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Outline

 Part I: top quark production
 Tt production
 Single top production

 Part II: Properties
 Top quark mass
 Spin correlations

 Part III: Asymmetry and searches
 tt asymmetry
 Direct searches in the top sector (Overview)
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Part I: Production

 tt cross section
 Methods
 Background determination

 Differential cross sections

 Single top
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The Standard Model

 Described the fundamental particles and their interactions
 6 quarks and leptons + their antiparticles
 4 fundamental forces (Gravity not in SM)

 1960: Electromagnetic and weak interaction 
unification by S. Glashow

 Weinberg and Salam 1967: incorporated 
Higgs mechanism into SM

 1973: discovery of weak currents caused 
by Z → establishing of SM

 All this happened way before the discovery that a 3rd family 
existed!
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Brief History of the Top Quark
 1976: Discovery of Upsilon at Fermilab 

 Contains a 5th quark: the b-quark
→ Structure of quark families suggested existence of a 6th quark: the top

 From here on the race to find the top began

 Petra (e+e-): m
t
>23.3GeV in 1984

 Tristan (e+e-) in Japan: m
t
>30.2GeV in late 80s

 SPS (pp): discovery of W and Z in 1983

 UA1: m
t
>44GeV in 1988 

(after having an excess in 1984 
which they thought was evidence for top)

 LEP: m
t
>45.8GeV in 1990

 UA2: m
t
>69GeV  

 �  W → tb search channel closed down Year
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Brief History of the Top Quark

 Searching again for tt production with top mass above W mass

 1992: First lower limits on top from CDF (m
t
>91GeV)

 1994: First lower limits on top from DØ (m
t
>131GeV)

 Electroweak fits from 
LEP/SLC/Tevatron data: 
                   155GeV<m

t
<185GeV 

 Early 1994: “Evidence” for top at CDF
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Discovery Datasets

17 events

19 events

 February 24th 1995: Simultaneous submission of Top Discovery 
papers to PRL, by CDF and DØ

 50 pb-1 at DØ

 m
t
 = 199±30 GeV

 �
tt
 = 6.4±2.2 pb

 Background-only hypothesis rejected at 4.6�

 67 pb-1 at CDF

 m
t
 = 176±13 GeV

 �
tt
= 6.8+3.6

-2.4
 pb

 Background-only hypothesis rejected at 4.8�
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TOP Announcement

 March 2nd, 1995: First announcement of Top Discovery in public 
seminar at Fermilab
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Discovery of lonely Tops

 2009: Observation of top quarks in single top production

 5�  by CDF & DØ!

 Single top: very challenging channel
 Low signal: similar signature like W+jets!

 Counting only: Uncertainty on 
background larger than expected signal
→ use of multivariate techniques 
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Celebrating Single Top Discovery

 March 10th, 2009: Wine&Cheese seminar at Fermilab to 
announce single top observation
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Where Top Quarks can be 
produced: The Tevatron

 Tevatron: proton antiproton 
collisions
 Run I: 1992-1996 

with √s=1.8 TeV
 Run II: March 2001 to 

30.09.2011, 14:00 
with √s=1.96 TeV
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Where Top Quarks can be 
produced: The LHC

 LHC: 7 (2011) or 8 (2012) TeV proton-proton collisions 
 Started operation in 2010

 Highest energies reached today

 Top Quark Factory

12
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Top Quark Pair Production

 Via strong interaction

 At the Tevatron: 

      85%                                    + 15%

 Production cross section (@Tevatron): 
          NNLO+NNLL:                         @ m

t
=172.5GeV

 About 20 times higher at LHC

At LHC (7 TeV cms energy): 
       15%                                     + 85%

Baernreuther, Cakon, Mitov, PLB 710, 
612 (2012) 

=7.24−0.27
0.23 pb
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 Final States in tt

tt → W+bW-b : Final states are classified according to W decay

14

B(t→W+b)=100%
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 Final States in tt

pure hadronic:pure hadronic:
≥6 jets (2 b-jets)

lepton+jets:lepton+jets:
1 isolated lepton;
Missing E

T 
for neutrino;

≥4 jets (2 b-jets)

dilepton:dilepton:
2 isolated leptons;
High missing E

T
 for 

neutrinos;
2 b-jets  

15

tt → W+bW-b : Final states are classified according to W decay

B(t→W+b)=100%
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Cross Section: General

 The first thing we want to know: Production cross section

N production=∗L
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Cross Section: General

 The first thing we want to know: Production cross section

 Selection required

 Background 
modeling crucial

N production=∗L

N post−selection=∗L∗
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Signal and background events

19

lepton+jetslepton+jets dileptondilepton pure hadronicpure hadronic
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Signal and background events

W+jets:
Main background 
in l+jets

Z+jets:
Main background 
in dilepton

20

Multijet:
Modeled from Data
Main background in 
allhadronic

lepton+jetslepton+jets dileptondilepton pure hadronicpure hadronic
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Cross Section: Selection

 Knowing signal and background event signatures, we now need to 
enrich the data sample in signal events

 Important tools:
 B-tagging
 Multivariate analysis techniques
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Selection: Example l+jets

 Select according to topology and kinematics of the final state 

One isolated lepton with high p
T

Large missing transverse energy to 
account of the neutrino

At least 4 jets with high p
T
 and 

central; sometimes certain 
number of tracks pointing to 
primary vertex required

Additional requirements on 
angles; e. g. angle between 
lepton and MET should not be 
back-to-back to reduce 
mismeasurements 
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Background Determinations: 
Multijet

Multijet
W+jets

tt

Before Selection:
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Background Determinations: 
Multijet

Multijet
W+jets

tt

Multijet
W+jets
tt

Before Selection:

Require loose 
isolated lepton

N loose= N fake N W− like
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Background Determinations: 
Multijet

Multijet
W+jets

tt

Multijet
W+jets
tt

Multijet

W+jets
tt

Before Selection:

Require loose 
isolated lepton Require tight 

isolated leptonN loose= N fake N W− like

N tight= fake∗ N faketrue∗ NW−like



17.09.2012 Yvonne Peters 26

Background Determinations: 
Multijet

Multijet
W+jets

tt

Multijet
W+jets
tt

Multijet

W+jets
tt

Before Selection:

Require loose 
isolated lepton Require tight 

isolated leptonN loose= N fake N W− like

N tight= fake∗ N faketrue∗ NW−like

N
fake

 from MM 

equation
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Multijet Background 
Determination: The Matrix Method

 Matrix Method requires 
fake rate and 
true lepton rate

        : determined from multijet-dominated dataset
 For example for low missing transverse energy → multijet dominated

        : can be either 
 determined from W+jets/tt MC sample (DØ), or
 From tag and probe in Z+jets sample (ATLAS)

N loose= N fake N W− like

N tight= fake∗ N faketrue∗ NW−like

 fake

true
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Background Determinations: 
W+jets

 Main background in l+jets final state: W+jets contribution

 Challenge: 
 Theory predictions not accurate enough for background 

determination (esp. for events with many jets)
 W+heavy flavor relative to W+light flavor contribution not known 

precisely enough

 Various methods for determination of total W+jets contribution
 Fit to Data before b-jet identification
 W+jets determination example at Atlas: charge asymmetry method

 Heavy Flavor Fraction determination usually by comparing yields 
in different b-tag bins



17.09.2012 Yvonne Peters 29

W+jets background 
Determination: Asymmetry Method

 W-boson production at pp collider: charge asymmetric
 ud → W+ versus du → W- (uud valence quarks, d,u sea quarks)

 Well understood quantity:
r=

 ppW 
  ppW− 
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W+jets background 
Determination: Asymmetry Method

 W-boson production at pp collider: charge asymmetric
 ud → W+ versus du → W- (uud valence quarks, d,u sea quarks)

 Well understood quantity:

 Calculate W+jets using r:

 D+ and D-: data with positive (negative) charged leptons
 Using approximation that all other backgrounds are charge symmetric

 r
MC

: evaluated using MC, using signal region kinematic cuts 

r=
 ppW 
  ppW− 

NW N W− =
NW
MCNW−

MC

NW
MC−NW−

MC D
 −D− =

rMC1

rMC−1
D −D− 
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B-Tagging

Multijet

W+jets
tt

Multijet

W+jets
tt

b-jet 
identification

 Further enrichment of tt: b-jet identification
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B-Tagging

 Further enrichment of tt: b-jet identification

 B-Hadron: travels some millimeters 
before it decays

 Use properties of displaced vertices 
and/or displaced vertices to 
identify b-jets

Multijet

W+jets
tt

Multijet

W+jets
tt

b-jet 
identification
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B-Tag Cross Section Example

 Example from DØ: b-tagging
 Counting only
 Main systematic uncertainty usually from b-tagging uncertainties

l+jets; ≥4 jetsl+jets; 3 jets
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Cross Section: Other Methods

 Base signal-background separation on kinematic properties
 Use many variables with small discrimination

...
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Cross Section: Other Methods

 Base signal-background separation on kinematic properties
 Use many variables with small discrimination
 Combine using multivariate analysis technique

...
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Multivariate Analysis Techniques

 Variety of various techniques on the market
 Boosted decision trees, random forests, neural networks, etc.

 Example: decision tree
 Idea: divide multi-dimensional 

event-space into cells
 For each cell, estimate the purity
 Chose cuts to separate 

high and low purity regions
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Decision Trees Example

 Start with one node containing the full sample
 Find the cut that maximizes a splitting criteria (e. g. purity 

separation)
 Repeat this step on each new node
 The final “leaves” are reached one a 

stopping criteria is reached
 Purity of leaves used as discriminator

 These trees can be “boosted”: 
misclassified events get increased  
weight for retraining of next tree 
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MVA Cross Section Example

 Example from DØ: cross section extraction using topological info

 Various combinations also possible
 e. g. use MVA for some b-tag bins, counting in others...

l+jets; ≥4 jets
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tt Cross Section Overview

 tt cross sections measured in all different final states

 Deviations between channels or from SM prediction could indicate 
new physics
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tt Cross Section Overview

 tt cross sections measured in all different final states

 Deviations between channels or from SM prediction could indicate 
new physics
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tt Cross Section Overview

 tt cross sections measured in all different final states

 Deviations between channels or from SM prediction could indicate 
new physics

Tevatron

LHC 7TeV

LHC 8TeV
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tt Differential Cross Section

 Test of perturbative QCD calculations

 Generic probe of non-SM physics

 Mostly l+jets events used
 Allows reconstruction of final state with good resolution
 Use kinematic fit to reconstruct 

invariant tt mass

 Correct for experimental resolution, 
e. g. with regularized unfolding
 After subtracting background from data

 Correction for acceptance on 
unfolded distributions
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tt Differential Cross Section

 Test of higher-order QCD calculations

 Generic test of SM; e. g. narrow resonances in m
tt
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Single Top Cross Sections

 Single top quark production via electroweak interaction

 Wt-channel: negligible at the Tevatron

 s-channel: challenging at the LHC

Collider σ−χηαννε λ: �
tb

τ −χηαννε λ: 
�
tqb

Ωτ −χηαννε λ: �
tW

Tevatron: pp (1.96 
TeV)

1.04 pb 2.26 pb 0.28 pb

LHC: pp (7 TeV) 4.6 pb 64.6 pb 15.7 pb
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The Challenge

 Production cross section about ½ of tt

 Single top signature similar to W+jets background

 Other important backgrounds: 
                    tt                               and multijet

45
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After Event Selection and before
b-jet Identification

 Before b-jet 
identification: single top 
signal hardly visible!

2,3,4 jets and 
e,mu combined

46
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After Event Selection and after
b-jet Identification

2,3,4 jets and 
1,2 b-tags in 
e,mu 
combined

 Before b-jet 
identification: single top 
signal hardly visible!

 After b-jet identification: 
single top visible – but 
uncertainty on background 
model larger than signal

 Extensive use of multivariate 
analysis techniques!
 Less extreme at LHC: t-channel 

extraction via cut-based analysis possible

47
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Training and cross section 
extraction

 Train MVA on 

 s+t channel using SM ratio between s- and t-channel

 t-channel with s-channel as background in training (not in fit)

 s-channel with t-channel as background in training (not in fit)

 Bayesian method to extract cross section results

 Integration over systematic uncertainties (modeled as Gaussian priors)

 Example: t-channel 
trained discriminant

48
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Training and cross section 
extraction

 Train MVA on 

 s+t channel using SM ratio between s- and t-channel

 t-channel with s-channel as background in training (not in fit)

 s-channel with t-channel as background in training (not in fit)

 Bayesian method to extract cross section results

 Integration over systematic uncertainties (modeled as Gaussian priors)

 Example: t-channel 
trained discriminant

 LHC: t-channel 
much easier visible

49



17.09.2012 Yvonne Peters 50

Single Top: Other Measurements

 s- and t-channel are differently sensitive to new physics
 Measure both channels simultaneously

 Direct extraction of V
tb
 from 

single top cross section 
 No assumption about number 

of generations
 Assumption: 

|V
ts
|2+|V

td
|2 << |V

tb
|2

∣V tb∣
2∝st 
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Summary Production

 Top production mechanisms: 
First thing to understand about top quarks

 Modeling of signal and background events crucial

 Various methods available to enrich data in signal events
 b-tagging
 Multivariate analysis techniques

 Single top: more challenging to measure
→ most properties measurements performed in tt
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