
Part 2

In Lecture 1 we covered supersymmetry (the symmetry); supermultiplets; 
superpotential and supersymmetric Lagrangians; R-parity; the MSSM
particle content.

Now let’s look at supersymmetry breaking/mediation schemes; 
electroweak symmetry breaking in the MSSM; implications for models
and LHC searches.

Tomorrow we’ll look at flavor, specifically the supersymmetric flavor 
problem; schemes and models that reduce the parameter space; 
production of superpartners and decays; signals at LHC.



Supersymmetric Breaking



Origins of SUSY breaking

Up to now, we have simply put SUSY breaking into the MSSM explicitly.

To gain deeper understanding, let us consider how SUSY could be spontaneously
broken. This means that the Lagrangian is invariant under SUSY transformations,
but the ground state is not:

Qα|0〉 "= 0, Q†
α̇|0〉 "= 0.

The SUSY algebra tells us that the Hamiltonian is related to the SUSY charges by:

H = P 0 = 1
4
(Q1Q

†
1 + Q†

1Q1 + Q2Q
†
2 + Q†

2Q2).

Therefore, if SUSY is unbroken in the ground state, then H|0〉 = 0, so the
ground state energy is 0. Conversely, if SUSY is spontaneously broken, then the
ground state must have positive energy, since

〈0|H|0〉 = 1
4

“
‖Q†

1|0〉‖
2 + ‖Q1|0〉‖2 + ‖Q†

2|0〉‖
2 + ‖Q2|0〉‖2

”
> 0

To achieve spontaneous SUSY breaking, we need a theory in which the
prospective ground state |0〉 has positive energy.
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In SUSY, the potential energy can be written, using the equations of motion, as:

V =
∑

i

|Fi|2 + 1
2

∑

a

DaDa,

a sum of squares of auxiliary fields. So, for spontaneous SUSY breaking, one
must arrange a stable (or quasi-stable) ground state with either 〈Fi〉 #= 0 or
〈Da〉 #= 0, for at least one i or a.

Models of SUSY breaking where

• 〈Fi〉 #= 0 are called “O’Raifeartaigh models” or “F-term breaking models”

• 〈Da〉 #= 0 are called “Fayet-Iliopoulis models” or “D-term breaking models”

F -term breaking is used in (almost) all known realistic models.
This can only happen if the chiral supermultiplet is a singlet.
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(otherwise a gauge symmetry would be simultaneously broken)



Spontaneous Breaking of SUSY requires us to extend the MSSM

There is no gauge-singlet chiral supermultiplet in the MSSM that could get a
non-zero F -term VEV.

Even if there were such an 〈F 〉, there is another general obstacle. Gaugino
masses cannot arise in a renormalizable SUSY theory at tree-level. This is
because SUSY does not contain any (gaugino)-(gaugino)-(scalar) coupling that
could turn into a gaugino mass term when the scalar gets a VEV.

We also have the clue that SUSY breaking must be essentially flavor-blind in
order to not conflict with experiment.

This leads to the following general schematic picture of SUSY breaking. . .
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The MSSM soft SUSY-breaking terms arise indirectly or radiatively, not from
tree-level renormalizable couplings directly to the SUSY-breaking sector.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

Spontaneous SUSY breaking occurs in a “hidden sector” of particles with no
(or tiny) direct couplings to the “visible sector” chiral supermultiplets of the MSSM.
However, the two sectors do share some mediating interactions that transmit
SUSY-breaking effects indirectly. As a bonus, if the mediating interactions are
flavor-blind, then the soft SUSY-breaking terms of the MSSM will be also.

By dimensional analysis,

msoft ∼
〈F 〉
M

where M is a mass scale associated with the physics that mediates between the
two sectors.
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Planck-scale Mediated SUSY Breaking (also known as “gravity mediation”)

The idea: SUSY breaking is transmitted from a hidden sector to the MSSM by the
new interactions, including gravity, that enter near the Planck mass scale MP .

If SUSY is broken in the hidden sector by some VEV 〈F 〉, then the MSSM soft
terms should be of order:

msoft ∼
〈F 〉
MP

This follows from dimensional analysis, since msoft must vanish in the limit that
SUSY breaking is turned off (〈F 〉 → 0) and in the limit that gravity becomes
irrelevant (MP → ∞).

Since we know msoft ∼ few hundred GeV, and MP ∼ 2.4 × 1018 GeV:
√
〈F 〉 ∼ 1011 or 1012 GeV
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Planck-scale Mediated SUSY Breaking (continued)

Write down an effective field theory non-renormalizable Lagrangian that couples
F to the MSSM scalar fields φi and gauginos λa:

LPMSB = −
( fa

2MP
Fλaλa + c.c.

)
−

kj
i

M2
P

FF ∗φiφ
∗j

−
( αijk

6MP
Fφiφjφk +

βij

2MP
Fφiφj + c.c.

)

This is (part of) a fully supersymmetric Lagrangian that arises in supergravity.
When we replace F by its VEV 〈F 〉, we get exactly the MSSM soft
SUSY-breaking Lagrangian, with:

• Gaugino masses: Ma = fa〈F 〉/MP

• Scalar squared massed: (m2)j
i = kj

i |〈F 〉|2/M2
P and bij = βij〈F 〉/MP

• Scalar3 couplings aijk = αijk〈F 〉/MP

Unfortunately, it is not obvious why these are flavor-blind!

74These SUSY breaking masses are generated at the messenger scale
(in this case MP).  We then must use the renormalization group to evolve
these parameters from the Planck scale to the weak scale...



RG evolution

- RGE evolution down ⇒ physical masses we 
measure.

- Colored particles “run”s more. 
Large,  O(several), corrections.
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [186]-[195],[177].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
superpartner. The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau.
Variations in the model parameters have important and predictable effects. For example, taking larger
m2

0 in minimal supergravity models will tend to squeeze together the spectrum of squarks and sleptons
and move them all higher compared to the neutralinos, charginos and gluino. Taking larger values of
tan β with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles.

The second sample sketch in fig. 7.5 is obtained from a typical minimal GMSB model, with boundary
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at a high scale)



Renormalization Group Evolution Gauge Couplings

A reason to be optimistic that this
program can succeed: the SUSY
unification of gauge couplings. The
measured α1, α2, α3 are run up to
high scales using the RG equations
of the Standard Model (dashed lines)
and the MSSM (solid lines). 2 4 6 8 10 12 14 16 18
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At one-loop order, the RG equations are:
d

d(lnQ)
α−1

a = − ba

2π
(a = 1, 2, 3)

with bSM
a =(41/10,−19/6,−7) in the Standard Model, and bMSSM

a =(33/5,1,−3) in the
MSSM because of the extra particles in the loops. The results for the MSSM are
in agreement with unification at MGUT ≈ 2 × 1016 GeV.

If this hint is real, we can reasonably hope that a similar extrapolation for
the soft SUSY-breaking parameters can also work.
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Unification:  Clue or Clueless?

A reason to be optimistic that this
program can succeed: the SUSY
unification of gauge couplings. The
measured α1, α2, α3 are run up to
high scales using the RG equations
of the Standard Model (dashed lines)
and the MSSM (solid lines). 2 4 6 8 10 12 14 16 18
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At one-loop order, the RG equations are:
d

d(lnQ)
α−1

a = − ba

2π
(a = 1, 2, 3)

with bSM
a =(41/10,−19/6,−7) in the Standard Model, and bMSSM

a =(33/5,1,−3) in the
MSSM because of the extra particles in the loops. The results for the MSSM are
in agreement with unification at MGUT ≈ 2 × 1016 GeV.

If this hint is real, we can reasonably hope that a similar extrapolation for
the soft SUSY-breaking parameters can also work.
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The apparent unification of the gauge
couplings has remained a tantalizing hint
about physics at high scales.

Unification should simplify the high scale 
physics somewhat [gaugino masses universal 
in simple GUTs like SU(5)]

In my view, while this is intriguing, unification
remains very difficult to realize in terms of an
actual “workable” GUT model.  Various problems
inevitably arise, including doublet/triplet splitting, rapid Higgs-triplet-mediated 
proton decay, etc.

Is this the clue to move forward?  Despite what some people might have told you, 
we just don’t know. 
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- Simplest setup does not work. 
Renormalizable coupling and at tree level
Sum rules like:                    , not acceptable!

- Non-renormalizable coupling: gravity, moduli 
mediation
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Figure 7.2: The presumed schematic structure for supersymmetry breaking.

candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:
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ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (7.7.10)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (7.7.11)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 #= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 7.4. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 7.4 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [162] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (7.7.12)

in the normalization for αa discussed in section 6.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (7.7.13)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (7.7.12) holds for the running gaugino masses at an
RG scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly
of order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to
the electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 7.5, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(
α2

4π

)2

C2(i) +
(
α1

4π

)2

C1(i)

]

, (7.7.14)

with the quadratic Casimir invariants Ca(i) as in eqs. (6.5.5)-(6.5.8). The squared masses in eq. (7.7.14)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (7.7.15)
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Figure 7.5: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

a significantly stronger condition than eq. (6.4.5). Again, eqs. (7.7.14) and (7.7.15) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 6.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (6.1.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 8.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (7.7.12) and (7.7.14) correspond to the estimate eq. (7.4.3) for
msoft, with Mmess ∼ yI〈S〉. Equations (7.7.12) and (7.7.14) hold in the limit of small 〈FS〉/yI〈S〉2,
corresponding to mass splittings within each messenger supermultiplet that are small compared to the
overall messenger mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out
[163]-[165] to be quite small unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
and !, ! are replaced by a collection of messengers ΦI ,ΦI with a superpotential

Wmess =
∑

I

yISΦIΦI . (7.7.16)

The bar is used to indicate that the left-handed chiral superfields ΦI transform as the complex conjugate
representations of the left-handed chiral superfields ΦI . Together they are said to form a “vector-like”
(real) representation of the Standard Model gauge group. As before, the fermionic components of each
pair ΦI and ΦI pair up to get squared masses |yI〈S〉|2 and their scalar partners mix to get squared
masses |yI〈S〉|2 ± |yI〈FS〉|. The MSSM gaugino mass parameters induced are now

Ma =
αa

4π
Λ
∑

I

na(I) (a = 1, 2, 3) (7.7.17)

where na(I) is the Dynkin index for each ΦI+ΦI , in a normalization where n3 = 1 for a 3+3 of SU(3)C
and n2 = 1 for a pair of doublets of SU(2)L. For U(1)Y , one has n1 = 6Y 2/5 for each messenger pair
with weak hypercharges ±Y . In computing n1 one must remember to add up the contributions for each
component of an SU(3)C or SU(2)L multiplet. So, for example, (n1, n2, n3) = (2/5, 0, 1) for q + q and
(n1, n2, n3) = (3/5, 1, 0) for ! + !. Thus the total is

∑
I(n1, n2, n3) = (1, 1, 1) for the minimal model,
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Gauge Mediation:  LSP is the Gravitino

Gravitino mass could be ≈ 1 eV to 1 GeV, depending on the
mediation scale (while preserving flavor-blindness).

Phenomenology qualitatively affected:  

•  MSSM superpartners decay to lightest state, the 
    “next-to-lightest sparticle” (NLSP)

•  The NLSP decays to the gravitino (LSP), possibly with a 
    lifetime that is long on collider time scales:

Gravitino LSP
- Gravitino does not have gauge interactions. Its’ 

mass is still determined by gauge mediation. 
Gravition is the LSP.

- MSSM “LSP”, such as a neutralino would be NLSP.

- NLSP decaying into gravitino
Could be long lived on collider time scale.

m3/2 ∼ FS

MPl
� Mgaugino, squark...

is exactly one charged lepton, it can have either charge with exactly equal probability. This follows
from the fact that the gluino is a Majorana fermion, and does not “know” about electric charge; for
each diagram with a given lepton charge, there is always an equal one with every particle replaced by
its antiparticle.

9.5 Decays to the gravitino/goldstino

Most phenomenological studies of supersymmetry assume explicitly or implicitly that the lightest neu-
tralino is the LSP. This is typically the case in gravity-mediated models for the soft terms. However,
in gauge-mediated models (and in “no-scale” models), the LSP is instead the gravitino. As we saw in
section 7.5, a very light gravitino may be relevant for collider phenomenology, because it contains as its
longitudinal component the goldstino, which has a non-gravitational coupling to all sparticle-particle
pairs (X̃,X). The decay rate found in eq. (7.5.5) for X̃ → XG̃ is usually not fast enough to compete
with the other decays of sparticles X̃ as mentioned above, except in the case that X̃ is the next-to-
lightest supersymmetric particle (NLSP). Since the NLSP has no competing decays, it should always
decay into its superpartner and the LSP gravitino.

In principle, any of the MSSM superpartners could be the NLSP in models with a light goldstino,
but most models with gauge mediation of supersymmetry breaking have either a neutralino or a charged
lepton playing this role. The argument for this can be seen immediately from eqs. (7.7.17) and (7.7.18);
since α1 < α2,α3, those superpartners with only U(1)Y interactions will tend to get the smallest masses.
The gauge-eigenstate sparticles with this property are the bino and the right-handed sleptons ẽR, µ̃R,
τ̃R, so the appropriate corresponding mass eigenstates should be plausible candidates for the NLSP.

First suppose that Ñ1 is the NLSP in light goldstino models. Since Ñ1 contains an admixture of
the photino (the linear combination of bino and neutral wino whose superpartner is the photon), from
eq. (7.5.5) it decays into photon + goldstino/gravitino with a partial width

Γ(Ñ1 → γG̃) = 2× 10−3 κ1γ

( m
Ñ1

100 GeV

)5
( √

〈F 〉
100 TeV

)−4

eV. (9.5.1)

Here κ1γ ≡ |N11 cos θW +N12 sin θW |2 is the “photino content” of Ñ1, in terms of the neutralino mixing
matrix Nij defined by eq. (8.2.5). We have normalized m

Ñ1
and

√
〈F 〉 to (very roughly) minimum

expected values in gauge-mediated models. This width is much smaller than for a typical flavor-
unsuppressed weak interaction decay, but it is still large enough to allow Ñ1 to decay before it has left
a collider detector, if

√
〈F 〉 is less than a few thousand TeV in gauge-mediated models, or equivalently

if m3/2 is less than a keV or so when eq. (7.5.4) holds. In fact, from eq. (9.5.1), the mean decay length

of an Ñ1 with energy E in the lab frame is

d = 9.9 × 10−3 1

κ1γ
(E2/m2

Ñ1
− 1)1/2

( m
Ñ1

100 GeV

)−5
( √

〈F 〉
100 TeV

)4

cm, (9.5.2)

which could be anything from sub-micron to multi-kilometer, depending on the scale of supersymmetry
breaking

√
〈F 〉. (In other models that have a gravitino LSP, including certain “no-scale” models [229],

the same formulas apply with 〈F 〉 →
√
3m3/2MP.)

Of course, Ñ1 is not a pure photino, but contains also admixtures of the superpartner of the Z boson
and the neutral Higgs scalars. So, one can also have [146] Ñ1 → ZG̃, h0G̃, A0G̃, or H0G̃, with decay
widths given in ref. [147]. Of these decays, the last two are unlikely to be kinematically allowed, and
only the Ñ1 → γG̃ mode is guaranteed to be kinematically allowed for a gravitino LSP. Furthermore,
even if they are open, the decays Ñ1 → ZG̃ and Ñ1 → h0G̃ are subject to strong kinematic suppressions
proportional to (1 − m2

Z/m
2
Ñ1

)4 and (1 −m2
h0/m2

Ñ1

)4, respectively, in view of eq. (7.5.5). Still, these
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Ñ1

100 GeV

)5
( √

〈F 〉
100 TeV

)−4

eV. (9.5.1)

Here κ1γ ≡ |N11 cos θW +N12 sin θW |2 is the “photino content” of Ñ1, in terms of the neutralino mixing
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- NLSP decaying into gravitino
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Ñ1

100 GeV

)5
( √

〈F 〉
100 TeV

)−4

eV. (9.5.1)

Here κ1γ ≡ |N11 cos θW +N12 sin θW |2 is the “photino content” of Ñ1, in terms of the neutralino mixing
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Ñ1
− 1)1/2

( m
Ñ1
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Of course, Ñ1 is not a pure photino, but contains also admixtures of the superpartner of the Z boson
and the neutral Higgs scalars. So, one can also have [146] Ñ1 → ZG̃, h0G̃, A0G̃, or H0G̃, with decay
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Gauge Mediation:  Challenges

•  New messenger sector adds structure, some potential problems
   (messenger/matter mixing)

•  Light gravitino may or may not be viable dark matter,
   depending on mass and abundance source
   (generally don’t get the right thermal abundance, 
    since gravitino has interactions suppressed by 1/√F)

•  Generating µ, Bµ problematic (Higgs sector)

•  Difficult to get large A-terms; hence difficult to get 125 GeV Higgs mass
   without several-TeV superpartners (e.g., Craig, Knapen, Shih, Zhao)



Other Approaches

Gaugino Mediation

•  Gaugino masses >> scalar masses, trilinear scalar couplings at some large scale.
   Renormalization group evolution will regenerate flavor-blind scalar masses.
   -  main challenge is that the stops need to be heavy enough to get
       125 GeV Higgs; this requires excessively large gauginos...

Anomaly Mediation

•  Superconformal anomaly leads to ≈                    and two-loop flavor-blind
   scalar masses

   But, sleptons get negative (mass)2 (solutions, complicated); continuing debate 
   as to nature of (and even existence of) anomaly mediated contributions 
   [Dine, Seiberg; Thaler et al; de Alvies; ...]

R-symmetry

•  Extend MSSM so that gauginos have Dirac masses that are ≈ 4π heavier than
   squarks/sleptons.  Flavor interesting and nontrivial -- more on this if I have time...
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8 The mass spectrum of the MSSM

8.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H
−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d −H0

uH
0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 + 1

2
g2|H+

u H0∗
d +H0

uH
−∗
d |2. (8.1.1)

The terms proportional to |µ|2 come from F -terms [see eq. (6.1.5)]. The terms proportional to g2 and g′2

are the D-term contributions, obtained from the general formula eq. (3.4.12) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (6.3.1). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (8.1.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
Then it is clear that a minimum of the potential V requires that H0

uH
0
d is also real and positive, so 〈H0

u〉
and 〈H0

d 〉 must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them
both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (8.1.2)] are

90

8 The mass spectrum of the MSSM

8.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H
−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d −H0

uH
0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 + 1

2
g2|H+

u H0∗
d +H0

uH
−∗
d |2. (8.1.1)

The terms proportional to |µ|2 come from F -terms [see eq. (6.1.5)]. The terms proportional to g2 and g′2

are the D-term contributions, obtained from the general formula eq. (3.4.12) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (6.3.1). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (8.1.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
Then it is clear that a minimum of the potential V requires that H0

uH
0
d is also real and positive, so 〈H0

u〉
and 〈H0

d 〉 must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them
both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (8.1.2)] are

90

8 The mass spectrum of the MSSM

8.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H
−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d −H0

uH
0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 + 1

2
g2|H+

u H0∗
d +H0

uH
−∗
d |2. (8.1.1)

The terms proportional to |µ|2 come from F -terms [see eq. (6.1.5)]. The terms proportional to g2 and g′2

are the D-term contributions, obtained from the general formula eq. (3.4.12) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (6.3.1). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (8.1.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
Then it is clear that a minimum of the potential V requires that H0

uH
0
d is also real and positive, so 〈H0

u〉
and 〈H0

d 〉 must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them
both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (8.1.2)] are

90

EWSB
SM versus SUSY

“We are, I think, in the right Road of Improvement, for we are making Experiments.”
–Benjamin Franklin

1 Introduction

The Standard Model of high-energy physics, augmented by neutrino masses, provides a remarkably
successful description of presently known phenomena. The experimental frontier has advanced into the
TeV range with no unambiguous hints of additional structure. Still, it seems clear that the Standard
Model is a work in progress and will have to be extended to describe physics at higher energies.
Certainly, a new framework will be required at the reduced Planck scale MP = (8πGNewton)−1/2 =
2.4 × 1018 GeV, where quantum gravitational effects become important. Based only on a proper
respect for the power of Nature to surprise us, it seems nearly as obvious that new physics exists in the
16 orders of magnitude in energy between the presently explored territory near the electroweak scale,
MW , and the Planck scale.

The mere fact that the ratio MP/MW is so huge is already a powerful clue to the character of
physics beyond the Standard Model, because of the infamous “hierarchy problem” [1]. This is not
really a difficulty with the Standard Model itself, but rather a disturbing sensitivity of the Higgs
potential to new physics in almost any imaginable extension of the Standard Model. The electrically
neutral part of the Standard Model Higgs field is a complex scalar H with a classical potential

V = m2
H |H|2 + λ|H|4 . (1.1)

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2
UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The

H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

3

identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 +m2
Hu

+m2
Hd

. (8.1.3)

Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0

u and H0
d has a negative squared mass near H0

u = H0
d = 0 gives

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (8.1.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints eqs. (8.1.3) and (8.1.4) cannot both be satisfied.

In models derived from the MSUGRA or GMSB boundary conditions, m2
Hu

= m2
Hd

is supposed to

hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (6.5.39)]
naturally pushes it to negative or small values m2

Hu
< m2

Hd
at the electroweak scale. Unless this

effect is significant, the parameter space in which the electroweak symmetry is broken would be quite
small. So in these models electroweak symmetry breaking is actually driven by quantum corrections;
this mechanism is therefore known as radiative electroweak symmetry breaking. Note that although a
negative value for |µ|2+m2

Hu
will help eq. (8.1.4) to be satisfied, it is not strictly necessary. Furthermore,

even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if b is too small.
Still, the large negative contributions to m2

Hu
from the RG equation are an important factor in ensuring

that electroweak symmetry breaking can occur in models with simple boundary conditions for the soft
terms. The realization that this works most naturally with a large top-quark Yukawa coupling provides
additional motivation for these models [187, 153].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = 〈H0
u〉, vd = 〈H0

d 〉. (8.1.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2u + v2d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (8.1.6)

The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (8.1.7)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sin β and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can
write down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (8.1.2) will have a

minimum satisfying eqs. (8.1.6) and (8.1.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (8.1.8)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (8.1.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (8.1.3) and (8.1.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
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SU(2)L × U(1)Y → U(1)EM. Let us write

vu = 〈H0
u〉, vd = 〈H0

d 〉. (8.1.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2u + v2d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (8.1.6)

The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (8.1.7)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sin β and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can
write down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (8.1.2) will have a

minimum satisfying eqs. (8.1.6) and (8.1.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (8.1.8)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (8.1.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (8.1.3) and (8.1.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
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determine the phase of µ. Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z and tan β as

output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (8.1.10)

m2
Z =

|m2
Hd

−m2
Hu

|
√
1− sin2(2β)

−m2
Hu

−m2
Hd

− 2|µ|2. (8.1.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (8.1.10) and (8.1.11) highlight the “µ problem” already mentioned in section 6.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see sections
11.2 and 11.3 and ref. [66] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (8.1.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (8.1.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) + 2

tan2 β
(m2

Hd
−m2

Hu
) +O(1/ tan4 β). (8.1.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signifi-

cant cancellation is needed. In particular, large top squark squared masses, needed to avoid having the
Higgs boson mass turn out too small [see eq. (8.1.25) below] compared to the direct search limits from
LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the several

per cent level, or worse. It is impossible to objectively characterize whether this should be considered
worrisome, but it certainly causes subjective worry as the LHC bounds on superpartners increase.

Equations (8.1.8)-(8.1.11) are based on the tree-level potential, and involve running renormalized
Lagrangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V +∆V as a
function of the VEVs. The impact of this is that the equations governing the VEVs of the full effective
potential are obtained by simply replacing

m2
Hu

→ m2
Hu

+
1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(8.1.13)

in eqs. (8.1.8)-(8.1.11), treating vu and vd as real variables in the differentiation. The result for ∆V has
now been obtained through two-loop order in the MSSM [135, 188]. The most important corrections
come from the one-loop diagrams involving the top squarks and top quark, and experience shows that
the validity of the tree-level approximation and the convergence of perturbation theory are therefore
improved by choosing a renormalization scale roughly of order the average of the top squark masses.

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real, scalar
degrees of freedom. When the electroweak symmetry is broken, three of them are the would-be Nambu-
Goldstone bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral scalars h0
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EWSB
SM versus SUSY

Electroweak symmetry breaking and the Higgs bosons

In SUSY, there are two complex Higgs scalar doublets, (H+
u , H0

u) and
(H0

d , H−
d ), rather than one in the Standard Model.

The Higgs VEVs can be parameterized:

vu = 〈H0
u〉, vd = 〈H0

d〉, where

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2

tanβ = vu/vd.

The quark and lepton masses are related to these VEVs and the superpotential Yukawa
couplings by:

yt =
mt

v sin β
, yb =

mb

v cosβ
, yτ =

mτ

v cos β
, etc.

If we want the Yukawa couplings to avoid getting non-perturbatively large up to
very high scales, we need:

1.5 <∼ tanβ <∼ 55

45
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Define mass-eigenstate Higgs bosons: h0, H0, A0, G0, H+, G+ by:

„
H0

u

H0
d

«
=

„
vu

vd

«
+

1√
2

„
cos α sin α

− sin α cos α

«„
h0

H0

«
+

i√
2

„
sin β cos β

− cos β sin β

«„
G0

A0

«

„
H+

u

H−∗
d

«
=

„
sin β cos β

− cos β sin β

«„
G+

H+

«

Now, expand the potential to second order in these fields to obtain the masses:

m2
A0 = 2b/ sin 2β

m2
h0,H0 = 1

2

(
m2

A0 + m2
Z ∓

√
(m2

A0 + m2
Z)2 − 4m2

Zm2
A0 cos2 2β

)
,

m2
H± = m2

A0 + m2
W

The Goldstone bosons have mG0 = mG± = 0; they are absorbed by the
Z , W± bosons to give them masses, just as in the Standard Model.
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The decoupling limit for the Higgs bosons

If mA0 ! mZ , then:

• h0 has the same couplings as would a Standard Model Higgs boson of the
same mass

• α ≈ β − π/2

• A0, H0, H± form an isospin doublet, and are much heavier than h0

• h0 mass is maximized

Mass
h0

A0, H0

H±
Isospin doublet Higgs bosons

SM-like Higgs boson

Many models of SUSY breaking approximate this decoupling limit.
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Typical contour map of the Higgs potential in SUSY:

0 50 100 150 200 250 300
Hu  [GeV]

0

20

40

60

H
d  [

G
eV

]

The Standard Model-like Higgs boson h0 corresponds to oscillations along the
shallow direction with (H0

u − vu, H0
d − vd) ∝ (cosα,− sinα). At tree-level,

mh0 < mZ .

This has been ruled out by LEP2. However, taking into account loop effects, mh0

is considerably larger. Assuming that all superpartners are lighter than 1000 GeV,
and that perturbation theory is valid to very high energies, one finds:

mh0 <∼ 130 GeV

in the MSSM. By adding more supermultiplets, or not requiring that the theory
stays perturbative, one can get up to 200 GeV.
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Radiative corrections to the Higgs mass in SUSY:

m2
h0 = m2

Z cos2(2β) +
3

4π2
y2

t m2
t ln

(mt̃1mt̃2

m2
t

)
+ . . .

h0
+

t

t
h0

+
t̃

h0
+

t̃

t̃

t

t

h0
g̃ + . . .

At tree-level: m2
Z pure electroweak

At one-loop: y2
t m2

t top Yukawa comes in
At two-loop: αSy2

t m2
t SUSYQCD comes in

At three-loop: α2
Sy2

t m2
t

Even the three-loop corrections can add 1 GeV or so to mh0 .
This is larger than the experimental uncertainty expected at the LHC.
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Now consider the MSSM in general with no mSUGRA assumption. Top squark
masses uncorrelated with other superpartner masses, mixing can be large.

For each t̃1, t̃2 masses, scan over other parameters, find maximum Mh:
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between 0.5 and 3.0 of Standard
Model prediction. Cuts out region
125 <∼ mt̃1 < 185 GeV, where
large negative interference kills the
diphoton signal when Mh = 125

GeV.

Otherwise, heavier top squark
lighter than 700 GeV is feasible.
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Clearly this imposes significant constraints on the MSSM parameter space
 to obtain a Higgs mass consistent with ≈ 125 GeV.


