The Hunt For The Higgs Boson

Vivek Sharma University of California, San Diego

RC Physics Serfool 2012

LHC Fireworks On July 4th: Discovery Of A New Boson With Mass Near 125 GeV

Lecture Plan

Lecture 1

- Past searches
- SM Higgs production & decay
- LHC, ATLAS & CMS
- Objects for discovery
- Higgs search menu
- Low mass resolution modes
 - $H \rightarrow WW \rightarrow l\nu l\nu$
 - $H \rightarrow ZZ \rightarrow 212v$
- Low mass resolution modes
 - H → bb
 - H $\rightarrow \tau \tau$

Lecture 2

- High mass resolution modes - $H \rightarrow \gamma \gamma$
 - $H \rightarrow ZZ \rightarrow 41$
- Combination of all search results
- Compatibility with SM Higgs boson
- Future prospects

Indirect Limits From Precision Electroweak Data

 Logarithmic dependence on M_H allows M_W and other precision observables to bound its mass

$$M_W^2 = \frac{M_Z^2}{2} \left\{ 1 + \left[1 - \frac{2\sqrt{2}\alpha(1 + \Delta r)}{G_F M_Z^2} \right]^{1/2} \right\} \quad \Delta r \sim \ln \frac{M_H}{M_Z}$$

 Global fit to precision Electroweak data including Tevatron M_W= 80.385±0.015 GeV suggests:

$$M_{\rm H} = 94^{+29}_{-24} \text{ GeV}$$

or $M_{\rm H} < 152 \text{ GeV}$ at 95% CL

		Measurement	Fit	IO ^{meas} –O ^{fit} I/σ ^{meas}	
	(5)			0.1.2.3	
	$\Delta \alpha_{had}^{(3)}(m_Z)$	0.02750 ± 0.00033	0.02759		
	m _z [GeV]	91.1875 ± 0.0021	91.1874		
	Γ _Z [GeV]	2.4952 ± 0.0023	2.4959		
	σ_{had} [nb]	41.540 ± 0.037	41.478		
	R _I	20.767 ± 0.025	20.742		
	A _{fb}	0.01714 ± 0.00095	0.01645		
	Α _I (Ρ _τ)	0.1465 ± 0.0032	0.1481		
	R _b	0.21629 ± 0.00066	0.21579		
	R _c	0.1721 ± 0.0030	0.1723		
	A ^{6,6}	0.0992 ± 0.0016	0.1038		
	A ^{0,0}	0.0707 ± 0.0035	0.0742		
	A _b	0.923 ± 0.020	0.935		
	A _c	0.670 ± 0.027	0.668		
	A _l (SLD)	0.1513 ± 0.0021	0.1481		
	$sin^2 \theta_{eff}^{iept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		
	m _w [GeV]	80.385 ± 0.015	80.377		
	Г _w [GeV]	2.085 ± 0.042	2.092	•	
	m _t [GeV]	173.20 ± 0.90	173.26		
-	March 2012			0 1 2 3	
_	 March 2012 			m _{umit} = 152 GeV	
$\Delta \chi^2$	5- 4- 3- 2-	Theory L Δα ⁽⁵⁾ _{had} =	Incerta = 2±0.000 9±0.000 2 0° data	ainty 33 10 a	
		ded		LHC excluded	
	40		100	200	1
		m _H [O	GeV]		

Direct Searches For Higgs Boson at LEP

- At 95% CL, Excluded SM Higgs with mass below 114.4 GeV
- Scene shifted to hadron colliders → LHC

5

Proton-On-Proton Collisions

When protons collide → Interaction of constituent partons (gluons or quarks)

Produces A Whole Lot Of "Stuff" (Yesterday's Discoveries)

What Is Produced in p-p Collisions

Higgs Production At Hadron Colliders

• Production Mechanisms:

Gluon fusion is the dominant production mechanism VBF & VH have a distinct signature

Higgs Production in pp collisions: $\sqrt{s} = 7$ TeV

10

Higgs Production in pp Collisions at 7, 8 & 14 TeV

At $M_{\rm H}$ =125 GeV, about 25 % enhanced production at 8 TeV w.r.t 7 TeV

Higgs Branching Ratios Vs M_H

Higgs couples most to the heaviest particle kinematically allowed

$$\Gamma(H \to W^+ W^-) = \frac{G_F M_H^2}{32\pi\sqrt{2}} (1-x)^{1/2} (4-4x+3x^2), \ x \equiv 4M_W^2/M_H^2$$

$$\Gamma(H \to Z^0 Z^0) = \frac{G_F M_H^2}{64\pi\sqrt{2}} (1-x')^{1/2} (4-4x'+3x'^2), \ x' \equiv 4M_Z^2/M_H^2$$

$$\Gamma(H \to f\bar{f}) = \frac{G_F m_f^2 M_H}{4\pi\sqrt{2}} \cdot N_c \cdot \left(1-\frac{4m_f^2}{M_H^2}\right)^{3/2}$$

12

Higgs Branching Ratio : Zooming Into Low M_{H}

Intrinsic Width Of SM Higgs Boson

At low mass ($M_H \approx 120 \text{ GeV}$), width narrower than exptal resolution even in the high mass resolution channels

[Production Cross section \times Decay Rate] Vs M_H

[Cross section × Decay Rate] Vs M_H : Low Mass

Significance of an observation depends on ability to trigger on event & restrict background processes that mimic Higgs signature

Cross Sections for Key SM Background Processes

Backgrounds up to 5 orders of magnitude larger than signal !

Need to measure these cross sections & properties

Producing "Stuff" in Particle Collisions

Simple equation for observing "stuff" at a Collider

Event rateLuminosityCrosssectionIdentifications⁻¹cm⁻² s⁻¹cm²Efficiency

- $L \rightarrow$ machine parameters
- $\sigma \rightarrow$ Nature's will
- $\epsilon \rightarrow$ Detector's capability

LHC Luminosity : Beyond Expectation !

20

Schematic Of The CMS Detector

CMS Detector: The Real Thing

The ATLAS Detector

Uses very different technology but has very similar capability

Remnants In Higgs Decay

- At the end of the chain, Higgs boson decays into a subset of:
 - Hadrons: $\pi^{\pm}, K^{\pm}, K_{S} \rightarrow \pi^{+}\pi^{-}$ etc
 - Muons
 - Electrons & Photons
 - Tau Lepton
 - Jets
 - b-quark jets
 - − Neutrinos → Missing Transverse energy
- Ability to precisely and efficiently reconstruct these objects defines the sensitivity for Higgs boson searches

Charged Particle Trajectory Reconstruction

Important for pileup remediation 25

Muon Reconstruction & Identification

Match hit pattern and momentum in inner tracker with that in muon stations

Efficient & Clean Muon Reconstruction

Fake rate probability : < 0.1% for π , 0.02% for p

Electron & Photon Reconstruction

Match momentum in the tracker with ECAL energy at point of impact

Material Distribution: Relevant for Electron & γ Reco

Material in front of ECAL:
→ Electrons bremstrahlung
→ Photons convert

degrades Energy resolution

CMS

Electron & Photon Reconstruction

$\tau \rightarrow$ hadron Reconstruction (CMS)

Hadronic Tau identification:

- Reconstruct individual decay modes
- Charged hadrons + electromagnetic obj arranged in strips or single photons

Multivariate discriminator using sum of energy deposits in dR rings around the tau (from 0.1 to 0.5)

eff ~62% for a fake rate of ~6%

τ → ρν

candida

Transverse Missing Energy (M_{ET})

- Energy conservation in direction transverse to colliding p-p beams
- $\rightarrow MET = -\sum_{i} \vec{E}_{T_i}$ (Negative vector sum of all reco. particle P_T)
- Measurement not perfect, need to account for
 - Non-linear calorimeter response
 - Instrumental noise, poorly instrumented area
 - mis-measured objects
- Use $Z \rightarrow \mu\mu$ events with no intrinsic MET

measure for MET scale
/ u_{ll} \

• measure for MET resolution $\sigma(-u_{\parallel}-q_{\rm T}), \sigma(u_{\perp})$

Events Run A Data Mean = 18.33 exp. $Z \rightarrow \mu^{+}\mu^{-}$ RMS = 10.97 exp. Background Mean = 18.76 ± 0.94 105 RMS = 11.35 ± 1.57 Sys. Uncertainty 10 103 10 1.5 Data - Simulation Simulation 0.5 -0 -1.5 50 100 150 / GeV

CMS preliminary, $\sqrt{s}=8$ TeV L = 0.7 fb⁻¹

b-Jet Identification: Important For Top Reco.

- B-lifetime $\approx 1.5 \text{ps}, <\beta\gamma c\tau > \approx 1800 \mu$ Signed decay length
- Tracks from b-hadron decay have large P_T of B vertex
- Average multiplicity ≈ 6
- b-taggers based on
 - Large signed impact parameter significance
 - Secondary vertex with large decay length
- Mistag rate measured from "negative tags"

33

Consequence Of High Intensity Proton Collision: Pileup

- **Pileup** describes events coming from additional p-p interactions in the colliding proton bunches
- The chances of producing more than one hard scattering event per bunch crossing are pretty low
- But as the instantaneous luminosity per bunch crossing effectively the density of protons in the interaction region where the beams overlap – goes up, the likelihood of ' soft' interaction between the constituent quarks and gluons of additional proton-proton pairs increases (in-time-pileup)
- 'out-of-time pile-up' (OOT) refers to events from successive bunch crossings 50 ns apart.
- The challenge for ATLAS & CMS is in classifying which tracks and energy deposits to attribute to which interaction
- Unlike products from a hard scatter, pileup events are <u>softer</u>

ATLAS: Pileup Evolution: 2010 Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlac.wah.aarp.ah/Atlac/public/E//TDISDLAV/ovanta.html

ATLAS: Pileup Evolution: 2011

36
ATLAS: Pileup Evolution: 2012

25 vertices

Pileup & Its Consequences

80

70 E

60

50

40

30

ATLAS Online Luminosity

 $\sqrt{s} = 8 \text{ TeV}, \left[\text{Ldt} = 6.3 \text{ fb}^{-1}, <\mu > = 19.5 \right]$

____ √s = 7 TeV, ∫Ldt = 5.2 fb⁻¹, <μ> = 9.1

N_{PV}

- Many more particles to reconstruct →more CPU & memory in event reconstruction
- **Contaminated Jets**

- (due to additional particles)

- Worsening of MET resolution
 - (more objects to sample)
- Worsening of Isolation observables
- Ambiguity in hard-scatter vertex identification, e.g. H $\rightarrow \gamma \gamma$

Mitigating Pileup

- Detector level mitigation: Readout over smaller time slice
 - Significantly reduces OOT pileup
- In Jet reconstruction:
- Remove from consideration charged hadrons that originate from reconstructed pileup vertices
- Amount of additional pileup energy is determined by the jet area (A) and the energy per unit area (ρ)
 - and subtracted
- Take advantage of the topological shape differences between jets from pileup and more collimated jets from hard-scatter of partons

Typical jet Pileup jet

Landscape of The Hunt : Summer 2010

Excluded mass range from direct searches :

LHC designed to search for Higgs with mass >100 GeV

Higgs Search Sensitivity: By Mass & By Mode

- For a given M_H , sensitivity of search depends on
 - Production cross section
 - Its decay branching fraction into a chosen final state
 - Signal selection efficiency (including trigger)
 - Mass resolution (intrinsic and instrumental)
 - Level of SM background in the same or similar final states
- In low mass range:
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 41$ play a special role due to excellent mass resolution for the di-photon and 4-lepton final state
 - $H \rightarrow WW \rightarrow (lv)(lv)$ provides high sensitivity but has poor mass resolution due to presence of neutrinos in the final state
 - Sensitivity in H \rightarrow bbbar and H $\rightarrow \tau\tau$ channels is reduced due to large backgrounds and poor mass resolution (jets or neutrinos)
- In high mass range:
 - search sensitivity dominated by H \rightarrow WW, ZZ in various final states 41

CMS Searches

Analyses			No. of	m _H range	$m_{ m H}$	Lumi	(fb^{-1})
H decay	H prod	Exclusive final states	channels	(GeV)	resolution	7 TeV	8 TeV
0.0	untagged	$\gamma\gamma$ (4 diphoton classes)	4	110-150	1-2%	5.1	5.3
· · · ·	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (low or high m_{jj} for 8 TeV)	1 or 2	110-150	1-2%	5.1	5.3
bb	VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \otimes (\text{low or high } p_T^V)$	10	110–135	10%	5.0	5.1
	ttH-tag	$(\ell \text{ with } 4,5,\geq 6 \text{ jets}) \otimes (3,\geq 4 b\text{-tags});$ $(\ell \text{ with } 6 \text{ jets with } 2 b\text{-tags}); (\ell\ell \text{ with } 2 \text{ or } \geq 3 b\text{-tagged jets})$	9	110–140		5.0	-
	0/1-jets	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times$ (low or high $p_T^{\tau\tau}$) × (0 or 1 jets)	16	110–145	20%	4.9	5.1
$H \rightarrow \tau \tau$	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) + (jj)_{VBF}$	4	110–145	20%	4.9	5.1
$\Pi \rightarrow \iota \iota$	ZH-tag	$(ee, \ \mu\mu) imes (au_h au_h, \ e au_h, \ \mu au_h, \ e\mu)$	8	110–160		5.0	-
	WH-tag	$\tau_h ee, \tau_h \mu \mu, \tau_h e \mu$	3	110–140		4.9	-
$WW \rightarrow \ell \nu q q$	untagged	$(e\nu, \mu\nu) \otimes ((jj)_W \text{ with } 0 \text{ or } 1 \text{ jets})$	4	170-600		5.0	5.1
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \otimes (0 or 1 jets)	4	110-600	20%	4.9	5.1
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1 or 2	110-600	20%	4.9	5.1
$WW \rightarrow \ell \nu \ell \nu$	WH-tag	$3\ell 3\nu$	1	110-200		4.9	-
$WW \rightarrow \ell \nu \ell \nu$	VH-tag	$\ell \nu \ell \nu + (jj)_V$ (DF or SF dileptons)	2	118-190		4.9	-
$ZZ ightarrow 4\ell$	inclusive	4 <i>e</i> , 4 <i>µ</i> , 2 <i>e</i> 2 <i>µ</i>	3	110-600	1-2%	5.0	5.3
$ZZ ightarrow 2\ell 2 au$	inclusive	$(ee, \mu\mu) \times (\tau_h \tau_h, e \tau_h, \mu \tau_h, e \mu)$	8	200-600	10-15%	5.0	5.3
$ZZ ightarrow 2\ell 2q$	inclusive	(<i>ee</i> , $\mu\mu$)×((<i>jj</i>) _Z with 0, 1, 2 b-tags)	6	$\left\{\begin{array}{c} 130-164\\ 200-600\end{array}\right.$	3%	4.9	-
$ZZ ightarrow 2\ell 2 u$	untagged	$((ee, \mu\mu) \text{ with MET}) \otimes (0 \text{ or } 1 \text{ or } 2 \text{ non-VBF jets})$	6	200-600	7%	4.9	5.1
$ZZ \rightarrow 2\ell 2\nu$	VBF-tag	$(ee, \mu\mu)$ with MET and $(jj)_{VBF}$	2	200-600	7%	4.9	5.1

Most analyses updated with 8 TeV data References:https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

ATLAS Searches

	0.1	· · ·	D			
H1ggs Boson	Subsequent	Sub-Channels	m_H Range	$\int \mathbf{L} dt$		
Decay	Decay	Sub-Chamlers	[GeV]	$[fb^{-1}]$		
		$2011 \ \sqrt{s} = 7 \ \text{TeV}$				
	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8		
$H \rightarrow ZZ^{(*)}$	<i>ℓℓνν</i>	$\{ee, \mu\mu\} \otimes \{\text{low, high pile-up}\}$	200-280-600	4.7		
	$\ell\ell qq$	{b-tagged, untagged}	200-300-600	4.7		
$H \rightarrow \gamma \gamma$	—	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	4.8		
\mathbf{H} , \mathbf{H}	<i>ℓνℓν</i>	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	110-200-300-600	4.7		
$\Pi \to W W^{\vee}$	lvqq'	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	300-600	4.7		
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	110-150	4.7		
$H \rightarrow \tau \tau$	$ au_{\rm len} au_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV}\}$	110-150	4.7		
	· icp · ilad	$\oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jet}\}$				
	$ au_{ m had} au_{ m had}$	{1-jet}	110–150	4.7		
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6		
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7		
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110–130	4.7		
$2012 \sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	5.8		
$H \rightarrow \gamma \gamma$	—	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	5.9		
$H \to WW^{(*)}$	ενμν	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	110-200	5.8		

References: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Description Of Search Results

- Too many modes, too little time !
- Will focus on the important SM Higgs channels only
- ATLAS & CMS search strategies are mostly similar but differ in several details
 - Will try a pictorial and generic description
 - Will use CMS searches as an example
 - Most comprehensive & updated set of searches
 - It's the experiment I know best

$H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$: The Workhorse

Poor Higgs mass resolution (20%) due to escaping neutrinos
→ Counting experiment, look for excess over backgrounds

Backgrounds In H \rightarrow WW \rightarrow (1 v) (1 v) Search

- Reducible backgrounds:
 - (DY) Z \rightarrow ll + (jets faking MET)
 - $W \rightarrow 1 v + (jets faking lepton)$
 - tW and ttbar production
 - $-W+\gamma^{(*)}$
 - WZ \rightarrow 31 + MET
- Irreducible background: $- pp \rightarrow WW \rightarrow (l v) (l v)$
 - Non-resonant production
- Cross-section x Branching Ratio (fb) IE+08 IE+07 IE+06 IE+05 IE+04 IE+03 IE+02Wjets Drell-Yan Top WW Higgs 160
- Challenge is to kill off as much background & measure residual contributions using data-driven techniques and control samples

Backgrounds Faking Signature Of Higgs Boson

Backgrounds Faking Signature Of Higgs Boson

DY (Z + jets) "killed" by requiring missing energy in event

W + Jets Background Faking $H \rightarrow WW$ Signature

Backgrounds Faking Signature Of Higgs Boson

Background Alleviation Strategy

	process	characteristic	rejection	
	W+jets (31000 pb)	lepton + fake lepton	2 well identified and isolated leptons	
	Z+jets (5000 pb)	Z peak, no real E_T^{miss}	* proj $E^{T}_{miss} > 40 \text{ GeV}(ee,\mu\mu), 20$ GeV (eµ) * $ m_{II}-m_Z < 15 \text{ GeV} (ee, \mu\mu),$ $m_{II} > 12 \text{ GeV} (e\mu)$	
-	tt (158 pb), tW (11 pb)	additional (b-)jets	 classify events in 0-,1-jet anti b-tagging 	
	W,Z + γ (165 pb)	electron from γ coversion	 conversion veto 	
	WW (43 pb)	non resonant	* small Δφn	
	WZ (18 pb), ZZ (6 pb)	Z peak	* m _{ll} -m _Z <15 GeV (ee, μμ), m _{ll} >12 GeV (eμ)	

decreasing cross section (@ 7 TeV)

relative importance after selection depends on m_H

Event Catagorization By # Of Accompanying Jets

- Catagorize events by jet multiplicity
 - $P_T > 30 \text{ GeV}, |\eta| < 4.7$
- 0-jet: Most sensitive category
 - For $m_{\rm H} < 130$ GeV:
 - W+jets, DY backgrounds dominant
 - $e\mu$ final state quite pure
- 1-jet: dominated by tt+tW
- 2-jets: specific selections to isolate VBF production
 - $\Delta \eta(j_1-j_2) > 3.5, m_{j1,j2} > 450 \text{ GeV}$
 - No central jets
 - Dominated by ttbar background

Key Kinematic Observables

- P_T of leading and sub-leading leptons
- Azimuthal angle difference $(\Delta \Phi_{ll})$
- $P_{T}(ll)$
- Dilepton invariant mass (M_{ll})
- $M_T = \sqrt{2p_T^{\ell\ell} E_T^{miss} (1 \cos \Delta \phi_{E_T^{miss} \ell \ell})}$

53

Background Estimates

- Most background estimates are obtained from control samples established in data
 - W+jet background estimated from dilepton control samples enriched in misidentified leptons
 - ttbar background from samples enriched with identified b-jets
 - Z+jets background by extrapolating from a narrow Z mass window
 - WW background
 - from signal free region (m_{ll}>100 GeV for m_H < 200 GeV)
 - For high mass H, no signal-free region → taken from simulation)
- Systematic uncertainties on these estimates vary from 20-60 %

54

Digging Out Tiny Signals Over Large Backgrounds

Compare Background Prediction & Data Yields Vs Higgs Mass Hypothesis

CMS 2012 : 5.1 fb⁻¹, Cut-based Analysis, 0-Jet category

m_{H}	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$		$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$ m W\gamma^{(*)}$	all bkg.	data
		0-jet category $e\mu$ final state						
125	23.9 ± 5.2	87.6 ± 9.5	2.2 ± 0.2	9.3 ± 2.7	19.1 ± 7.2	6.0 ± 2.3	124.2 ± 12.4	158
130	35.3 ± 7.6	96.8 ± 10.5	2.5 ± 0.3	10.1 ± 2.8	20.7 ± 7.8	6.3 ± 2.4	136.3 ± 13.6	169
160	98.3 ± 21.2	53.6 ± 5.9	1.2 ± 0.1	6.3 ± 1.7	2.5 ± 1.3	0.2 ± 0.1	63.9 ± 6.3	79
400	16.6 ± 4.8	50.5 ± 5.8	1.5 ± 0.2	26.1 ± 5.7	4.5 ± 2.0	0.7 ± 0.5	83.3 ± 8.4	92
			0-jet catego	ry ee/μµ fina	al state			
125	14.9 ± 3.3	60.4 ± 6.7	37.7 ± 12.5	1.9 ± 0.5	10.8 ± 4.3	4.6 ± 2.5	115.5 ± 15.0	123
130	23.5 ± 5.1	67.4 ± 7.5	41.3 ± 15.9	2.3 ± 0.6	11.0 ± 4.3	4.8 ± 2.5	126.8 ± 18.3	134
160	86.0 ± 18.7	44.5 ± 4.9	11.3 ± 13.4	3.8 ± 0.9	1.3 ± 1.1	0.4 ± 0.3	61.4 ± 14.4	92
400	12.3 ± 3.6	37.1 ± 4.3	5.7 ± 1.3	20.0 ± 4.7	3.4 ± 1.9	13.6 ± 4.8	79.9 ± 8.3	55

Mild excess over background is observed at low masses

Quantifying Excesses & Deficits: Cartoon

some parameter

Quantifying Higgs Search Result: An Illustration

Quantifying Observed Excesses : Local p-Value

- Excess can be due to a real signal or a fluctuation of background w.r.t estimated
 - *p-value*: chance of background fluctuating as high as or higher than what is observed in data at a particular mass

 $p - value = \text{Prob} (n \ge n_{\text{observed}} | \text{background})$

– Local Significance (Ζσ):

related to *p-value* via the tail probability of normal distribution

• *p-value* does not tell us whether the excess is consistent with the expected SM Higgs boson rate. So we also report the best-fit value of the signal strength modifier $\mu = \sigma/\sigma_{SM}$

$H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$ Results (CMS)

Expected Exclusion@ 95% CL: 122-450 GeV Observed Exclusion@95% CL: 129-520 GeV A small excess makes limits weaker than expected

ATLAS $H \rightarrow WW \rightarrow (1 \nu) (1 \nu)$ Analysis Strategy

- Search in range 110 < m_H < 190 GeV with 2012 data.
- 3 bins: 0-jet, 1-jet, at least 2 jets
- Large pile-up in 2012 results in poorer MET resolution compared to 2011 data
 - Drell-Yan background much worse in ee, μμ final states
 - So only opposite-flavor (eµ) final states used in 2012 analysis
- After applying all other cuts, use M_T as the final observable

$$m_{T} = \sqrt{\left(E_{T}^{ll} + E_{T}^{miss}\right)^{2} - \left|p_{T}^{ll} + E_{T}^{miss}\right|^{2}}$$
$$E_{T}^{ll} = \sqrt{\left|p_{T}^{ll}\right|^{2} + m_{ll}^{2}}$$

7/25/12

$H \rightarrow WW^* \rightarrow e\mu\nu\nu$: M_T Distribution In Signal Region

$H \rightarrow WW^* \rightarrow e\mu vv$: Results with 2012 data

p_0Observed
significanceExpected
significance8×10-43.1 σ1.6 σ

At $m_{\mu} = 125$ GeV: **2011 signal strength** (μ): $\mu = 0.5 \pm 0.7$

2012 signal strength (\mu): $\mu = 2.1^{+0.8}_{-0.7}$

2011, 2012 signal strengths compatible within 1.5σ

High Mass Higgs Search Specialist: $H \rightarrow ZZ \rightarrow 21 2v$

2v in final state \rightarrow Poor Higgs mass resolution (7-10%) ⁶⁴

$H \rightarrow ZZ \rightarrow 21 \, 2\nu$

- Identify On-shell $Z \rightarrow 11$ with MET > $\approx 60 \text{ GeV}$
- Compute Transverse mass M_T:

 $M_T^2 = (\sqrt{P_{TZ}^2 + M_Z^2} + \sqrt{MET^2 + M_Z^2})^2 - (\vec{P_{TZ}} + \vec{MET})^2$

• Build two exclusive catagories:

-VBF:

- search for 2 jets with $\Delta \eta > 4$ and $M_{jj} > 500 \text{ GeV}$
- No central jets in between
- Everything else (mostly gg \rightarrow H)
- Selection optimized for different Higgs masses

 $-M_{\rm H} > 250 {\rm ~GeV}$

$H \rightarrow ZZ \rightarrow 21 \, 2\nu$

- Major backgrounds: Z+Jets, ttbar, WW & WZ
 - Large ME_T requirement to suppress Z + jets by x10⁵
 - Anti b-tag to suppress ttbar
- Backgrounds estimated from data control samples
 - $-\gamma + jets$ (for Z+Jets \rightarrow fake MET)
 - $-e\mu$ sample (for ttbar +WW)
- Residual ZZ, WZ background estimate from MC

Limits From H \rightarrow ZZ \rightarrow 21 2v Search

Selection for $M_{\rm H} = 400 \text{ GeV}$

Kinematic selections:

VBF	0/1/2 jets
р _т (Z) > 55 GeV	р _Т (Z) > 55 GeV
	$ME_T > 90 \text{ GeV}$
	325 < M⊤ < 425 GeV

Event yields (5 fb⁻¹ @ 7 TeV + 5 fb⁻¹ @ 8 TeV

	Total BG	Signal	Observed
VBF	3.1	1.3	2
0 jet	14.9	11.3	13
1 jet	15.6	16.2	18
2 jet	6.1	6.1	6

Observed Exclusion : $278 < M_H < 600 \text{ GeV}$ Expected Exclusion : $291 < M_H < 534 \text{ GeV}$

End Of Lecture 1

Bottomline On High Mass Higgs Searches

Combine all search modes 95% CL limit on σ/σ_{SMH} 10 Observed **CMS** Preliminary Expected (68%) √s = 7 TeV, L = 5.1 fb⁻¹ $\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1}$ Expected (95%) 10⁻¹

A SM-like Higgs boson excluded at 95% CL for $127 < M_H < 600 \text{ GeV}$ Focus next on low-mass Higgs searches

200

100

400 500

300

Higgs boson mass (GeV)

H→ bb

- Important mode for measuring Higgs coupling to fermions
- H → bb production via gluon fusion and VBF are quite large but are buried (10⁷) under QCD production of b bbar pairs
- Most promising channel is $H \rightarrow bb$ production associated with a Vector (V=W or Z) boson $\sum_{0.2}^{0.2} CMS Simulation$

- V reconstruction: $W \rightarrow 1 \nu, Z \rightarrow \nu\nu, Z \rightarrow 11$
- H→ bb reconstructed as two b-tagged jets recoiling against a high P_T W/Z boson

- Large W/Z $P_T \rightarrow$ smaller background & better di-jet mass resolution

• VH analysis targets Higgs mass range $110 < M_H < 135 \text{ GeV}$

Background Estimate From Control Regions

- Main backgrounds are the usual suspects:
 - Reducible: W/Z + jets (light and heavy flavor jets) & ttbar
 - Irreducible : WZ, ZZ and single top (taken from simulation)
- Background yields/shapes determined from signal-depleted control data samples using kinematic selection close to signal region

Example: Zee control region definition
Separating Signal From Backgrounds

- A multivariate algorithm trained at each Higgs mass hypothesis
- Several kinematic and topological variables used tp separate Signal from background

Variable

 p_{T_i} : transverse momentum of each Higgs daughter

m(jj): dijet invariant mass

 $p_{\rm T}(jj)$: dijet transverse momentum

 $p_{T}(V)$: vector boson transverse momentum (or pfMET)

CSV_{max}: value of CSV for the b-tagged jet with largest CSV value

CSV_{min}: value of CSV for the b-tagged jet with second largest CSV value

 $\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{miss}) and dijet

 $|\Delta \eta(jj)|$; difference in η between Higgs daughters

 $\Delta R(j1, j2)$; distance in $\eta - \phi$ between Higgs daughters (not for $Z(\ell \ell)H$)

 $N_{\rm aj}$: number of additional jets ($p_{\rm T} > 30 \,{\rm GeV}$, $|\eta| < 4.5$)

 $\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$) $\Delta \theta_{\text{pull}}$: color pull angle [62] (not for $Z(\ell\ell)H$)

$H \rightarrow bb$ Search

• A Higgs signal in the mass range [110-135] GeV is searched for as an excess in MVA classifier using predicted shapes for signal & bkgnd

No significant excess seen over predicted background yields

Limits From VH, $H \rightarrow$ bb Searches

Approaching SM Higgs Sensitivity but no Cigar (yet) !

Tevatron VH, H \rightarrow bb Searches

Observe broad excess with global significance of 2.9σ

$H \rightarrow \tau \tau$: Another Low Mass Specialist

- Most promising mode for measuring Higgs coupling to leptons
- Searched for in three Higgs production modes

- And subsequent decay of τ lepton
 - $-\tau \rightarrow evv, \tau \rightarrow \mu vv, \tau \rightarrow hadrons$
- Four signatures considered : $e\mu$, $\mu\mu$, $e\tau_{h}$, $\mu\tau_{h}$
- Due to missing neutrinos, Higgs signal appears as a broad excess in reconstructed τ -pair mass (Mass resolution $\approx 20\%$)
- Major backgrounds arise from
 - ttbar
 - W & Z (+jets), dibosons

$H \rightarrow \tau \tau$ Search Strategy

• Search divided in 5 categories based on H mass resolution & S/B

All categories are fit simultaneously

Anatomy of the $H \rightarrow \tau\tau$ Analysis

Tau-Pair Mass Distributions In 0 &1 Jet Catagories

Possible Signal overwhelmed by backgrounds !

VBF (2jets) Category Has Best S/N

Much better signal to noise, but small signal

Background & Expected Signal in VBF Catagory

· · · · · · · · · · · · · · · · · · ·				+
Process	$e\tau_h+X$	$\mu \tau_h + X$	eµ+X	$\mu\mu+X$
$Z \rightarrow \tau \tau$	53 ± 5	100 ± 9	56 ± 12	5.3 ± 0.4
QCD	35 ± 7	41 ± 9	7.4 ± 1.4	0.0 ± 0.0
W+jets	46 ± 10	72 ± 15	—	0.0 ± 0.0
Z+jets (fake τ)	13 ± 2	2.5 ± 0.6	—	—
$Z \rightarrow \mu \mu$. <u> </u>	—	_	70 ± 8
tī	7.0 ± 1.7	14 ± 3	24 ± 2	6.7 ± 1.5
Dibosons	1.2 ± 0.9	2.9 ± 2.1	11 ± 2	2.4 ± 0.9
Total Background	156 ± 13	233 ± 20	99 ± 13	85 ± 9
$H \rightarrow \tau \tau (m_H = 125 \text{GeV})$	4.3 ± 0.6	7.7 ± 1.1	3.5 ± 0.4	0.8 ± 0.1
Data	142	263	110	83

No significant excess over expected backgrounds

Limits From $H \rightarrow \tau\tau$ Search

Improvement In H $\rightarrow \tau\tau$ Sensitivity In Just 1 Year

High Resolution Channels

$H \rightarrow \gamma \gamma$

- A discovery channel in $110 < M_H < 150 \text{ GeV}$
- Br (H $\rightarrow \gamma\gamma$) $\approx 10^{-3}$

- Search for a narrow peak with two isolated high E_T photons over a continuous diphoton background spectrum
- Background is large and composed of
 - Reducible: One or more misidentified (fake) photon (e.g. γ +jets)

• Irreducible: both photons are real

Search sensitivity depends on background level

$H \rightarrow \gamma \gamma$: Important Analysis Aspects

 $M^{2}_{\gamma\gamma} = 2E_{1}E_{2}(1-\cos \alpha_{\gamma\gamma}) \rightarrow$

– ECAL Calibration, $M_{\gamma\gamma}$ energy scale & resolution

 $-\gamma\gamma$ vertex determination (angle $\alpha_{\gamma\gamma}$)

- Event selection and catagorization (not all photons are measured with same precision)
- Modeling of background spectrum from data sidebands

ATLAS & CMS differ in approach but ultimately arrive at similar search sensitivities

ECAL Calibration (ATLAS)

Understand calorimeter energy response from $Z \rightarrow$ ee, $J/\psi \rightarrow$ ee, $W \rightarrow$ ev data and MC):

- E-scale at m_Z known to ~ 0.3%
- Stability vs time $\sim 0.1\%$
- Linearity better than 1% (few-100 GeV)
- "Uniformity" (constant term of resolution):

In situ ECAL Calibration (CMS)

Dedicated calibration scheme:

- ${}^{\scriptstyle \rm I\!I\!I\!I}$ inter-crystal calibration: π^0 , η
- crystal transparency correction (laser monitoring system)
- The energy scale stability after the response corrections:
 - 🗯 barrel: 0.12% (
 - endcap: 0.45%
- Reploit $W \rightarrow e\nu$ (E/p) and $Z^0 \rightarrow ee$ control samples to derive energy scale and resolution systematics

Roadmap For $H \rightarrow \gamma \gamma$ Search (CMS)

γ Energy Correction & Resolution (CMS)

- ECAL cluster energies corrected using a MC trained MVA regression
 - Raw cluster energies & position
 - Lateral & longitudinal shower shapes
 - Local shower position w.r.t crystal geometry
 - Pileup estimators, etc

- Regression also used to estimate per-photon energy resolution
- Uses $Z \rightarrow$ ee events to measure energy scale and $M_{\gamma\gamma}$ resolution

Photon Identification (CMS)

• Select di-photons with

 $- P_T^{\gamma 1} > M_{\gamma \gamma}/3, P_T^{\gamma 1} > M_{\gamma \gamma}/4$

- Photon Identification with a MVA method to separate prompt γ from π^0 produced in jets. Uses:
 - Isolation
 - Cluster shape
 - Per event energy density (pileup)
 - Pseudorapidity η
- Efficiency measured with $Z \rightarrow$ ee events
- Electron veto eff measured with $Z \rightarrow \mu\mu\gamma$

Selecting yy Vertex In Pileup Events Can Be Tricky

Selecting yy Vertex (CMS)

- $M_{\gamma\gamma}^2 = 2E_1 E_2 (1 \cos \alpha),$
 - $-M_{\gamma\gamma}$ resolution depends on vertex selection
 - Important for high pileup events \rightarrow many choices
- No pointing \rightarrow vertex identified using tracks from $\frac{1}{2}$
 - recoiling jets and underlying event & $\gamma \rightarrow ee$, Input variables: Σp_t^2 , Σp_t projected onto the $\gamma\gamma$ transverse direction, p_t asymmetry and conversions
 - correct choice in ~83 (80)% of cases for pileup in 2011 (2012)

Selecting $\gamma\gamma$ Vertex (ATLAS)

- Measure γ direction with
 - EM calorimeter longitudinal segmentation (pointing to Z)
 - tracks from converted photons

 Good enough to make contribution to mass resolution from angular term negligible

Inclusive $\gamma\gamma$ Event Selection (CMS)

- Construct a MVA trained on signal & background MC. Input:
 - Photon ID MVA output of each photon
 - Expected γγ mass resolution and vertex probability
 - Kinematic variables: P_T of each γ and $cos \Delta \varphi$ between them
- MVA output independent of $M_{\gamma\gamma}$
- Form 4 γγ catagories

– optimized to yield best expected limit in $H \rightarrow \gamma \gamma$

Inclusive yy Event Catagorization (CMS)

Cat 0 : mostly $P_T^{\gamma\gamma} > 40$ GeV Cat1 : unconverted γ in barrel

Exclusive Dijet Tags: VBF-like Events Two high P_T jets with **Example Di-jet event with:** • diphoton mass 121.9 GeV large $\Delta \eta \& M_{ii}$ • dijet mass 1460 GeV High S/B • jet p_T: 288.8 and 189.1 GeV • jet η: -2.022 and 1.860 ~80%-pure VBF events for large di-jet invariant masses Variable 2011 2012 Tight Loose > 30 GeV $p_T(j_1)$ > 20 GeV> 30 GeV $p_T(j_2)$ $\Delta\eta(j_1, j_2)$ > 3.5> 3.0 $|\eta_{\gamma\gamma} - \frac{1}{2}(\eta_{j1} + \eta_{j2})|$ < 2.5> 2.6 $\Delta \overline{\phi}(jj,\gamma\gamma)$ 100 > 350 GeV> 250 GeV> 500 GeV m_{ii}

Performance By Catagory

Expected signal and estimated background									
Event classes		SM Higgs boson expected signal ($m_{\rm H}$ =125 GeV)						Background	
							$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \mathrm{GeV}$
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./GeV)
$5.1{ m fb}^{-1}$	Untagged 0	3.2	61%	17%	19%	3%	1.21	1.14	$3.3 \pm \ 0.4$
	Untagged 1	16.3	88%	6%	6%	1%	1.26	1.08	37.5 ± 1.3
	Untagged 2	21.5	91%	4%	4%	_	1.59	1.32	74.8 ± 1.9
IeV	Untagged 3	32.8	91%	4%	4%	_	2.47	2.07	193.6 ± 3.0
7	Dijet tag	2.9	27%	73%	1%	—	1.73	1.37	1.7 ± 0.2
8 T <mark>eV 5</mark> .3 fb ⁻¹	Untagged 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
	Untagged 1	21.0	88%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
	Untagged 2	30.2	92%	4%	3%	_	1.94	1.55	115.2 ± 2.3
	Untagged 3	40.0	92%	4%	4%	_	2.86	2.35	256.5 ± 3.4
	Dijet tight	2.6	23%	77%	_	_	2.06	1.57	1.3 ± 0.2
	Dijet loose	3.0	53%	45%	2%	_	1.95	1.48	3.7 ± 0.4

Category 3 diphotons have the worst $M_{\gamma\gamma}$ resolution & S/B

γγ Mass Distribution By Catagories (8 TeV)

Fit all catagories simultaneously with a signal & background model¹⁰²

Combined Mass Distribution Weighted by S/B

- Sum of mass distributions for each catagory, weighted by S/B
- B is integral of background model over a constant signal fraction interval

95% SM Higgs Exclusion Limit

- Expected 95% CL exclusion 0.76 x σ_{SM} at M = 125 GeV
- Large range with expected exclusion below σ_{SM}
- Largest excess at 125 GeV

Scan Of p-value Vs Mass

- Minimum p-value at 125 GeV with a local significance of 4.1σ
- Similar excess at same mass in 2011 and 2012
- Global significance in the full search range (110-150 GeV): 3.2 σ_{105}

Fitted Signal Strength σ/σ_{SM}

Combined best fit signal strength $\sigma/\sigma_{SM} = 1.56 \pm 0.43$ consistent with but larger than SM

Best fit signal strength consistent between different classes and datasets

ATLAS Catagorization of yy Events

- Catagorize events by S/B based on
 - Both γ unconverted or ≥ 1 converted
 - Both γ are central ($|\eta| < 0.75$)
 - One in EB-EE transition region
 - And the rest
 - $-P_T^{\gamma\gamma} > 60 \text{ GeV or less}$
- Di-jet category
 - $P_{Tt}^{jet} > 25-30 \text{ GeV}$
 - $-\Delta\eta_{jets} > 2,8$
 - $M_{jj} > 400 \text{ GeV}$
 - Back to back dijets & $\gamma\gamma (\Delta \phi > 2.6)$

ATLAS Catagorization of yy Events : 8 TeV

Strength of categorization: different resolution, different S/B (1% - 20%)

Category	σ_{CB}	FWHM	Observed	S	В
	[GeV]	[GeV]	$[N_{\rm evt}]$	$[N_{\rm evt}]$	$[N_{\rm evt}]$
Inclusive	1.63	3.87	3693	100.4	3635
Unconverted central, low p_{Tt}	1.45	3.42	235	13.0	215
Unconverted central, high p_{Tt}	1.37	3.23	15	2.3	14
Unconverted rest, low p_{Tt}	1.57	3.72	1131	28.3	1133
Unconverted rest, high p_{Tt}	1.51	3.55	75	4.8	68
Converted central, low p_{Tt}	1.67	3.94	208	8.2	193
Converted central, high p_{Tt}	1.50	3.54	13	1.5	10
Converted rest, low p_{Tt}	1.93	4.54	1350	24.6	1346
Converted rest, high p_{Tt}	1.68	3.96	69	4.1	72
Converted transition	2.65	6.24	880	11.7	845
2-jets	1.57	3.70	18	2.6	12

In all, 10 catagories, each fitted with a signal & background model
$M_{\gamma\gamma}$ Distribution : Weighed by S/B In Each Catagory

109

95% Exclusion Limit

Exclusion sensitivity below SM expectation till $M_H = 140 \text{ GeV}$ Observed exclusion : [112-122.5, 132-143] GeV Observe significant excess over Bkgnd only hypothesis @ 126.5 GeV₁₁₀

p-Values: 7, 8 TeV and Combined

Most significant deviation from bkgnd-only hypothesis @ 126.5 GeV Observed local significance 4.7σ , Expected = 2.4σ Similar sized excesses (3.5σ , 3.4σ) at compatibles masses !

Signal Strengths

 Fitted signal strength µ=1.9±0.5 at m_H=126.5 GeV

Observed rate consistent with SM but larger in central value (1.9)

- Breakdown of results by fit categories
 - Most sensitive categories indicated
 - No particular surprises

$H \rightarrow ZZ \rightarrow 41$

- Golden channel : Four isolated leptons from one point in 3D space
- Benefits from excellent electron and muon energy resolution
 - M_{41} mass resolution \approx 1-2 %
- $\sigma \times Br(H \rightarrow ZZ \rightarrow 4l)$ quite small
 - Needs highest selection efficiency po
 → Efficient lepton identification over broad P_t range
- Backgrounds
 - Non-resonant pp→ ZZ→41 is largest :
 irreducible, has same topological signature as H → 41
 - But no narrow peak as in $H \rightarrow ZZ$
 - Z+jets,ttbar, WZ...all reducible and important at low M₄₁

$H \rightarrow ZZ \rightarrow 2\mu 2e$

$H \rightarrow ZZ \rightarrow 41$ Event Selection : CMS

- Leptons compatible with primary vertex & isolated
 - muons: $p_T > 5 \text{ GeV}$, $|\eta| < 2.4$
 - electrons: $p_T > 7$ GeV, $|\eta| < 2.5$
 - at least one lepton with $p_T > 20 \text{ GeV}$
 - at least two leptons with $p_T > 10 \text{ GeV}$
- First Z candidate (Z₁)
 - chosen as di-lepton pair with m(II) closest to $\rm m_{\rm Z}$
 - 40 < m(II) < 120 GeV
- Second Z candidate (Z₂)
 - build from remaining highest p_T leptons
 - 12 < m(II) < 120 GeV

Final State Radiation Recovery

- Sometimes the leptons radiate photons, CMS attempts to find them
 - Applied on each Z for photons near the leptons

- Associates the photon with Z if:
 - M(II+γ)< 95 GeV
 - $|M(II+\gamma)-M_z| \le |M(II)-M_z|$
- Removes associated photons from lepton isolation calculation

- Expected Performance
 - · 6% of the events affected
 - 4.8% of the events: mass improved
 - 1.2% of the events: mass degraded
 - 2% more events added into sample after FSR recovery

Example of Final State Radiation Recovery

FSR recovery has small impact on CMS Higgs search sensitivity (~ 3%) but enhances robustness for small statistics searches as currently

An excess observed near M = 126 GeV

$H \rightarrow ZZ \rightarrow 41$ Event yield : CMS

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	2.7 ± 0.3	5.7 ± 0.6	7.2 ± 0.8	15.6 ± 1.4
Z + X	$1.2^{+1.1}_{-0.8}$	$0.9\substack{+0.7\\-0.6}$	$2.3^{+1.8}_{-1.4}$	$4.4^{+2.2}_{-1.7}$
All backgrounds (110 < $m_{4\ell}$ < 160 GeV)	4.0 ± 1.0	6.6 ± 0.9	9.7 ± 1.8	20 ± 3
Observed (110 < $m_{4\ell}$ < 160 GeV)	6	6	9	21
Signal ($m_{\rm H} = 125 {\rm GeV}$)	1.36 ± 0.22	2.74 ± 0.32	3.44 ± 0.44	7.54 ± 0.78
All backgrounds (signal region)	0.7 ± 0.2	1.3 ± 0.1	1.9 ± 0.3	3.8 ± 0.5
Observed (signal region)	1	3	5	9

An Odd Aspect: Z_1 Vs Z_2 Mass In H \rightarrow ZZ

122

Angular Analysis In $H \rightarrow ZZ \rightarrow 41$ (CMS)

- $H \rightarrow ZZ \rightarrow 41$ Decay kinematic fully described by 5 angles and the 2 Z masses
 - discriminates spin 0 particle from background
 - MELA: matrix element likelihood analysis

PR(D) 81, 075022(2010)

Some discriminating variables

MELA Vs 41 Mass

MELA =
$$\left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

CMS: 2D Fit of MELA Vs 41 Mass

Expected local significance at 125.5 GeV: 3.8 σ Observed local significance at 125.5 GeV: 3.2 σ

CMS Exclusion Limits: $H \rightarrow ZZ \rightarrow 41$

Expected exclusion at 95% CL: 121-550 GeV Observed exclusion at 95% CL: 131-162 and 172-530 GeV

$H \rightarrow ZZ^{(*)} \rightarrow 41$: ATLAS

Selection

- At least two pairs of opposite-charge, same-flavor leptons (e,μ)
- p_T thresholds: 20, 15, 10, 7 GeV (6 GeV for muons)
- 50 < m_{12} < 106 GeV, m_{41} -dependent cut on m_{34} , m_{34} < 115 GeV
- All same-flavor, opposite-sign pairs m_{\parallel} >5 GeV (J/ψ veto)
- ΔR(I,I') < 0.1 (0.2) for all same (different)-flavor
- Tracking and calorimeter isolation
- Impact parameter significance

41 Mass Spectrum: ATLAS

Discrepancy has negligible impact on the low-mass region < 160 GeV

(no change in results, if in the fit ZZ background is constrained within its uncertainty or left free)

 M_{4l} >160 GeV dominated by ZZ background: 147 ± 11 events expected; 191 observed

~1.3 times more ZZ events in data than SM prediction \rightarrow in agreement with measured ZZ cross-section in 41 final states at 8 TeV

Measured σ (ZZ) = 9.3 ± 1.2 pb SM (NLO) σ (ZZ) = 7.4 ± 0.4 pb

•Observed

 $131 < m_{\rm H} < 162 \text{ GeV}$ and $170 < m_{\rm H} < 460 \text{ GeV}$

$H \rightarrow ZZ^{(*)} \rightarrow 41$ Low Mass Region

Event count in 120 <m₄₁ <130 GeV

7+8 TeV	4μ	2e2µ + 2µ2e	4e	sum
Background	1.3 ± 0.1	2.2 ± 0.2	1.6 ± 0.2	5.1 ± 0.3
m _H =125 GeV	2.1 ± 0.3	2.3 ± 0.3	0.9 ± 0.1	5.3 ± 0.4
Data Observed	6	5	2	13
S/B	1.6	1.0	0.6	1.0

130

Best-fit value at 125 GeV: μ =1.3 ± 0.6

Data sample	m _H at max deviation	local p-value	local significance	expected
2011	125 GeV	1.1 %	2.3 σ	1.5 σ
2012	125.5 GeV	0.4 %	2.7 σ	2.1 σ
2011+2012	125 GeV	0.03 %	3.4 σ	2.6 σ

Global 2011+2012 (including LEE over full 110-141 GeV range): 2.5o

Combination Of SM Higgs Searches

Exclusion Limits On The SM Higgs Boson

ATLAS 95% CL Exclusion: $111 < M_H < 122, 131 < M_H < 559$ GeV CMS 95% CL Exclusion: $110 < M_H < 122.5, 127 < M_H < 600$ GeV

Observation Of A New Boson

ATLAS & CMS observe a narrow state near M = 125 GeV with a high significance

CMS & ATLAS : Local p-values & Significances

3σ 4σ _ 5σ CMS : 5.0σ 6σ 7σ 130 135 140 145 m_H (GeV) Expected (σ) Observed (σ) 3.83.2 2.84.12.51.6 1.9 0.7 1.4_ 4.75.0

3.4

5.8

Independent and consistent results

1.6

5.0

1σ

2σ

Quantifying Observed Excess : Signal Strength μ

$\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$: Indicates by what factor SM Higgs cross section

would have to be scaled to best match the observed data

Observed rate consistent with SM expectations ($\mu = 1$) A little larger for ATLAS: $\mu = 1.4 \pm 0.3$ A bit less for CMS: $\mu = 0.87 \pm 0.23$ Helps explain the difference in significances of observation

136

Best Fit Signal Strengths : By Channels

Consistent with the SM Higgs boson although both experiments see a higher H \rightarrow $\gamma\gamma$ rate ($\mu_{ATLAS} = 1.9 \pm 0.5$, $\mu_{CMS} = 1.6 \pm 0.4$)

Mass Of The Observed Resonance

Both measurements dominated by the observation in H $\rightarrow \gamma\gamma$ & supported by observed excess in H $\rightarrow ZZ \rightarrow 4l$ mode. H \rightarrow WW $\rightarrow 21 2v$ mode has too poor a mass resolution to contribute ₁₃₈

Summary & Conclusion

What Have We Learnt So Far : Just The Facts

- While searching for the Standard Model Higgs boson, ATLAS & CMS experiments have <u>independently</u> discovered a new resonance "X" with M_X ≈125 GeV
 - Probability of background fluctuation is $<< 10^{-9}$
- Because $X \rightarrow \gamma \gamma$
 - From angular momentum conservation & Bose-Einstein statistics
 → this neutral particle can not have spin = 1
 - New form of fundamental particle (Scalar or Tensor)
- Its production rate and decay into γγ, ZZ & WW is compatible, within errors, with expectations from a SM Higgs boson but we have not (yet) observed it to decay into fermion pairs as expected for SM Higgs:
 - $H \rightarrow bb \text{ or } H \rightarrow \tau \tau$

Landmark Achievement In 21st Century Science

A discovery that brought tears to Peter Higgs's eyes !

Next Steps

- Establishing the properties of the new particle is just the first part of a long journey : **sprint is over, marathon has begun**
- LHC continues its excellent performance, ATLAS & CMS hope to accumulate another ≈ 20 fb⁻¹ by end of 2012
 → total ≈ 30 fb⁻¹ data per experiment
- Continue to investigate the observed resonance in a variety of channels
 - Precise measurement of the boson mass
 - Measure its coupling to Vector bosons and fermions
 - Measure angular distribution in WW/ZZ modes to determine the spin and parity of the observed boson
- Exciting times ahead !