

## Thoughts and Perspective

#### Tim M.P. Tait

#### University of California, Irvine



The Tilman Plehn HEP Indoctrination School September 21, 2012

#### Despite Appearances...







#### Canadians are not actually interchangeable...

Graham set the tone of these final thoughts, I provided the color scheme, and you are VERY lucky to have him (instead of me) there to flesh out the ideas!

#### The LHC Checklist

Discover the Higgs (or Whatever)
Discover Supersymmetry
Produce Dark Matter
Understand flavor
...

#### The LHC Checklist

Discover the Higgs (or Whatever)
Discover Supersymmetry
Produce Dark Matter
Understand flavor
...

#### Flavor

- The CKM description of quark flavor works exquisitely well.
  - We still don't understand the quark mass hierarchy or mixing angles.
- Lepton flavor remains clouded by our uncertainty as to Dirac versus Majorana neutrinos.
  - Still no data about the absolute scale of neutrino masses.



#### Flavor

| Operator                         | Bounds on $\Lambda$ in TeV $(c_{ij} = 1)$ |                   | Bounds on $c_{ij}$ ( $\Lambda = 1$ TeV) |                      | Observables                    |  |
|----------------------------------|-------------------------------------------|-------------------|-----------------------------------------|----------------------|--------------------------------|--|
|                                  | Re                                        | Im                | Re                                      | Im                   |                                |  |
| $(\bar{s}_L \gamma^\mu d_L)^2$   | $9.8 	imes 10^2$                          | $1.6 \times 10^4$ | $9.0 	imes 10^{-7}$                     | $3.4 \times 10^{-9}$ | $\Delta m_K; \epsilon_K$       |  |
| $(\bar{s}_R d_L)(\bar{s}_L d_R)$ | $1.8 	imes 10^4$                          | $3.2 \times 10^5$ | $6.9 \times 10^{-9}$                    | $2.6\times10^{-11}$  | $\Delta m_K; \epsilon_K$       |  |
| $(ar{c}_L \gamma^\mu u_L)^2$     | $1.2 \times 10^3$                         | $2.9 \times 10^3$ | $5.6 	imes 10^{-7}$                     | $1.0 \times 10^{-7}$ | $\Delta m_D;  q/p , \phi_D$    |  |
| $(\bar{c}_R u_L)(\bar{c}_L u_R)$ | $6.2 \times 10^3$                         | $1.5 \times 10^4$ | $5.7 \times 10^{-8}$                    | $1.1 \times 10^{-8}$ | $\Delta m_D;  q/p , \phi_D$    |  |
| $(\bar{b}_L \gamma^\mu d_L)^2$   | $5.1 \times 10^2$                         | $9.3 	imes 10^2$  | $3.3 \times 10^{-6}$                    | $1.0 \times 10^{-6}$ | $\Delta m_{B_d}; S_{\psi K_S}$ |  |
| $(\bar{b}_R d_L)(\bar{b}_L d_R)$ | $1.9 	imes 10^3$                          | $3.6 	imes 10^3$  | $5.6 	imes 10^{-7}$                     | $1.7 \times 10^{-7}$ | $\Delta m_{B_d}; S_{\psi K_S}$ |  |
| $(ar{b}_L \gamma^\mu s_L)^2$     | $1.1 \times 10^2$                         |                   | $7.6 \times 10^{-5}$                    |                      | $\Delta m_{B_s}$               |  |
| $(\bar{b}_R s_L)(\bar{b}_L s_R)$ | $3.7 	imes 10^2$                          |                   | $1.3 \times 10^{-5}$                    |                      | $\Delta m_{B_s}$               |  |

Isidori, Nir, Perez arXiv:1002.0900

- The exquisite CKM success turns into horrific bounds on any new physics which violates flavor.
- For order one couplings, mass scales must be > 100 100,000 TeV!

#### **Oblique Corrections**

- Now that we (think we) know the Higgs mass, we can't use it to ``fix up" theories which otherwise lead to huge corrections to the oblique observables which describe precision EW measurements.
- Of course, we aren't entirely sure this is the Higgs yet, but as we zero in on its properties, huge classes of theories fall away.



#### A Little Hierarchy?

- Put together, both flavor and precision measurements seem to be suggesting that new physics is either:
  - very tightly constrained by powerful symmetries;
  - or has a mass scale >> TeV.
- It is really challenging to reconcile this with the idea that something protects the Higgs mass in a natural way.

#### Is SUSY in Serious Trouble?

Cahill-Rowley, Hewett, Ismail, Rizzo 1206.5800

- A Higgs mass at ~126 GeV has a huge cost of fine-tuning in the MSSM, even if one defines the theory Source the Sar worst of the flavor constraints.
  - We know how to engineer heavier Higgs masses (NMSSM, Fat Higgs, D-terms, ...).
  - 126 GeV is a big problem for the MSSM, not SUSY in general.
- Should we be worried about the lack of evidence in jets + MET ?
  - Squark and gluino masses > 1.5 TeV!



600 L

800

1000

1200

1400

1600

1800

gluino mass [GeV]

2000



### Hints of Things to Come?

#### A<sup>FB</sup>b

- There are 6 important inputs to describe Z decay, so with ~20 measurements the system is over-constrained.
- Over-all, the agreement with theory is fantastic.
- One measurement stands out: the forward-backward asymmetry of bottom quarks disagrees at 2.9σ.
- This measurement has been around for more than 10 years, and has resisted conventional explanation the entire time.

|                                                | Measurement           | Fit     | 10 <sup>me</sup> | as-O <sup>fit</sup> l | / $\sigma^{meas}$ |
|------------------------------------------------|-----------------------|---------|------------------|-----------------------|-------------------|
|                                                |                       |         | 0                | 1 2                   | 2 3               |
| $\Delta \alpha_{had}^{(5)}(m_Z)$               | $0.02750 \pm 0.00033$ | 0.02759 |                  |                       |                   |
| m <sub>z</sub> [GeV]                           | 91.1875 ± 0.0021      | 91.1874 |                  |                       |                   |
| Γ <sub>z</sub> [GeV]                           | $2.4952 \pm 0.0023$   | 2.4959  | -                |                       |                   |
| $\sigma_{\sf had}^{\sf 0}\left[{\sf nb} ight]$ | 41.540 ± 0.037        | 41.478  |                  |                       |                   |
| R <sub>I</sub>                                 | 20.767 ± 0.025        | 20.742  |                  |                       |                   |
| A <sup>0,I</sup><br>fb                         | $0.01714 \pm 0.00095$ | 0.01645 |                  |                       |                   |
| A <sub>I</sub> (P <sub>τ</sub> )               | 0.1465 ± 0.0032       | 0.1481  | -                |                       |                   |
| R <sub>b</sub>                                 | $0.21629 \pm 0.00066$ | 0.21579 |                  |                       |                   |
| R <sub>c</sub>                                 | 0.1721 ± 0.0030       | 0.1723  |                  |                       |                   |
| A <sup>0,b</sup>                               | 0.0992 ± 0.0016       | 0.1038  |                  |                       |                   |
| A <sup>0,c</sup> <sub>fb</sub>                 | $0.0707 \pm 0.0035$   | 0.0742  |                  |                       |                   |
| A <sub>b</sub>                                 | $0.923 \pm 0.020$     | 0.935   |                  |                       |                   |
| A <sub>c</sub>                                 | $0.670 \pm 0.027$     | 0.668   | •                |                       |                   |
| A <sub>l</sub> (SLD)                           | 0.1513 ± 0.0021       | 0.1481  |                  |                       |                   |
| $sin^2 \theta_{eff}^{lept}(Q_{fb})$            | 0.2324 ± 0.0012       | 0.2314  |                  |                       |                   |
| m <sub>w</sub> [GeV]                           | 80.385 ± 0.015        | 80.377  | -                |                       |                   |
| Г <sub>w</sub> [GeV]                           | 2.085 ± 0.042         | 2.092   | •                |                       |                   |
| m <sub>t</sub> [GeV]                           | 173.20 ± 0.90         | 173.26  | •                |                       |                   |
|                                                |                       |         | ļ,               |                       |                   |

2

0

### g-2 of the Muon

- The g-2 experiment measures the anomalous magnetic moment of the muon to great precision.
- Despite ongoing improvements in theory calculations, the experiment remains ~2-3σ away from the SM predictions.
- Is this just revealing the limits of the computations, or is it telling us something important about Nature?



#### DAMA / Libra

- DAMA/Libra looks for an annual variation in DM scattering from an Nal target.
- Data collected over more than a decade show a significant (~9σ) annual modulation of a few percent with a maximum in June.
- Low mass WIMPs are a possible explanation, but simple implementations are in tension with other experiments.





### The 'Weniger' Line



Final Thought

"If you want your children to be intelligent, read them fairy tales. If you want them to be more intelligent, read them more fairy tales."

--Albert Einstein

It may be that the models of the last few decades *are* only fairy tales.

But just like a fairy tale, each model contains a lesson that may persist past its immediate context.

# Now that you're intelligent enough, go write our reality!