

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

Part II: Properties

- Top Quark Mass:
 - Methods
 - Mass from cross section
- Spin Correlations
- Overview other properties

Top Quark Mass

- Free parameter of the SM
- Together with W mass: puts constraint on Higgs mass → selfconsistency check

- Measurement done with several methods: Template method, ideogram, matrix element, etc.
 - Methods also used for other analyses, e. g. W helicity & spin correlations

Top Quark Mass: Template Method

- Construct mass dependent template
- Compare MC for different top masses to data \rightarrow "done"

Top Quark Mass: Template Method

- Construct mass dependent template
- Compare MC for different top masses to data \rightarrow "done"
- Main systematic uncertainty: Jet Energy Scale

 Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

$$E_{jet}^{ptcl} = \frac{E_{jet}^{raw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$$

 E_{jet}^{ptcl} : corrected jet energy

- E_{jet}^{raw} : uncorrected jet energy
 - O: offset energy correction
 - F_{η} : relative response correction (η -intercalibration)
 - R: absolute response correction
 - S: showering correction
- k_{bias} : correction for remaining biases

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

$$E_{jet}^{ptcl} = \frac{E_{jet}^{raw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$$

 E_{jet}^{ptcl} : corrected jet energy

Offset: energy deposited within jet cone, not associated with primary interaction (e. g. noise)

 E_{jet}^{raw} : uncorrected jet energy d O: offset energy correction

- F_{η} : relative response correction $(\eta$ -intercalibration)
- R: absolute response correction
- S: showering correction

 k_{bias} : correction for remaining biases

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

$$E_{jet}^{ptcl} = \frac{E_{jet}^{raw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$$

 E_{jet}^{ptcl} : corrected jet energy

 E_{jet}^{raw} : uncorrected jet energy

Correct for non- O: uniformity of calorimeter F_{η} : versus eta (e. g. region between cryostats) R:

- offset energy correction
 relative response correction
 (η-intercalibration)
- R: absolute response correction
- S: showering correction
- k_{bias} : correction for remaining biases

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

$$E_{jet}^{ptcl} = \frac{E_{jet}^{raw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$$

- E_{jet}^{ptcl} : corrected jet energy
- Absolute response accounts for effects like E_{jet}^{raw} : energy loss in O: uninstrumented detector F_{η} : regions, lower calorimeter response to hadrons as compared to S: electrons/photons, etc.

- $O: \quad {\rm offset\ energy\ correction}$
 - relative response correction $(\eta$ -intercalibration)
- R: absolute response correction
- S: showering correction
- k_{bias} : correction for remaining biases

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

 $E_{jet}^{ptcl} = \frac{E_{jet}^{\eta \, aw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$

Showering correction: takes into account the energy deposited outside (inside) the calorimeter jet cone from particles inside (outside) the particle jet as a result of shower development in the calorimeter, magnetic field bending, etc k_{bi}

$$_{et}^{tcl}$$
: corrected jet energy

- E_{jet}^{raw} : uncorrected jet energy
 - O: offset energy correction
 - F_{η} : relative response correction (η -intercalibration)
 - R: absolute response correction
 - $S: \hspace{1em} \text{showering correction}$

 k_{bias} : correction for remaining biases

- Goal of jet energy scale (JES) correction: correct the calorimeter jet energy back to the stable-particle jet level, before interaction with the detector CH
- Several corrections involved:

$$E_{jet}^{ptcl} = \frac{E_{jet}^{raw} - O}{F_{\eta} \cdot R \cdot S} \cdot k_{bias}$$

$$E_{jet}^{ptcl}$$
: corrected jet energy

- E_{jet}^{raw} : uncorrected jet energy
 - $O: \quad {\rm offset\ energy\ correction}$
 - F_{η} : relative response correction (η -intercalibration)
 - R: absolute response correction
 - S: showering correction
- k_{bias} : correction for remaining biases

Remaining biases: correct for kinematic effects, etc.

Top Quark Mass: Template Method

- Construct mass dependent template
- Compare MC for different top masses to data → "done"
- Main systematic uncertainty: Jet Energy Scale
 - In-situ calibration

Top Quark Mass: Template Method

- Construct mass dependent template
- Compare MC for different top mass $\epsilon \geq 0.14$
- Main systematic uncertainty: Jet En ^N/₂
 - In-situ calibration

Template Methods Dilepton

- Dilepton: Construction of templates more complicated due to presence of two neutrinos
 - I+jets: missing neutrino info can be extracted from W mass constraint

- Additional complication: No hadonically decaying
 W for in-situ JES calibration → larger uncertainties
- Neutrino weighting, Matrix Weighting,...

Top Quark Mass: Matrix Element Method

- Use full event kinematics \rightarrow most precise method
- For each event calculate probability to belong to certain top mass

Matrix Element Method: Extraction

- In the same way as signal probabilities, calculate background probabilities P_{bkg}(x)
- Per-event probability:

$$P_{\mathit{evt}}(x, m_{\mathit{top}}) = f_{\mathit{sig}} P_{\mathit{sig}}(x, m_{\mathit{top}}) + (1 - f_{\mathit{sig}}) P_{\mathit{bkg}}(x)$$

- f_{sig}: fraction of signal events in data sample
- Perform event-by-event likelihood:

Yvonne Peters

 $-\ln L(m_{top}) = -\ln \prod_{i}^{n} P_{evt}(x, m_{top})$

Matrix Element Method: Extraction

- Likelihood of the mulitplied event probabilities:
- Problem: several assumptions are included in the method
 - LO ME
 - Background probabilities might be simplified
 - Assumptions of the generator...
 - \rightarrow extracted top mass not directly the measured mass
- Calibration needed!

Matrix Element Method: Calibration

- 1) Use fully simulated MC samples of different top quark masses
- 2) Measure the mass for each sample
 - Using an ensemble of pseudo-data from this sample; for each pseudo-dataset the randomly chosen events follow the number of expected signal and background events in data
 - Extract top mass for each pseudo-dataset
- 3) Extract calibration curve
 - For central value and uncertainty

Fitted Results

Extraction of top mass and in-situ JES factor simultaneously

Mass Overview

Several top mass measurements in several channels with several techniques performed at Tevatron and LHC

Total uncertainty <1%!</p>

- Mass measurements: dominated by systematic uncertainties
- Several categories are related to MC modeling
 - Initial state radiation (ISR)
 - Color reconnection

- Main focus at experiments: understand and reduce these systematic contributions
 - Preferentially using measurements on data; not only simulation
 - Example: jet veto analysis used to reduce ISR

Top Quark Mass: Be aware

- Ongoing discussion: What is theoretical interpretation of the measured parameter?
 - We measure the Monte Carlo top mass parameter
 - Is it the pole mass?
 - Parton showers simulate higher orders

$$\frac{1}{p^2 - M_t^2 - i\Gamma_t M_t}$$

But not all components included

Top Quark Mass: Be aware

- Alternative method: Extract m, from cross section measurement
 - Assuming pole or MS mass
 - For parameter in MC; For theory calculation
- Pole mass: $m_t = 167.5^{+5.2}_{-4.7} GeV$
- Assuming MS mass leads to ~7 GeV smaller value
- World average more compatible with pole mass

170

- By now some MC gets on the market with all necessary diagrams
 - No on-shell top quark only
 - So far only dilepton final state
- Should be possible to soon get a better feeling of what it is that we measure

- Short lifetime of top quarks ($\sim 0.5*10^{-25}$ s) → Top quarks decay before fragmentation
 - Spin information of top is preserved

- Short lifetime of top quarks ($\sim 0.5*10^{-25}$ s) → Top quarks decay before fragmentation
 - Spin information of top is preserved

Test full chain from production to decay

- Various methods on the market
 - Template methods
 - Matrix element methods

- Various methods on the market
 - Template methods
 - Matrix element methods
- Differential cross section:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 - C \cos \theta_1 \cos \theta_2)$$

- Dilepton: Angle of (anti)lepton wrt. spin axis in (anti)top rest-frame
- C: spin correlation strength
- NLO SM: C≈0.78

 $C = \frac{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) - N\left(\uparrow\downarrow\right) - N\left(\downarrow\uparrow\right)}{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) + N\left(\uparrow\downarrow\right) + N\left(\downarrow\uparrow\right)}$

- Various methods on the market
 - Template methods
 - Matrix element methods
- Differential cross section:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 - C \cos \theta_1 \cos \theta_2)$$

- Dilepton: Angle of (anti)lepton wrt. spin axis in (anti)top rest-frame
- C: spin correlation strength
- NLO SM: C≈0.78

 $C = \frac{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) - N\left(\uparrow\downarrow\right) - N\left(\downarrow\uparrow\right)}{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) + N\left(\uparrow\downarrow\right) + N\left(\downarrow\uparrow\right)}$

17.09.2012

- Various methods on the market
 - Template methods
 - Matrix element methods

- Various methods on the market
 - Template methods
 - Matrix element methods
- For each event calculate probability to belong to certain hypothesis H
 - Similar strategy as for top quark mass

$$P_{sig}(x;H) = \frac{1}{\sigma_{obs}} \int \sum_{flavors} dq_1 dq_2 dy f(q_1) f(q_2) \sigma(y;H) W(x,y)$$

Matrix Elements for Spin

 (y,H) depends on sum over final colors and spins of matrix elements squared

Calculation taken from Mahlone,Parke

$$\sum |\mathscr{M}|^2 = \frac{(1+H)}{2} \frac{g_s^4}{9} F\overline{F} \left(2 - \beta^2 s_{qt}^2\right) - H \frac{g_s^4}{9} F\overline{F} \Delta$$

Matrix Elements for Spin

 (y,H) depends on sum over final colors and spins of matrix elements squared

Kinematics of top and antitop quark decay

Calculation taken from Mahlone,Parke

$$\sum |\mathscr{M}|^2 = \frac{(1+H)}{2} \frac{g_s^4}{9} F\overline{F} \left(2 - \beta^2 s_{qt}^2\right) - \frac{H \frac{g_s^4}{9} F\overline{F} \Delta}{9}$$

This makes the difference between the matrix element with and without spin correlations taken into account

$$=\frac{(1-c_{\overline{\ell}q}c_{\ell\overline{q}})-\beta(c_{\ell\overline{t}}+c_{\overline{\ell}t})+\beta c_{qt}(c_{\overline{\ell}q}+c_{\ell\overline{q}})+\frac{1}{2}\beta^2 s_{qt}^2(1-c_{\overline{\ell}\ell})}{\gamma^2(1-\beta c_{\overline{\ell}t})(1-\beta c_{\ell\overline{t}})}$$

Transformation to Templates

Calculate probability with the two matrix elements and define a discriminator R: 0.15 Normalized

$$R = \frac{P_{\rm sgn}(H=1)}{P_{\rm sgn}(H=0) + P_{\rm sgn}(H=1)}$$

Melnikov, Schulze

- Templates based on MC@NLO MC, defining R with and without spin correlation
- ~30% improvement over template method!

0.35

0.4

0.3

0.6

0.5

0.45

0.55

In recent years, enough data was collected to be sensitive to spin correlations

Spin Correlations at LHC

- Simple variable in dilepton channel: $\Delta \phi = |\phi_{l+} \phi_{l-}|$
 - No reconstruction of tt system needed!

Spin Correlations at LHC

- like helicity gluons at low \sqrt{s}
- Complementary between Tevatron and LHC Simple variable in dilepton channel: $\Delta \phi = |\phi_{l+} - \phi_{l-}|$
 - No reconstruction of tt system needed!

Overview other Properties Analyses

- Mass and spin correlations just two examples of top properties analyses
- To understand whether the particle discovered in 1995 is really the SM top: all possible properties need to be considered
 - Top quark charge
 - Decay properties
 - Correlations
 - ...

W helicity:

Left handed coupling of W-boson to fermions:

Not every combination of spin for W and b-quark is allowed

SM: R=1, constrained by CKM unitarity

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}^{2}|}{|V_{td}^{2}| + |V_{ts}^{2}| + |V_{tb}^{2}|}$$

R<1 could indicate new physics</p>

Branching ratios $|V_{tb}|$ Anomalous coupling New/Rare decays

Spin correlation Charge asymmetry Color flow

s- & t- channel production, properties and searches in single top events

- Jets carry color, and are thus color connected to each other
 - Study color flow of decay products from W boson

Branching ratios |V_{tb}| Anomalous coupling New/Rare decays

Spin correlation Charge asymmetry Color flow

s- & t- channel production, properties and searches in single top events

Top mass Top mass difference Top charge Lifetime Top width

- Direct determination challenging due to detector resolution
- Indirect determination: combination of single top cross section measurement and ratio of branching fraction determination

$$\Gamma_{t} = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}$$

Top mass Top mass difference Top charge Lifetime Top width

Production cross sectio Production kinematics Production via resonan New particles

- Exotic model with top charge -4/3 e could be possible (SM: +2/3e)
 - Get info on charge of b-jets to distinguish the charges
 - By now exotic model excluded
- Charge measurement via tt+gamma: more precise, not done yet

W.

Summary Mass & Spin Correlations

- Top quark mass: free parameter in the SM
 → precise determination important
- Several methods were developed for a precise top quark mass measurement
 - Many are used for other analyses also (e. g. spin correlation)
- Still ongoing discussion what quantity we measure
 - Pole mass? Close to pole mass?

- - Complementary measurements at Tevatron and LHC

BACKUP

The Top Quark

- Heaviest known elementary particle: m_t=173.3±1.1GeV
 - arXiv:1007.3178

- Standard Model:
 - Single or pair production
 - Electric charge +2/3 e
 - Short lifetime 0.5x10⁻²⁴s
 - Bare quark no hadronization
 - ~100% decay into Wb
 - Large coupling to SM Higgs boson

