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Part II: Properties

 Top Quark Mass: 
 Methods
 Mass from cross section

 Spin Correlations

 Overview other properties
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Top Quark Mass

 Free parameter of the SM

 Together with W mass: puts constraint on Higgs mass → self-
consistency check

 Measurement done with several methods:
Template method, ideogram, matrix element, etc.
 Methods also used for other analyses, e. g. W helicity & spin correlations
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector

 Several corrections involved:

Offset: energy deposited 
within jet cone, not 

associated with primary 
interaction (e. g. noise)
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector

 Several corrections involved:

Correct for non-
uniformity of calorimeter 
versus eta (e. g. region 

between cryostats)
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector

 Several corrections involved:

Absolute response  
accounts for effects like 
energy loss in 
uninstrumented detector 
regions, lower 
calorimeter response to 
hadrons as compared to 
electrons/photons, etc.
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector

 Several corrections involved:

Showering correction: 
takes into account the 
energy deposited 
outside (inside) the 
calorimeter jet cone 
from particles inside 
(outside) the particle jet 
as a result of shower 
development in the 
calorimeter, magnetic 
field bending, etc
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Intermezzo: Jet Energy Scale

 Goal of jet energy scale (JES) correction:  correct the calorimeter 
jet energy back to the stable-particle jet 
level, before interaction with the detector

 Several corrections involved:

Remaining biases: 
correct for kinematic 
effects, etc. 
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale

 In-situ calibration

Constrain invariant 
mass of jets from W 
to known W mass
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Top Quark Mass: 
Template Method

 Construct mass dependent template

 Compare MC for different top masses to data → “done”

 Main systematic uncertainty: Jet Energy Scale

 In-situ calibration

Constrain invariant 
mass of jets from W 
to known W mass
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Template Methods Dilepton

 Dilepton: Construction of templates more 
complicated due to presence of two neutrinos

 l+jets: missing neutrino info can be extracted from W mass 
constraint

 Additional complication: No hadonically decaying 
W for in-situ JES calibration → larger uncertainties

 Neutrino weighting, Matrix Weighting,..
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Top Quark Mass: 
Matrix Element Method

 Use full event kinematics → most precise method

 For each event calculate probability to belong to certain top mass

P sig x ;mtop=
1

obs
∫∑ flavors

dq1dq2 dy f q1 f q2  y ; mtopW  x , y 

PDFs Matrix element 
& phase space

Transfer function: 
mapping of true 
momenta y to 
measured momenta x
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Matrix Element Method: Extraction

 In the same way as signal probabilities, calculate background 
probabilities P

bkg
(x)

 Per-event probability: 

 f
sig

: fraction of signal events in data sample

 Perform event-by-event likelihood: 

P evt  x ,mtop= f sig Psig x ,m top1− f sigPbkg  x

−ln L mtop=−ln∏i

n
Pevt  x ,mtop
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Matrix Element Method: Extraction

 Likelihood of the mulitplied event probabilities:

 Problem: several assumptions are 
included in the method
 LO ME
 Background probabilities 

might be simplified
 Assumptions of the generator...

→ extracted top mass not directly 
the measured mass

 Calibration needed!
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Matrix Element Method: 
Calibration

 1) Use fully simulated MC samples of different top quark masses

 2) Measure the mass for each sample
 Using an ensemble of pseudo-data from this sample; for each 

pseudo-dataset the randomly chosen events follow the number of 
expected signal and background events in data

 Extract top mass for each pseudo-dataset

 3) Extract calibration curve
 For central value and uncertainty
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Fitted Results

 Extraction of top mass and in-situ JES factor simultaneously



17.09.2012 Yvonne Peters 21

Mass Overview

 Several top mass measurements in several channels with several 
techniques performed at Tevatron and LHC

 
 Total uncertainty <1%!
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Systematics

 Mass measurements: dominated by systematic uncertainties

 Several categories are related to MC modeling
 Initial state radiation (ISR)
 Color reconnection
 …

 Main focus at experiments: understand and reduce these 
systematic contributions
 Preferentially using measurements on data; not only simulation
 Example: jet veto analysis used to reduce ISR
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Top Quark Mass: Be aware

 Ongoing discussion: What is theoretical interpretation of the 
measured parameter?
 We measure the Monte Carlo top mass parameter
 Is it the pole mass? 

 Parton showers simulate 
higher orders

 But not all components included

Included in MC Not included in MC (also 
not NLO MC like MC@NLO!)
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Top Quark Mass: Impact of Mass 
Definition

Top mass world 
average interpreted 
as pole mass M

t
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SM Higgs of mass 
~125GeV
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Top Quark Mass: Impact of Mass 
Definition

Top mass world 
average interpreted 
as pole mass M

t

Top mass world 
average interpreted 
as MS mass

SM Higgs of mass 
~125GeV

Difference between 
MS and pole mass 
about 10GeV
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Top Quark Mass: Be aware

 Alternative method: Extract m
t
 from cross section measurement

 Assuming pole or MS mass
 For parameter in MC; For theory calculation

 Pole mass:

 Assuming MS mass 
leads to ~7 GeV 
smaller value

 World average more 
compatible with 
pole mass

mt=167.5 – 4.7
5.2GeV
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NLO MC

 By now some MC gets on the market with all necessary diagrams
 No on-shell top quark only
 So far only dilepton final state

 Should be possible to soon get a better feeling of what it is that 
we measure
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tt Spin Correlations

 Short lifetime of top quarks (~0.5*10-25s)
→ Top quarks decay before fragmentation
 Spin information of top is preserved 

Left-handed coupling
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H+

tt Spin Correlations

 Short lifetime of top quarks (~0.5*10-25s)
→ Top quarks decay before fragmentation
 Spin information of top is preserved

New Physics in 
decay could change 
configuration

Left-handed coupling
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tt Spin Correlations

 Top Quarks produced unpolarized 
→ but spin correlation of top and 
antitop can be extracted

 

Dominant 
spin correlation at LHC

Dominant 
spin correlation at Tevatron
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tt Spin Correlations

 Top Quarks produced unpolarized 
→ but spin correlation of top and 
antitop can be extracted

 

Dominant 
spin correlation at LHC

Dominant 
spin correlation at Tevatron

? ?

New Physics in 
production could 
change configuration
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tt Spin Correlations

 Top Quarks produced unpolarized 
→ but spin correlation of top and 
antitop can be extracted

 

 Test full chain from production to decay

Dominant 
spin correlation at LHC

Dominant 
spin correlation at Tevatron

New Physics in 
production could 
change configuration

? ?

Complementar
y between 

Tevatron and 
LHC
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tt Spin Correlations

 Various methods on the market
 Template methods
 Matrix element methods
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tt Spin Correlations

 Various methods on the market
 Template methods
 Matrix element methods

 Differential cross section:

 Dilepton: Angle of (anti)lepton wrt. 
spin axis in (anti)top rest-frame

 C: spin correlation strength
 NLO SM: C≈0.78

1


d 2
d cos1 d cos2

=1
4
1−C cos1cos2

C=N   N   −N  −N   
N   N   N  N   

Spin analysing 
basis

top quark rest 
frame; in tt cmf
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tt Spin Correlations

 Various methods on the market
 Template methods
 Matrix element methods

 Differential cross section:

 Dilepton: Angle of (anti)lepton wrt. 
spin axis in (anti)top rest-frame

 C: spin correlation strength
 NLO SM: C≈0.78

1


d 2
d cos1 d cos2

=1
4
1−C cos1cos2

C=N   N   −N  −N   
N   N   N  N   

Spin analysing 
basis

top quark rest 
frame; in tt cmf
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tt Spin Correlations

 Various methods on the market
 Template methods
 Matrix element methods
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tt Spin Correlations

 Various methods on the market
 Template methods
 Matrix element methods

 For each event calculate probability 
to belong to certain hypothesis H
 Similar strategy as 

for top quark mass

P sig x ; H = 1
obs

∫∑ flavors
dq1dq2 dy f q1 f q2  y ; H W  x , y 
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Matrix Elements for Spin

 � (y,H) depends on sum over final colors and spins of matrix 
elements squared

Calculation taken from 
Mahlone,Parke
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Matrix Elements for Spin

 � (y,H) depends on sum over final colors and spins of matrix 
elements squared

Kinematics of top and antitop quark decay

This makes the difference between the matrix element 
with and without spin correlations taken into account

Calculation taken from 
Mahlone,Parke
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Transformation to Templates

 Calculate probability with the two matrix elements and define a 
discriminator R:

 Templates based on MC@NLO MC, defining 
R with and without spin correlation

 ~30% improvement over template method!

Melnikov, Schulze
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tt Spin Correlations

 In recent years, enough data was collected to be sensitive to spin 
correlations

First evidence for non-
vanishing tt spin correlations!



17.09.2012 Yvonne Peters 43

Spin Correlations at LHC

 LHC: 85% gg → tt: dominated by 
like helicity gluons at low √s

 Simple variable in dilepton channel:
 No reconstruction of tt system needed!

=∣l−l−∣
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Spin Correlations at LHC

 LHC: 85% gg → tt: dominated by 
like helicity gluons at low √s

 Simple variable in dilepton channel:
 No reconstruction of tt system needed!

=∣l−l−∣

Atlas:
First observation for non-
vanishing tt spin correlations!

Complementar
y between 

Tevatron and 
LHC
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Overview other Properties 
Analyses

 Mass and spin correlations just two examples of top properties 
analyses

 To understand whether the particle discovered in 1995 is really 
the SM top: all possible properties need to be considered
 Top quark charge
 Decay properties
 Correlations
 ...
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events

 W helicity: 
Left handed coupling of W-boson to fermions: 
Not every combination of spin for W and b-quark is allowed
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events

 SM: R=1, constrained by CKM unitarity

 R<1 could indicate new physics

R=
B tWb
B tWq

=
∣V tb

2∣
∣V td

2∣∣V ts
2∣∣V tb

2∣
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events

 Jets carry color, and are thus color 
connected to each other

 Study color flow of decay products from 
W boson
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events

 t=
 tWb
B  tWb

 Direct determination challenging due 
to detector resolution

 Indirect determination: combination 
of single top cross section 
measurement and ratio of branching 
fraction determination
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All we (did and do) study about 
the Top

Branching ratios
|V

tb
|

Anomalous coupling
New/Rare decays

W helicity

Production cross section
Production kinematics
Production via resonance
New particles

Top mass
Top mass difference
Top charge
Lifetime
Top width

Spin correlation
Charge asymmetry
Color flow

s- & t- channel production, 
properties and searches in 
single top events

 Exotic model with top charge -4/3 e could 
be possible (SM: +2/3e)

 Get info on charge of b-jets to 
distinguish the charges

 By now exotic model excluded

 Charge measurement via 
tt+gamma: more precise, 
not done yet

�

q

t

t

b

b

q'

l+

W

W
l+
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Summary Mass & Spin Correlations

 Top quark mass: free parameter in the SM 
→ precise determination important

 Several methods were developed for a precise top quark mass 
measurement
 Many are used for other analyses also (e. g. spin correlation)

 Still ongoing discussion what quantity we measure
 Pole mass? Close to pole mass?

 tt spin correlations: first evidence at DØ and first observation at 
Atlas
 Complementary measurements at Tevatron and LHC



  

BACKUP
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The Top Quark

 Heaviest known elementary particle: 
                              m

t
=173.3±1.1GeV

 Standard Model:
 Single or pair production
 Electric charge +2/3 e
 Short lifetime 0.5x10-24s

 Bare quark - no hadronization
 ~100% decay into Wb
 Large coupling to SM Higgs boson

arXiv:1007.3178

59

http://arxiv.org/pdf/1007.3178
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