2
gap is the lowest mass scale in QCD. Evidently the pion plays a special

role as is has a very small mass in comparison to the QCD mass scale ΛQCD The mass scales mhad of all other hadronic
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low energy degrees of freedom in QCD satisfy mhad & ΛQCD. Accordingly the pion carries the quantum fluctuations in
QCD for scales below ΛQCD. These scale considerations are also behind the impressively successful framework of chiral
perturbation theory. In summary at leading order the low energy effective action Sφ,eff only changes to VUV → Vφ,eff,

Vφ,eff(ρ) = VUV(ρ) + ∆Vq(ρ) , (II.77)

with

∆Vq(ρ) = −TrΛ ln

(
D/ +

h

2
[σ + iγ5~τ~π]

)
+ lnN , VUV(ρ) = m2

ϕρ+
λϕ
2
ρ2 . (II.78)

In (II.78) we have used that for a given operator O we have ln detΛO = TrΛ lnO, where the trace sums over momenta
with p2 ≤ Λ2, as well as Dirac and internal indices, and the ’classical’ potential V defined in (II.64). For the present
considerations and scales the gluonic fluctuations and background are irrelevant. Thus we have dropped the gluonic
fluctuations and we also put the gauge field to zero, Aµ = 0. At finite temperature and density we also will consider
constant temporal backgrounds A0 6= 0 which is related to so-called statistical confinement. Finally we introduce a
convenient choice for the normalisation lnN : the quark determinant at vanishing background,

lnN = TrΛ ln ∂/ . (II.79)

Due to the symmetry analysis performed above the fermionic determinant can only depend on the O(4)-invariant
combination ρ = 1/2(σ2 + ~π2), and we can simplify the computation by using ~π ≡ 0. In momentum space we have

Vφ,eff(σ
2/2) =VUV(σ2/2)−NfNc

∫
dΩ4

(2π)4

∫ Λ

0

dp p3 trDirac ln
ip/ + h

2σ

ip/

=VUV(σ2/2)− 6

π2

∫ Λ

0

dp p3 ln
p2 + h2

4 σ
2

p2
, (II.80)

where
∫
dΩ4 = 2π2 is the four-dimensional angular integration. The prefactor NfNc = 6 in the middle part in

(II.80) comes from the trace over flavour and colour space. The Dirac trace gives a factor 4, while the momentum
symmetrisation with p→ −p provides a factor 1/2. The denominators in (II.80) come from the normalisation (II.79).
Note also that up to these prefactors (II.80) is nothing but the Coleman-Weinberg potential of a ϕ4-theory with
interaction λ/4!ϕ2 where we substitute λϕ2 → h2 ρ. We have an important relative minus sign due to the fermion
loop and a symmetry factor 4NfNc = 24 due to the number of degrees of freedom. We simply could take over this
well-known result, for a detailed discussion see e.g. chapter 1.4 in the QFTII lecture.

For its importance we recall the computation here, and also discuss some particularities due to the embedding in
QCD in the present low energy EFT context. The momentum integral in (II.80) is easily performed. We also restore
the full mesonic field content, σ2/2→ ρ, and arrive at

Vφ,eff(ρ) = VUV(ρ)− 3

8π2

[
2Λ2h2ρ+ h4ρ2

[
ln
h2ρ

2Λ2
− ln

(
1 +

h2ρ

2Λ2

)]
+ 4Λ4 ln

(
1 +

h2ρ

2Λ2

)]
. (II.81)

Up to the symmetry factor −24 this is precisely the result of the Coleman-Weinberg computation performed originally
in the context of the Higgs mechanism. We note that (II.81) seemingly depends on the momentum cutoff scale Λ.
However, the potential VUV(ρ) is the result of integrating-out quantum fluctuations up to the momentum scale Λ and
hence also is Λ-dependent. Indeed, the full generating functional Z of QCD in (II.72) cannot be Λ-dependent, to wit

Λ
∂Z

∂Λ
= 0 . (II.82)

Eq.(II.82) is the (cutoff) RG-equation for the generating functional of QCD. In the present context it is only ap-
proximately valid as we did not include the quantum fluctuations of gluons below the cutoff scale Λ. Accordingly,
(II.82) only holds in our present EFT setting if the cutoff scale Λ is small enough. This will be aparent in the final,
renormalised result, and we shall resume the discussion of the sufficient smallness of the cutoff scale there.

For the time being let us also drop the integration of the mesonic fluctuations. In this approximation Vφ,eff(ρ)
is the full effective potential of our low energy EFT. Using (II.82) for the full effective potential (II.80) or (II.81),
Λ∂ΛVeff = 0, leads us to scaling relations for the couplings in the potential V . As Λ only appears in the integration
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limit in (II.80), the integrand simply is the Λ-derivative and we obtain

Λ∂ΛVUV =
6

π2
Λ4 ln

(
1 +

h2ρ

2Λ2

)

=
3

π2

(
Λ2h2ρ− h4

4
ρ2

)
+O(ρ3/Λ2) , (II.83)

and

Λ∂ΛVUV = Λ
∂m2

ϕ

∂Λ
ρ+

1

2
Λ
∂λϕ
∂Λ

ρ2 . (II.84)

The RG equation (II.84) signifies that the present quark-meson model is indeed renormalisable: the divergences can
be absorbed in the couplings of the classical action. For the sake of completeness we also remark that In a full analysis
two further logarithmic singularities occur, the wave function renormalisations of quarks and mesons which also can
be absorbed by wave functions in the classical action with e.g. ∂µφ

2 → Zφ,Λ∂µφ
2. The scale derivatives of m2

ϕ and
λϕ define the β-functions of meson mass and self-coupling respectively,

βm2
ϕ

= Λ
∂(m2

ϕ/Λ
2)

∂Λ
, βλϕ = Λ

∂λϕ
∂Λ

, (II.85)

in analogy to the β-function of the strong coupling in (II.1) and the four-fermi coupling in (II.53) discussed before.
Now we use Λ∂ΛΛ2 = 2Λ2 and Λ∂Λ ln Λ2/Λ2

QCD = 2 for integrating the RG-equation (II.83). For the logarithmic term

we have to introduce a reference scale which we choose to be the dynamical scale of QCD, Λ2
QCD. Practically this

scale is identified with the UV cutoff scale of the low energy EFT which is proportional to Λ2
QCD, and is typically of

the order of 1 GeV. In summary this leads us to

m2
ϕ = m2

ϕ,r +
3

2π2
Λ2h2 , λϕ = λϕ,r −

3

4π2
h4 ln

Λ2

Λ2
QCD

, (II.86)

with the renormalised couplings m2
ϕ,r, λϕ,r. In the present approximation without the mesonic quantum fluctuations

they directly carry the physics. The Λ-independent constant part in the subtraction is chosen such that the ρ2-term
in the effective potential has the coupling λϕ,r. It is evident from (II.86) that a variation of the reference scale in the
logarithmic term can be absorbed in an according variation of λϕ,r,

ΛQCD

∂λϕ
∂ΛQCD

= 0 −→ ΛQCD

∂λϕ,r
∂ΛQCD

= βλϕ , (II.87)

where we have assumed the absense of other scales. This relation is again governed by the β-function βλϕ , and reflects
the invariance observables do not depend on this choice. Inserting these results back into (II.81) leads us to the final,
Λ-independent effective potential

Vφ,eff(ρ) = m2
ϕ,rρ+

λϕ,r
2
ρ2 − 3

8π2
h4ρ2

[
ln

h2ρ

2Λ2
QCD

− 1

2

]
. (II.88)

As already discussed in the beginning of the derivation, (II.88) is the Coleman-Weinberg result in disguise. Multiplying
with the symmetry factor −4NfNc = −24 gives precisely the same logarithmic term in the ρ2 contribution. The
missing constant term simply originates in the different renormalisation procedure: with the present one all corrections
to the relevant couplings including the constant parts are absorbed, that is m2

ϕ → m2
ϕ,r and λϕ → λϕ,r. As these

couplings have to be fixed by appropriate infrared observables this is a convenient choice. In summary we have the
following practical and consistent RG procedure:

(0) Regularisation: Sharp momentum cutoff with p2 ≤ Λ2 in all loops.

(1) Renormalisation: Remove all divergent terms in the loop contributions. For the logarithmic term substitute
ln Λ2 → ln Λ2

QCD.

(2) Renormalisation scheme: we demand ∂ρVφ,eff = ∂ρVφ,UV +O(ρ2) + ln ρ–terms. This is arranged by the −1/2 in
the bracket in (II.88). It enforces that the ρ-dependent pion mass function mπ(ρ) = ∂ρVφ,eff(ρ) simply is m2

φ,r in
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the symmetric regime, that is for vanishing ρ. Moreover, the linear term in ρ of m2
π is given by the UV coupling

λφ,r. This cannot be expressed within a Taylor expansion at ρ = 0 due to the logarithmic term.

(3) Physics: The relevant parameters h,mϕ,r, λϕ,r and the explicit symmetry breaking scale c are fixed by the pion
decay constant fπ, the physical pion and σ pole masses, mπ,pol,mσ,pol and the constituent quark mass mq,const.

Depending on the values ofm2
ϕ,r, λϕ,r the effective potential in (II.88) has non-trivial minima or describes the symmetric

phase. The effect of the fermionic quantum fluctuations is most easily accessed via the scale-running of the parameters
in the ’classical’ potential V (ρ). Concentrating on the scale-dependence of the mass parameter m2

ϕ in (II.86) we

conclude that lowering the cutoff scale Λ lowers the effective mass m2
ϕ. This entails that the fermionic quantum

fluctuation¡s indeed lower the mass parameter. Put differently, the quark fluctuations trigger chiral symmetry breaking.

Moreover, deep in the symmetric phase, that is for large Λ, the mesonic quantum fluctuations are suppressed in
comparison to the quark fluctuations. In the vicinity of the symmetry breaking scale Λχ the mesonic fluctuations are
getting massless, mϕ → 0 and the mesonic fluctuations kick in. In turn, the effective quark mass grows in the chirally
broken regime with mψ = h/2σ0, and eventually the quark fluctuations are switched off for Λ below the constituent
quark mass. ...

2. Mesonic quantum fluctuations

The remaining mesonic fluctuations can be treated at one loop similarly to the fermionic computation done above.
The result is a Coleman-Weinberg type potential without the relative minus sign. Accordingly, the mesonic fluctuations
work against chiral symmetry breaking. Due to the different scales and coupling sizes this is a marginal effect even
in the chiral limit. In the physical scale with explicit chiral symmetry breaking and a pion mass of about 140 MeV
the mesonic quantum fluctuations also decouple for scales Λ below the pion mass.

It is left to integrate-out the quantum fluctuations of the mesonic degrees of freedom in (II.74). Again concentrating
on the low energy effective potential in the spirit of the lowest order of a derivative expansion we have

Veff(ρ) = Vφ,eff(ρ) + ∆Vφ(ρ) + cσ σ with ∆Vφ(ρ) =
1

2
TrΛ ln

[
−∂2

µ +m2
φ(ρ)

]
, (II.89)

where ∆Vφ is the one loop approximation to the mesonic path integral (II.74) with the ’classical’ potential Vφ,eff(ρ),
and TrΛ sums over all momenta p2 ≤ Λ2. In (II.89) we have re-introduced the linear term in σ that triggers the
explicit symmetry breaking. In the present case ∆Vφ boils down to

∆Vφ(ρ) =
1

4π2

∫ Λ

0

dp p3
[
3 ln

(
p2 +m2

π(ρ)
)

+ ln
(
p2 +m2

σ(ρ)
)]
. (II.90)

For (II.90) we have used that we can evaluate the expressions for vanishing ~π = 0 as done in the quark case. Then
the mass matrix is diagonal, see (II.11), and reads for a given potential V

m2
π(ρ) = ∂ρV (ρ) , m2

σ(ρ) =
(
∂ρ + 2ρ∂2

ρ

)
V (ρ) . (II.91)

Accordingly, the factor three in front of the first term on the right hand side in (II.90) accounts for the N2
f − 1 = 3

pions. In the present case we have Vφ,eff(ρ) and the mass functions read

m2
π(ρ) =m2

ϕ,r +

(
λϕ,r −

3

4π2
h4 ln

h2ρ

2Λ2
QCD

)
ρ ,

m2
σ(ρ) =m2

ϕ,r + 3

(
λϕ,r −

1

2π2
− 3

4π2
h4 ln

h2ρ

2Λ2
QCD

)
ρ (II.92)
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The integration in (II.91) is the same as in the quark case and we arrive at

∆Vφ(ρ) =
3

16π2

[
Λ2m2

π +m4
π

[
ln
m2
π

Λ2
− ln

(
1 +

m2
π

Λ2

)]
+ Λ4 ln

(
1 +

m2
π

Λ2

)]

+
1

16π2

[
Λ2m2

σ +m4
σ

[
ln
m2
σ

Λ2
− ln

(
1 +

m2
σ

Λ2

)]
+ Λ4 ln

(
1 +

m2
σ

Λ2

)]
, (II.93)

where m2
π,m

2
σ are the ρ-dependent masses defined in (II.91). Seemingly (II.93) introduces divergent terms that are

neither proportional to ρ0, ρ, ρ2 due to ∆Vq in (II.91). However, (II.93) goes beyond one-loop (∆Vq is already one-
loop) and these terms are to be expected and can be removed within a consistent renormalisation procedure. Here,
our simple renormalisation procedure discussed below (II.88) pays off. Then after renormalisation (II.93) turns into

∆Vφ(ρ) =
3

16π2
m4
π

[
ln

m2
π

Λ2
QCD

− 1

2

]
+

1

16π2
m4
σ

[
ln

m2
σ

Λ2
QCD

− 1

2

]
, (II.94)

where mπ(ρ),mσ(ρ) are derived from (II.91). As described in the discussion of the renormalisation scheme described
below (II.88), the factor −1/2 in the brackets arrange for

m2
eff,π(ρ) = ∂ρVeff(ρ) = m2

ϕ,r + λϕ,rρ−
3

8π2
ρ ln

h2ρ

2Λ2
QCD

+
3

8π2
m2
π(∂ρm

2
π) ln

m2
π

Λ2
QCD

. (II.95)

From (II.94) we can proceed in several ways:

(0) We drop ∆Vφ completely. As in (2) the missing quantum fluctuations are partially absorbed in the couplings
mϕ, λϕ. This approximation is also called ’extended mean field’ in the literature. It is very close to the mean
field approximation with V eff(ρ) = V (ρ), where we also drop ∆Vq.

(1) As ∆Vq already is a one loop expression we drop it in the computation of (II.94). This leads us to a consistent
one-loop computation. This amounts to dropping some quantum contributions in comparison to (1). However,
as in (1) we have to fix the parameters h,mϕ, λϕ in the effective potential with the low energy observables. This
implicitly absorbes (part of the) dropped contributions in these couplings. Differences between (1) and (2) only
occur due to missing contributions in (2) in the couplings λϕ,n of the ρn-terms in Veff with n ≥ 3.

(2) For the evaluation of (II.89) with V + ∆Vq in (II.88) and ∆Vφ in (II.94) we have to take into account that
already the effective potential V + ∆Vq may not be convex. In non-convex regimes its second derivatives are
not positive definite: mπ < 0 for ρ < ρπ, where ρπ is the solution of the reduced EoM: V ′cl(ρπ) + ∆V ′q (ρπ) = 0.
The σ mass also gets negative for even smaller ρ.

A simple resolution of this artefact of the approximation is to continue the result from larger ρ ≥ ρπ. The more
consistent way is to resolve the related renormalisation group (RG) equation for the effective potential. The RG
approach is able to deal consistently with the regimes with negative curvature which are indeed flattened out
by quantum fluctuations. This effect cannot be seen in perturbation theory.

In any case the result of this computation is an effective potential V eff(ρ) which depends on the couplings
h,mϕ, λϕ. We either compute these couplings from QCD or we fix them with low energy observables such as
the meson mass, the pion decay constant and the constituent quark mass. Here we use the latter way which is
described in details below.

(3) We solve the full renormalisation group equation, (II.82), for the effective potential, that governs its scale-
dependence, see (II.96) below. Integrating the RG equation provides an iterative and fully consistent inclusion
of the fluctuation effects. The RG is described in the chapter II F 3 below, where it is also detailed how it boils
down to the procedures (0)-(2) described above.

In the following we will consider all of these approximations, in particular at finite temperature and density. This
allows us to evaluate the importance of the quantum (and later thermal) fluctuations as well as the stability of the
results.
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3. RG equation for the effective potential ∗

The present considerations are but one step away from a consistent treatment of the low energy effective theory
with functional renormalisation group methods. For that purpose let us reconsider the RG equation for the ultraviolet
potential VUV derived from (II.82). Below (II.82) we have discussed the renormalisation group scaling that originates
in the quark quantum fluctuations. In the general case the RG-scaling of the potential comes from both quark and
meson fluctuations. This leads us to

Λ∂ΛVUV = −Λ∂Λ (∆Vq + ∆Vφ) . (II.96)

(II.96) entails how the UV effective potential VUV at a large cutoff scale Λ changes with lowering or increasing the
cutoff scale. In the discussion so far we have concentrated on the UV relevant terms that scale with positive powers
of the cutoff Λ. Then we ensured the cutoff independence of the full effective potential Veff = VUV + ∆Vq + ∆Vφ by
an appropriate renormalisation procedure. The low energy quark and meson fluctuation are encoded in the terms
∆Vq + ∆Vφ. Such a treatment assumes an asymptotically large cutoff scale.

Here we take a different point of view: iteratively lowering to cutoff scale Λ from large values (w.r.t. the non-
perturbative infrared pyhsics) leads to shifting more and more infrared fluctuations from ∆Vq + ∆Vφ to VUV. Indeed,
at Λ = 0 we have

Veff = VΛ=0 , with VΛ = VUV,Λ , (II.97)

the former ’UV’ effective potential is the full quantum effective potential. Evidently, if the cutoff scale is not asymp-
totically large, also the UV-irrelevant terms cannot be neglected in (II.96). Note also that its right hand side has to
be seen as a function of VΛ, the one-loop computations done before indeed used VΛ a a classical potential. Hence, it
is only left to bring (II.96) in a form that only depends on VΛ on both sides.

To that end we consider an infinitesimal RG step with Λ2 → Λ2(1− ε). This is governed by the path intgeral

Z ≈
∫ Λ2

Λ2(1−ε)
[dφ dψdψ̄]e−Seff,Λ[ψ,ψ̄,φ] with e−Seff,Λ ' ZΛ . (II.98)

Now we exploit that each loop in a loop expansion of (II.98) is proportional to ε as it only takes into account momenta
with Λ2(1−ε) ≤ p2 ≤ Λ2. Hence, for ε→ 0 the one-loop contribution is leading, and the ε-derivative can be converted
in the Λ-derivative of the momentum integration boundary of the one-loop expressions for ∆Vq and ∆Vφ, (II.78) and
(II.89) respectively. This leads us to

Λ∂ΛVΛ = − 1

4π2
Λ4

[
3 ln

(
1 +

m2
π(ρ)

Λ2

)
+ ln

(
1 +

m2
σ(ρ)

Λ2

)]
+

6

π2
Λ4 ln

(
1 +

h2

2

ρ

Λ2

)
, (II.99)

where

m2
π/σ(ρ) = Γ

(2)
Λ,ππ/σσ(ρ, p = 0) = V

(2)
Λ,ππ/σσ(ρ) ,

h2

2
ρ = Γ

(2)

Λ,ψψ̄
(ρ, p = 0) , with Γ

(2)
Λ = ΓUV,Λ , (II.100)

are the second derivatives of the scale-dependent ’UV’ effective action ΓΛ. We emphasise that the implicit Λ-
dependence in Γ(2) is not hit by the ε-derivative.

The approximations (0)-(2) now follow from respective approximations of (II.99): For (0) we drop the meson
fluctuations, for (1) we do not feed back the RG-running of VUV on the right hand side of (II.99), for (2) we integrate
out the quarks first. This is done with introducing separate cutoffs for quarks, Λq and mesons, Λφ and take the limit
Λq/Λφ → 0.

Eq.(II.99) is the Wegner-Houghton equation [10] for the effective potential of the current Quark-Meson Model. For
the sake of completeness we also quote the full Wegner-Houghton equation for the effective action: as the derivation
of (II.99) simply follows from the RG-invariance of the generating functional Z, it also applies to the full effective
action. Hence we conclude

Λ∂ΛΓΛ[ψ, ψ̄, φ] = −1

2
Trp2=Λ2 ln

Γ
(2)
φφ

Λ2
+ Trp2=Λ2 ln

Γ
(2)

ψψ̄

Λ2
, (II.101)

where the trace Trp2=Λ2 = Tr δ(
√
p2 − Λ) only sums over the momentum shell with p2 = Λ2. Eq.(III.34) is, together

with the Callan-Symanzik equation [11, 12], the first of many functional renormalisation group equations for the
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effective action. These continuum RG equations are based on continuum version [13, 14] of the Kadanoff block
spinning procedure on the lattice, [15], for the first seminal work on the RG see [16, 17]. In particular the pioneering
work [16] already emphasises and details the full power of the renormalisation group, and is still very much under-
appreciated by the community.

4. EFT couplings

It is left to fix the couplings parameters in our low energy effective theory with the classical action Seff defined
(II.63). After integrating out the quarks and mesons we are led to the full low energy effective action ΓlowE with

ΓlowE[ψ, ψ̄, φ] =

∫

x

ψ̄ · (D/ + mψ) · ψ +

∫

x

[
(∂µσ)2 + ∂µ~π)2

]
+

∫

x

h

2
ψ̄ [σ + iγ5~τ~π]ψ +

∫

x

Veff(ρ) , (II.102)

with the effective potential Veff = Vφ,eff+∆Vφ+cσ defined in (II.89) with Vφ,eff = VUV+∆Vq. In the best approximation
discussed here, Vφ,eff is given by (II.88) and ∆Vφ by (II.94). We have the fermion mass mψ or mesonic shift parameter
c, the Yukawa coupling h, the mesonic mass parameter m2

φ and the mesonic self-coupling λφ. The fermion mass can
be traded for the shift parameter c as argued before. The value of the latter determines the expectation value of the
σ-field which is, in the present approximation, simply is the pion decay constant,

σ0 = 〈σ〉 = fπ , fπ ≈ 93 MeV . (II.103)

The latter value related to the physical fπ’s (f±π , f
0
π) measured in the experiment. Consequently c could be dropped,

we simply evaluate the theory on this expectation value. Accordingly, h is determined by the constituent quark mass,

mψ,con =
1

2
h〈σ〉 =

1

2
h fπ −→ h ≈ 6.45 with mψ,con ≈ 300 MeV . (II.104)

Note that the constituent quark masses of the quarks depend on the model and approximation used, typical values
for up and down quark masses are mψ,con ≈ 340 MeV in full QCD. A reduced value in (II.104) for two flavour QCD
is common place in the Nf = 2 quark-meson model. The related observable is the chiral condensate,

〈ψ̄(x)ψ(x)〉 = −
∫

d4p

(2π)4
tr 〈ψ(p)ψ̄(−p)〉 , (II.105)

where the trace sums over Dirac and flavour indices.

Finally we have to fix λφ and mφ with the Yukawa coupling and σ-expectation value σ0 deduced above, see also
Table II. Note also, that a potential further input is the value of the pion decay constant in the chiral limit,

fπ,χ = fπ(mπ = 0) ≈ 88 MeV , (II.106)

which can be determined with chiral perturbation theory, functional continuum methods or from chiral extrapolations
of lattice results at different finite pion masses. This leaves us with a triple of ’observables’ (mπ,mσ, fπ,χ), see
Table II, and a triple of EFT couplings (mφ, λφ, cσ). Note that the inclusion of fπ,χ as an ’observable’ relates to
the correct chiral dynamics reflected in the curvature and four-meson interaction in the chiral limit. The pion and
sigma masses are related to those found in the Particle Data Booklet (2016), [18] of the Particle Data Group (PDG).
Here, the pion mass is taken between that of the charged pions π± with mπ± ≈ 139.57 MeV and the neutral pion
π0 with mπ0 ≈ 134.98 MeV, and the mass of the sigma meson is taken to be that of the f0(500), see [19], that is
mσ ≈ 450 MeV, despite the f0 certainly not being a simple qq̄ state. The unclear nature of the value of mσ is one of
the biggest uncertainties for low energy EFTs. Typically, its values range from 400–550 MeV, see PDG, [18].

Seemingly, this leaves us with as many unknowns as physics input. However, c can be determined from the pion
mass and the pion decay constant with m2

π = ∂ρVeff(ρ0) and ρ0 = σ2
0/2 = f2

π/2. This follows from the EoM for σ,

∂σVeff(ρ0) = σ0m
2
π = cσ −→ cσ = fπm

2
π ≈ 1.77 ∗ 106 MeV3 . (II.107)

We conclude that in the current approximation to the UV effective action, the pion decay constant in the chiral limit,
fπ,χ, is a prediction.

Here we present a crude (mean-field) estimate of its value based on the assumption of being close to the chiral limit.
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Observables Value [MeV] EFT couplings Value
fπ 93 σ0 = fπ 93 MeV

mcon 300 h =
2mcon

fπ
6.45

mπ 138 mφ mφ(mπ,mσ)
mσ 450 λφ λφ(mπ,mσ)

fπ,χ 88 cσ = fπm
2
π 1.77 ∗ 106MeV3

TABLE II: Low energy observables and related EFT couplings as used for the Nf = 2 computations. While the
σ-expectation value σ0 and the Yukawa coupling are directly related to pion decay constant and constituent quark
masses in the present appoximations, the other EFT couplings depend on the approximations (0)–(3) described below

(II.95).

It is based on the expansion of the full effective potential about the unperturbed minimum in the broken phase,

Veff =

∞∑

n=2

λn
n!

(ρ− κ)
n

+ cσσ , with κ =
f2
π,χ

2
, λ2 = λφ,eff . (II.108)

Close to the chiral limit the difference (fπ − fπ,χ)/fπ � 1 is small. In the vicinity of the unperturbed minimum κ the
full effective potential can be written as

Veff =
λφ,eff

2
(ρ− κ)

2
+ cσσ +O

(
(ρ− κ)

2
)
. (II.109)

Dropping the higher terms leads us to

m2
π = λφ,eff

f2
π − f2

π,χ

2
, m2

σ = λφ,eff

3f2
π − f2

π,χ

2
. (II.110)

In this leading order, the mesonic self-coupling drops out of the relation for fπ,χ and we arrive at the estimate

fπ,χ = fπ

√√√√√
1− 3

m2
π

m2
σ

1− m2
π

m2
σ

≈ 83 MeV , and λφ,eff =
m2
σ −m2

π

f2
π

≈ 21.2 . (II.111)

This is a very good agreement with the theoretical prediction of fπ,χ ≈ 88 MeV, in particular given the crude nature of
the present estimate. Beyond the current mean field level it improves further Still, the current EFT makes a prediction
for either fπ,χ or mσ, and the question arises which of them should be taken as a physics input: we first note that
fπ,χ ≈ 88 MeV is under far better theoretical control than the mass of the σ-meson. Apart from the difficulties of

FIG. 9: Scale dependence of the effective four-fermi coupling. The shaded area is the regime where the effective field
theory is triggered.
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identifying directly the σ-mesons in the EFT’s at hand with a resonance in the particle spectrum, it has a large
width. Hence it cannot be assumed that the curvature mass mσ,curv we use here is in good agreement with the pole
mass mσ,pol, see the discussion at the end of chapter II B. This is in stark contradistinction to the pion masses where
the (non-trivial) identification mπ,curv ≈ mπ,pol holds true on the percent level. This suggestes to adjust mσ such
that fπ,χ ≈ 88 MeV. In the mean field discussion done here this leads to m2

σ ≈ 600 − 650 MeV. Note that with a
future better determination of the curvature mass mσ,curv a semi-quantitative EFT might require higher oder mesonic
UV-couplings such as λ3,UV 6= 0 in (II.109). This is related to the fact that the physical UV cutoff ΛUV ≈ 1 GeV, at
which the low energy EFT is initiated, is less than one order of magnitude larger than the physical scales.

This discussion completes our EFT picture of chiral symmetry breaking in QCD. In essence it also extends to the
Nf = 2 + 1 flavour case and beyond, then, however, a consistent determination of the low energy couplings including
the correct chiral dynamics, e.g. fπ,χ is far more intricate.
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III. CHIRAL PHASE TRANSITION

In the last chapter we have learned that chiral symmetry breaking is triggered by the quark fluctuations, while the
mesonic low energy fluctuations work against symmetry breaking. The symmetry breaking scale Λχ is of the order of
300-400 MeV.

The vacuum physics is used to fix the parameters of the low energy effective theory such as the mesonic mass
function, the Yukawa coupling, and the expectation value of the radial mode, 〈σ〉. The related observables are the
pion and sigma pole masses, the constituent quark mass as well as the pion decay constant.

In heavy ion collisions or the early universe the temperature is/has been high of the order of hundreds of MeV.
In Kelvin this translates into 100 MeV≈ 1.16 ∗ 1012 Kelvin. It is expected that a high temperatures the system
undergoes a phase transition to the chirally symmetric phase. As a rough estimate the phase transition temperature
Tc is expected to be of the order of the chiral symmetry breaking scale Λχ which itself has been argued to be of the
order of ΛQCD, the only intrinsic scale in QCD.

A. Mesons at finite temperature

For a more quantitative investigation we need a thermal formulation of QCD or at least of the low energy effective
theory we have derived in the previous chapter. Here we give a brief introduction to the -Euclidean- path integral
at finite temperature, where we follow the introduction of the path integral in chapter 1, QFT II. We start with the
partition function of a scalar theory at finite temperature

ZT = Tr e−βĤ =
∑

n

e−βEn with β =
1

T
and Ĥ|n〉 = En|n〉 , (III.1)

with the Hamiltonian operator of a scalar theory

Ĥ[φ̂, π̂] =

∫
d3x

[
1

2
π̂2 +

1

2
(~∇φ)2 + V (φ̂)

]
. (III.2)

with field operator φ̂ and field momentum operator π̂. In (III.1) we dropped the source term for the sake of brevity.
Eq.(III.1) is the standard statistical partition function at finite temperature well known from quantum mechanics.
Now we rewrite this partition function in terms of a basis in field and canonical momentum space. First we note that
the trace in (III.1) can be rewritten in terms of field eigenstates with

Tr e−βĤ =

∫
dφ 〈φ| e−βĤ |φ〉 with φ̂(~x)|φ〉 = φ(~x)|φ〉 , (III.3)

with the eigenvalues φ(~x). Moreover, the statistical operator e−βĤ can be interpreted as the evolution operator
U(0, iβ) in an imaginary time from the initial state |φ(ti)〉 at ti = 0 to the final state |φ(tf)〉 at tf = iβ with

U(0, iβ) = eiĤ(tf−ti) and |φ(tf)〉 = |φ(ti)〉 . (III.4)

The identification of initial and final state is the trace condition in (III.3). Now we simply repeat all the steps for the
derivation of the path integral of a scalar theory. Also adding a source term we arrive at

ZT [J ] =

∫

φ(β,~x)=φ(0,~x)

dφ e−ST [φ]+
∫ β
0
d4x J(t,~x)φ(~x) , (III.5)

with the periodic fields φ(t+ β, ~x) = φ(t, ~x) and the finite temperature action ST [φ] with

ST [φ] =

∫ β

0

d4x

[
1

2
(∂µφ)2 + V (φ)

]
, where

∫ β

0

d4x =

∫ β

0

dt

∫
d3x . (III.6)

Accordingly, the path integral of a finite temperature field theory is related to a Euclidean path integral with a finite
time extent in imaginary time t ∈ [0 , β]. Note that this time does not describe the time evolution of the system but
simply the statistical nature of the thermal partition function. The real time correlation function are obtained by a
Wick rotation, for more details see finite temperature quantum field theory books such as Le Bellac or Kapusta. The
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correlation functions are periodic in imaginary time,

〈φ(x1) · · ·φ(ti + β, ~x) · · ·φ(xn)〉 = 〈φ(x1) · · ·φ(ti, ~x) · · ·φ(xn)〉 . (III.7)

Finally we want to repeat the computation of the effective potential in the last chapter section II F at finite tempera-
ture. This is done in momentum frequency space and we would like to illustrate the differences at finite temperature
at the important example of the propagator

Gφ(x− y) = 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 . (III.8)

The propagator in spatial momentum and frequency space is given by

Gφ(ωn, ~p) =

∫ β

0

d4x ei (ωnt+~p~x)Gφ(t, ~x) , where ωn = 2πTn , with n ∈ Z . (III.9)

The discrete frequencies ωn are called Matsubara frequencies and originate in the finite imaginary time extent. The
frequency Fourier transformation back gives

Gφ(t, ~p) =
∑

n∈Z
e−iωntGφ(ωn, ~p) , (III.10)

which has the necessary periodicity in imaginary time, G(t+ β, ~p) = G(t, ~p), of a correlation function, see (III.7). In
frequency and spatial momentum space the classical propagator looks the same as in the vacuum. We have

Gφ(ωn, ~p) =
1

ω2
n + ~p2 +m2

with m2(φ) = ∂2
φV (φ) . (III.11)

While the Fourier transformation w.r.t. spatial momentum is also the same as at T = 0, that w.r.t. frequency changes.
Here we discuss the Fourier transformation for t = 0 for the mixed representation Gφ(t, ~p),

Gφ(t = 0, ~p) = T
∑

n∈Z

1

ω2
n + ~p2 +m2

=
1

2εφp
cothβ εφp =

1

2εφp

[
1 + 2nB(εφp )

]
, (III.12)

with the dispersion εφp and the thermal distribution function nB(ω) given by

εφp (m) =
√
~p2 +m2 , nB(ω) =

1

eβ|ω| − 1
(III.13)

The latter is the standard Bose-Einstein distribution and clearly shows the thermal nature of the Matsubara path
integral.

As a warm-up of the computation for the effective potential in the quark-meson theory at finite temperature we
compute that of the scalar theory used here as an example. Its thermal part is related to the thermal pressure of the
theory with potential. To that end we remind ourselves that the scalar free energy density Ωφ and the pressure of the
theory are given by

ZT [0] = e−βV Ωφ , pφ = −∂VΩφ
∂V with V =

∫
d3x . (III.14)

The one-loop contribution to the free energy density and pressure are hence given by

Ωφ '
1

2V T Tr ln
(
−∂2

µ +m2
)

=
1

2
T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n + ~p2 +m2

)
, pφ ' −

1

2
T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n + ~p2 +m2

)
,

(III.15)

where we dropped the normalisations in Ωφ and pφ. We also remind the reader that m2 = m2(φ) as introduced in
(III.11). Note also that the pressure is nothing but (minus) the effective potential at finite temperature. At vanishing
temperature we encountered singularities in the computation of the effective potential proportional to Λ4, λ2 and
ln Λ that had to be absorbed in the bare couplings. The highest singularity proportional to Λ4 we disregarded as
the absolute value of the potential energy which cannot be measured. The expressions in (III.15) are also infinite,
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showing the standard divergence of zero point functions at vanishing temperature. Similarly, we could introduce a
spatial momentum cutoff Λ with p2 ≤ Λ2 and proceed as in the last chapter. In the following we shall not make
this cutoff explicit for the following reason: it is one of the cornerstones, and can be proven in thermal field theory
all singularities are temperature-independent. This statement can be understood heuristically as the ultraviolet
singularities are short-distance singularities. At short-distance singularities the finite extent in time-direction cannot
be accessed. For detailed discussions we refer to the literature, here this fact will simply come out.

For the computation we take the mass (squared) derivative of the pressure, ∂m2
φ
p. This removes the logarithm from

the expression and leaves us with integrals and sums that can be computed by complex analysis. The mass-derivative
of the pressure is related to the momentum integral of the propagator in the mixed representation G(0, ~p) computed
in (III.12),

∂m2pφ ' −
1

2

∫
d3p

(2π)3
Gφ(0, ~p) = −1

4

∫
d3p

(2π)3

1

εφp

[
1 + 2nB(εφp )

]
. (III.16)

Eq.(III.16) entails that the mass-derivative of the pressure, and hence the pressure, only carries a temperature-
independent singularity proportional to 1/εφp . The term proportional to nB vanishes in the zero temperature limit.

Upon integration over m2 the pressure is given by

pφ ' −
∫

d3p

(2π)3

[
1

2
εφp + T ln

(
1− e−βεφp

)]
. (III.17)

The singular, temperature-independent piece pressure in (III.17) proportional to εφp is nothing but the effective poten-
tial at vanishing temperature which we have computed for a fermionic theory in the last chapter. Its renormalisation
can be performed analogously. Here we are only interested in the thermal pressure, and we subtract the pressure at
vanishing temperature,

pφ,thermal = pφ(T )− pφ(T = 0)

=− T
∫

d3p

(2π)3
ln
(

1− e−βεφp
)

= − T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp
)
. (III.18)

Eq.(III.18) is manifestly finite as for large momenta p2 � m2
φ, T

2 the exponential in the logarithm decays with

exp(−p/T , the typical thermal decay. It is also positive as the argument in the logarithm is always smaller than one
and hence the logarithm is strictly negative. With the minus sign in front of the integral this leads to a positive
expression, as expected for a thermal pressure. For a given temperature (III.18) takes its maximal value for m2

φ = 0

and decays monotonously with increasing m2
φ as the thermal part of the mass-derivative is negative, see (III.16). For

m2
φ →∞ the thermal pressure vanishes. Accordingly the pressure is positive for all m2

φ. For large masses mφ � T the

pressure decays exponentially with exp(−mφ/T ) (up to polynomial prefactors). For vanishing masses the momentum
integration can be performed easily and we arrive at

pφ,thermal|m2=0 =
π2T 4

90
. (III.19)

The explicit result for vanishing mass is the Stefan-Boltzmann pressure of a free gas. It is the tree-level thermal
pressure. Note also that (III.18) is the result for the thermal part of the (one-loop) effective potential of a bosonic
theory, see (III.18).

Now we have collected all results for discussing the mesonic fluctuations in our Nf = 2 low energy effective theory.
The mesonic contribution to the pressure and hence to minus the free energy density/effective potential are simply
given by summing up (III.18) for the sigma and the three pions leading to

[
Ωφ,T (φ)− Ωφ,T=0(φ)

]
mes.flucs.

' T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp (mσ)
)

+ 3
T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp (mπ)
)
, (III.20)

The concentration on the thermal part of the fluctuations allows us to simply add (III.20) to the low energy effective
action at valishing temperature regardless of how we have treated the mesonic fluctuations there. Note also in this
contect that (III.20) is finite as it should be: in thermal field theory all UV divergences can be treated already in the
T = 0 case and the subtractions can be chosen to be temperature-independent.

In (III.20) this comes about as it only summarises the thermal fluctuations and momentum fluctuations with
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p � T are suppressed. Accordingly in the context of our low energy EFT setup (III.20) is only valid for T/Λ � 1.
For larger temperatures already the Matsubara sum that takes account of high frequencies is at odds with the fact
that p2

0 + ~p2 ≤ Λ2.

B. Quarks at finite temperature

In summary we are but one step away from our goal of accessing the thermal chiral phase transition in QCD in
the quark-meson EFT. For that task we need to translate the results above to the -free- quark path integral. The
computation of the last chapter in the vacuum carries over here, we only have to discuss the fermionic Matsubara
frequencies. For that end we redo the derivation of the thermal path integral for fermions again by starting from
partition function ZT as defined in the scalar case in (III.1). Everything goes as in the scalar case except one subtlety
concerning the trace. Again more details can be found in the QFT II lecture notes, chapter 2. As in the case of the

bosonic field we need coherent states that allow us to define ψ̂|ψ〉 = ψ|ψ〉. For the sake of the argument we restrict
ourselves to one creation and annihilation operator a, a† and Grassmann variable c. A coherent state is given by

|c〉 = (1− c a†)|0〉 = e−c a
† |0〉 with a|c〉 = c a a†)|0〉 = c|0〉 = c(1− c a†)|0〉 = c|c〉 , (III.21)

where the latter property proves the coherence property of the state. The dual state 〈c| = |c〉† has the property

〈c|a† = −〈c|c∗ . (III.22)

In consequence, instead of periodicity of the fields in time in the scalar case coming from the trace in (III.1) we have
anti-periodicity,

ψ(t+ β, ~x) = −ψ(t, ~x) , (III.23)

that reflects the Grassmannian nature of the fermionic field. The fermionic path integral Zq with the Dirac action at
finite temperature then reads

Zq,T [J ] =

∫

ψ(β,~x)=−ψ(0,~x)

dψ̄ dψ e−SD,T [φ]+
∫ β
0
d4x J̄ψ(t,~x)ψ(~x)−ψ̄Jψ , SD,T [ψ] =

∫ β

0

d4x ψ̄ · (D/ +mψ + i γ0µ) · ψ .

(III.24)

As in the scalar case we can reveal the thermal nature of correlation functions derived from the generating functional
(III.24) by looking at the Dirac propagator of the quarks in the mixed representation at vanishing time, Gq(t, ~p). To
that end we first notice that the Fourier transformation of the anti-periodic fermionic fields is reflected in a shift of
the Matsubara modes by πT . We have

ψ(x) = T
∑

n∈Z

∫
d3p

(2π)3
e−i(ωn,f t+~p~x)ψ(p0, ~p) , ωn,f = 2π

(
n+

1

2

)
, (III.25)

where the additional factor eiπT t leads to the minus sign in the periodicity relation (III.23) with eiπT (t+β) = eiπeiπT t =
−eiπT t. Now we perform the computation for the frequency sum of the quark propagator Gq with Nf flavours and
Nc colors,

1

mψ

1

4NfNc
trGq(t = 0, ~p) = T

∑

n∈Z

1

ω2
n,f + ~p2 +m2

ψ

=
1

2εψp
tanhβεψp =

1

2εψp

[
1 + 2n(εψp )

]
, (III.26)

where the trace tr in (III.26) sums over flavour, color and Dirac space. The dispersion εp and the thermal distribution
function n(ω) are given by

εψp (mψ) =
√
~p2 +m2

ψ , nF (ω) =
1

eβω + 1
. (III.27)

The latter is the expected Fermi-Dirac distribution. The difference to the Bose-Einstein statistics in the scalar case
originates in the anti-periodicity of the fermions related to their Grassmannian nature. The free energy and pressure
can be derived analogously to the scalar case. The one-loop contribution to the quark free energy density Ωq and the
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pressure are hence given by

Ωq ' −
T

2V Tr ln
(
−∂2

µ +m2
)

= −2NcNf T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
,

pq ' 2NcNf T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
= 12T

∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
, (III.28)

where as in the scalar case we dropped the normalisations in Ωq and pq. For the pressure we have also inserted the
Nf = 2, Nc = 3 case discussed here.

For a first simple computation we also use µ = 0, a vanishing quark chemical potential. The prefactor −2 in
comparison to the prefactor 1/2 in the scalar case comes from the relative minus sign and factor 2 of the fermionic
loop, the symmetrisation of the frequency and spatial momentum trace and the Dirac trace: −1 ∗ 1/2 ∗ 4 = −2
instead of 1/2 in the scalar case. The factor NcNf counts the degrees of freedom. For the computation of the thermal
pressure we proceed similar to the scalar case with a m2

ψ-derivative which maps the pressure to (III.26). We also

remove the divergent vacuum contribution which is the effective potential at vanishing temperature, see (II.88). The
grand potential and thermal quark pressure in the Nf = 2 case is then given by

Ωq,T (ψ, ψ̄, φ)− Ωq,T=0(ψ, ψ̄, φ) = −12

π2
T

∫ ∞

0

dp p2 ln
(

1 + e−βε
ψ
p

)
= −pq,thermal , (III.29)

where

m2
ψ(φ) =

1

2
h2ρ . (III.30)

This has to be compared with (III.20) for the mesons. Both expressions for the pressure are strictly positive which is
due to

∓ ln
(

1∓ e−βεφ/ψp

)
≥ 0 , (III.31)

with the minus signs in the bosonic case and the plus sign in the fermionic one. The global ∓ in (III.31) reflects the
relative sign of fermionic and bosonic loops while the ∓ reflects the Bose-Einstein vs Fermi-Dirac quantum statistics.

The sum of (III.20) and (III.38),

ΩT (ψ, ψ̄, φ)− ΩT=0(ψ, ψ̄, φ) = Ωφ,T + Ωq,T − Ωφ,T=0 + Ωq,T=0 (III.32)

encodes all thermal fluctuations on one loop. As in the vaccum case for T = 0 we have several possibilities of
how to integrate out the thermal fluctuations, e.g. either in parallel or successively. Even though being relevant
for the quantitative results, it is irrelevant for the access of the mechnism of chiral symmetry restauration at large
temperatures: At large temperatures the quark exhibits a Matsubara gapping as the lowest lying Matsubara mode is
πT in comparison to the vanishing one in the mesonic case. For higher temperatures more and more of the infrared
quark fluctuations are gapped. However, the quark fluctuations triggers strong chiral symmetry breaking in the first
place. Consequently at large enough temperatures chiral symmmtry breaking is melted away.

C. RG for the effective potential at finite temperature∗

For quantitative statements the RG equation as in chapter II F 3 or similar non-perturbative techniques such as
Dyson-Schwinger equations or 2PI/nPI techniches (2-particle irreducible/n-particle irreducible) should be used. Here
we just extend the Wegner-Houghton equation we have derived for the T = 0 case in chapter II F 3. There we have
the frequency and spatial momentum integration with an O(4)-dimensional momentum cutoff with p2 ≥ Λ2 in the
integrals.

At finite temperature the four-momentum is given by (2πT )2n2 + ~p2 and the related θ-function is θ(2πT )2n2 + ~p2−
Λ2). A four dimensional cutoff leads to discontinuous flows as it jumps if we sweep over one of the Matsubara modes.
In (III.34) we would have to substitute

Trδ(
√
p2 − Λ)→ Trδ(

√
(2πT )2n2 + ~p2 − Λ) , (III.33)
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which makes the non-analyticity apparent. Even though the spatial momentum integration smoothens the non-
analyticity, it is present and hampers in particular the simple computation of the thermodynamical properties such
as the pressure, see [20]. This is not a conceptual problem as these jumps have to be absorbed in the Λ-dependence
of the initial condition, it hampers explicit computations.

For that reason we choose a spatial momentum cutoff ~p2 > Λ2, leading us to the functional Wegner-Houghton
equation

Λ∂ΛΓΛ[ψ, ψ̄, φ] = −1

2
Tr~p2=Λ2 ln

Γ
(2)
φφ

Λ2
+ Tr~p2=Λ2 ln

Γ
(2)

ψψ̄

Λ2
, (III.34)

where the trace

Tr~p2=Λ2 = T
∑

n

∫
d3p

(2π)3
δ(
√
p2 − Λ) , (III.35)

now only sums over the spatial momentum shell with p2 = Λ2, but over all Matsubara modes. In the line of the
arguments in chapter II F 3 this cutoff is now applied to all fluctuations and not only to the thermal ones.

Practically our computations so far allow us to read off the flow equation for the effective potential. For the meson
part we start with (III.17) for a scalar mode, leading to

Ωφ,Λ '
1

2π2

∫ ΛUV

Λ

dp p2

[
1

2
εφp + T ln

(
1− e−βεφp

)]
+ Ωφ,ΛUV , (III.36)

including the vacuum part. Hence, we simply read-off (minus) the integrand as the Λ-derivative of Ωφ. Applying this
immediately to the mesonic part of our EFT we arrive at

Λ∂ΛΩφ,Λ(φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
+ T

[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)]}

, (III.37)

where the spatial momentum arguments in the dispersions εφp are now taken at the cutoff scale, p = λ. The first two
terms on the right hand side is the T = 0 flow as the second term vanishes for T = 0. It is different from its counter
part in (II.99) as (III.37) only involves a spatial momentum cutoff, reflected in the cubic power of Λ.

The derivation of the quark part of the flow proceeds similarly. We start with the expression for Ωq or −pq after
integration of the Matsubara frequency, (III.38) and restore the T = 0 part,

Ωq,Λ(ψ, ψ̄, φ) = −12

π2

∫ ΛUV

Λ

dp p2
[
εψp + T ln

(
1 + e−βε

ψ
p

)]
+ Ωq,ΛUV

(ψ, ψ̄, φ) , (III.38)

leading us to the flow

Λ∂ΛΩq,Λ(ψ, ψ̄, φ) =
12Λ3

π2

[
εψΛ + T ln

(
1 + e−βε

ψ
Λ

)]
. (III.39)

As in the mesonic part, the first term on the right hand side is the T = 0 part of the flow. It also does not match its
counterpart in (II.99) due to the different cutoffs.

In summary we are led to the full flow

Λ∂ΛΩΛ(ψ, ψ̄, φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
− 12 εψΛ

+ T
[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)
− 24T ln

(
1 + e−βε

ψ
Λ

)]}
, (III.40)

where the first line is the T = 0 part of the flow, while the second line is the thermal part. Note that both parts are
dependent on derivatives of Ω via the mass-functions and hence feed into each other. One cannot simply solve the
T =-part first. For example, the thermal pressure is given by (minus) the Λ-integral of the second line on the solution
of the full flow equation. If we take Λ-independent mass functions, the Λ-integral gives the one-loop expressions we
have started with.
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IV. CONFINEMENT

In chapter II we have discussed the emergence of strong chiral symmetry breaking in QCD which is ultimately
related to the growth of the strong coupling αs(p

2) towards the infrared, p2 → 0. This growth triggers a grows in the
four-quark interaction that develops a resonance at the chiral symmetry breaking (momentum) scale. It is also the
simplicity of this mechanism or better its representation in terms of correlation functions that allowed us to derive a
relatively simple low energy effective theory that encorporates strong chiral symmetry breaking in QCD.

In chapter III this set-up was used to explored strong chiral symmetry breaking at finite temperature. Thermal
fluctuations decrease the strong coupling αs(p

2) and finally melt-down chiral symmetry breaking. This is monitored
in a simple way by the temperature-dependence of the chiral order parameter, the expectation value of the scalar
sigma field, σ0 ∝ 〈ψ̄ψ〉.

We hope for a similarly simple picture for the phenomenon of confinement in the formulation of QCD in terms of
correlation functions. Indeed we shall see that while the mechanism and dynamics of confinement is rather intricate
in comparison, we have simple signatures of confinement in terms of its order parameter, the potential of which can
be derived from low order correlation functions of quarks and gluons. It also allows us to extend the low energy
EFTs introduced and used in the last chapters to also encorporate confinement. This set-up then enables us to study
the confinement-deconfinement phase transition at finite temperature as well as the full phase structure at finite
temperature and density. Before we start, a word of caution is required: this fascinating area has been the subject
of intense studies over the past decades and has many facets ranging from mathematical physics -and in particular
topological considerations- to phenomenological applications and the relation of the confinement dynamics to hadronic
properties of QCD. Here we only can scratch the surface and shall take a practical approach: the lecture aims at being
self-contained for the computations discussed, other equally interesting subjects are mentioned but not detailed. A
fully comprehensive study is way beyond the scope of the current lecture course.

To begin with we discuss the question of the symmetry behind confinement and the related order parameter. For
having a clean setting we restrict ourselves to pure Yang-Mills theory with static quark sources. Then confinement
is the phenomenon that a quark–anti-quark pair experiences a linear potential when pulled apart. The expectation
value of such a state 〈Oqq̄(~x, ~y)〉 with a static quark q at the position ~x and a static anti-quark q̄ at the position ~y is
related to its free energy Fqq̄,

〈Oqq̄(~x, ~y)〉 ∝ e−Fqq̄(r) , r = ‖~x− ~y‖ . (IV.1)

In (IV.1) we have used translation invariance present in an infinite volume, and hence the free energy only depends on
the distance r between the quark and the anti-quark. For small distances the strong coupling αs(p ∝ 1/r →∞)→ 0
gets small and perturbation theory is applicable. Therefore we expect a Coulomb-type potential with a 1/r dependence
for r → ∞. At large distances r → ∞ the strong coupling grows large and perturbation theory is not applicable
anymore. In this regime confinement predicts a linear dependence of the free energy/potential on r. This leads us to

lim
rΛQCD→0

Fqq̄(r) ∝
1

r
and lim

rΛQCD→∞
Fqq̄(r) ∝ σ r , (IV.2)

where σ ∝ (420) MeV)2 in pure Yang-Mills theory is the string tension. As remarked before there are no scales in pure
Yang-Mills theory except the dynamical scale ΛQCD, so the explicit value above is up to our disposal, and we should
rather determine a ratio of scales such as

√
σ/ΛQCD. Typically the string tension is used to gauge other observables

such as the critical temperature of the confinement-deconfinement phase transition at finite temperature. We will
come back to this point later.

A. Order parameters for confinement

The computation of the expectation value in (IV.1) enables us at vanishing temperature to monitor the r-dependence
of the free energy of a qq̄-pair. It also provides us with an order parameter for confinement: to that end we consider
the limit r → ∞. If confinement is present the free energy tends towards infinity in this limit and the expectation
value 〈Oqq̄〉 vanishes. In turn, if we still had a Coulomb-type potential for large distances we get a finite value for
〈Oqq̄〉. This is what we expect for large temperature. As we have seen in the discussion of chiral symmetry breaking
at finite temperature, increasing temperatures effectively increases the energy scale of the system. This heuristic
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FIG. 10: e+e− pair.

argument is discussed in more details later. In summary we expect

lim
r→∞
〈Oqq̄〉 =

{
0 , T < Tconf

> 0 , T > Tconf

. (IV.3)

Accordingly, we have a clear signature for the confining phase as well as the deconfining phase. The above disucssion
also makes clear why we restricted ourselves first to pure Yang-Mills theory with static quarks: in the presence of
dynamical quarks quark–anti-quark pairs can be created if the potential Vqq̄ between quark and anti-quark is large
enough. These additional q, q̄ can bind with the original pair into new qq̄ pairs. This leads to a shielding of color
force between the original pair and the effecitive potential levels at a finite value for r →∞.

It is left to determine the operator Oqq̄ as well as the underlying symmetry behind the confinement-deconfinement
phase transition in pure Yang-Mills, as well as its breaking by dynamical quarks. To that end let us first consider
an electron-positron pair, which is created at some initial time, pulled apart, kept at some distance L and then is
annihilated, this describes a path C in space-time, see Fig. 10. The related free energy is described by a path integral,
where the current Jµ of the worldlines of the e+e− pair is coupled to the photon field Aµ with

∫

x

JµAµ = −i e
(∫ t1

t0

dτ [A0(t, ~x)−A0(t, ~y)] +

∫ ~y

~x

d~z
[
~A(t1, ~x)− ~A(t0, ~y)

])
, (IV.4)

with the worldline current

Jµ(x) = −i e
∫

C
dzµδ(z − x) . (IV.5)

The global sign in the current is pure convention and is related to that in the covariant derivative, in our case we
have Dµ = ∂µ − i gAµ, see (I.1).

In conclusion the source term (or operator of such a static electron-positron pair) is given by

WC [A] = e
∫
x
JµAµ =e−i e

∫
C dzµ Aµ(z)

︸ ︷︷ ︸
Wegner−Wilson Loop

. (IV.6)

The Wegner-Wilson loop in QED has a very simple interpretation which we shall discuss briefly. Consider a closed
path C that is the boundary of an area A. Then the integral in the exponent can be rewritten with Stokes’ theorem
as

e

∫

C=∂A
dzµAµ(z) = e

1

2

∫

A
dxµdyν Fµν . (IV.7)

Accordingly, the phase in the Wegner-Wilson loop simply is the flux through the area A with the boundary C. This
is an observable quantity and is gauge invariance is evident from the flux representation (IV.7). In the gauge field
representation the gauge invariance of (IV.6) follows with the U(1) gauge transformations U = exp iω ∈ U(1) of
Aµ → Aµ + 1/e ∂µω with,

WC [AU ] = e−i e
∫
C dzµ A

U
µ (z) = e−i e

∫
C dzµ (Aµ(z)+ 1

e∂µω) = e−i e
∫
C dzµ Aµ(z) , (IV.8)

where we have used that
∫
C dzµ ∂µω = 0. Note also that an open Wilson line related to a path from the position x to
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the position y is a parallel transporter that transports gauge transformations from the position x to y,

WCx,y [A] = e
−i e

∫
Cx,y

dzµ Aµ(z)
, with WCx,y [AU ] = U(x)WCx,y [A]U†(y) , (IV.9)

This allows to define gauge-invariant correlation functions of e.g. fermionic fields ψ such as

〈ψ̄(x)WCx,y [A]ψ(y)〉 . (IV.10)

In the case with dynamical electrons (IV.10) describes a e+e− pair.

The above definitions and relations extend straightforwardly to non-Abelian gauge groups. The only change comes
from the fact that now the gauge field is matrix valued and the simple exponential of i g

∫
dzµAµ does not have the

necessary transformation properties (IV.9) and the closed loop would fail to be gauge invariant. This situation is
similar to that of defining the time-evolution operator in quantum mechanics and quantum field theory (S-matrix)

on the basis of a Hamiltonian operator Ĥ. There the resolution is to resort to time-ordering. In the present case we
resort to path ordering which then transports the gauge transformation along the path. We define

UCx,y = Pe−ig
∫
Cx,y

dzµ Aµ(z)
, with UCx,y [AU ] = U(x)UCx,yU

†(y) , U(x) ∈ SU(Nc) . (IV.11)

The loop UC ∈ SU(Nc) is a group element and the transformation property under gauge transformation of Aµ, (I.6),
originates in the path ordering defined with

PAµ1(x(s1)) · · ·Aµn(x(sn)) = Aµσ(1)(x(sσ(1)) · · ·Aµσ(n)(x(sσ(n))) , with sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(n) . (IV.12)

In (IV.12) s ∈ [0, 1] is an isomorphic (invertible) parameterisation x(s) of the given path Cx,y with x(0) = x and
x(1) = y. For integrals this leads to the relations well-known from the time ordering, the simplest one being that for
a product of two integrals,

1

2
P
[∫ y

x

dzµAµ(z)

∫ y

x

dz′νAν(z′)

]
=

∫ y

x

dzµAµ(z)

∫ y

z

dz′νAν(z′) . (IV.13)

Higher products follow similarly. Due to the path ordering derivatives of UCx,y w.r.t. x or y pull down a gauge field
to the left or to the right respectively.

∂xµ UCx,y = i gAµ(x)UCx,y , ∂yµ UCx,y = UCx,y (−i) gAµ(y) . (IV.14)

With these properties the covariant derivative can be simply expressed as a parallel transport of the partial derivative,
to wit

UCx,y∂
x
µ U
†
Cx,y = ∂xµ − igAµ(x) . (IV.15)

The property (IV.15) can be used to get a solution of the Dirac equation in terms of a phase factor WC and the
solution of the free dirac equation ψ0. This is discussed in detail later for the static finite temperature case. In
summary we conclude that the expectation value of a static quark–anti-quark pair qq̄ is given by

W [L, T ] =
1

Z

∫
dAWC(A) e−SYM[A] , with WC [A] = trf UC . (IV.16)

In the limit, where the time T tends towards infinity, the correlation function (??) is proportional to the exponential
of the interaction energy E(L) of this state (times T ). All other contributions vanish exponentially fast with (Ei −
E(L))T > 0, where Ei is the energy of the related state. We have

lim
T→∞

W [L, T ] = F (L)E−E(L)T , (IV.17)

which relates to the exponential of the free energy of a static quarkanti-quark state. The prefactor F (L) relates to
the overlap of the Wilson loop with the ground state. In the confining phase the Wegner-Wilson loop is given by
W[T, L] ' e−Fq̄q[T,L] with Fq̄q[T, L] having a linear dependence on both L and T . The linear dependence in L we
have discussed before. The linear dependence in T simply follows from the fact that in our Euclidean formulation the
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FIG. 11: Perturbative expansion of the Wilson loop expectation value for e+e−.

time direction is not different from the spatial ones. Hence we conclude

lim
LT→∞

W [T, L] ' e−σLT , (IV.18)

with the string tension σ. Eq.(IV.18) is the area law that signals confinement as does the linear potential. it is left to
discuss the symmetry behind the confinement-deconfinement phase transition. This will be discuss in chapter IV B.

For its computation let us first discuss the far simpler case of an electron-positron pair e+e−. Then the static
potential is the standard Coulomb potential. Indeed in the static limit there is no self-interaction of the photon and
the expectation value of the Wilson loop is simply given by the sum of boxes with n photon exchanges from positions
xi to yi where one integrates over xi and yi on the contour C[L, T ]. This is depicted in Fig. 11.

In other words we have

W [L, T ] = e−
e2

2

∫
C[L,T ]

dxµ
∫
C[L,T ]

dyν〈Aµ(x)Aν(y)〉sub , (IV.19)

where we have used that 〈Aµ1 · · ·Aµn+1〉 = 0. The subscript 〈· · · 〉sub refers to the necessary subtraction of infinite
selfenergies related to close loops with endpoints x = y. Moreover, all correlation functions decay in products of
two-point functions (Wick-theorem), schematically we have 〈A1 · · ·A2n〉 = 〈A1A2〉 · · · 〈A2n−1A2n〉+ · · · , and there are
(2n− 1)(2n− 3) · · · combinations. Upon contour integration all combinations give the same contribution and overall
we have the nth order term in the propagator

(2n− 1)(2n− 3) · · ·
(2n)!

2n
(
−e

2

2

)n(∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉

)n
=

1

n!

(
−e

2

2

∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉

)n
,

(IV.20)

for a general contour C, leading to the Gaußian expression (IV.19). This leaves us with the task of computing

∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉 =

∫

C
dxµ

∫

C
dyν

∫
d4p

(2π)4

1

p2

(
δµν − (1− ξ)pµpν

p2

)
eip(x−y)

=

∫

C
dxµ

∫

C
dyµ

∫
d4p

(2π)4

1

p2
eip(x−y)

=

∫

C
dxµ

∫

C
dyµ

1

4π2

1

(x− y)2
. (IV.21)

To be explicit, we picked a covariant gauge in (IV.21). However, we have already proven that the closed Wilson line
is gauge invariant which now is explicit as the ξ-dependent term drops out with the help of

∫

C
dxµpµe

ipx = −i
∫

C
dxµ∂

x
µe
ipx = 0 , (IV.22)

which eliminates all longitudinal contributions for closed loops. Note that this is not valid for open Wilson lines.
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Finally we are interested in the large T -limit in (IV.17) where we have

Ve+e−(L) = − lim
T→∞

1

T
logW [L, T ] = lim

T→∞
1

T

e2

2
lim
T→∞

∫

C[L,T ]

dxµ

∫

C[L,T ]

dyµ

(
1

4π2

1

(x− y)2

)

sub

=− lim
T→∞

1

T
e2 lim

T→∞

∫ t1

t0

dx0

∫ t1

t0

dy0

(
1

4π2

1

(x0 − y0)2 + L2

)

=− lim
T→∞

1

T

e2

4π
lim
T→∞

∫ t1

t0

dx0

∫ t1−x0

t0−x0

dy0

(
1

π

1

y2
0 + L2

)

=− lim
T→∞

1

T
2
e2

4π

∫ T

0

dx0 arctan
(x0

L

)

=− e2

4π

1

L
. (IV.23)

Eq.(IV.23) is the Coulomb potential as expected. The L-dependence we could have determined without any compu-
tation from dimensional arguments.

Adapting, within a bold step, the above analysis in QCD within a Gaußian approximation (no self-interaction of
the gluons), we are led to the same result, up to a colour factor trft

ata) = NcCF = (N2
c − 1)/2, see (??). This is to

be expected in perturbation theory, which is what the Gaußian approximation relies on.
In turn, relying on this approximation also in the non-perturbative confining secotr of QCD or Yang-Mills theory,

the static potential has the behaviour Vqq̄ ∼ L, it is linear in the distance between quark and anti-quark. This requires
a gluon propagator

lim
p→0
〈Aµ(p)Aν(−p)〉 ∝ 1

(p2)2
, (IV.24)

which is the limit of what is allowed in a covariant local quantum field theory. Eq.(IV.24) suggests gluon dominance
(over the ghost) in the infrared. Indeed, such propagators have been computed in the Landau gauge in the Mandelstam
approximation (no ghosts). However, it turns out that in the Landau gauge the gluon propagators are not infrared
enhanced as (IV.24) but infrared suppressed. Moreover, any n-loop contribution (even in full propagators and vertices)
to the Wilson loop expectation value does not show the required linear behaviour, it only comes about by a full
resummation of all diagrams. Nonetheless these considerations show that gauge fixing should be rather seen as
offering the possibility to device an appropriate parameterisation of the theory rather than a liability. For example,
it can be shown that in Coulomb gauge the Gaußian approximation is working at least qualitatively.

B. Confinement-deconfinement phase transition at finite temperature

The dynamics of confinement and the confinement-deconfinement phase transition is the second cornerstone of the
low energy QCD phenomenology we have to unravel. Here we aim at a treatment of this phenomenon within the
continuum formulation of QCD similar to that of the chiral phase structure in chapter III. We mainly concentrate on
the effective potential of the order parameter, the Polyakov loop. This observable is derived directly from the Wilson
loop discussed before.

1. Polyakov loop

We consider a rectangular Wilson loop,Fig. 10, within the static situation also used in the previous chapters IV A,
??. At finite temperature T the time is limited to t ∈ [0, β] with β = 1/T , see chapter III A. Moreover, the gauge
fields are periodic in time up to gauge transformations, i.e.

Aµ(t+ β, ~x) =
i

g
T (t, ~x)

(
DµT

†(t, ~x)
)
, c(t+ β, ~x) = T (t, ~x) c(t, ~x)T †(t, ~x) , c̄(t+ β, ~x) = T (t, ~x) c̄(t, ~x)T †(t, ~x)

(IV.25)
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with T (t, ~x) ∈ SU(N) are the transition functions. It follows from (IV.25) that under gauge transformations they
transform as

TU (t, ~x) = U(t+ β, ~x)T (t, ~x)U†(t, ~x) , (IV.26)

they parallel transport gauge transformations from t to t + β. The transformation property (IV.25) ensures the
periodicity of gauge invariant quantitites. It is indeed possible to restrict ourselves to strictly periodic fields, t ≡ 1l,
even though this limits the possible gauge choice. For the time being we restrict ourselves to the periodic case and
discuss the general case at the end. The state we want to construct is the one, where we desribe a static quark–anti-
quark pair for all times. To that end we take a path that extends in time direction from t = 0 to β. Then the spatial
paths at fixed time t = 0 and t = β have to be identified (up to the orientation) due to the periodicity on the lattice,
as well as the fact that we have restricted ourselves to periodic gauge fields. We conclude that the path C[L, β] splits
into two loops winding around the time direction at the points ~x and ~y with L = |~x−~y|. The Wilson loop expectation
value is then given by

1

N2
C

W [L, β] = 〈WC[L,β][A]〉 = 〈L[A0](~x)L†[A0](~y)〉 , (IV.27)

where L[A0] is the Polyakov loop variable with

L =
1

Nc
trf P (β, ~x) , with P (t, ~x) = Pe−i g

∫ t
0
A0(τ,~x)dτ . (IV.28)

The normalisation of the Polyakov loop is such that it is unity for a vanishing gauge field, L[0] = 1. It lives in the
fundamental representation as it is related to a creation operator of a quark. It is gauge invariant under periodic
gauge transformations that keep the strict periodicity of the gauge field we have required. In general we have

L[AU ] =
1

Nc
trf

[
U†(β, ~x)U(0, ~x)

]
P (β, ~x) , (IV.29)

where we have used the cyclicity of the trace. The combination
[
U†(β, ~x)U(0, ~x)

]
is unity for periodic gauge trans-

formations, which is the case we have restricted ourselves to when deriving (IV.27) from the gauge invariant Wilson
loop. In the general case the two spatial parts of the path at t = 0, β only cancel up to the transition functions.
Working through the derivation we get

L =
1

Nc
trf T (0, ~x)P (β, ~x) , (IV.30)

which is also gauge invariant under non-periodic gauge transformations. Here we only consider T ≡ 1l but (IV.30) has
to be used for example in the temporal axial gauge A0 ≡ 0. Evidently, in this gauge (IV.28) simply is one. However,
in order to achieve this gauge non-periodic gauge transformations (in time) have to be used. Then, the whole physics
information of the Polyakov loop is stored in the transition function T instead of the gauge field. While this is not
a convenient choice in continuum formulations it is a common choice on the lattice. There is is obtained by taking
trivial temporal link variables U0 = 1l for all but the last link from t = β − a to β.

We now come back to our main line of arguments, and restrict ourselves to the fully periodic case. The Wilson
loop in (IV.27) is an order parameter for confinement. More precisely in the confining phase it tends towards zero for
large distances, L→∞, due to the area law,

lim
L→∞

W [L, β] ' lim
L→∞

e−σβL = 0 . (IV.31)

In turn, in the deconfined regime of the theory the quark–anti-quark potential Vqq̄ is Coulomb-like, Vqq̄ ∝ 1/|~x − ~y|
and the Wilson loop follows a perimeter law, leading to

lim
L→∞

W [L, β] > 0 . (IV.32)

In conclusion the Wilson loop expectation value or Polyakov loop two-point correlation function for L → ∞ serves
as an order parameter for confinement at finite temperature. Moreover, in this limit we can use the clustering
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decomposition property of a local quantum field theory,

lim
|~x−~y|→∞

〈A(~x)B(~y)〉 − 〈A(~x)〉 〈B(~y)〉 = 0 . (IV.33)

for local operators A and B. Hence we conclude that

lim
L→∞

W [L, β] = 〈L[A0](~x)〉 〈L†[A0](~y)〉 , (IV.34)

it only depends on the temporal component of the gauge field. The Polyakov loop expectation value 〈L[A0]〉 does
not depend on the spacial variable due to translation invariance. Thus also the Polyakov loop expectation value itself
serves as an order parameter for confinement,

〈L[A0]〉 =

{
0 confining regime

6= 0 deconfining regime
(IV.35)

So far we have argued on a heuristic level which led us to (IV.35) as an order parameter, without even discussing the
symmetry behind the pattern in (IV.35): we are searching for a symmetry that is preserved by the Yang-Mills action
but does not keep 〈L[A0]〉 invariant. This is the center symmetry of the gauge group. The center elements are those
elements that commute with all other elements in the gauge group. In SU(N) these are the Nth roots of unity in the
groups. For the cases used here, the example group SU(2) and the physical group SU(3), the centers Z are

ZSU(2) = {1l,−1l} ' Z2 , ZSU(3) = {1l, 1l e 2
3πi, 1l e

4
3πi} ' Z3 . (IV.36)

where the identities 1l in SU(2) and SU(3) are 1l2×2 and 1l3×3 respectively. The non-trivial center elements in
(IV.36) are related to combinations of generators in the algebra. This relation is not unique as the eigenvalues of the
combination of algebra elements is only determined up to 2πn with n ∈ Z. For example, one representation is

SU(2) : −1l = eπiσ3 , SU(3) : 1l e
2
3πi = e

2πi 1√
3
λ8 , 1l e

4
3πi = e

2πi 2√
3
λ8 . (IV.37)

with the Pauli matrices in (II.41) and the Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (IV.38)

in the fundamental representation of SU(3). The generators of the SU(3) algebra are tafund = λa/2. In the adjoint
repesentation the generators of the algebra are given by the structure constants, see (I.4). The SU(3) structure
constants are given by

SU(2) : fabc = εabc ,

SU(3) : f123 = 1 , f147 = f246 = f257 = f345 =
1

2
, f156 = f367 =

1

2
, f458 = f678 =

1

2
. (IV.39)

Hence, in the adjoint representation these elements are all represented by 1l,

Zad = 1lad , for Z ∈ Z . (IV.40)

In the adjoint representation every center element is mapped to the identity, z = 1lad,∀z ∈ Z. Hence we have

Zad = {1lad} . (IV.41)

As the gauge fields and the ghosts live in the adjoint representation, the gauge-fixed Yang-Mills action is trivially
invariant under center transformations. In turn, the Polyakov loop L[A0] is the trace of the Polyakov line P (β, ~x) in
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the fundamental representation, see (IV.28). It transforms with

P (β, ~x)→ z P (β, ~x) , with z ∈ Z . (IV.42)

We conclude that in the center-symmetric phase of the theory the Polyakov loop expectation value (IV.35) has to
vanish while in the center-broken phase it is finite. Having identified the symmetry we can envoke universality to
predict the scaling of the order parameter in the vicinity of the phase transition:

For SU(2) we are in the Ising universality class, the symmetry group being Z2. If SU(2)-Yang-Mills exhibits a
second order phase transition (and it does), it should have Ising scaling. This is indeed seen. For SU(3) the symmetry
group is Z3 and we epxect a first order phase transition which is also seen. Our explicit computations later will not
encorporate the full fluctuation analysis so detecting Ising scaling is out of reach here. However, we are able to see
the seoncd and first order nature of the respective phase transitions. This closes our very rough symmetry discussion.

We also would like to get an intuitive understanding for the Polyakov loop expectation value. We have argued for
the Wilson loop expectation value, that it is related to the expectation value of a static quark–anti-quark pair,

W [L, β] ' 〈q̄(~x)Pe−i g
∫
C~x,~y

Aµdzµ
q(~y)〉 , (IV.43)

where the path-ordered phase ensures gauge invariance. Using -naively- the clustering decomposition property (or
short declustering) for |~x − ~y| → ∞, we can decompose the expectation value in (IV.43) in the product of the
expectation value of a quark state and and anti-quark state. Naturally the latter have to vanish as the creation of a
single quark or anti-quark requires an infinite energy. However, be aware of the fact that the quark and anti-quark
states do not belong to the Hilbert space of QCD and hence we cannot apply declustering that easily.

Still, the Polyakov loop expectation value is related to the heuristic situation described above. To see this more
clearly let us consider a static quark. This situation can be achieved by taking the infinite quark mass limit, mq →∞.
The Dirac equation

(D/ +mψ)ψ = 0 , (IV.44)

then reduces to a space-independent equation as the quark cannot move, ~∂xψ = 0. Hence, the Dirac equation (IV.44)
reads in the static limit

(γ0D0 +mψ)ψ = 0 . (IV.45)

A solution to this equation is given by

ψ(x) = P (t, ~x)ψ0(x) , with (γ0∂0 +mψ)ψ0 = 0 . (IV.46)

where ψ0 solves the free Dirac equation, and P (t, ~x) is the untraced Polyakov loop (IV.28). For proving (IV.46) we use
that (D0P (t, ~x)) = 0 following from (IV.14). Hence, in a -vague- sense we can identify the Polyakov loop expectation
value with the interaction part of a static quark.

2. Polyakov loop potential

As in the case of chiral symmetry breaking we would like to compute the effective potential of the order parameter,
VPol[L]. This turns out to be a formidable task both on the lattice and in the continuum. Note however, that the
computation of the expectation value itself is simple on the lattice.

In the continuum we compute the effective potential of QCD, that is the effective action Γ[Φ] for constant fields.
Before we embark on the explicit computation we first have to deal with the issue of gauge invariance in the gauge-
fixed approach we are working in. To that end we upgrade our covariant gauge fixing to the background gauge: To
that end we split our gauge field in a background Ā and a fluctuation a, to wit

Aµ = Āµ + aµ . (IV.47)

While the background Ā is kept fixed, a carries all the quantum fluctuations. In the path integral the integration over
A then turns into one over a. So far nothing has been changed. Now we modify our gauge fixing,

∂µAµ = 0→ D̄µa = 0 , with D̄µ = Dµ(Ā) . (IV.48)
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For Ā = 0 we regain the orginial covariant gauge fixing. For the background gauge fixing the gauge fixed classical
action with ghost term reads

SA[Ā, a, c, c̄] = SA[A] +
1

2ξ

∫

x

(D̄ab
µ a

b
µ)2 + c̄aD̄ad

µ D
db
µ c

b . (IV.49)

In the presence of the background field and with the gauge fixing (IV.48) we have an additional -auxiliary- gauge
symmetry: the gauge-fixed action is invariant under background gauge transformations

ĀUµ =
i

g
U (D̄µU

†) , au = U aµ U
† −→ AU =

i

g
U (DµU

†) . (IV.50)

Evidently this is true for the Yang-Mills action, it is left to show this for the gauge fixing and ghost term. The gauge
fixing condition (IV.48) transforms as a tensor under (IV.50): D̄µa → U D̄µaU

† and hence tr(D̄µa)2 is invariant
under (IV.50). The Faddeev-Popov operator M in the background gauge is given by

M = −D̄µDµ → U D̄µDµ U
† . (IV.51)

It also transforms as a tensor and hence the ghost term is gauge invariant under (IV.50). However, the background
gauge transformations are an auxiliary symmetry. The physical gauge transformations are those of the fluctuation
field at fixed background Ā, the quantum gauge transformations

ĀUµ = Āµ , au = U (DµU
†) −→ AU =

i

g
U (DµU

†) . (IV.52)

Again this can be understood by choosing the standard covariant gauge with a vanishing background. Then, (IV.52)
is the only gauge transformation left, while (IV.50) leads to a non-vanishing background and hence changes the gauge
fixing. The neat feature of the background field formalism is that it can be shown that both transformations are indeed
related via background independence of the quantum equations of motion. Therefore background gauge invariance
under the transformations (IV.50) carries physical gauge invariance, more details can be found in Appendix C

Still, the introduction of the background seems to complicate matters but it indeed facilitates computations and
gives a more direct access to physics. Here we explore both properties. First we note that the introduction of Ā leads
to an effective action that depends on two fields,

Γ[A]→ Γ[Ā, a] . (IV.53)

Switching of the mean value of the fluctuation field, a = 0 leads to a (background) gauge invariant action

Γ[A] = Γ[A, a = 0] (IV.54)

As mentioned before, this is the physical gauge invariance. Moreover, one can show that the background correlation
functions are directly related to S-matrix elements. In summary the effective action Γ[A] defined in (IV.54) carries
the information about the Polyakov loop potential.

Now we proceed with the explicit computation of the effective potential at one loop. For the Polyakov loop potential
the only mean field of interest is the temporal component of the gauge field, and the other fields are put to zero. We
will perform this computation first on the one-loop level with the classical ghost and gluon propagators. Finally we will
introduce the fully non-perturbative propagators to this one-loop computation. This re-sums infinitely many diagrams
and carries the essential non-perturbative computation. The explicit results are in semi-quantitative agreement with
the full results obtained with functional renormalisation group methods and also show a good agreement with the
lattice results.

In summary the Polyakov loop potential for constant temporal gauge fields is given by

VPol(A0) =
1

2
Tr lnG−1

A (A0)− TrG−1
c (A0)−N , (IV.55)

where the color traces in (IV.55) are in the adjoint representation and CN is the normalisation of the potential which

we leave open for now. For the one-loop computation we have G−1 = S
(2)
A with SA in (IV.49) and hence

G−1
A (A0) = −D2

ρ δ
µν +

(
1− 1

ξ

)
DµDν , G−1

c (A0) = −D2
ρ . (IV.56)
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In (IV.56) we have used that the spin one terms proportional to Fµν drop out for a constant A0-background. In the
re-summed non-perturbative approximation we use numerical results, e.g. the Yang-Mills analog of Figure 6 at finite
temperature. For constant fields we can assume the fields to lay in the Cartan subalgebra, as we can always rotate
the field into the Cartan subalgebra with constant gauge transformations. We expand the Cartan-valued field A0 in
the fundamental representation in the the color eigenfunctions and eigenvalues of A0. In the present context it always
occurs in combination with temperature and coupling in Matsubara sums with 2πTn+ gA0 = 2πT (n+ βg/(2π)A0),
and we define the dimensionless algebra-valued field

ϕ̂ =
βg

2π
A0 , L(ϕ̂) = L[A0] = tr e−2πi ϕ̂ . (IV.57)

The eigenvalue equation of the field ϕ̂ in the fundamental representation is given by

ϕ̂f|ϕf

n〉 = νf

n|ϕf

n〉 , n ∈ 1, ..., Nc , (IV.58)

where the superscript f indicates the fundamental representation. The eigenvalues for SU(2) and SU(3) are given by

SU(2) : νf

n ∈
(
±ϕ

2

)
, SU(3) : νf

n ∈
(
±
ϕ3 + 1√

3
ϕ8

2
, − 1√

3
ϕ8

)
. (IV.59)

Using (IV.58) and (IV.59) in the Polyakov loop in SU(2) we arrive at

ϕ̂ = ϕ3
σ3

2

ϕ=ϕ3−→ L(ϕ) = cosπϕ , (IV.60)

For SU(3) we have

ϕ̂ =
2π

βg

(
ϕ3

λ3

2
+ ϕ8

λ8

2

)
−→ L(ϕ3, ϕ8) =

1

3

(
e

2πi ϕ8√
3 + 2 cos(πϕ3) e

− 2πi ϕ8√
3

)
, (IV.61)

with λ3,8 given in (IV.38). As the Polyakov loop potential (for vanishing chemical potential) has minima at ϕ3 = 0
we can work with the Polyakov loop variable at ϕ8 = 0,

L(ϕ) =
1

3
(1 + 2 cosπϕ) , (IV.62)

with L(ϕ) = L(ϕ3 = ϕ, 0). Then, confinement is signaled by the (mean) gauge field configurations

ϕ =
1

2
for SU(2) , and ϕ =

2

3
for SU(3) . (IV.63)

As a preparation for the full computation we go through the perturbative computation. This already reveals the main
mechanism we need for the access of the confinement-deconfinement phase transition. This computation has been
done independently in [21] and [22] in 1980 (published 81). The potential is often called the Weiss potential.

For the explicit computation we restrict ourselves to SU(2). The result does not depend on the gauge fixing
parameter ξ and we choose ξ = 1, Feynman gauge, in order to facilitate the computation. Then the Lorentz part of
the trace in the gauge field loop can be performed immediately, leading to a factor four for the four polarisations of
a vector field. We have

VPol(A0) ' 4 ∗ 1

2
Tr ln(−D2

ρ)− 2 ∗ 1

2
Tr ln(−D2

ρ) = 2
1

2
Tr ln(−D2

ρ) , (IV.64)

where we have made explicit the multiplicities of gluon and ghost, and we dropped the normalisation. The gluon
dominates and the final result is twice that of one polarisation, which accounts for the two physical polarisations of
the gluon. This is an expected property as we compute a gauge invariant potential that should reflect the fact that
we only have two physical polarisations, and the gauge fixing is only a means to finally compute gauge invariant
quantities. Now we use that we can diagonalise the operator D2

ρ in the adjoint representation in the algebra. The
color eigenfunctions and eigenvalues in the adjoint representation are given by

gβ

2π
Aad

0 |ϕad

n 〉 = νad

n |ϕad

n 〉 , n ∈ 1, ..., N2
c − 1 , (IV.65)
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and

SU(2) : νad

n ∈ (0 , ±ϕ) , SU(3) : νad

n ∈
(

0 , 0 , ±ϕ3 , ±
ϕ3 ±

√
3ϕ8

2

)
. (IV.66)

Note that the eigenvalues of T 3
ad are ±1, while they are ±1/2 in the fundamental representation. The relative factor

1/2 reflects the sensitivity to center transformations in the fundamental representation and the insensitivity in the
adjoint representation. Performing the trace in (IV.64) in terms of the eigenfunctions |ϕn〉 and momentum modes,
we arrive at

VPol(A0) ' 2
[
Vmode(ϕ) + Vmode(−ϕ)

]
, (IV.67)

with VPol being 1/2Tr ln(−D2), where the gauge field is substitute by one eigenmode,

Vmode(ϕ) =
T

2

∑

n∈Z

∫
d3p

(2π)3

{
ln

(2πT )2(n+ ϕ)2 + ~p2

(2πT )2n2 + ~p2

}

=
T

4π2

∑

n∈Z

∫ ∞

0

dp p2

{
ln

(2πT )2(n+ ϕ)2 + p2

(2πT )2n2 + p2

}
, (IV.68)

where the denominator in the logarithm in (IV.68) is a normalisation of the mode potential at vanishing ϕ: Vmode(0) =
0. The sum in (IV.68) can be performed analytically by taking first a derivative w.r.t. p2 and then using contour
integrals. It results in

Vmode(ϕ) =
T

4π2

∫ ∞

0

dp p2

{[∑

±
ln sinh

βp± 2πi ϕ

2

]
− 2 ln sinh

βp

2

}
. (IV.69)

Now we use that

∑

±
ln sinh

βp± 2πi ϕ

2
− 2 ln sinh

βp

2
=
∑

±
ln(1− e−βp±2πi ϕ)− 2 ln(1− e−βp)

=
∑

±

∞∑

n=1

1

n
e−βpn

(
e±2πi nϕ − 1

)
. (IV.70)

In (IV.70) we have pulled out a factor ln exp(βp ± 2πiϕ)/2 = (βp ± 2πiϕ)/2 from the ln sinh-terms with ϕ, and
2 ln expβp/2 = βp from the ln sinh-term in the normalisation. These terms cancel each other and we are led to the
right hand sid e of (IV.70). Then we have expanded the logarithms in a Taylor expansion in the exponentials. In
summary this leads us to

Vmode(ϕ) =
T

4π2

∫ ∞

0

dp p2
∑

±

∞∑

n=1

1

n
e−βpn

(
e±2πi nϕ − 1

)

=
T 4

π2

∞∑

n=1

1

n4
(cos 2πnϕ− 1) . (IV.71)

The sum in (IV.71) is gain easily performed with methods of complex analysis and we arrive at

β4 Vmode(ϕ) =
π2

48

[
4

(
ϕ̃− 1

2

)2

− 1

]2

, ϕ̃ = ϕmod 1 , (IV.72)

where we have devided out the trivial dimensional thermal factor T 4. Inserting (IV.72) in (IV.67) for the Polyakov
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FIG. 12: One loop Polyakov loop potential for SU(2).

loop potential we are led to

β4 Vpol(A0) =
π2

12

[
4

(
ϕ̃− 1

2

)2

− 1

]2

, (IV.73)

for SU(2), while for SU(3) the potential is given by

Vpol(A0) =

8∑

n=1

Vmode(νn) , (IV.74)

with the eigenvalues νn in (IV.66). We have plotted the SU(2) potential in Figure 12 as it has a very simple form
which carries already the relevant information. The potential has minima at ϕ = 0, 1 and a maximum at ϕ = 1/2.
For the minima the Polyakov loop variable L[A0] takes the value ±1, the maximum is the center-symmetric value
L[A0] = 0. This structure is also present for all SU(N)-theories and originates in the -necessary- center symmetry of
the potential. The center transformation in SU(2) is given by

ϕ→ 1− ϕ , (IV.75)

which maps L[ϕ = 0] = 1→ L[ϕ = 1] = −1 and vice versa, this comes via the multiplication of the Polyakov line P (~x)
with the center element −1l. We conclude that in perturbation theory the potential has its minimum at the maximally
center-breaking values, the theory is in the center-broken phase. At large temperatures perturbation theory is valid
and quantum fluctuations are small: the fluctuating gauge field is close to A0 = 0. This leads to

lim
T→∞

L[〈A0〉] = 1 . (IV.76)

In turn, for small temperatures the potential should exhibit a minimum at ϕ = 1/2. Interestingly, this is achieved
within the one loop computation if the gluon contributions are switched off, and the ghost contribution is left.

Finally we come back to the normalisation of Vpol(A0) in (IV.55). We have normalised it such that Vpol(A0) = 0.
However, if we choose the normalisation as

N =

[
1

2
Tr lnG−1

A (0)− TrG−1
c (0)

]

T=0

, (IV.77)

the value of the effective potential simply is the thermal pressure of the theory. The difference between (IV.77) and
that chosen in (IV.68) for the mode potential is given by

∆N = 2(N2
c − 1)

[
T

2

∑

n∈Z

∫
d3p

(2π)3
ln
[
(2πT )2n2 + ~p2

]
−
∫

d4p

(2π)4
ln p2

]
= −pA,SB with pA,SB =

π4T 4

45
(N2

c − 1) .

(IV.78)

Eq.(IV.78) is nothing but (minus) the Stefan-Boltzmann pressure of a SU(Nc) gauge theory, see (III.19) for the scalar
case. It is the scalar pressure times the number of physical modes: two physical transversal polarisations times the
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number of color modes, (N2
c − 1), leading to 2(N2

c − 1)pφ,SB. This leads us to our final result

β4 Vpol(A0) =
π2

12

[
4

(
ϕ̃− 1

2

)2

− 1

]2

− π4

45
(N2

c − 1) . (IV.79)

We proceed with a non-perturbative computation of the Polyakov loop potential which still keeps the analogy to
the one loop computation above. Even though this is an approximation, both the numerical result as well as the
conceptual structure are also present in the full computation. We again start with (IV.55). Now, instead of using
the classical inverse propagators we utilise the fully non-perturbative ones. These propagators can only be computed
with numerical non-perturbative approaches, either gauge fixed lattice simulations or with functional methods such
as the functional renormalisation group (FRG) already used in the low energy EFT for chiral symmetry breaking or
Dyson-Schwinger equations (DSEs). Instead of using the available numerical data we add another approximation in
order to keep our approach semi-analytic.

From Fig. 6 we know that the gluon propagator exhibits a mass gap for low momenta. In turn, for large momenta is
runs logarithmically. This behaviour is also present at finite temperature, see Fig. 14. There we plot the momentum
dependence of the dressing of the chromo-magnetic gluon propagator for different temperatures. Both, results from
functional methods and from gauge-fixed lattice simulations are shown. The dressing is defined as

1

ZM
A (~p2)

=
1

2
~p2 〈Ai(0, ~p)Ai(0,−~p)〉 , (IV.80)

it is the dressing of the gluon propagator perpendicular ro the heat bath. In Fig. 13 we plot the temperature-dependent
mass (screening mass) of chromo-electric gluon propagator, the gluon propagator parallel to the heat bath,

1

ZE
A(~p2)

= ~p2 〈A0(0, ~p)A0(0,−~p)〉 . (IV.81)

Note that the simple relations (IV.80), (IV.81) are only valid for p0 = 0. For p0 6= 0 one has to use the thermal
projection operators, see e.g. [23]. At large temperatures we expect them to tend towards their perturbative values.
This is indeed happening, however, we need higher order thermal perturbation theory. The one-loop Debye mass is
given by

m0
D =

√
N

3
gTT +O(g2

TT ) , (IV.82)

and is also displayed in Fig. 13. For the comparison, the temperature-dependent coupling is fully non-perturbative
and has been also taken from [23] for internal consistency, for more details see there. In [24] higher order effects have
been taken into account, leading to

mD = m0
D +

(
cD +

N

4π
ln

(
m0
D

g2
TT

))
g2
TT +O(g3

TT ) . (IV.83)

Eq.(IV.83) already leads to a very good agreement with the full result above 600 MeV. At low temperatures, the mass
settles at its T = 0 value, indicated by the 1/T behaviour of md/T in Fig. 13b, and the perturbative prescriptions
fail even with the full non-perturbative coupling. The Debye mass itself for low temperatures is depicted in Fig. 13a,
from which it is evident that a temperature-independent (or decaying) additional part ∆mD(T = 0) ≈ 380 MeV to
m0
D would lead to agreement up to ≈ 150 MeV.

In conclusion a good semi-quantitative approximation to the thermal propagator (in particular the chromo-magnetic
on) is the perturbative propagator with a temperature-dependent mass term. It goes beyond the scope of the present
lecture notes to present a full computation, here we simply investigate the qualitative effect of such a mass gap, first
done in [28], for a full, comprehensive analysis see [29]. We revisit (IV.71) for simple massive propagators

GA ∝
1

(2πT )2(n+ ϕ)2 + ~p2 +m2
T

, (IV.84)

even dropping the perturbative running. While the latter is important for the correct scaling ( fixing ΛQCD and hence
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FIG. 13: Debye screening mass ms, plot taken from [23], for more details see there.
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(b) Magnetic gluon dressing in SU(2) from [23] in comparison
with SU(3) lattice results from [27]. .

FIG. 14: Magnetic gluon propagator dressing (IV.80).

for the correct Tc it is not important for the confining property. With the propagator (IV.84) we are led to

Vmode(ϕ,m) =
T

4π2

∑

±

∞∑

n=1

1

n

(
e±2πi nϕ − 1

) ∫ ∞

0

dp p2 e
−
(
β
√
p2+m2

)
)n

=
T 4

4π2

∑

±

∞∑

n=1

1

n

(
e±2πi nϕ − 1

) ∫ ∞

0

dp̄ p̄2 e
−
(√

p̄2+β2m2
)
n
. (IV.85)

The momentum integration in (IV.86) cannot be performed analytically. However, in the zero temperature limit the
terms in the sum decays with e(−βm)n up to polynomials. This is seen easily for the absolute value of the mode
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(a) SU(2) Polyakov loop potential. (b) SU(3) Polyakov loop potential

FIG. 15: SU(2) and SU(3) Polyakov loop potential taken from [29] for different temperatures across the phase
transition. The potentials exhibits the second and first order of the SU(2) and SU(3) transitions respectively.

potential,

|Vmode(ϕ,m)| ≤ T 4

4π2

∞∑

n=1

1

n

∫ ∞

0

dp̄ p̄2 e
−
(√

p̄2+β2m2
)
n

≤ T 4

4π2

∞∑

n=1

1

n

[∫ βm

0

dp̄ p̄2 e−(βm)n +

∫ βm

0

dp̄ p̄2 e−p̄n
]

βm→∞−→ T 4 Pol(βm) e−βm , (IV.86)

with a polynomial Pol(βm). In summary the mode potential decays exponentially for gapped propagators. This
entails that for sufficiently small temperatures the contributions of the chromo-electro and the two chromo-magnetic
modes decay exponentially. The longitudinal gauge mode stays trivial and gives the contribution 2Vmode(ϕ). Now we
use that the ghost propagator keeps it 1/(−D2) behaviour it already has perturbatively. In a covariant gauge this is
already suggested from the ghost-gluon vertex which is linear in the anti-ghost momentum. Hence, all loop corrections
to the inverse ghost propagator are proportional to p2 from the onset. If no additional singularity is created from the
propagators in the loops it stays this way. Since the gluon propagator is gapped this is only possible with a global
non-trivial scaling.

Let us now study the case of a trivial ghost propagator and a gapped gluon propagator. In this case we conclude
that

lim
T=0

VPol(A0) ' 1

2
lim
T→0

Tr lnG−1
A (A0)− lim

T→0
TrG−1

c (A0)

' 1

2
Tr ln (−D2

ρ)(A0)− Tr ln (−D2
ρ)(A0) (IV.87)

= − Tr ln (−D2
ρ)(A0) =

∑

i

Vmode(ϕi) . (IV.88)

With the mode potential (IV.68), see Fig. 12 this gives confinement. The present qualitative study can be extended to
a fully non-perturbative one with the help of functional methods, leading to the SU(2) and SU(3) potentials depicted
in Fig. 15 taken from [29]. The respective Polyakov loop expectation values L[〈A0〉] are shown in Fig. 16.

The above considerations also hold in full Yang-Mills theory without approximations. This allows us to formulate
a confinement criterion in Yang-Mills theory with (IV.55), (IV.73) and (IV.86):
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FIG. 16: Polyakov loop expectation values L[〈A0〉] for SU(2) and SU(3) taken from [28].

Confinement criterion: ’In covariant gauges the gluon propagator has to be gapped relative to the ghost at low
temperatures’

put forward in [28]. Note that we have been led to this criterion in the one-loop resummed approximation with (IV.55).
However, it can be proven in Yang-Mills theory without approximations on the basis of the functional renormalisation
group, [28, 29], as well as Dyson-Schwinger equations and the two-particle irreducible (2PI) formalism [29]. It also
extend beyond the covariant gauges, e.g. to the Coulomb gauge. In QCD with dynamical QCD -as expected- the
quark contributions spoil the applicability of the confinement criterion as they introduce center-breaking terms to the
potential, for a detailed discussion see [29].

We close this chapter with some remarks on the order parameter we introduced. We started with the Polyakov loop
variable 〈L[A0]〉, but computed the Polyakov loop potential Vpol[A0] with the order parameter 〈A0〉 or L[〈A0〉]. As
both are order parameters for the same symmetry, this is not relevant for us. Still, one can investigate their relation:
evidently they are not the same but only agree in a Gaußian approximation,

〈L[A0]〉 6= L[〈A0〉] , (IV.89)

Dropping for the moment the necessary renormalisation of 〈A0〉, they satisfy the Jensen inequality,

〈L[A0]〉 ≤ L[〈A0〉] , (IV.90)

see [28]. We conclude that if L[〈A0〉] = 0, so is 〈L[A0]〉. In turn, one can show that L[〈A0〉] vanishes if 〈L[A0]〉 does,
see [31]. While L[〈A0〉] has so far only been computed with functional methods, we have a solid results for 〈L[A0]〉
from the lattice, both in Yang-Mills theory and in QCD. More recently, 〈L[A0]〉 has been also computed with the FRG
on the basis of L[〈A0〉] in quantitative agreement with the lattice results [30], see Fig. 18. Seemingly, their relation is
rather non-trivial but is has been shown in [30] that most of the difference between 〈L[A0]〉 and L[〈A0〉 comes from

FIG. 17: The infrared glue potential, V (ϕ3, ϕ8), is shown in the confined phase (left, T = 236 MeV) and in the
deconfined phase (right, T = 384 MeV). We restrict ourselves to the line ϕ8 = 0 and ϕ3 ≥ 0 (indicated by the black,
dashed line), where one of the equivalent minima is always found, and where L[〈A0〉] is real and positive semi-definite.
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a temperature dependent normalisation of the former. In any case there is a relation

〈L[A0]〉(ϕ) (IV.91)

that maps ϕ = βg/(2π)〈A0〉 to the Polyakov loop epectation value in a given background.
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V. PHASE STRUCTURE OF QCD

In this final chapter of the low energy part of the QCD lecture notes we discuss the phase structure of QCD at
finite temperature and density. Here we shall study this in a combination of the low energy model for chiral symmetry
breaking discussed in the chapters II and III and the confinement physics of the Polyakov loop potential discussed
in the previous chapter IV. This class of low energy EFTs is called Polyakov loop augmented/enhanced low energy
EFTs. They are based on the following observation that can be made already on a one-loop level (with resummed
propagators). The full one loop resummed effective action of Nf = 2 flavour QCD including effective mesonic degrees
of freedom is given by

ΓQCD[Φ] = SQCD[Φ] +
1

2
Tr ln G−1

A [Φ]− Tr ln G−1
c [Φ]− Tr ln G−1

q [Φ] +
1

2
Tr ln G−1

φ [Φ] , Φ = (Aµ, c, c̄, ψ, ψ̄, σ, ~π) ,

(V.1)

with the gluon and ghost propagators GA, Gc carrying the physics and fluctuations of the glue sector of QCD, and
the quark and meson propagators carrying the physics and fluctuations of the matter sector of QCD. Note that (V.1)
with the full propagators is a complicated non-perturbative equation where all different loops feed into each other.
For example, taking the derivative of (V.1) w.r.t. the gauge field, we get

δΓ− S
δA0

=
1

2
Tr
[
Γ(3)G

]
AA
− TrG−1

c [Φ]
[
Γ(3)G

]
cc̄
− Tr

[
Γ(3)G

]
qq̄

+
1

2
Tr
[
Γ(3)G

]
φ∗φ

, (V.2)

where the mesonic part has been dropped and G is the full matrix propagator of all modes. This has to be compared
with the A0-DSE

δΓ

δA0
=

〈
δS

δA0

〉
, (V.3)

the QCD-version of (II.15). It is derived analoguously from the path integral representation of the QCD effective
action Γ, see (C.1), by taking an A0-derivative. It is depicted in Fig. 19. The vertices in the DSE (V.3) are the classical
ones while in (V.2) they are the full quantum vertices. The other difference is the two-loop term in Fig. 19 that is not
present in (V.2) but can be understood as part of the dressed vertices, see e.g. [29]. In any case, the two-loop term in
the DSE is typically dropped in explicit computations for technical reasons, and modern applications often use 2PI
and 3PI (three-particle irreducible) approximations that feature dressed vertices.

Note also that the Wegner-Houghton RG, or more generally functional renormalisation group equations for QCD,
are one loop excact, see chapter II F 3. Hence, they are given by a sum of gluon, ghost, quark and optionally meson
diagrams, see Fig. 20. Note that the equation in Fig. 20 is exact, no two-loop or higher loop terms are missing.

1. Glue Sector

We conclude that (V.1) provides a good qualitative approximation to full QCD, and the following formal arguments
also go through beyond the current approximation: we are interested in the low energy limit of QCD, in which the
gapped gluons do not drive the matter dynamics anymore. Since the ghost terms only couple to matter through the
gluons, they also decouple even though they are massless. Hence, in a first qualitative approximation we can drop the
dynamics of the glue sector. Still, the gluons, i.e. 〈A0〉 serve as a background for the matter fluctuations. Its value is
determined by the Polyakov loop potential in QCD, obtained by evaluating (V.1) for constant A0-background. The

FIG. 19: Functional A0-Dyson-Schwinger equation for QCD.
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glue part of the potential,

Vglue(A0) =
1

2
Tr ln G−1

A [A0]− Tr ln G−1
c [A0] , (V.4)

The definition of Vglue is identical to that in pure Yang-Mills theory, (IV.55). In (V.4), however, the QCD gluon and
ghost propagator enter. A common procedure is now to use lattice results on the pressure and the Polyakov loop
expectation value in pure Yang-Mills theory for an estimate of Vglue. From the perspective of the correlation functions
approaches discussed here this is justified if the Yang-Mills gluon and ghost propagators in an A0-background are
similar to those in QCD. This is indeed the case, the biggest difference coming from the RG-scaling that is reflected in
the momentum-dependence at large and medium momenta p2 & 2−5 GeV2. This can be made even more quantitative
if simply comparing the two glue potentials (in terms of A0) in QCD and Yang-Mills theory, see [32]. Apart from the
different absolute temperature scale and the different RG-running the two potentials agree semi-quantitatively.

These results support in retrospect the low energy EFT approach with lattice-induced Polyakov loop potentials
V (L, L̄). On the lattice the Polyakov loop variables

L = 〈L[A0]〉 , L̄ = 〈L∗[A0]〉 , (V.5)

are computed. At vanishing density we have L̄ = L∗. At non-vanishing density this relation is not valid anymore as
the chemical potential leads to a complex action in the path integral, and hence 〈L[A0]〉∗ 6= 〈L[A0]∗〉. The respective
potential is Upol(L, L̄). We emphasise that the potential Vpol(ϕ) is not simply U(L(ϕ), L̄(ϕ)) due to (IV.89).

These potentials are derived as follows:

(1a) Computee the Yang-Mills pressure (zero-point function) and the Polyakov loop expectation value (one-point
function)

pA(T ) = , L = 〈L[A0]〉(T ), L̄ = 〈L[A0]〉(T ) . (V.6)

(1b) Further correlation functions of the Polyakov loop variable are computed. At present this approach only extends
to the two-point functions of the Polyakov loop, [33]. The two-point function of the Polyakov loop is nothing
but its propagator at large distances, which is given by the inverse of the second derivative of the Polyakov loop
potential. We write schematically

( 〈LL〉 〈LL̄〉

〈L̄L〉 〈L̄L̄〉

)
∝
(

∂2
LUpol ∂L∂L̄Upol

∂L̄∂LUpol ∂2
L̄
Upol

)−1

. (V.7)

(2) Construct a potential VYM(L, L̄) that leads to all the observables under (1a) and potentially (1b). We have

pA = −V (LEoM, L̄EoM) ,
∂U(L, L̄)

∂L

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 ,
∂U(L, L̄)

∂L̄

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 , (V.8)

and (V.7), evaluated on the equations of motion.

Here we quote the standard form of the Polyakov loop potential. It reads

U(L, L̄) =
1

2
a(T )L̄ L+ b(T ) ln MH(L, L̄) +

1

2
c(T ) (L3 + L̄3) + d(T )(̄LL)2 , (V.9)

FIG. 20: Functional renormalisation group equation for QCD. In the Wegner-Houghton case the cross stands for the
restriction of the loop integration to p2 = Λ2.
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where MH comes from the Haar measure of the gauge group

MH = 1− 6 L̄ L+ 4(L3 + L̄3)− 3(L̄ L)2 . (V.10)

Eq.(V.9) is a variation of a Landau-Ginsburg-type phi4-potential commonly used for describing phase transitions.
The cubic terms proportional to c(T ) and in MH carry the center symmetry L → zL where the cubic roots z ∈ Z3

has the property z3 = 1. Thse terms drives the phase transition. The parameters a(T ), b(T ), c(T ) are now adjusted to
the temperature-dependent observables in (1). Examples can be found e.g. in [33–35]. The latter work also contains a
detailed study of various model potentials. We close this discussion we a few remarks. Firstly, as it is not possible to
compute the glue potential in QCD on the lattice, we have to rely on Yang-Mills potentials on the lattice extrapolated
to the glue potential. Secondly, the direct computation of the Polyakov loop potential in Yang-Mills theory proves to
be very costly and has not fully been resolved yet. For that reason one has to rely on potentials that only match a
few but important observables. Thirdly, the Polyakov loop potential Upol is not the natural input in the low energy
EFTs, it is Vpol and the two only agree in the Gaußian approximations.

Alternatively one computes the glue potential directly in the continuum, but at present neither Upol nor Vpol has
been computed to a quantitative satisfactory precision. This task is left for future work.

2. Matter sector

It is left to discuss the matter sector. In (V.1) it looks identical to the low energy EFT or the DSE/FRG in QCD
we have discussed in the context of strong chiral symmetry breaking. However, now we have to consider also the glue
background A0 or L, L̄ depending on the tratment of the glue sector. Since the mesons are color-neutral, they do not
couple to the gluon and hence the meson loop stays the same as before.

However, the quark loop has to be taken in an A0 background. We recall the one-loop expression in (III.28), now
in the presence of an A0 background as well as a chemical potential µ. It reads

Ωq,T − Ωq,T,µ=0 = − 4T
∑

n∈Z

∫
d3p

(2π)3
trf ln

(2πT )2
(
n+ 1

2 + ϕ̂+ i µ
)2

+ ~p2 +m2
q

(2πT )2
(
n+ 1

2

)2
+ ~p2 +m2

q

− pq,thermal

= − 2

π2
T
∑

n∈Z

∫ ∞

0

dp p2 trf

{
ln
(

1 + Pe−β(εqp−µ)
)

+ ln
(

1 + P †e−β(εqp+µ)
)}

, (V.11)

where P (~x) = P (β, ~x) is the untraced Polyakov loop, see (IV.28), and we recall the quark dispersion and the thermal
distribution function from (III.27)

εqp =
√
~p2 +m2

q , nF (ω) =
1

eβω + 1
. (V.12)

In the present approximation P, P † are ~x-independent. The combinations Peβµ and Pe−βµ reflect the relation of L
and L̄ to the creation operator of quark and anti-quark states respectively. The final expression in (V.11) reduces to
the quark contribution of the grand potential (III.38) discussed in chapter III for P = 1l. Due to the subtraction of
the T = 0 grand potential hidden in pq,thermal is nothing but the negative thermal pressure in a given background. On
the EoM for all fields it is the physical quark pressure of the system. The color trace in (V.11) can be rewritten as a
determinant with trf ln O = ln detf O, and we are led to

Ωq,T − Ωq,T,µ=0 = − 2

π2
T

∫ ∞

0

dp p2
{

ln
[
1 + 3(L+ L̄e−β(εqp−µ)) e−β(εqp−µ) + e−3β(εqp−µ)

]

+ ln
[
1 + 3(L̄+ Le−β(εqp+µ)) e−β(εqp+µ) + e−3β(εqp+µ)

]}
. (V.13)

For L = L̄ = 1 and µ = 0 (V.13) reduces to the one in (III.38) in chapter III. This happens for large temperatures,
T/Tconf → ∞ deep in the perturbative regime. Then we simply see the thermal distribution of single quarks. Note
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that (V.13) only vanishes for T → 0 if εp > |µ| for all p. For µ2 > m2
q we have

lim
T→0

(Ωq,T − Ωq,T,µ=0) = − 6

π2

∫ √µ2−m2
q

0

dp p2
(
|µ| − εqp

)
, (V.14)

reflecting the fact that for µ2 > m2
q the level of the Fermi sea is rising accordingly and the part of the quark fluctuations

below disappear from the fluctuation spectrum. As we have subtracted the grand potential at T = 0 and µ = 0, this
term is left in the T → 0 limit.

For T/Tconf → 0 the Polyakov loop expectation value tends towards one, L = L̄ = 0. Interestingly, for these values
we have

Ωq,T − Ωq,T,µ=0 = − 2

π2
T

∫ ∞

0

dp p2
{

ln
[
1 + e−3β(εqp−µ)

]
+ ln

[
1 + e−3β(εqp+µ)

]}
, (V.15)

the grand potential (or negative thermal pressure) of a gas of three-quark states, in our case the nucleons. This
observation has been called statistical confinement as the confining value of the background Polyakov loop gives the
thermal distribution of nucleons. If this property is investigated more carefully, the related distribution functions are
given by

nF (x, L, L̄) =
1 + 2L̄ eβx + Le2βx

1 + 3L̄ e2βx + 3Le2βx + e3βx
, x =

√
p2 +m2

q − µ , x̄ =
√
p2 +m2

q + µ , (V.16)

for the quark and nF (x̄, L̄, L) for the anti-quark. As for the grand potential, the Polyakov-loop enhanced themral
distribution functions tend towards the quark and anti-quark distribution functions for L, L̄→ 1. For L, L̄→ 0 (V.16)
gives the nucleon distribution function. However, this only happens if

lim
T/Tconf→0

Le2βx → 0 . (V.17)

It can be shown that the limit (V.17) is not present in QCD, see [36]. This does not invalidate the above picture as
the failure of (V.17) orginates in mesonic contributions that indeed should be present. Moreover, the grand potential
is that of nucleons.

This concludes our derivation of the low energy EFT that governs the phase structure of QCD. This specific type
of low energy EFT has been constructed in [34]. On the one loop level its grand potential in Nf = 2 flavor QCD
is given by the sum of the quark contribution (V.13), the mesonic contribution and the Polyakov loop potential.
This combination gives access to the two basic phenomena that governs the phase structure, confinement and chiral
symmetry breaking.

A. RG for the phase structure∗

Here we simply repeat the steps for the derivation of the Wegner-Houghton equation done in chapter III C for finite
temperature at finite temperature and density. The mesonic part is the same as in (III.40) and we can just take it
over here. The thermal quark part at finite density can be read off from (V.15) while the vacuum part (at µ = 0) of
the integral is the same as before. In summary we get

Λ∂ΛΩΛ(ψ, ψ̄, φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
− 12 εqΛ

+ T
[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)]

− 4T
{

ln
[
1 + 3(L+ L̄e−β(εqΛ−µ)) e−β(εqΛ−µ) + e−3β(εqΛ−µ)

]

+ ln
[
1 + 3(L̄+ Le−β(εqΛ+µ)) e−β(εqΛ+µ) + e−3β(εqΛ+µ)

]}
. (V.18)

In (V.18) the first line is the T, µ = 0 part of the flow, the second line comprises the thermal part of the meson
fluctuations, while the last two lines comprise the thermal and density fluctuations of the quarks. As has been
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discussed above, this term does not vanish in the limit T → 0 but removes the infrared part of the vacuum fluctuations
of the quark above the onset chemical potential µ2 = m2

q, see (V.14).
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Appendix A: Feynman rules for QCD in the covariant gauge

In this Appendix we depict the Feynman rules for QCD in the general covariant gauge.

= g2(2⇡)4�(4)
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FIG. 21: Feynman rules.

Appendix B: Gribov copies

In Chapter I A we have derived the gauge-fixed path integral under the assumption that there is only one represen-
tative of the gauge orbit that satisfies the gauge fixing condition. However, there might be several (Gribov) copies,
i.e. several physically equivalent solutions to the gauge fixing condition that are related by gauge transformations not
yet fixed by the gauge fixing condition F = 0. Indeed, any sufficiently smooth gauge exhibits (infinite many) Gribov
copies,

∑
Gribov copies = #Gr. As for the integration over the gauge group, #Gr occurs in the numerator as well as the

denominator in (I.18) and hence cancels. It is left to compute the Jacobian J [A] = ∆F [A]. To that end we use the
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representation of the Dirac δ-function

δ[F [AU ]] =

#Gr∑

i=1

1

|det δFδω |
δ[ω − ωi] with U = eiω. (B.1)

which leads to

∆F [A] =

(
#Gr∑

i=1

1∣∣detMF [Ae
iωi ]
∣∣

)−1

with MF [A] =
δF
δω

∣∣∣∣
ω=0

[Ae
iω

] . (B.2)

In the QFTII lecture notes in chapter IV, Appendix A the occurance of the Gribov copies in gauge field reparam-
eterisations due to gauge fixings is elucidated at the simple example of the reparameterisation of a two-dimensional
intergal.

Appendix C: Some important fact of the background field approach

In the background field approach the effective action has the following integro-differential path integral representa-
tion which facilitates the access to important properties,

e−Γ[Ā,a] =

∫
Dâ∆F [Ā, â+ a] δ[D̄µ(âµ + a)] e

−SYM[A+â]+
∫
x
δΓ[Ā,a]
δaµ

âµ , J =
δΓ[Ā, a]

δa
a = 〈â〉 . (C.1)

where Â = Ā + â, D̄ = D(Ā), D = D(A) and we restricted ourselves to Landau-deWitt gauge (ξ = 0) with the
background gauge fixing condition

D̄µâµ = 0 , −→ M[Ā, â+ a] = −D̄µDµ , ∆F [Ā, â+ a] = detM[Ā, â+ a] . (C.2)

see (IV.48). Inserting the relation between the a-derivative of Γ and the current J in (C.1) as well as using Γ =∫
x
Jµaµ− logZ we arrive at the standard path integral expression for Z[J ] in the gauge (C.2). First we note that the

effective action, evaluated on the equation of motion for the fluctuation field a,

δΓ[Ā, a]

δaµ

∣∣∣∣
a=aEoM

= 0 (C.3)

does not depend on the background field: the effective action Γ[Ā, aEoM] is given by (C.1) without the source term.
Then the path integral in (C.1) reduces to

e−Γ[Ā,aEoM] =

∫
Dâgf e

−SYM[A+âgf] . (C.4)

Even though the measure depends on the background field via the gauge fixing, the intergration leads to Ā-independent
result as the action SYM is gauge invariant. Accordingly we have

δΓ[Ā, aEoM]

δĀ
=

δ

δĀ

∣∣∣∣
aEoM

Γ[Ā, aEoM]] = 0 . (C.5)

The first relation in (C.5) follows with (C.3), the second from the Ā-independence of the integration in (C.4). In
conclusion, a solution to the EoM of a also is one of Ā. Eq.(C.4) also entails that

Γ[Ā, aEoM(Ā)] = Γ[Ā+ aEoM(Ā)] , (C.6)

it only depends on the full gauge field A.
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