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Despite Appearances...

Canadians are not actually interchangeable...
Graham set the tone of these final thoughts, I provided the color scheme, and 
you are VERY lucky to have him (instead of me) there to flesh out the ideas!



The LHC Checklist

  Discover the Higgs (or Whatever)

  Discover Supersymmetry

  Produce Dark Matter

  Understand flavor

  ...
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Flavor

• The CKM description of quark 
flavor works exquisitely well.

• We still don’t understand the 
quark mass hierarchy or 
mixing angles.

• Lepton flavor remains clouded by 
our uncertainty as to Dirac 
versus Majorana neutrinos.

• Still no data about the absolute 
scale of neutrino masses.



• The exquisite CKM success turns into horrific bounds on any new physics 
which violates flavor.  

• For order one couplings, mass scales must be > 100 - 100,000 TeV!

Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables

Re Im Re Im

(s̄LγµdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; εK

(c̄LγµuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|,φD

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|,φD

(b̄LγµdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd
; SψKS

(b̄LγµsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

TABLE I: Bounds on representative dimension-six ∆F = 2 operators. Bounds on Λ are quoted assuming an

effective coupling 1/Λ2, or, alternatively, the bounds on the respective cij ’s assuming Λ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from ∆mBs
(see text). For the definition of the CPV

observables in the D system see Ref. [15].

central value for the CP-violating phase, contrary to the SM expectation. The errors are, however,

still large and the disagreement with the SM is at about the 2σ level. If the disagreement persists,

becoming statistically significant, this would not only signal the presence of physics beyond the

SM, but would also rule out a whole subclass of MFV models (see Sect. IV).

(iv) In D − D̄ mixing we cannot estimate the SM contribution from first principles; however,

to a good accuracy this is CP conserving. As a result, strong bounds on possible non-standard

CP-violating contributions can still be set. The resulting constraints are only second to those from

εK , and unlike in the case of εK are controlled by experimental statistics and could possibly be

significantly improved in the near future.

A more detailed list of the bounds derived from ∆F = 2 observables is shown in Table I,

where we quote the bounds for two representative sets of dimension-six operators: the left-left

operators (present also in the SM) and operators with a different chirality, which arise in specific

SM extensions. The bounds on the latter are stronger, especially in the kaon case, because of the

larger hadronic matrix elements. The constraints related to CPV correspond to maximal phases,

and are subject to the requirement that the NP contributions are smaller than 30% (60%) of the

total contributions [9] in the Bd (K) system. Since the experimental status of CP violation in the

Bs system is not yet settled we simply require that the new physics contributions are smaller than
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Oblique Corrections

• Now that we (think we) know 
the Higgs mass, we can’t use it 
to ``fix up” theories which 
otherwise lead to huge 
corrections to the oblique 
observables which describe 
precision EW measurements.

• Of course, we aren’t entirely 
sure this is the Higgs yet, but as 
we zero in on its properties, 
huge classes of theories fall 
away.

parameter set mu4
md4

mH ∆Stot ∆Ttot

(a) 310 260 115 0.15 0.19

(b) 320 260 200 0.19 0.20

(c) 330 260 300 0.21 0.22

(d) 400 350 115 0.15 0.19

(e) 400 340 200 0.19 0.20

(f) 400 325 300 0.21 0.25

TABLE I: Examples of the total contributions to ∆S and
∆T from a fourth generation. The lepton masses are fixed
to mν4

= 100 GeV and m"4 = 155 GeV, giving ∆Sν" =
0.00 and ∆Tν" = 0.05. The best fit to data is (S, T ) =
(0.06, 0.11) [28]. The Standard Model is normalized to (0, 0)
for mt = 170.9 GeV and mH = 115 GeV. All points are within
the 68% CL contour defined by the LEP EWWG [28].

fer slightly between each group, presumably due to slight
updates of data (the S-T plot generated by the 2006
LEP EWWG is one year newer than the plot included
in the 2006 PDG). A larger difference concerns the use
of the Z partial widths and σh. The LEP EWWG ad-
vocate using just Γ!, since it is insensitive to αs. This
leads to a flatter constraint in the S-T plane. The PDG
include the αs-sensitive quantities ΓZ , σh, Rq as well as
R!, and obtain a less flat, more oval-shaped constraint.
Additional lower–energy data can also be used to (much
more weakly) constrain S and T , although there are sys-
tematic uncertainties (and some persistent discrepancies
in the measurements themselves). The LEP EWWG do
not include lower–energy data in their fit, whereas the
PDG appear to include some of it. In light of these sub-
tleties, we choose to use the LEP EWWG results when
quoting levels of confidence of our calculated shifts in the
S-T plane. We remind the reader, however, that the ac-
tual level of confidence is obviously a sensitive function
of the precise nature of the fit to electroweak data.

In Table I we provide several examples of fourth–
generation fermion masses which yield contributions to
the oblique parameters that are within the 68% CL el-
lipse of the electroweak precision constraints. We illus-
trate the effect of increasing Higgs mass with compen-
sating contributions from a fourth generation in Fig. 2.
More precisely, the fit to electroweak data is in agree-
ment with the existence of a fourth generation and a light
Higgs about as well as the fit to the Standard Model alone
with mH = 115 GeV. Using suitable contributions from
the fourth–generation quarks, heavier Higgs masses up
to 315 GeV remain in agreement with the 68% CL limits
derived from electroweak data. Heavier Higgs masses up
to 750 GeV are permitted if the agreement with data is
relaxed to the 95% CL limits.

Until now we have focused on purely Dirac neutri-
nos. However, there is also a possible reduction of Stot

when the fourth–generation neutrino has a Majorana
mass comparable to the Dirac mass [29, 30]. Using the
exact one-loop expressions of Ref. [30], we calculated the
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FIG. 2: The 68% and 95% CL constraints on the (S, T ) pa-
rameters obtained by the LEP Electroweak Working Group
[27, 28]. The shift in (S, T ) resulting from increasing the
Higgs mass is shown in red. The shifts in ∆S and ∆T from a
fourth generation with several of the parameter sets given in
Table I are shown in blue.

contribution to the electroweak parameters with a Majo-
rana mass. Given the current direct–search bounds from
LEP II on unstable neutral and charged leptons, we find
a Majorana mass is unfortunately not particularly help-
ful in significantly lowering S. A Majorana mass does,
however, enlarge the parameter space where S ! 0. For
example, given the lepton Dirac and Majorana masses
(mD, M44) = (141, 100) GeV, the lepton mass eigen-
states are (mν1

, mν2
, m!) = (100, 200, 200) GeV, and con-

tributions to the oblique parameters of (∆Sν , ∆Tν) =
(0.01, 0.04). It is difficult to find parameter regions with
∆S! < 0 without either contributing to ∆U! ! −∆S!,
contributing significantly more to ∆T!, or taking mν1

<
100 GeV which violates the LEP II bound for unstable
neutrinos.

Let us summarize our results thus far. We have
identified a region of fourth–generation parameter space
in agreement with all experimental constraints and
with minimal contributions to the electroweak precision
oblique parameters. This parameter space is character-
ized by

m!4 − mν4
! 30 − 60 GeV

mu4
− md4

!
(

1 +
1

5
ln

mH

115 GeV

)

× 50 GeV

|Vud4
|, |Vu4d| ! 0.04

|Ue4|, |Uµ4| ! 0.02 , (9)
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“Bye bye simple 4th generation...”



A Little Hierarchy?

• Put together, both flavor and precision measurements 
seem to be suggesting that new physics is either:

• very tightly constrained by powerful symmetries;

• or has a mass scale >> TeV.

• It is really challenging to reconcile this with the idea 
that something protects the Higgs mass in a natural 
way.



Is SUSY in Serious Trouble?

• A Higgs mass at ~126 GeV has a huge 
cost of fine-tuning in the MSSM, even if 
one defines the theory to evade the 
worst of the flavor constraints.

• We know how to engineer heavier 
Higgs masses (NMSSM, Fat Higgs, 
D-terms, ...).

• 126 GeV is a big problem for the 
MSSM, not SUSY in general.

• Should we be worried about the lack 
of evidence in jets + MET ?

• Squark and gluino masses > 1.5 TeV!

Cahill-Rowley, Hewett, Ismail, Rizzo 1206.5800

Squarks and Gluinos

• Searches for missing energy plus 
various numbers of jets put bounds 
on squark and/or gluino (“colored 
sibling”) production.

• Gluinos decay to two jets + WIMP

• Squarks into one jet + WIMP

• For equal masses, searches require 
them to be larger than about 1.5 TeV

• Limits are still several hundred GeV 
when one or the other is very heavy.

• These limits hold assuming the WIMP 
mass is less than 200 GeV.
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Figure 7: 95% CLs exclusion limits obtained by using the signal region with the best expected sensitiv-

ity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and

second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane of

MSUGRA/CMSSM for tan β = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits, the

dashed-blue lines the median expected limits, and the dotted blue lines the ±1σ variation on the expected

limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].

7 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse

momentum and no electrons or muons, based on the full dataset (4.7 fb
−1

) recorded by the ATLAS

experiment at the LHC in 2011. Good agreement is seen between the numbers of events observed in the

data and the numbers of events expected from SM processes.

The results are interpreted in both a simplified model containing only squarks of the first two genera-

tions, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with tan β = 10,

A0 = 0 and µ > 0. In the simplified model, gluino masses below 940 GeV and squark masses be-

low 1380 GeV are excluded at the 95% confidence level. In the MSUGRA/CMSSM models, values of

m1/2 < 300 GeV are excluded for all values of m0, and m1/2 < 680 GeV for low m0. Equal mass squarks

and gluinos are excluded below 1400 GeV in both scenarios.
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More from Matt about the status of SUSY shortly!

Neutralino LSP

Gravitino LSP

Figure 16: Fine-tuning as a function of the light Higgs mass in the neutralino (top blue) and

gravitino (bottom red) LSP model sets.
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No jets+MET = No SUSY?

3rd Generation Squarks
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It’s too early to draw this conclusion.  Some rebuttals include:

Simplified Models
• One can step away from specific 

MSSM assumptions by working 
with simplified models.

• These are phenomenological 
sketches of theories.

• The experimental collaborations 
have been willing to explore 
casting their SUSY searches into 
this framework, allowing for a 
much more flexible 
interpretation of limits.

• It also reveals more about the 
WIMP mass dependence of the 
results -- larger LSP masses 
severely erode the gluino limits!

Results as Simplified Models  

Are these result representations useful/used?  

!"#$%&'(%)**)+,#-.+/.00.&/1231,#34"25"1231

SUSY on life support?

6')#.789)+#0:#0';8#<%)80;:7#;8#=!>
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“Neutralinos aren’t massless!”

“Limits on stops are weak!”

“Nature is R-symmetric!”

neutralinos, such as same-sign lepton final states, may
not yield strong bounds if the model is approximately R-
symmetric, and so again we are left to model-dependent
investigations to make quantitative statements.

IV. RECASTING LHC LIMITS

To recast LHC limits on colored superparticle produc-
tion into the SSSM, we follow the analyses searching for
supersymmetry through nj + /ET signals performed by
ATLAS [61] and CMS [62–64]. Of the existing supersym-
metry searches, jets plus missing energy is the simplest,
and involves the fewest assumptions about the spectrum.

To simulate the supersymmetric signal, we use
PYTHIA6.4 [65]; the first and second generation squarks
are set to have equal mass, the gravitino is chosen to be
the LSP, and all other superpartners are decoupled (set
to 5 TeV). We use CTEQ6L1 parton distribution func-
tions, generating a sufficient number of events such that
statistical fluctuations have negligible effect on our re-
sults. To incorporate detector effects into our signal sim-
ulations, all events are passed through the Delphes [66]
program using ATLAS or CMS detector options and
adopting the corresponding experiment’s jet definitions:
anti-kT , R = 0.4 for the ATLAS search [61], and anti-
kT , R = 0.5 for the CMS searches [62–64]. We repeat the
same steps for the three simplified models of the MSSM
(c.f. Fig. 1) allowing all combinations of q̃q̃, q̃∗q̃∗, q̃q̃∗ as
well as gluino pair production and associated squark plus
gluino production. Note that our “heavy MSSM” simpli-
fied model is an existing CMS simplified model, “T2”
[67].

Colored superpartner production cross sections receive
sizable next-to-leading order (NLO) corrections. To in-
corporate these corrections, we feed the spectra into
PROSPINO [68], restricting the processes appropriately
for each simplified model (i.e., just pp → q̃q̃∗ for the
SSSM). The cross sections are shown in Fig. 3 for each of
the simplified models as a function of squark mass. De-
pending on the scale choice and the squark mass, we find
the K-factor ranges from 1.7-2.1. This takes into account
the increased rate at NLO, through not the kinematic
distribution of events.

The analyses we are interested in [61–64], are broken
up into several channels. For some analyses the channels
are orthogonal, while in other analyses one event can
fall into multiple channels. To set limits we begin by
counting the number of supersymmetry events in each
analysis channel for several squark masses. The number
of supersymmetric events passing cuts is translated into
a mass-dependent acceptance for each channel. We then
form the 95% CL limit, using the likelihood ratio test
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FIG. 3. Cross sections at the 7 TeV LHC for colored super-
partner production. The four lines correspond to the four
simplified models shown in Fig. 1, where the first and second
generation squarks are degenerate with mass Mq̃. The solid
line shows the cross section for the SSSM where the cross
section is dominated by q̃q̃∗ final states, while the dashed
lines show cross sections for the three simplified models of the
MSSM. All cross sections are calculated to next-to-leading or-
der using PROSPINOv2.1 [68], CTEQ6L1 parton distribution
functions, and default scale choices. For event generation, we
use PYTHIA6.4 [65] and rescale the cross section to match
those shown here.

statistic [69]:

0.05 =

�∞
0 db�
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0
(µi,b+µi,s)
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(Ni,obs)!
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�∞
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0
µ
Ni,obs
b e−µb
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(6)

Here µi,b ≡ Ni,exp is the number of expected SM back-
ground events and µi,s ≡ Ni,SUSY is the number of signal
events. To estimate the effects of systematic errors, the
number of SM events is modulated by a Gaussian weight-
ing factor [70]. Specifically, we shift µb → µb(1 + fb),
where fb is drawn from a Gaussian distribution centered
at zero and with standard deviation σf = σi,SM/Ni,exp,
where σi,SM is the quoted systematic uncertainty (taken
directly from [61–64]). Whenever the systematic error is
asymmetric, we use the larger (in absolute value) num-
ber. To combine channels (when appropriate), we simply
replace the right-hand side of Eq. (6) with the product
over all channels.
The number of supersymmetry events in a particular

channel is the product of the cross section, luminosity,
acceptance and efficiency,

Ni,SUSY = L ·K(Mq̃)σ(Mq̃) ·A(Mq̃) · �, (7)

where K(Mq̃) is the mass-dependent K-factor to account
for the larger rate at NLO. Within our simplified setup,
the only parameter the cross section and acceptance de-
pend upon is the mass of the squark – thus Eq. (6) is
simply a limit on the squark mass.
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+ many more...



Hints of  Things to Come?



AFBb

• There are 6 important inputs 
to describe Z decay, so with 
~20 measurements the system 
is over-constrained.

• Over-all, the agreement with 
theory is fantastic.

• One measurement stands out: 
the forward-backward 
asymmetry of bottom quarks 
disagrees at 2.9σ.

• This measurement has been 
around for more than 10 
years, and has resisted 
conventional explanation the 
entire time.

Measurement Fit |Omeas!Ofit|/"meas

0 1 2 3

0 1 2 3

#$had(mZ)#$(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
%Z [GeV]%Z [GeV] 2.4952 ± 0.0023 2.4959
"had [nb]"0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(P&)Al(P&) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2'effsin2'lept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.385 ± 0.015 80.377
%W [GeV]%W [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012



g-2 of the Muon

• The g-2 experiment measures 
the anomalous magnetic moment 
of the muon to great precision.

• Despite ongoing improvements 
in theory calculations, the 
experiment remains ~2-3σ away 
from the SM predictions.

• Is this just revealing the limits of 
the computations, or is it telling 
us something important about 
Nature?



DAMA / Libra
• DAMA/Libra looks for an annual variation 

in DM scattering from an NaI target.  

• Data collected over more than a decade 
show a significant (~9σ) annual modulation 
of a few percent with a maximum in June.

• Low mass WIMPs are a possible 
explanation, but simple implementations 
are in tension with other experiments.

June: larger v

December: smaller v

Sun

Earth

DM



The ‘Weniger’ Line
• Recently, Weniger (et al) claim 

observation of a feature around 
~130 GeV corresponding to a 
cross section around ~10-27 
cm^3/s in the Fermi γ-ray data.

• The feature is more prominent in 
the galactic center (with the 
galactic plane removed).

• Follow-ups show the excess is 
correlated with the center, and 
evidence of a second (γZ?!) line.

• The question now is: is this real? 
is it instrumental? Astrophysics? 
Dark matter...?!?!

Figure 3. TS value as function of the line energy Eγ , obtained by analysing the energy spectra
from the different target regions in Fig. 1. Left and right panels show the results for the SOURCE
and ULTRACLEAN event classes, respectively. The inset shows a zoom into the most interesting
region. The horizontal gray dotted lines show respectively from bottom to top the 1σ to 3σ levels
after correcting for trials (without trial correction the significance is given by

√
TSσ). In the right

panel, the gray crosses show the TS values that we obtain when instead adopting the target region
and energy window sizes from Refs. [44, 45].

regions, from which only the five most interesting ones are shown in this paper.6 These
target regions are partially subsets of each other, but we conservatively treat them as being
statistically independent. However, we do not attribute trials to the scan over SOURCE and
ULTRACLEAN event classes, as these are obviously strongly correlated.

In summary, we find that the significance of a maximal TS value TSmax can in good
approximation be derived from 10×12.7 = 127 trials over a χ2

k=1.35 distribution. In practice,
one has to solve

CDF(χ2
k=1.35;TSmax)

127 = CDF(χ2
k=1;σ

2) (2.9)

for σ. Here, CDF(χ2
k;x) is the cumulative distribution function, which gives the probability

to draw a value smaller than x from a χ2
k distribution.

3 Main Results

In each of the spectra shown in Fig. 1 we perform a search for gamma-ray lines in the range
Eγ = 20–300 GeV as described above. The resulting TS values as function of the gamma-
ray line energy Eγ are shown in the left and right panels of Fig. 3 for the SOURCE and
ULTRACLEAN event classes, respectively. In regions Reg2, Reg3 and Reg4, we find TS
values that are surprisingly large, and which indicate a high likelihood for a gamma-ray line
at Eγ ≈ 130 GeV. The largest TS value is obtained in case of the SOURCE events in Reg4
and reads TS = 21.4 (corresponding to 4.6σ before trial correction). Taking into account
the look-elsewhere effect as discussed above, the trial corrected statistical significance for the
presence of a line signal in the LAT data is 3.3σ.

The fits that yield the highest significance for a line contribution are shown in Fig. 4 for
the regions Reg2, Reg3 and Reg4, and for SOURCE and ULTRACLEAN events. In the upper
sub-panels, we plot the LAT data with statistical error bars, as well as the total predicted

6The other target regions correspond to α = 1.05, 1.1, 1.2 and 1.4 as well as the Fermi Bubble template
from Ref. [64].
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Weniger,  1204.2797
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Final Thought



“If you want your children to be intelligent, 
read them fairy tales. If you want them to be 
more intelligent, read them more fairy tales.” 

--Albert Einstein



It may be that the models of the last few decades 
are only fairy tales.

But just like a fairy tale, each model contains a 
lesson that may persist past its immediate context.

Now that you’re intelligent enough, go 
write our reality!


