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Part III: Asymmetry and Searches

 tt Asymmetries
 Tevatron
 LHC
 Related analyses

 Searches in the top sector
 Overview
 Search for dark matter
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tt Production at Tevatron and LHC

 tt production via strong interaction

 At Tevatron: 

       85%                                   + 15%

 At LHC: 
14 TeV:  10%                                   + 90%

7 TeV:    15%                                + 85%
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tt Production at Tevatron and LHC

 tt production via strong interaction

 At Tevatron: 

       85%                                   + 15%

 At LHC: 
14 TeV:  10%                                   + 90%

7 TeV:    15%                                + 85%
 

Asymmetry in qq

Asymmetry in qq

No asymmetry in gg

No asymmetry in gg
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Asymmetry Idea

+

+
 LO: No charge asymmetry expected

 NLO QCD: Interference between qq diagrams

 Asymmetry in QCD:Interference of C=1 and C=-1 amplitudes are odd 
under t ↔ t    → cause asymmetry

 Tree level and box diagrams:

 Positive asymmetry

 

 Initial and final state radiation:

 Negative asymmetry
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Asymmetry Definitions

 Do top quarks follow preferentially 
the initial quark or antiquark direction?

 Several asymmetry definitions can be studied

y=1
2

ln 
E pz
E− pz



In tt rest frame: 
check how often top is 
in direction of proton 
momentum
(at Tevatron)� y>0 � y<0

=−ln tan /2or
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Asymmetry Definitions

 Several asymmetry definitions can be studied
 tt Forward backward asymmetry

 Lepton based asymmetry

 Sensitive to polarization of the top quark
 Complementary information to forward-backward asymmetry

AFB
t t =

N  y0−N  y0
N  y0N  y0

AFB
l =

N q l y l0−N ql y l0
N q l y l0N ql y l0

� y= y
t
 - y

t

y=1
2

ln 
E p z
E− p z


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Tevatron and LHC Difference

 Tevatron: pp is CP eigenstate → pp (LHC) is not
→ different way to measure the effect at Tevatron and LHC

AFB
t t =

N  y0−N  y0
N  y0N  y0

Tevatron

y=1
2

ln 
E p z
E− p z



� y= y
t
 - y

t
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Tevatron and LHC Difference

 Tevatron: pp is CP eigenstate → pp (LHC) is not
→ different way to measure the effect at Tevatron and LHC

 LHC: Quarks valence quarks, antiquark always from the sea 
→ antitop less boosted and more central than top in case of asymmetry 

AFB
t t =

N  y0−N  y0
N  y0N  y0

LHCTevatron

y=1
2

ln 
E p z
E− p z



� y= y
t
 - y

t
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Tevatron and LHC Difference

 Tevatron: pp is CP eigenstate → pp (LHC) is not
→ different way to measure the effect at Tevatron and LHC

 LHC: Quarks valence quarks, antiquark always from the sea 
→ antitop less boosted and more central than top in case of asymmetry 

 LHC: Measure charge asymmetry

AC=
N ∣y∣0−N ∣y∣0
N ∣y∣0N ∣y∣0

AFB
t t =

N  y0−N  y0
N  y0N  y0

LHCTevatron

y=1
2

ln 
E p z
E− p z



� y= y
t
 - y

t
� |y|= |y

t
| - |y

t
|
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Asymmetry Analyses

 Asymmetries measured at all 4 experiments
 In l+jets and dilepton final states

 Deviation of asymmetry from SM prediction seen at DØ and CDF

→ caused quite some interest
 No deviation seen at the LHC for charge asymmetry 

 Analysis strategy:
 Reconstruct tt system (not necessary for leptonic asymmetry)
 Extract raw asymmetry
 Unfold 
 Additionally: check of modeling and dependencies



18.09.2012 Yvonne Peters

tt Reconstruction 
 L+jets: kinematic fit to reconstruct full event, using

 Fixed top mass

 Two jets have to have m
jj
=m

W

 B-jet identification

 Experimental resolutions 
taken into account

 Dilepton: also kinematic fitter, but more dof (2 neutrinos) → use a priori 
probability distributions as input, calculate probability (neutrino 
weighting)
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Extract the raw Asymmetries

 Step 1: estimate background
 DØ: Background fitted 

with likelihood discriminant
 CDF: background estimate from MC

Discriminant with y0
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Extract the raw Asymmetries

 Step 1: estimate background
 DØ: Background fitted 

with likelihood discriminant
 CDF: background estimate from MC

 Step 2: get 
distribution and 
subtract background

Discriminant with

 y

 y0
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Extract the raw Asymmetries

 Step 1: estimate background
 DØ: Background fitted 

with likelihood discriminant
 CDF: background estimate from MC

 Step 2: get 
distribution and 
subtract background

 Check modeling of background in 
background-dominated control samples

Discriminant with

 y

 y0
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Unfolding

 Detector and resolution effects
 Smearing of true info
 No direct comparison between results of different experiments and 

to theory predictions possible

 Unfolding: Correct for acceptance & resolution effects

 Requires knowledge of the acceptance and detector resolution 

Example from G. Cowan
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Unfolding

 Step 3: unfold the result to particle level

 CDF: 4 bin matrix inversion in � y (edges: -3, -1, 0, 1, 3)

 A: (diagonal) acceptance matrix
 S: migration matrix

 DØ: regularized unfolding 
using TUnfold from ROOT

 Regularization: “low pass filter” to 
filter out wild fluctuations

 Better statistical strength 
than 4 bin matrix inversion

n production=A
−1S−1 n reco
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Post-Unfolding

1) Raw distribution 
before background 
subtraction

2) Raw distribution 
after background 
subtraction

3) Unfolded distribution 
(directly comparable to 
theory predictions)
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Inclusive Asymmetries (l+jets)

 Results after unfolding: 

 Statistically limited

 Lepton-based asymmetries:

 Very good resolution → unfolding easy

 DØ (l+jets): A
FB

l=14.2±3.8% 

(MC@NLO pred: 0.8±0.6%)

→ ~3 sigma away from prediction!

 CDF: A
FB

l=6.6±2.5% 

(NLO (QCD+EW) prediction: 1.6%)

CDF: A
FB

tt= 16.2 ± 4.7%  

(NLO (QCD+EW) prediction: 6.6%)
DØ: A

FB
tt=19.6±6.5% 

 Atlas: A
C
=-0.019±0.028(stat)

±0.024(syst)
 Consistent with MC@NLO 

prediction of 0.006±0.002
 CMS: A

C
=0.004±0.010 (stat)

±0.012(syst)

LHC results

mailto:MC@NLO
mailto:MC@NLO
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Dependencies

 Asymmetry depends on several variables (m
tt
, rapidity, etc.)

 BSM could show a different mass dependence than in SM

 No dependency 
seen at LHC
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Modeling Issues

 Asymmetry measurement sensitive to several things

 Number of jets

+ +
Positive asymmetry Negative asymmetry; additional jet!
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Modeling Issues

 DØ: Noted a dependence on p
T
tt

 p
T
tt: sensitive to additional radiation

 Switching angular 
coherence between top and 
initial parton shower on/off 
→ different dependency

 Top pair p
T
 difficult to model in data

                                                                  

angular coherence off

angular coherence on

No ISR
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Discriminate New Physics Models

 What if the asymmetry is caused by physics beyond the SM?
 Further measurements needed to distinguish the models

 Several ideas (by theorists) on further measurements
 Enhance qq fraction at LHC with velocity cuts
 Measure leptonic asymmetry (done already!)

 Many models predict different behaviour of both
 Measure asymmetry at threshold

 Measure the relative contribution of q
L
q

L
 and q

R
q

R
 of tt production (at 

threshold)
→ many models enhance one of these fractions

 Top quark polarization
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Top Polarization

 Various BSM models predicting asymmetry>SM, predict also top 
polarization !=0 

P
n
: polarization;    : spin analyzing power of decay product i; 

  : direction of daughter wrt. chosen axis

 First study done by DØ: good agreement with SM
 Reconstruction done 

with neutrino 
weighting

 Plots are at 
Reco level

 CMS: measured 
polarization compatible with 0

l+jets dilepton

i
i
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Tevatron and LHC – Model 
consideration

 NP models can predict different asymmetry at Tevatron and LHC

 LHC measurements disfavor several models
 Z': outside the measurement
 Other models: tension with CDF's mass dependence

inclusive m
tt
>450GeV
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Summary Asymmetry

 Asymmetry: example for measurement deviating from SM
 Excitement in experimental and theory community

 Deviation: Hint for new physics – or something else?
 Missing parts in theory calculation?
 Some modeling?

 Complementary measurements at Tevatron and LHC 
 No deviation seen at LHC
 Exclusion of several models possible
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Searches in the Top Sector

 Top quark heavy, large coupling to Higgs
 Considered a special window to new physics

 A variety of direct searches have been performed in the top 
sector

 t', Z', W', H+, stop, FCNC, boosted top, ttH,...
 A variety of methods is used

 Classical “bump” searches (e. g. tt resonances)
 Multivariate techniques (ttH)
 Checking for deviations from SM between different decay 

channels (H+)
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Example: Dark Matter Search at 
the LHC via tt+E

T
 SM only describes ~4% of what 

the universe is made of
 Most is dark energy and dark matter

 Candidates for dark matter cold be 
some long lived particle, 
interacting weakly
 Lightest SuSy particle (neutralino)

→ no interaction in the detector: large E
T

 Dark matter search example in the top sector: production of pair 
of exotic top partners T

 T decaying into top and stable, neutral weakly interacting particle A
0

 pp → TT → ttA
0
A

0 
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Search in tt+E
T

 Supersymmetric models: T is stop quark; A
0
 the neutralino 

 Other model interpretation of this search possible

 Select events with tt l+jets final state 

 Large E
T
 (>100GeV) and large transverse mass of lepton and E

T
 

(m
T
>150GeV)
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Search in tt+E
T

 Supersymmetric models: T is stop quark; A
0
 the neutralino 

 Other model interpretation of this search possible

 Select events with tt l+jets final state 

 Large E
T
 (>100GeV) and large transverse mass of lepton and E

T
 

(m
T
>150GeV)

 Main background: SM tt events

 e. g. if lepton misses 
acceptance of detector

 Check for various mass 
combinations of T and A

0

 Grid of 300GeV≤m(T)≤450GeV
and 10GeV≤m(A

0
)≤150GeV
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Limits

 No deviation from SM prediction 
can be seen  → set exclusion limits

 Exclusion limits on cross section 
times Br(TT → ttA

0
A

0
)

 95% CL

 For spin-1/2 TT models: set limits on 
parameter space of T and A

0
 mass
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Summary

 Exciting times of top quark physics!
 At all experiments 

(despite my biased selection purely based on where I have more direct insight)

 Even after Higgs discovery: still the heaviest known elementary 
particle
 Special role in search for new physics
 Top-Higgs Yukawa coupling important to measure

 (predicted to be ~1)

 LHC: top quark factory 
 Still a lot to explore 8-)



  

BACKUP
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The Top Quark

 Heaviest known elementary particle: 
                              m

t
=173.3±1.1GeV

 Standard Model:
 Single or pair production
 Electric charge +2/3 e
 Short lifetime 0.5x10-24s

 Bare quark - no hadronization
 ~100% decay into Wb
 Large coupling to SM Higgs boson

arXiv:1007.3178

46

http://arxiv.org/pdf/1007.3178
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