

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

- Part I: top quark production
 - Tt production
 - Single top production
- Part II: Properties
 - Top quark mass
 - Spin correlations
- Part III: Asymmetry and searches
 - tt asymmetry
 - Direct searches in the top sector (Overview)

Part I: Production

- tt cross section
 - Methods
 - Background determination
- Differential cross sections
- Single top

The Standard Model

- Described the fundamental particles and their interactions
 - 6 quarks and leptons + their antiparticles
 - 4 fundamental forces (Gravity not in SM)
- 1960: Electromagnetic and weak interaction unification by S. Glashow
- Weinberg and Salam 1967: incorporated Higgs mechanism into SM
- 1973: discovery of weak currents caused by Z → establishing of SM
- All this happened way before the discovery that a 3rd family existed!

Brief History of the Top Quark

- 1976: Discovery of Upsilon at Fermilab
 - Contains a 5th quark: the b-quark
 - \rightarrow Structure of quark families suggested existence of a 6th quark: the top
- From here on the race to find the top began
 - Petra (e⁺e⁻): m_t>23.3GeV in 1984
 - Tristan (e⁺e⁻) in Japan: m_t>30.2GeV in late 80s
 - SPS (pp̄): discovery of W and Z in 1983
 - UA1: m_t>44GeV in 1988

 (after having an excess in 1984 which they thought was evidence for top)
 - LEP: m₁>45.8GeV in 1990
 - UA2: m_t>69GeV
 W → tb̄ search channel closed down

Yvonne Peters

Brief History of the Top Quark

- Searching again for tt production with top mass above W mass
- 1992: First lower limits on top from CDF (m, >91GeV)
- 1994: First lower limits on top from DØ (m, >131GeV)
- Electroweak fits from LEP/SLC/Tevatron data: 155GeV<m₊<185GeV
- Early 1994: "Evidence" for top at CDF

Discovery Datasets

- February 24th 1995: Simultaneous submission of Top Discovery papers to PRL, by CDF and DØ
- 50 pb⁻¹ at DØ
 - m_t = 199±30 GeV
 - _{tt} = 6.4±2.2 pb
 - Background-only hypothesis rejected at 4.6
- 67 pb⁻¹ at CDF
 - m_t = 176±13 GeV
 - $_{t\bar{t}} = 6.8^{+3.6}_{-2.4} \text{ pb}$
 - Background-only hypothesis rejected at 4.8

TOP Announcement

 March 2nd, 1995: First announcement of Top Discovery in public seminar at Fermilab

Discovery of lonely Tops

- 2009: Observation of top quarks in single top production
 - 5 by CDF & DØ!
- Single top: very challenging channel
 - Low signal: similar signature like W+jets!
 - Counting only: Uncertainty on background larger than expected signal single Top Quark Cross Section
 - \rightarrow use of multivariate techniques

Yvonne Peters

March 10th, 2009: Wine&Cheese seminar at Fermilab to announce single top observation

Yvonne Peters

Where Top Quarks can be produced: The Tevatron

- Tevatron: proton antiproton collisions
 - Run I: 1992-1996
 with √s=1.8 TeV
 - Run II: March 2001 to 30.09.2011, 14:00 with √s=1.96 TeV

Where Top Quarks can be produced: The LHC

- LHC: 7 (2011) or 8 (2012) TeV proton-proton collisions
 - Started operation in 2010
- Highest energies reached today
- Top Quark Factory

Top Quark Pair Production

- Via strong interaction At the Tevatron: proton 85% + 15%00000 antiproton At LHC (7 TeV cms energy): 15% + 85%Production cross section (@Tevatron):
 - NNLO+NNLL: $\sigma = 7.24^{+0.23}_{-0.27} pb$ @ m_t=172.5GeV
- About 20 times higher at LHC

Baernreuther, Cakon, Mitov, PLB 710, 612 (2012)

Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

B(t→W⁺b)=100%

Top Pair Branching Fractions

pure hadronic: ≥6 jets (2 b-jets)

dilepton:2 isolated leptons;High missing E_T forneutrinos; $\tau^{+\tau}$ 2 b-jets

Cross Section: General

The first thing we want to know: Production cross section

 $N_{production} = \sigma * L$

Cross Section: General

DESY

Cross Section: General

The first thing we want to know: Production cross section

Signal and background events

 e^+

dilepton

proton

antiproton

W+jets: Main background in l+jets

g 00000

antiproton W- \overline{q} Multijet: Modeled from Data Main background in

g 00000

allhadronic

pure hadronic

proton

17.09.2012

Yvonne Peters

Cross Section: Selection

- Knowing signal and background event signatures, we now need to enrich the data sample in signal events
- Important tools:
 - B-tagging
 - Multivariate analysis techniques

Selection: Example I+jets

Select according to topology and kinematics of the final state

Additional requirements on angles; e. g. angle between lepton and MET should not be back-to-back to reduce mismeasurements One isolated lepton with high p_{τ}

Large missing transverse energy to account of the neutrino

At least 4 jets with high p_{T} and central; sometimes certain number of tracks pointing to primary vertex required

Background Determinations: Multijet

Multijet Background Determination: The Matrix Method

 Matrix Method requires fake rate and true lepton rate

$$N_{loose} = N_{fake} + N_{W-like}$$
$$N_{tight} = \epsilon_{fake} * N_{fake} + \epsilon_{true} * N_{W-like}$$

- ϵ_{fake} : determined from multijet-dominated dataset
 - For example for low missing transverse energy → multijet dominated
- ϵ_{true} : can be either
 - determined from W+jets/tt MC sample (DØ), or
 - From tag and probe in Z+jets sample (ATLAS)

Background Determinations: W+jets

- Main background in I+jets final state: W+jets contribution
- Challenge:
 - Theory predictions not accurate enough for background determination (esp. for events with many jets)
 - W+heavy flavor relative to W+light flavor contribution not known precisely enough
- Various methods for determination of total W+jets contribution
 - Fit to Data before b-jet identification
 - W+jets determination example at Atlas: charge asymmetry method
- Heavy Flavor Fraction determination usually by comparing yields in different b-tag bins

W+jets background Determination: Asymmetry Method

- W-boson production at pp collider: charge asymmetric
 - $u\bar{d} \rightarrow W^+$ versus $d\bar{u} \rightarrow W^-$ (uud valence quarks, \bar{d},\bar{u} sea quarks)
- Well understood quantity:

$$r = \frac{\sigma(pp \to W^+)}{\sigma(pp \to W^-)}$$

W+jets background Determination: Asymmetry Method

- W-boson production at pp collider: charge asymmetric
 - $u\bar{d} \rightarrow W^+$ versus $d\bar{u} \rightarrow W^-$ (uud valence quarks, \bar{d},\bar{u} sea quarks)
- Well understood quantity: $r = \frac{\sigma(pp \rightarrow W^+)}{\sigma(pp \rightarrow W^-)}$
- Calculate W+jets using r:

$$N_{W^{+}} + N_{W^{-}} = \frac{N_{W^{+}}^{MC} + N_{W^{-}}^{MC}}{N_{W^{+}}^{MC} - N_{W^{-}}^{MC}} (D^{+} - D^{-}) = \frac{r_{MC} + 1}{r_{MC} - 1} (D^{+} - D^{-})$$

- D⁺ and D⁻: data with positive (negative) charged leptons
 - Using approximation that all other backgrounds are charge symmetric
- r_{MC}: evaluated using MC, using signal region kinematic cuts

B-Tagging

B-Tagging

Yvonne Peters

B-Tag Cross Section Example

- Example from DØ: b-tagging
 - Counting only
 - Main systematic uncertainty usually from b-tagging uncertainties

Cross Section: Other Methods

- Base signal-background separation on kinematic properties
 - Use many variables with small discrimination

Cross Section: Other Methods

- Base signal-background separation on kinematic properties
 - Use many variables with small discrimination
 - Combine using multivariate analysis technique

Multivariate Analysis Techniques

- Variety of various techniques on the market
 - Boosted decision trees, random forests, neural networks, etc.
- Example: decision tree
 - Idea: divide multi-dimensional event-space into cells
 - For each cell, estimate the purity
 - Chose cuts to separate high and low purity regions

Decision Trees Example

- Start with one node containing the full sample
 - Find the cut that maximizes a splitting criteria (e. g. purity separation)
 - Repeat this step on each new node
 - The final "leaves" are reached one a stopping criteria is reached
 - Purity of leaves used as discriminator
- These trees can be "boosted": misclassified events get increased weight for retraining of next tree

MVA Cross Section Example

- Example from DØ: cross section extraction using topological info
- Various combinations also possible
 - e. g. use MVA for some b-tag bins, counting in others...

 $I+jets; \geq 4 jets$

tt Cross Section Overview

- tt cross sections measured in all different final states
- Deviations between channels or from SM prediction could indicate new physics

tt Cross Section Overview

- tt cross sections measured in all different final states
- Deviations between channels or from SM prediction could indicate new physics
 CMS Preliminary, VS=7 TeV

tt Cross Section Overview

tt cross sections measured in all different final states

Yvonne Peters

tt Differential Cross Section

- Test of perturbative QCD calculations
- Generic probe of non-SM physics
- Mostly I+jets events used
 - Allows reconstruction of final state with good resolution
 - Use kinematic fit to reconstruct invariant tt mass
- Correct for experimental resolution, e. g. with regularized unfolding
 - After subtracting background from data
- Correction for acceptance on unfolded distributions

tt Differential Cross Section

- Test of higher-order QCD calculations
- Generic test of SM; e. g. narrow resonances in m₊₊

Single Top Cross Sections

Single top quark production via electroweak interaction

Collider	s-channel: σ_{tb}	t-channel: σ_{tqb}	Wt-channel: σ_{tw}
Tevatron: pp̄ (1.96 TeV)	1.04 pb	2.26 pb	0.28 pb
LHC: pp (7 TeV)	4.6 pb	64.6 pb	15.7 pb

- Wt-channel: negligible at the Tevatron
- s-channel: challenging at the LHC

The Challenge

- Production cross section about ½ of tt
- Single top signature similar to W+jets background

After Event Selection and before b-jet Identification

 Before b-jet identification: single top signal hardly visible!

After Event Selection and after b-jet Identification

- Before b-jet identification: single top signal hardly visible!
- After b-jet identification: single top visible – but uncertainty on background model larger than signal
- Extensive use of multivariate analysis techniques!
 - Less extreme at LHC: t-channel extraction via cut-based analysis possible

Training and cross section extraction

- Train MVA on
 - s+t channel using SM ratio between s- and t-channel
 - t-channel with s-channel as background in training (not in fit)
 - s-channel with t-channel as background in training (not in fit)
- Bayesian method to extract cross section results
 - Integration over systematic uncertainties (modeled as Gaussian priors)

Training and cross section extraction

- Train MVA on
 - s+t channel using SM ratio between s- and t-channel
 - t-channel with s-channel as background in training (not in fit)
 - s-channel with t-channel as background in training (not in fit)
- Bayesian method to extract cross section results

DESY

Single Top: Other Measurements

- s- and t-channel are differently sensitive to new physics
 - Measure both channels simultaneously
- Direct extraction of $V_{_{tb}}$ from single top cross section $|V_{th}|^2 \propto \sigma(s+t)$
 - No assumption about number

Summary Production

- Top production mechanisms: First thing to understand about top quarks
- Modeling of signal and background events crucial
- Various methods available to enrich data in signal events
 - b-tagging
 - Multivariate analysis techniques
- Single top: more challenging to measure
 → most properties measurements performed in tt̄

BACKUP