

DPG Physics School on Heavy Particles at the LHC

Theory of

Top Quark Physics

Adrian Signer

Paul Scherrer Institut

16-21 SEPTEMBER 2012. BAD HONNEF

Ω	10	rv/	lev	V
\mathbf{v}	\sim	1 V	-	v

- why top physics
- tops @ Tevatron, LHC and ILC
- what do we want to know

 $t\,ar{t}$

- top production at (N)NLO
- resummation
- including the decay of top
- off-shell effects

top mass

- renormalon issue with pole mass
- issue with m_t from invariant mass
- 'alternative' m_t determinations
- m_t @ ILC

single top

- recap (resummation, decay, off-shell effects)
- definition of process
- 4-flavour scheme vs 5-flavour scheme

forward-backward asymmetry A_{FB}

• theory vs. experiment

Tevatron vs. LHC

BSM effects

• spin correlations

anomalous couplings vs. effective theory

Higgs and top

testing the SM

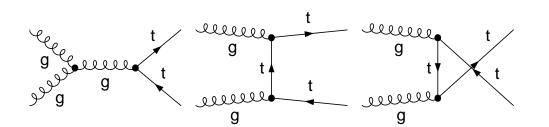
conclusions

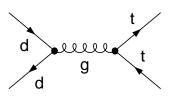
Part I

Overview

why top physics?

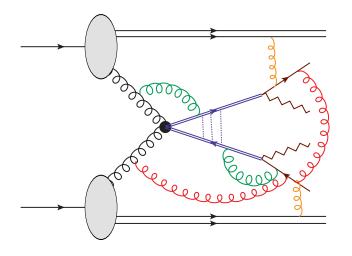
- top is a "free" quark
 - typical hadronization time governed by $\Lambda_{\rm QCD}^{-1} \sim (250~{
 m MeV})^{-1}$
 - top lifetime $(\Gamma_t)^{-1} \sim (1.4 \text{ GeV})^{-1}$
 - top quark does not (quite) form bound states and decays before hadronization does its dirty business
- top is relevant in many BSM scenarios
 - lacktriangle top has proper Yukawa coupling $y_t = \sqrt{2} m_t/v \sim 1$
 - top plays important role in EW symmetry breaking
- a lucky coincidence !!
 - top observables can be computed (hadronization not a show stopper)
 - top observables can be measured ("easy" to produce)
 - top observables are relevant (window for BSM)
- the top is the only quark that behaves properly!
 - ⇒ It's the white sheep in a herd of black sheep
- also input for other branches of particle physics





approximate (!)
expected / measured
SM cross sections in pb

	Tevatron	7 TeV LHC	14 TeV LHC
$tar{t}$	7	160	900
$qar{q}$	\sim 90%	\sim 20%	\sim 10%
gg	~ 10%	\sim 80%	\sim 90%



- cross sections are large
- tops are seen only through their decay products $t o Wb o \{\ell
 u, q' ar{q}\} \, b$
- information from top quark carried over to decay products
- the full process is still far from simple

• fully exclusive known at \sim one-loop

```
electroweak corrections known [Bernreuther et.al., Kuhn et.al.] spin correlations included [Bernreuther et.al., Melnikov et.al.] non-factorizable corrections computed [Denner et.al., Bevilacqua et.al.] included in MC@NLO and POWHEG [Frixione, Nason, Webber . . . . . ] two-loop corrections on their way . . .
```

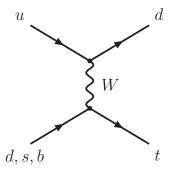
lacktriangle inclusive cross section(s) known at \sim two-loop

```
two-loop nearly known [Czakon et.al, Moch et.al, . . . ] bound-state effects computed [Hagiwara et.al., Kiyo et.al.] non-factorizable corrections computed [Beenakker et.al.] resummation of logs under control [Ahrens et.al, Beneke et.al . . . ]
```

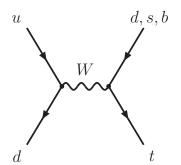
further processes known at one-loop:

```
t \bar{t} H [Beenakker et.al] and t \bar{t} j [Dittmaier et.al.]; \Rightarrow MC@NLO and POWHEG t \bar{t} b b [Bredenstein et.al; Bevilacqua et.al.] and t \bar{t} j j [Bevilacqua et.al.] "background" processes V + \mathrm{jets}
```

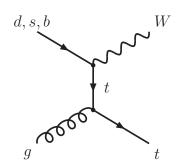

t-channel



s-channel

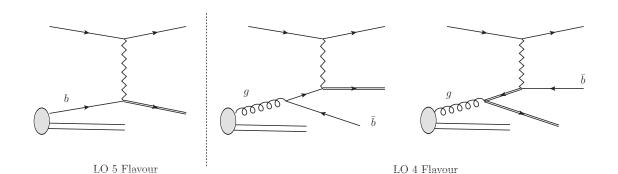


associated production



approximate (!)
expected / measured
SM cross sections in pb

	Tevatron	7 TeV LHC	14 TeV LHC
t $(ar{t})$ "t"-ch	1.2	40 (20)	150 (100)
t $(ar{t})$ "s"-ch	0.55	2.5 (1.4)	7 (4)
tW^-	0.15	8	45

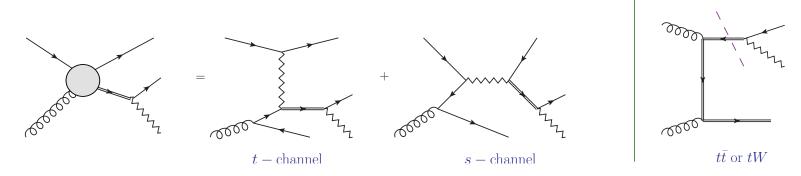


cross sections not much smaller than for $t \bar t$

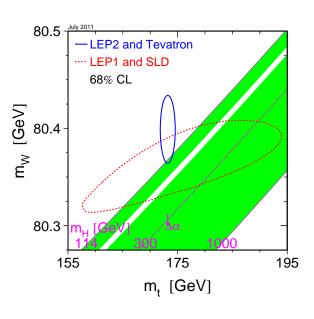
where does *b* come from?

precise definition of process not obvious beyond LO

- NLO QCD corrections, production and hadronic decay for t–, s–channel and Wt known [Harris et.al; Campbell et.al; Cao et.al . . .]
- all channels included in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Alioli, Nason, Re, Webber, White]
- EW corrections known [Beccaria et.al; Macorini et.al]
- non-factorizable corrections known [Falgari et.al.]
- resummation of inclusive cross section [Kidonakis, Wang et.al.]
- Note: issues with definition of cross section:
 - s and t channel mix (beyond LO)
 - ightarrow more appropriate to talk about (tJ), (tb) and (tW) cross sections disentangling Wt vs $t\bar{t}$ non-trivial [Frixione et.al.]

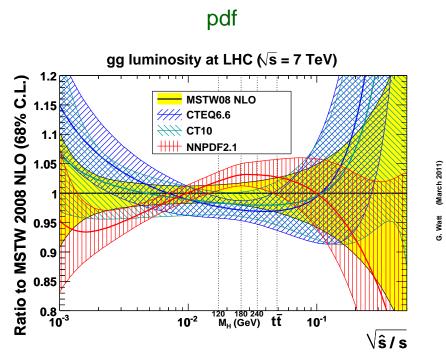


ew precision



LEP EWWG

 m_t , but also V_{tb}



plot from G.Watt (HepForge)

 σ_{tt} , but also single top $\sigma_t/\sigma_{ar{t}}$

other measurements: y_t , Γ_t , A_{FB} ... mainly as test of SM (or establishing BSM)

 $e_Q; T_3; \mathsf{spin}; SU(N_c)$

test indirect constraints not main motivation

 $t \to Wb; \quad pp \to t\bar{t}\gamma$

 m_t (what mass?)

input for (EW) precision
THE measurement

 $t ar{t}$ production other possibilities?

Yukawa coupling y_t

direct test of Higgs mech. important

 $pp \rightarrow t\bar{t}H$, ILC ??

CKM element V_{tb}

(only) direct measurement nice

single top production

width Γ_t

SM theory accurate at 1% (would be) really nice

only at ILC ??

anom. coupl; BSM

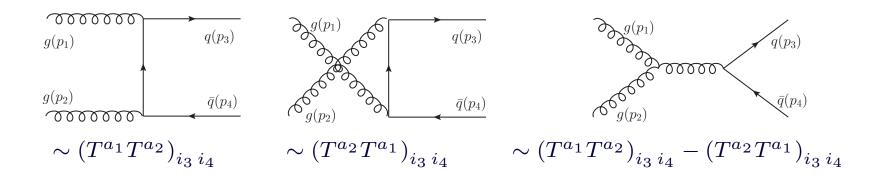
we are desperate for it no comment

spin correlations, A_{FB} , rare decays, single top

Part II

Top Pair Production

Compute matrix element squared $\mathcal{M}^{(0)} \equiv \mathcal{A}^{(0)} \mathcal{A}^{(0)} *$

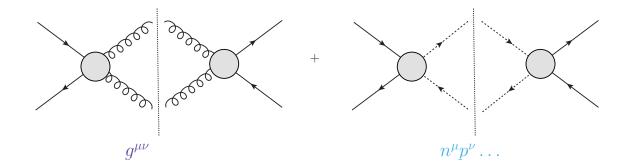


colour:

$$\begin{split} \mathcal{A}^{(0)} &= (T^{a_1}T^{a_2})_{i_3\ i_4} A_{12}(s,t,u) + (T^{a_2}T^{a_1})_{i_3\ i_4} A_{21}(s,t,u) \\ \mathcal{M}^{(0)} &= \underbrace{\frac{(N_c^2-1)^2}{4\,N_c}}_{\text{leading colour}} \left(|A_{12}|^2 + |A_{21}|^2\right) - \underbrace{\frac{(N_c^2-1)}{4\,N_c}}_{\text{subleading colour}} \left(A_{12}\,A_{21}^* + A_{12}^*\,A_{21}\right) \end{split}$$

Structure of (sub)amplitude: $A_{\#\#} = \bar{u}_{\alpha}(p_3)v_{\beta}(p_4)\varepsilon^{\mu}(p_1)\varepsilon^{\nu}(p_2)\left(a_{\mu\nu}\right)_{\alpha\beta}$

squaring the amplitude



conventional:

$$\sum_{\mathrm{pols}} \varepsilon^{\mu}(p_{i}) \varepsilon^{\nu*}(p_{i}) \rightarrow -g^{\mu\nu} + \underbrace{\frac{n_{i}^{\mu} p_{i}^{\nu} + p_{i}^{\mu} n_{i}^{\nu}}{(n_{i} p_{i})} - \frac{n_{i}^{2} p_{i}^{\mu} p_{i}^{\nu}}{(n_{i} p_{i})^{2}}}_{pols}; \quad \sum_{\mathrm{pols}} u_{\alpha}(p) \bar{u}_{\beta}(p) = (\not p + m)_{\alpha\beta};$$

$$n_{i}^{\mu} \text{ arbitrary}$$

QED: can drop n^{μ} parts, since $p_{3/4}^{\mu} \ a_{\mu\nu} = 0$

QCD: $p_{3/4}^{\mu} a_{\mu\nu} \neq 0$, but result independent of $n_{3/4}^{\mu}$. alternatively, drop n^{μ} parts but include ghost diagrams in squaring the amplitude.

In *D* dimensions we get (including mass terms) e.g.

$$|a_{12}|^2 = -\frac{2\alpha_s^2}{s^2t^2} \left((D-2)t(s+t) \left((D-2)s^2 + 4st + 4t^2 \right) + 16m^4s^2 + 16m^2st(s+t) \right)$$

helicity method:

fix helicities of external particles and express amplitude in terms of spinor inner products:

$$\langle ij \rangle = \langle p_i - | p_j + \rangle \equiv \bar{u}(p_i, -)u(p_j, +); \quad [ij] = \langle p_i + | p_j - \rangle \equiv \bar{u}(p_i, +)u(p_j, -)$$
;

$$\text{for massive quarks: } p = p^{\flat} + \frac{m_t^2}{2p^{\flat} \cdot \eta} \, \eta_p \ \ \text{then} \ \ u_{\pm}(p,m) = \frac{\not \! p + m}{\langle p^{\flat} \mp | \eta_p \pm \rangle} | \eta_p \pm \rangle$$

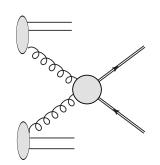
for gauge bosons use
$$\varepsilon^\mu(p,\pm)=\pm \frac{\langle p\pm|\gamma^\mu|n\pm\rangle}{\sqrt{2}\langle n\mp|p\pm\rangle}$$

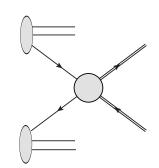
- lightlike reference momentum n^{μ} drops out for gauge invariant quantities
- very compact results, e.g. $a_{12}(g_1^-,g_2^-,t_3^+,\bar{t}_4^+) = ig^2 \frac{m_t^3 \langle \eta_3 \eta_4 \rangle [12]}{\langle 12 \rangle \langle 1|3|1] \langle 3^{\flat} \eta_3 \rangle [4^{\flat} \eta_4]}$
- simplifications (due to gauge cancellations) at amplitude level
- sum over all (non-vanishing) helicity configurations

$$|a_{12}|^2 = \sum_{h_i} |a_{12}(g_1^{h_1}, g_2^{h_2}, q_3^{h_3}, \bar{q}_4^{h_4})|^2$$

have to treat external particles in 4 dimensions

hadronic cross section





$$d\sigma_{H_1(P_1)H_2(P_2)\to t\bar{t}} = \int_0^1 dx_1 \, f_{g/H_1}(x_1,\mu_F) \int_0^1 dx_2 \, f_{g/H_2}(x_2,\mu_F) \, d\hat{\sigma}_{g(x_1P_1)g(x_2P_2)\to t\bar{t}}(\alpha_s(\mu_R)\dots) + \dots$$

 μ_F : factorization scale; μ_R : renormalization scale

 $f_{q/H_1}(x_1,\mu_F)$: parton distribution functions

 $d\hat{\sigma}$: hard partonic cross section, at tree level $d\hat{\sigma}^{(0)} = d\sigma^{(0)}$

there are additional partonic processes for $H_1H_2 o t ar t$ beyond LO (qg o t ar t q)

$$d\sigma_{H_1H_2 \to t\bar{t}} = \int_0^1 dx_1 \, f_{g/H_1}(x_1) \int_0^1 dx_2 \, f_{g/H_2}(x_2) \, d\hat{\sigma}_{gg \to t\bar{t}}$$

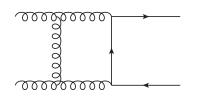
$$+ \sum_{g \in \{u,d,c,s,(b)\}} \int_0^1 dx_1 \, f_{q/H_1}(x_1) \int_0^1 dx_2 \, f_{\bar{q}/H_2}(x_2) \, d\hat{\sigma}_{q\bar{q} \to t\bar{t}} + \{q \leftrightarrow \bar{q}\}$$

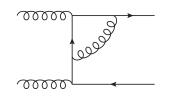
Tree-level: $d\hat{\sigma}^{(0)} = d\sigma^{(0)}$

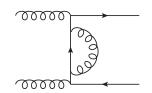
1-loop:
$$d\hat{\sigma}^{(1)} = \underbrace{d\sigma^{(0)}}_{\mathcal{O}(\alpha_s^2)} + \underbrace{d\sigma^{\text{virt}} + d\sigma^{\text{real}} + d\sigma^{\text{coll}}}_{\mathcal{O}(\alpha_s^3)}$$

- All $\mathcal{O}(\alpha_s^3)$ are (in general) divergent and only the sum is finite (for properly defined, i.e. infrared-safe observables).
- Regularize divergences by working in $D=4-2\epsilon$ dimensions: $\int d^4k \to \mu_R^{2\epsilon} \int d^Dk$; singularities \to poles $1/\epsilon$ (dimensional regularization).
- Other possibilities in principle, but not in practice.
- Strictly speaking, only internal momenta have to be D dimensional. There is some freedom how to treat external particles (recall helicity method needs these to be 4 dimensional)
- different schemes (variant of dimensional regularization) possible but observable is independent of this choice

virtual corrections







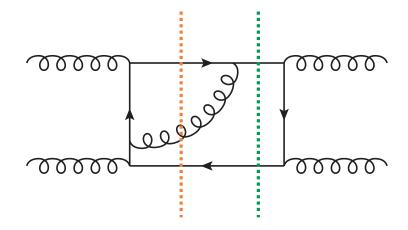
amplitude:

$$\mathcal{A}^{(1)} = (T^{a_1}T^{a_2})_{i_3 i_4} \left(\frac{N_c}{2} A_{12}^L(s, t, u) + \frac{1}{2N_c} A_{12}^S(s, t, u) + \frac{N_F}{2} A_{12}^F(s, t, u)\right)
+ \{12 \leftrightarrow 21\}
+ \delta_{i_3 i_4} \frac{1}{2} \text{Tr} (T^{a_1}T^{a_2}) \left(A_{\text{tr}}(s, t, u) + \frac{N_F}{N_c} A_{\text{tr}}^F(s, t, u)\right)$$

$$A_{12}^L = \frac{1}{\epsilon^2} \left[c_s \left(\frac{-s}{\mu^2} \right)^{-\epsilon} + c_t \left(\frac{-t}{\mu^2} \right)^{-\epsilon} + \dots \right] + \frac{1}{\epsilon} \operatorname{mess}(\log) + \operatorname{finite mess}(\log^2, \operatorname{Li}_2)$$

- UV singularities $(1/\epsilon)$ per loop) \Longrightarrow renormalization
- soft and final-sate collinear sing. $(1/\epsilon)$ per loop) \Longrightarrow combine with real corrections
- soft-collinear singularities $(1/\epsilon^2)$ per loop) \Longrightarrow combine with real corrections
- initial-sate collinear sing. ($1/\epsilon$ per loop) \Longrightarrow combine with collinear counterterm $d\sigma^{
 m coll}$

virtual corrections



"squaring" the amplitude:

$$\mathcal{A}_{t\bar{t}} = \underbrace{\mathcal{A}_{t\bar{t}}^{(0)}}_{\sim \alpha_s} + \underbrace{\mathcal{A}_{t\bar{t}}^{(1)}}_{\sim \alpha_s^2} + \ldots \Longrightarrow \mathcal{M}^{(0)} = |\mathcal{A}_{t\bar{t}}^{(0)}|^2 \sim \alpha_s^2 \text{ and } \mathcal{M}^{(1)} = 2\operatorname{Re}\left(\mathcal{A}_{t\bar{t}}^{(1)}\mathcal{A}_{t\bar{t}}^{(0)*}\right) \sim \alpha_s^3$$

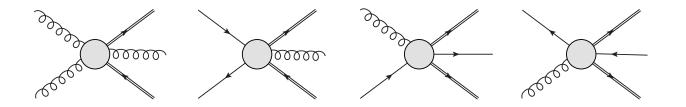
the "same" diagram with a different cut is part of the real corrections

$$\mathcal{M}^{(0)}(gg \to t\bar{t}g) = |\mathcal{A}^{(0)}_{t\bar{t}g}|^2 \sim \alpha_s^3$$

Real corrections

$$d\sigma^{\text{real}} = \sum_{\bar{a}_i} \int d\Phi_3(p_1, p_2; p_3, p_4, p_5) \langle \mathcal{M}^{(0)}(a_1, a_2; \bar{a}_3, \bar{a}_4, \bar{a}_5) \rangle$$

processes: $\mathcal{M}^{(0)}(g,g;t,\bar{t},g)$, but also new partonic channels $\mathcal{M}^{(0)}(q,g;t,\bar{t},q)$ etc. calculation of $\mathcal{M}^{(0)}$ as for tree-level.



 $\mathcal{M}^{(0)}$ has no $1/\epsilon$ poles, but has (non-integrable) singularities in some regions of phase space.

$$\underbrace{\int d\Phi_{n-1} \left(\mathcal{M}^{(0)} - \sum_{\mathrm{sing}} \mathcal{M}^{\mathrm{appr}} \right)}_{\text{finite}} + \underbrace{\int d\Phi_{n-1} \sum_{\mathrm{sing}} \mathcal{M}^{\mathrm{appr}}}_{\text{use dim reg}}$$

Real corrections naive example (e.g. gluon g soft, $x \sim$ energy)

$$\mathcal{A}(g,g,t,\bar{t},g) \overset{g \to 0}{\sim} \frac{1}{\langle pg \rangle} \mathcal{A}(g,g,t,\bar{t}) + \mathcal{A}^{\mathrm{rem}} \sim \frac{1}{\sqrt{x}} \mathcal{A}(g,g,t,\bar{t}) + \mathcal{A}^{\mathrm{rem}}$$

$$\mathcal{M}(g,g,t,\bar{t},g) \sim \frac{1}{x} \mathcal{M}(g,g,t,\bar{t}) + \frac{1}{\sqrt{x}} \mathcal{M}^{\mathrm{rem}}$$

$$\int d\Phi_3^D \mathcal{M}(g,g,t,\bar{t},g) = \underbrace{\int d\Phi_3^4 \left(\mathcal{M}(g,g,t,\bar{t},g) - \frac{1}{x} \mathcal{M}(g,g,t,\bar{t}) \right)}_{\text{term 1}} + \underbrace{\int d\Phi_3^D \frac{1}{x} \mathcal{M}(g,g,t,\bar{t})}_{\text{term 2}}$$

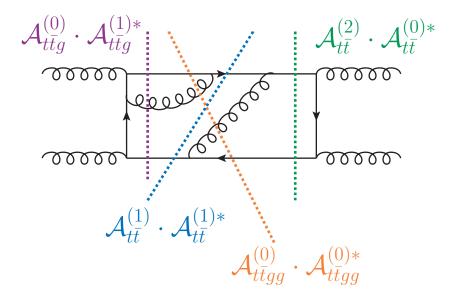
term 1: evaluate numerically in 4 dimensions, square root singularities!

$$\text{term 2: } \int x^{-\epsilon} \; \frac{1}{x} \int d\Phi_2^4 \, \mathcal{M}(g,g,t,\bar{t}) = -\frac{1}{\epsilon} \int d\Phi_2^4 \, \mathcal{M}(g,g,t,\bar{t})$$

there are several well established (and automatised) general procedures

⇒ FKS, Dipole subtraction . . .

nnlo contributions



- at NNLO there are double real, virtual, real-virtual and one-loop squared contributions
- separate parts have singularities $1/\epsilon^n$ with $n \leq 4$
- singularities cancel in the sum of all contributions
- no general procedure yet for double-real integration, but many partial results
- $q\bar{q} \rightarrow t\bar{t}$ total cross section known (numerically) at NNLO [Czakon et al.]

lacktriangle total cross section (LHC dominated by $\hat{\sigma}_{gg}$, beyond LO we also need $\hat{\sigma}_{qg}$)

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0)} \left[1 + \frac{\alpha_s}{4\pi} \hat{\sigma}_{ij}^{(1)} + \frac{\alpha_s^2}{(4\pi)^2} \hat{\sigma}_{ij}^{(2)} + \ldots \right]$$

 NLO QCD (and EW) corrections known [Dawson et.al.; Beenakker et.al.; Kao, Wackeroth, Bernreuther et.al; Kühn, Scharf, Uwer . . .]

$$\hat{\sigma}_{ij}^{(1)} = \underbrace{\frac{a_{ij}^{(1,-1)}}{\beta}}_{\text{Coulomb}} + \underbrace{b_{ij}^{(1,2)} \log^2 \beta + b_{ij}^{(1,1)} \log \beta}_{\text{soft gluon}} + c_{ij}^{(1)}$$

 NNLO QCD corrections not (yet) fully known [Czakon et.al, Moch et.al, Beneke et.al, Ahrens et.al, Körner et.al. . . . (Hathor)]

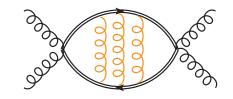
$$\hat{\sigma}_{ij}^{(2)} = \underbrace{\frac{\#}{\beta^2} + \frac{\# \log^2 \beta + \# \log \beta + \#}{\beta}}_{\text{Coulomb}} + \underbrace{\# \log^4 \beta + \# \log^3 \beta + \dots}_{\text{soft gluon}} + c_{ij}^{(2)}$$

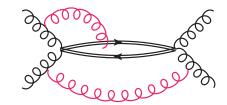
• problematic terms from threshold and soft gluon region $\sqrt{1-4m_t^2/s} \equiv eta o 0$

enhancements from special kinematic regions \Longrightarrow order by order in α_s not sufficient

- in threshold region $\sqrt{1-4m_t^2/s} \equiv eta o 0$
 - "bound state" effects $(\alpha_s/\beta)^n$, can be resummed [Fadin, Khoze; Hagiwara et.al, Kiyo et.al, Beneke et.al]
 - resummation of soft logs $\alpha_s^n \log^{2n} \beta$, initially to NLL now NNLL and partly NNNLL [Bonciani, Catani, Mangano, Mitov, Nason, Czakon et.al., Beneke et.al., Ahrens et.al., Kidonakis,]
- note: cross section not necessarily dominated by small β , can use different resummation parameter (done at NNLL)
 - standard: $\beta \to 0 \Rightarrow \alpha_s^n \ln^m \beta$ with m < 2n
 - invariant mass: $1-z\equiv 1-M^2/\hat{s}\to 0 \quad \Rightarrow \quad \alpha_s^n \frac{\ln^m(1-z)}{(1-z)}$ with m<2n-1
 - SPI: $s_4 \equiv p_X^2 m_t^2 \to 0 \quad \Rightarrow \quad \alpha_s^n \frac{\ln^m(s_4/m_t)}{s_4} \quad \text{with} \quad m < 2n 1$
- recover total cross section by integration
 treatment of formally subleading terms are numerically relevant
- approximate "NNLO" cross section [Aliev et.al. (Hathor), Ahrens et.al, Beneke et.al, Kidonakis . . .]

structure of higher-order corrections: hard, Coulomb and soft





study either in Mellin space $\sigma_{t\bar{t}}(N)\equiv\int_0^1d\rho\,\rho^{N-1}\sigma_{t\bar{t}}(\rho)$ with $\rho\equiv\frac{s}{4m_t^2}$ or directly in momentum space via SCET

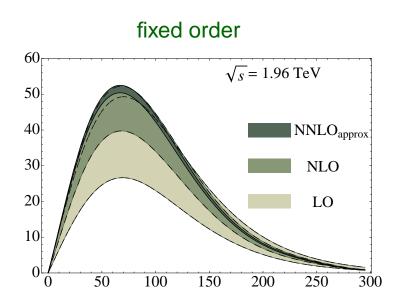
cross section factorizes (into product in Mellin space and convolution in SCET)

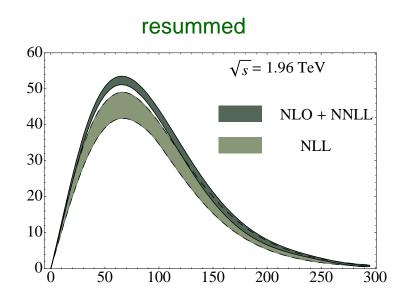
$$\sigma_{t\bar{t}} = \sigma_{t\bar{t}}^{(h)} \otimes \underbrace{\sigma_{t\bar{t}}^{(Coul)}}_{(\alpha_s/\beta)^n} \otimes \underbrace{\sigma_{t\bar{t}}^{(s)}}_{\log \beta}$$

 $\sigma_{t\bar{t}}^{(Coul)}$ only in threshold expansion, but $\sigma_{t\bar{t}}$ at LHC/Tev not dominated by small β .

inverse Mellin transform needs prescription to avoid Landau pole, or re-expansion of resummed expression to certain order in perturbation theory

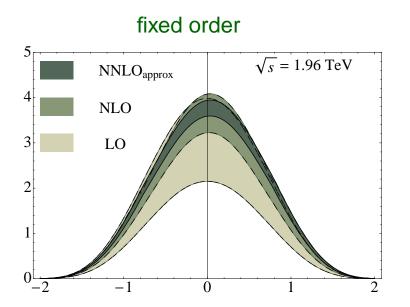
comparison fixed-order vs. resummed cross section for p_t [Ahrens et al. 1103.0550]

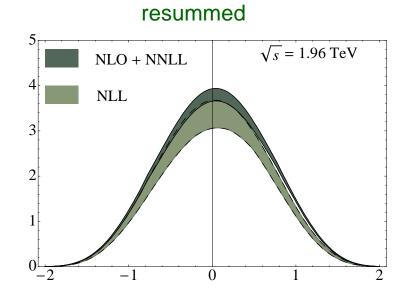




- no large numerical shift in distributions
- scale dependence substantially reduced
 more reliable predictions
- error estimate via scale dependence more questionable than ever
 - scale dependence enters via logs, but higher-order terms also have constants
 - scale dependence is an estimate of importance of missing logs
 - higher-order logs can be predicted and resummed, but constants are still missing

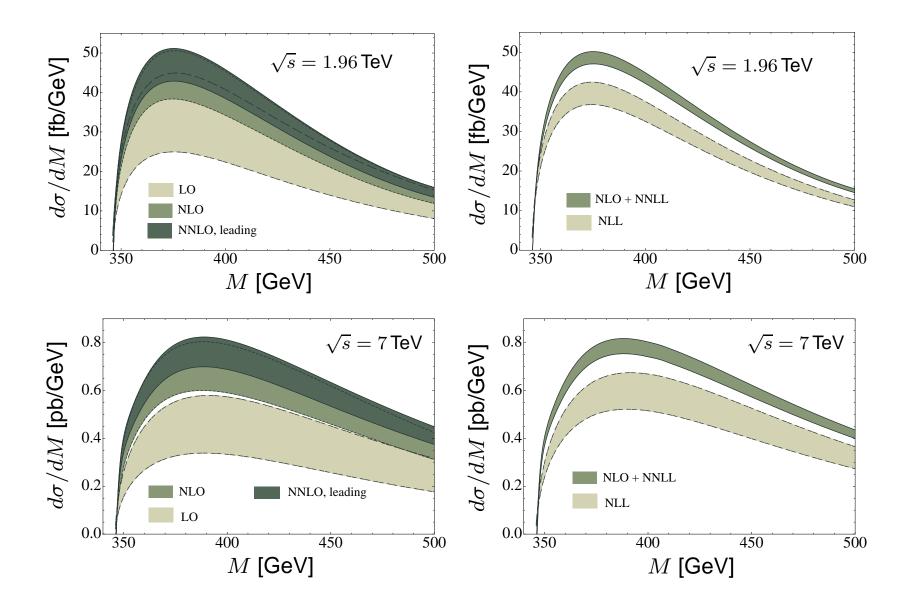
comparison fixed-order vs. resummed cross section for y_t [Ahrens et al. 1103.0550]





- similar picture as for p_t distribution
- neither resummation nor approximate (!!) NNLO have a large effect
- NLO prediction seems to be fairly reliable but full NNLO still missing!!
- impact on $A_{FB} \implies$ later

Resummation of logs: for invariant mass [Ahrens et.al. arXiv:1003.5827]



bound-state effects

near threshold Coulomb potential is dominating effect:

colour singlet:
$$V(r) \simeq -\alpha_s \frac{C_F}{r}$$
 attractive

colour octet:
$$V(r) \simeq -\alpha_s \frac{C_F - C_A/2}{r}$$
 repulsive

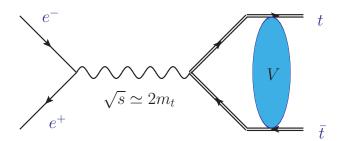
- for $\Gamma_t \to 0$ collections of bound states (as for bottom), for $\Gamma_t \simeq 1.4~{\rm GeV}$ a single "bump" in invariant mass remains.
- resummation of $(\alpha/\beta)^n$ (from Coulomb potential \rightarrow "bound-state" effects) [Hagiwara et.al., Kiyo et.al.] results in modification of invariant mass spectrum
- effect small for colour octet, i.e. Tevatron ($q\bar{q}$ is pure octet at LO), but "large" (for a theorist) at the LHC
- "bump" is impossible to be seen, but there is an effect on total cross section (threshold expansion $\sigma_{t\bar{t}}^{(Coul)}$)

Top threshold scan at linear collider

top pair produced near threshold

$$E \equiv \sqrt{s} - 2m \ll m$$

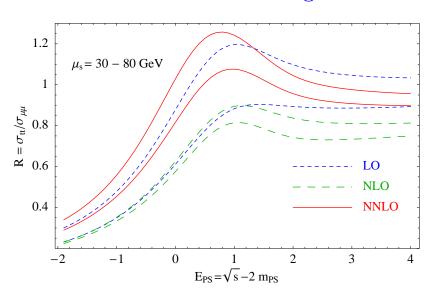
non-relativistic → NRQCD



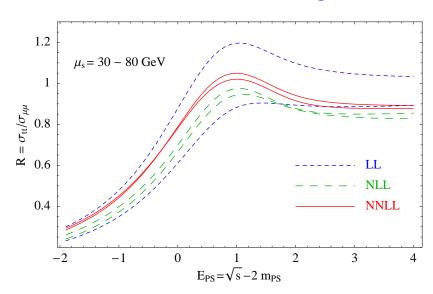
- lifetime for top $\tau \simeq 1/\Gamma_t \simeq 5 \times 10^{-25} \mathrm{\ s}$
- typical hadronization time $\tau_{\rm had} \simeq 1/\Lambda_{\rm QCD} \simeq 2 \times 10^{-24} {
 m \ s}$
- $au < au_{
 m had} \Rightarrow$ top decays before it forms hadrons
- Schrödinger eq: $\left(\frac{\Delta}{m^2} \frac{\alpha_s \, C_F}{r} + \delta V (E + i \Gamma_t) \right) G(\vec{r}, \vec{r}^{\, \prime}, E) = \delta(\vec{r} \vec{r}^{\, \prime})$
- poles (bound states) become a bump (would-be bound state)
- position of bump ⇒ determination of mass
- height and width of bump \Rightarrow determination of Γ_t
- typical scale: $\mu \simeq 2\,m\,v \simeq 2\left(m\sqrt{E^2+\Gamma_t^2}\right)^{1/2}\gtrsim 30~{
 m GeV} \Rightarrow {
 m perturbation~theory}$

Top threshold scan at linear collider [Pineda, AS]

no resummation of $\log v$

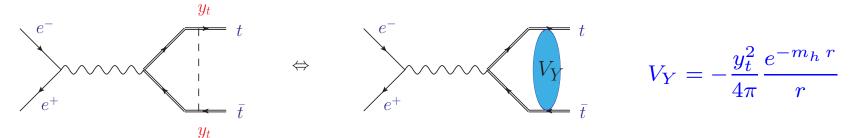


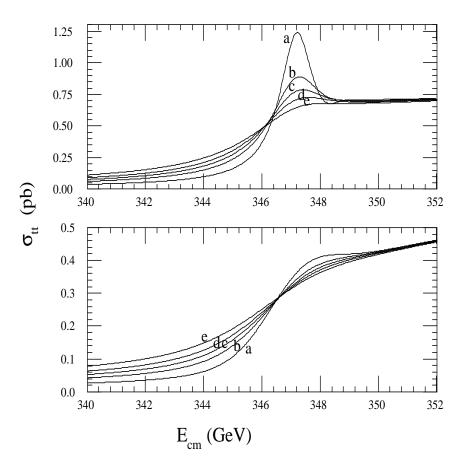
with resummation of $\log v$



- normalization of cross section much more stable after resummation
- smaller scale dependence, smaller size of corrections
- potential to measure (well defined) top mass to an accuracy of $\delta m_t \simeq 50~{
 m MeV}$
- potential for a precise measurement of Γ_t and maybe even the Yukawa coupling

measurement of Higgs-Yukawa potential $\rightarrow y_t$?? treating Higgs as "new physics"

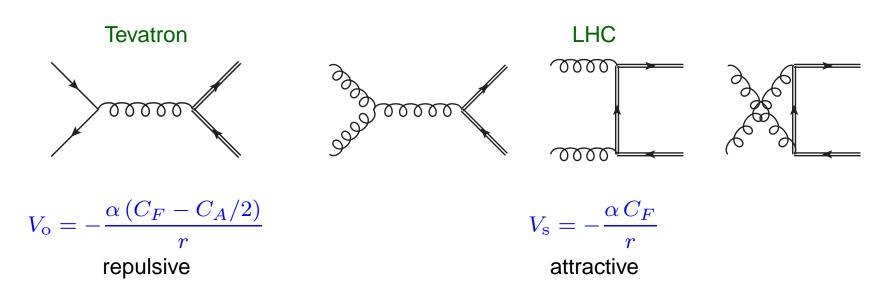


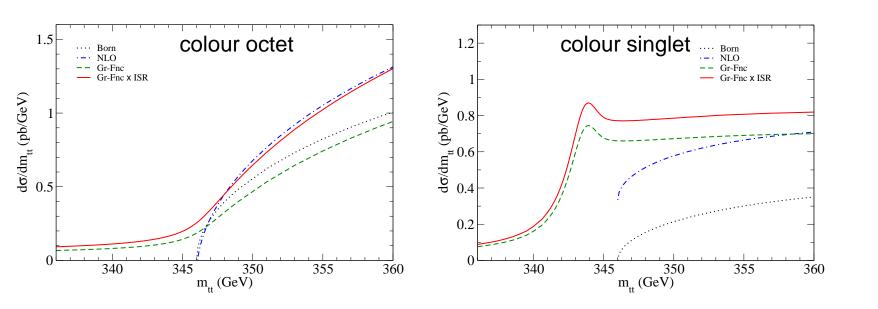


measurement of Γ_t [Frey et.al.]

- Γ_t affects shape of threshold scan
- different curves correspond to $\Gamma_t/\Gamma_t^{\rm SM}=$ (a) 0.5, (b) 0.8, (c) 1.0, (d) 1.2, and (e) 1.5
- before (top) and after (bottom)
 bremsstrahlung corrections

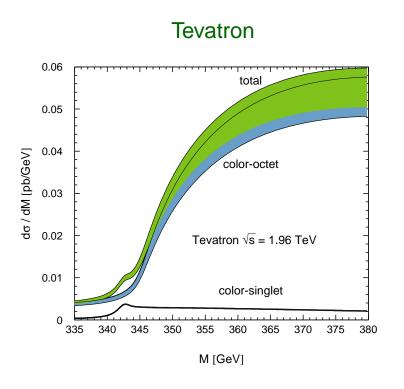
threshold "scan" at Tevatron/LHC [Hagiwara et al. 0804.1014]

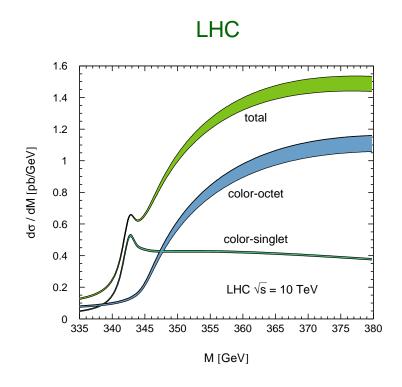




Top "threshold scan" at LHC [Kiyo et al. 0812.091]

including all channels and parton-distribution functions:

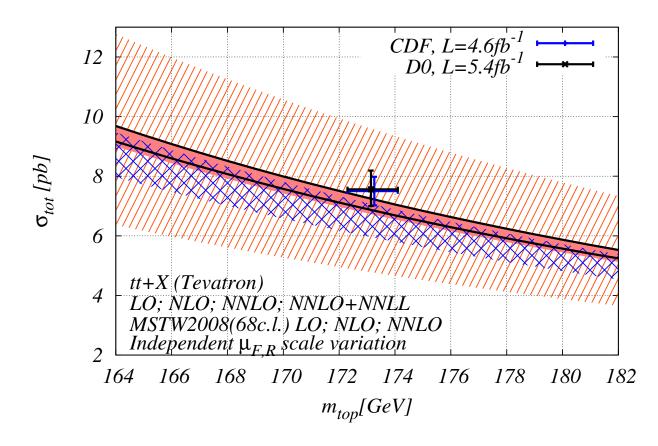




this bump cannot be seen directly but has some (small) impact on the total cross section

total cross section, $\sigma_{q\bar{q}}^{(2)}$ computed numerically [Bärnreuther, Czakon, Mitov]

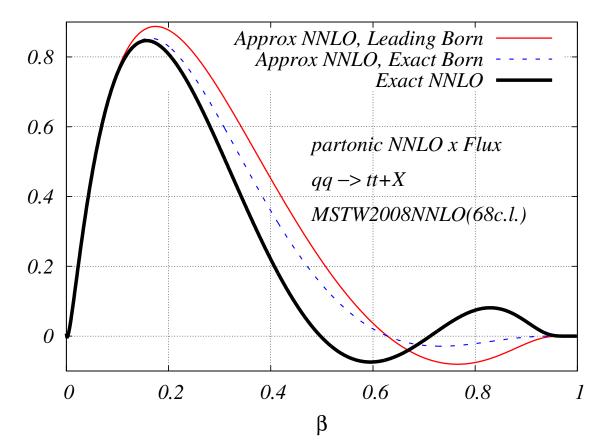
$$\hat{\sigma}_{ij} = \alpha_s^2 \left[\sigma_{ij}^{(0)} + \alpha_s \left(\sigma_{ij}^{(1,0)} + \sigma_{ij}^{(1,1)} \log(\mu^2/m^2) \right) + \alpha_s^2 \left(\sigma_{ij}^{(2,0)} + \sigma_{ij}^{(2,1)} \log(\mu^2/m^2) + \sigma_{ij}^{(2,2)} \log^2(\mu^2/m^2) \right) \right]$$



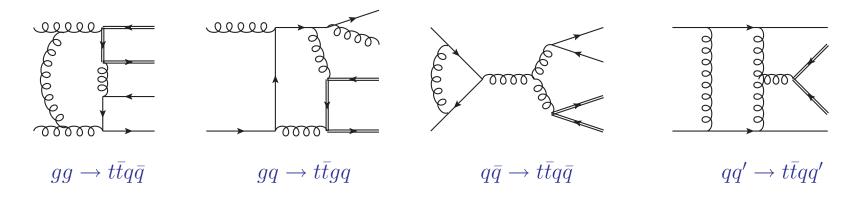
total cross section [Bärnreuther, Czakon, Mitov]

 $\sigma_{ij}^{(2,i)}$ expanded in β corresponds to threshold expansion [Beneke et.al.]

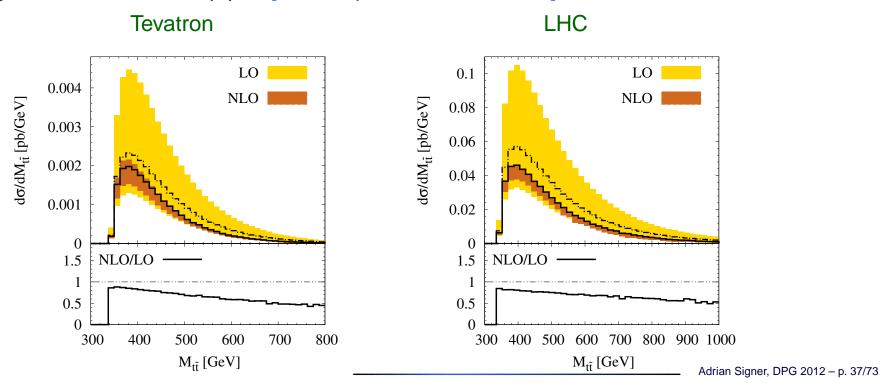
$$\sigma_{q\bar{q}}^{(2,0)} = \sigma_{q\bar{q}}^{(0)} \left[\frac{k^{(2,0)}}{\beta^2} + \sum_{n=0}^{2} \frac{k^{(1,n)}}{\beta} \log^n \beta + \sum_{n=0}^{4} k^{(0,n)} \log^n \beta \right]$$



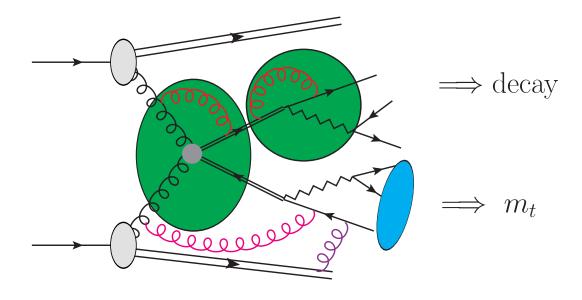
many partonic processes, up to 6-point interals: (tree level $\sim \alpha_s^4(\mu)$!!)



e.g: invariant mass of top pair [Bevilacqua et al. 1108.2851]

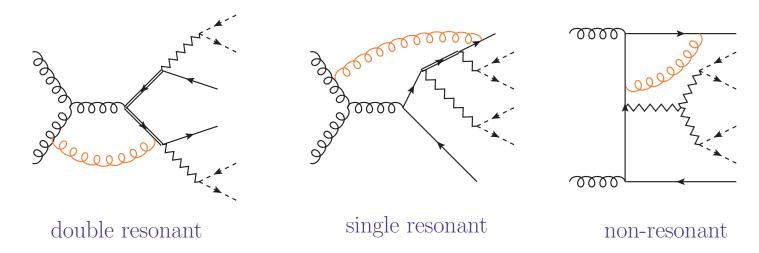


more detailed questions



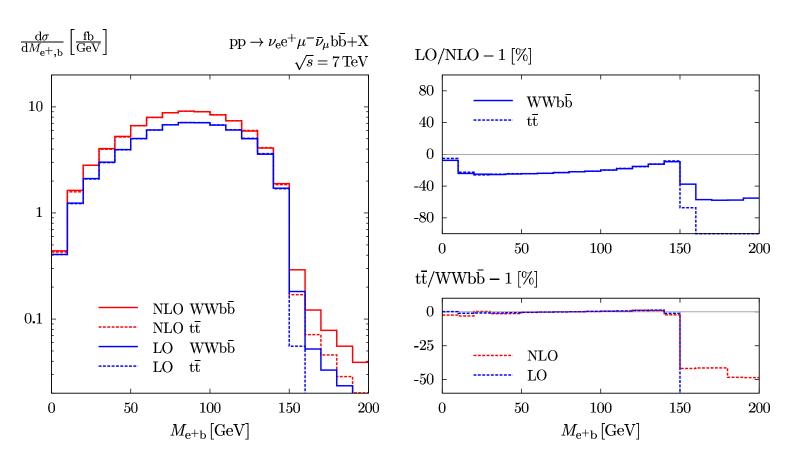
- cuts on decay products (missing E_T , rapidity and p_t of leptons etc.)
- testing decay of top (spin correlations)
- non-factorizable corrections (off-shell effects)
- colour connection between decay products and proton remnants

include decay of top and $W,\ gg \to W^+ b \, W^- \bar b$



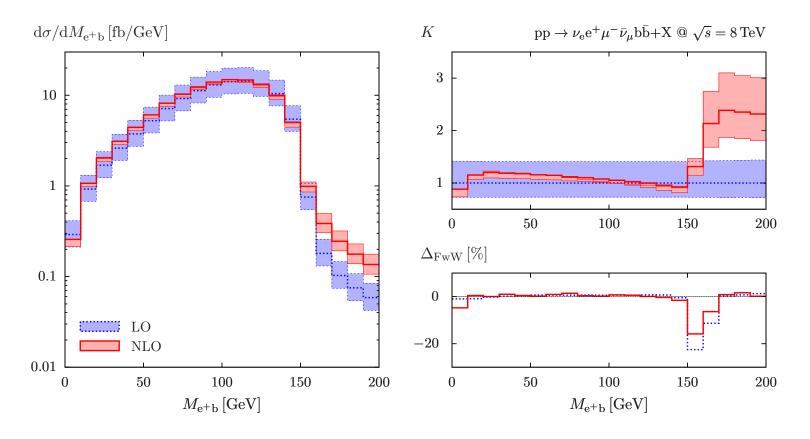
- calculation available by two groups [Bevilacqua et al; Denner et. al]
- complex mass scheme for treatment of intermediate unstable particles $m_t^2 \to \mu_t^2 \equiv m_t^2 i m_t \Gamma_t$
- requires integrals with complex masses
- treatment of W (with leptonic decay): also resonant or non-resonant

top quark M_{eb} distribution distribution for 8 TeV LHC [Denner et al. 1203.6803]



- off-shell effects (from top) small in general
- lacktriangle can be enhanced at kinematic boudaries (at LO: $M_{eb}^2 < m_t^2 M_W^2$)

M_{eb} distribution for 8 TeV LHC [Denner et al. 1207.5018]



off-shell effects (from W) small except in specal (but possibly important) kinematic regions (m_t measurement)

Part III

Top Mass

Problem 1: conceptual problem with pole mass; $\mathcal{O}(\Lambda_{\rm QCD})$

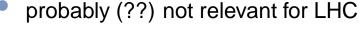
The pole mass has an intrinsic uncertainty of order $\Lambda_{\rm QCD}$ in perturbation theory (infrared sensitivity, renormalon ambiguity)

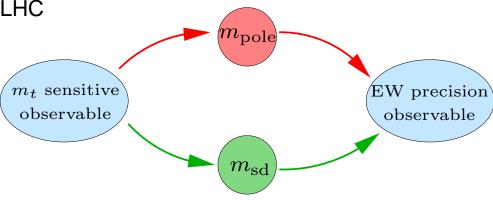
consider (fictitious) meson:

$$M = m_Q + m_q + V(q^2)$$
 well def. pole mass pert. ambiguity pert. ambiguity

There is a principal limitation of the usefulness of the pole mass: $\delta m_t > \Lambda_{\rm QCD}$

- can be solved in principle by using other (short-distance) mass definitions
- highly relevant for m_t determinations at linear collider [Beneke et.al, Hoang et.al]





Problem 2: scheme dependence

- $lacktriangledown_t$ has no meaning, unless you precisely specify what you mean by it
- quark mass definition is not unique, it is simply a theoretical parameter
- different definitions (schemes) are possible and widely used e.g. $m_{\text{pole}}, \overline{m}, m_{\text{PS}}, m_{\text{1S}}, \overline{m_{\text{DR}}} \dots$
- for each (acceptable) scheme s_1 the mass m_{s_1} can be related to the bare mass m_0 by divergent relations to any order in perturbation theory

$$m_{s_1}^{(i)} = m_0 \left(1 + \alpha_s \, d_{s_1}^{(1)} + \alpha_s^2 \, d_{s_1}^{(2)} + \dots + \alpha_s^i \, d_{s_1}^{(i)} \right)$$

• the masses in two (acceptable) schemes s_1 and s_2 are related by finite relations

$$m_{s_1}^{(i)} = m_{s_2}^{(i)} \left(1 + \alpha_s f_{s_1, s_2}^{(1)} + \alpha_s^2 f_{s_1, s_2}^{(2)} + \dots + \alpha_s^i f_{s_1, s_2}^{(i)} \right)$$

• at tree level, all mass definitions are equal, but the higher-order coefficients can be numerically large, e.g. relating $m_{\rm pole}^{(3)}$ to $\overline{m}^{(3)}$:

$$172.5 \text{ GeV} \simeq (162.0 + 8.0 + 1.9 + 0.6) \text{ GeV}$$

observable O, mass scheme s_1

$$O_{\text{exp}} = O_{s_1}^{(0)}(m_{s_1} \dots) + \alpha_s O_{s_1}^{(1)}(m_{s_1} \dots) + \alpha_s^2 O_{s_1}^{(2)}(m_{s_1} \dots) + \dots$$
determination of $m_{s_1}^{(0)}$

$$determination of $m_{s_1}^{(1)} = m_{s_1}^{(0)}(1 + c_{s_1}^{(1)}\alpha_s)$

$$determination of $m_{s_1}^{(2)} = m_{s_1}^{(0)}(1 + c_{s_1}^{(1)}\alpha_s + c_{s_1}^{(2)}\alpha_s^2)$$$$$

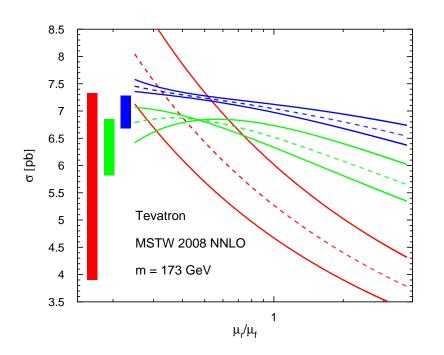
- lacktriangle working at order $lpha_s^n$, the determinations of m_{s_2} by
 - using mass scheme s_2 directly in determination above
 - using mass scheme s_1 as above and then converting m_{s_1} to m_{s_2} are different at order α_s^{n+1}
- to get a reliable top-mass determination we either have to work to very high order in perturbation theory or use a scheme were the corrections are not large.

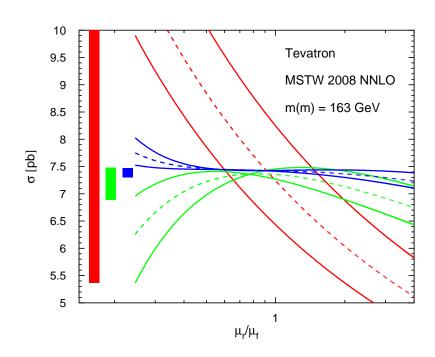
Problem 2: how to relate m_{exp} to pole mass; $\mathcal{O}(\Gamma_t)$

- m_X determination by requiring $O^{ ext{th}}(m_X) \stackrel{!}{=} O^{ ext{exp}}$, in principle for any scheme X and any (mass sensitive and well measurable) observable O
- in practice limitation through lack of higher-order terms in Oth
- $lacktriangledown_t$ measurements through kinematics of decay products are basically tree-level determinations
- pick a scheme where higher-order corrections are small, i.e. pole scheme \Longrightarrow m_t extracted using decay products is "something like" the pole mass
- the issue is not (and never was) whether this mass $m_{\rm exp}$ is the pole mass or $\overline{\rm MS}$ mass, but what the precise relation between $m_{\rm exp}$ and $m_{\rm pole}$ is
- care has to be taken when interpreting $m_{\rm exp}\stackrel{??}{=} m_{\rm pole}$ however $m_{\rm exp}\stackrel{!!}{=} m_{\rm pole} + \mathcal{O}(\Gamma_t)$ is fine. (Note: non-factorizable corrections have been computed and seem to be small [Denner et.al., Bevilacqua et.al.])
- alternative ways to measure m_t , using different O, where higher-order corrections are known, e.g. total cross section [Langenfeld et.al] or other choices [Melnikov et.al.]
- the ultimate m_t determination with $\delta m_t \sim 100~{
 m MeV}$ from threshold scan at ILC.

determination of $\overline{m}(\overline{m})$ through cross section [Langenfeld, Moch, Uwer]

compare $\sigma_{\rm tot}$ expressed in terms of pole and $\overline{\rm MS}$ mass (for $\mu_F \in \{0.5,1,2\} \times m_t$)





- ullet $\overline{
 m MS}$ scheme more reliable (bands overlap, smaller uncertainty)
- direct extraction of $\overline{\mathrm{MS}}$ mass $\overline{m}(\overline{m})$ with $\delta m \simeq 3~\mathrm{GeV}$
- PDF uncertainties etc... ??

Compare direct vs. indirect determination of pole mass [Alekhin, Djouadi, Moch]

Tevatron

CDF&D0	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{ m MS}}(m_t)$	$162.0^{+2.3}_{-2.3}{}^{+0.7}_{-0.6}$	$163.5^{+2.2+0.6}_{-2.2-0.2}$	$163.2^{+2.2+0.7}_{-2.2-0.8}$	$164.4^{+2.2}_{-2.2}^{+0.8}_{-0.2}$
$m_t^{ m pole}$	171.7 ^{+2.4} ^{+0.7} _{-2.4} ^{-0.6}	$173.3^{+2.3}_{-2.3}^{+0.7}_{-0.2}$	$173.4^{+2.3}_{-2.3}^{+0.8}_{-0.8}$	$174.9^{+2.3}_{-2.3}^{+0.8}_{-0.3}$
$(m_t^{ m pole})$	169.9 ^{+2.4} ^{+1.2} _{-2.4} ^{-1.6}	171.4 $^{+2.3}_{-2.3}$ $^{+1.2}_{-1.1}$	$171.3^{+2.3}_{-2.3}^{+1.4}_{-1.8}$	$172.7^{+2.3}_{-2.3}^{+1.4}_{-1.2}$

LHC

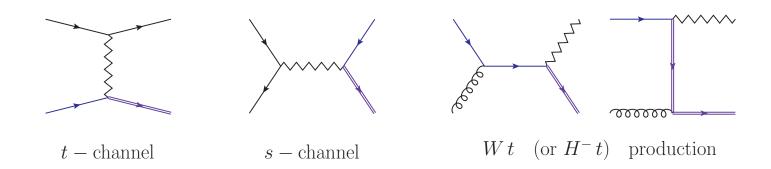
ATLAS&CMS	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{ m MS}}(m_t)$	$159.0^{+2.1}_{-2.0}{}^{+0.7}_{-1.4}$	165.3 $^{+2.3}_{-2.2}$ $^{+0.6}_{-1.2}$	$166.0^{+2.3}_{-2.2}^{+0.7}_{-1.5}$	166.7 ^{+2.3} ^{+0.8} _{-2.2} ^{-1.3}
$m_t^{ m pole}$	$168.6^{+2.3}_{-2.2}{}^{+0.7}_{-1.5}$	175.1 $^{+2.4}_{-2.3} ^{+0.6}_{-1.3}$	$176.4^{+2.4}_{-2.3}^{+0.8}_{-1.6}$	177.4 ^{+2.4} ^{+0.8} _{-2.3} ^{-1.4}
$(m_t^{ m pole})$	$166.1^{+2.2+1.7}_{-2.1-2.3}$	$172.6^{+2.4}_{-2.3}^{+1.6}_{-2.1}$	$173.5^{+2.4}_{-2.3}^{+1.8}_{-2.5}$	$174.5^{+2.4}_{-2.3}^{+2.0}_{-2.3}$

- with errors $\delta m_t \sim 2-3~{
 m GeV}$ renormalon problems are not main issue.
- if $\delta m_t \lesssim 1~{
 m GeV}$ must not use pole mass

Part IV

Single Top

basic processes

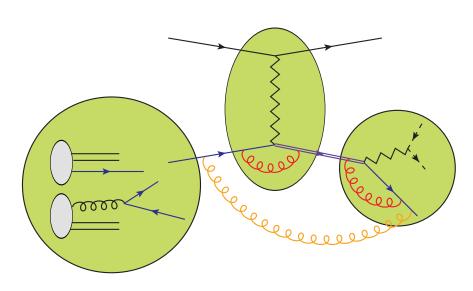


classification of physical processes is not that straightforward

approximate (!) expected / measured SM cross sections in pb

	Tevatron	7 TeV LHC	14 TeV LHC
t $(ar{t})$ "t"-ch	1.2	40 (20)	150 (100)
t $(ar{t})$ "s"-ch	0.55	2.5 (1.4)	7 (4)
$t W^-$	0.15	8	45

more detailed questions



- NLO corrections in production
- resummation of soft logs → "N"NLO corrections
- top decay, at LO/NLO, spin correlations
- off-shell effects / non-factorizable corrections
- initial b quark and m_b effects : 5 flavour scheme vs. 4-flavour scheme
- matching to parton showers

- fully differential NLO QCD corrections for t–, s–channel and Wt known [Harris et.al; Sullivan; Zhu . . .]
- resummation at NNLL of inclusive cross section [Kidonakis; Wang et.al.]
 - → "poor man's" NNLO corrections
- top decay added, with NLO corrections in production and decay [Campbell et.al; Cao et.al]
 - → issues with definition of channel
 - → spin correlations
- EW corrections known in SM and MSSM [Beccaria et.al; Macorini et.al] effect small, a few %
- non-factorizable corrections known [Falgari et.al]
 - → effects small, except at kinematic boundaries
- 4-flavour vs. 5-flavour scheme [Campbell et.al]
 - → generally good agreement at NLO
- all channels (including tH^-) included in MC@NLO and POWHEG [Frixione,Frederix, Laenen, Motylinski, Alioli, Nason, Re, Webber, White]
- BSM effects (e.g. anomalous trilinear couplings) included in WHIZARD
 - → interference with background diagrams on its way [Bach, Kilian, Ohl...]

s-channel: Kidonakis [1001.5034]

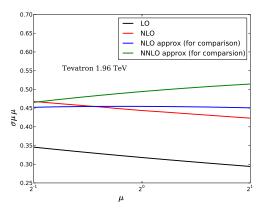
- resummation in moment space
- $s_4 \equiv (p_a + p_b p_1)^2 m_t^2 = s + t + u m_t^2$ for $s_4 \to 0 \Rightarrow$ $\alpha_s^n L^{2n-1} \equiv \alpha_s^n \left[\log^{2n-1} (s_4/m_t^2)/s_4 \right]_+$
- NLL \rightarrow NNLO: $\alpha_s^2 \, L^3$ and $\alpha_s^2 \, L^2$ NLLO $_{
 m approx}$ /NLO \sim 10% increase NNLL \rightarrow NNLO: also $\alpha_s^2 \, L^1$ and $\alpha_s^2 \, L^0$ NLLO $_{
 m approx}$ /NLO further 3-4% increase
- soft limit good approximation for Tevatron and LHC
- damping factors (to limit soft gluon contributions away from threshold) improve soft approximation
- "best" predictions, MSTW2008 NNLO pdf:

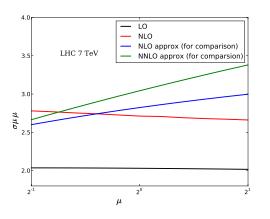
Kidonakis
$$m_t = 173 \text{ GeV}$$
 Zhu et.al. $m_t = 173.2 \text{ GeV}$
$$\sigma_{\text{TeV}} = 0.523^{+0.001+0.030}_{-0.005-0.028} \text{ pb} \qquad \sigma_{\text{TeV}} = 0.467^{+0.01}_{-0.01} \text{ pb}$$

$$\sigma_{\text{LHC }7} = 3.17^{+0.06+0.13}_{-0.06-0.10} \text{ pb} \qquad \sigma_{\text{LHC }7} = 2.81^{+0.16}_{-0.10} \text{ pb}$$

s-channel: Zhu, Li, Wang, Zhang [1006.0681]

- resummation via SCET
- different definition of resummation variable $s_4 \equiv (p_a + p_b p_t)^2$ also includes hard-collinear logarithms
- soft/coll limit good approximation for Tevatron, not very good for LHC







LHC @ 14 TeV

t-channel: Kidonakis [1103.2792] vs Wang, Li, Zhu, Zhang [1010.4509]

- similar technical (moments vs SCET) and physical (resummation kinematics and virtual contribution) differences as for s-channel
- soft gluon approximation not considered reliable
- results for $m_t = 173$ GeV and MSTW2008 NNLO pdf

Kidonakis

$$\sigma_{\rm TeV} = 1.04^{+0.00}_{-0.02} \pm 0.06 \text{ pb}$$

$$\sigma_{\rm LHC 7} = 41.7^{+1.6}_{-0.2} \pm 0.8 \text{ pb}$$

$$\sigma_{\rm LHC 14} = 151^{+4}_{-1} \pm 3 \text{ pb}$$

Wang et.al.

$$\sigma_{\rm TeV} = 0.982 \text{ pb}$$

$$\sigma_{\rm LHC 7} = 40.9^{+0.1}_{-0.1} \text{ pb}$$

$$\sigma_{\rm LHC 7} = 152.4^{+0.4}_{-1.0} \text{ pb}$$

- better numerical agreement than for s-channel
- resummation effects decrease scale dependence

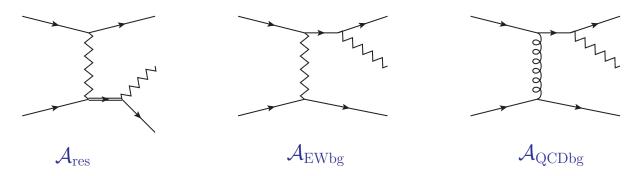
$W t \text{ and } H^- t$: Kidonakis [1005.4451]

resummed cross section re-expanded:

$$\sigma^{(2)} = \sigma^{(0)} \alpha_s^2 \left(\underbrace{c_3 L^3 + c_2 L^2}_{\text{NLL}} + \underbrace{c_1 L^1 + c_0 L^0}_{\text{NNLL}} \right)$$

- soft gluons claimed to be dominant
- damping factors applied
- NLO → 'N'NLO: 8% increase at 7 TeV LHC
- $m_t = 173$ GeV, MSTW2008 NNLO pdf: $\sigma(tW^-) = 7.8 \pm 0.2^{+0.5}_{-0.6} \; \mathrm{pb}$
- scale variation error < pdf error
- similar analysis for H^- t: corrections NLO \rightarrow 'N'NLO: 15-20%, depending on m_H

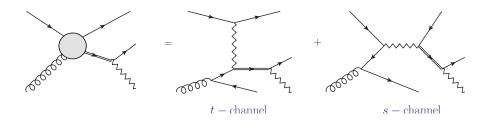
new issue: definition of process, e.g t-channel



it is an "irrelevant coincidence" at LO that

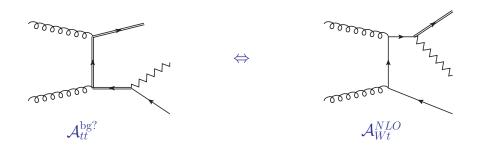
$$|\mathcal{A}_{\text{res}} + \mathcal{A}_{\text{EWbg}} + \mathcal{A}_{\text{QCDbg}}|^2 = |\mathcal{A}_{\text{res}} + \mathcal{A}_{\text{EWbg}}|^2 + |\mathcal{A}_{\text{QCDbg}}|^2$$

- shouldn't we define a proper observable (to which \mathcal{A}_{QCDbg} contributes) with proper final states (e.g. b-jets), rather than try to subtract $|\mathcal{A}_{QCDbg}|^2$?
- similar comment regarding distinction between s-channel and t-channel



 mixing but no interference at NLO (another "irrelevant coincidence"), beyond NLO there is interference

• this issue is particularly acute for Wt and has been studied extensively [Kersevan et.al; Tait; Belyaev et.al; Campbell et.al; Frixione et.al]



- possible remedies
 - invariant mass (anti-) cut $|M_{Wb} m_t|^2 \gg \Gamma_t$
 - $p_T^b < p_T^{
 m veto}$ (hard b tend to come from t decay)
 - Diagram removal $\mathcal{A}_{(Wt)} + \mathcal{A}_{(tt)} o \mathcal{A}_{(Wt)}$
 - Diagram subtraction

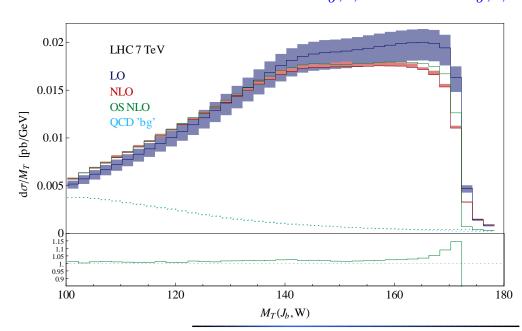
$$|\mathcal{A}_{(Wt)} + \mathcal{A}_{(tt)}|^2 \to |\mathcal{A}_{(Wt)}|^2 + 2\text{Re}(\mathcal{A}_{(Wt)}\mathcal{A}_{(tt)}^*) + |\mathcal{A}_{(tt)}|^2 - |\widetilde{\mathcal{A}_{(tt)}}|^2$$

 using b-jet rather than b-parton allows to define (at least theoretically) clean observables

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al; Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but usually neglected at hadron colliders:

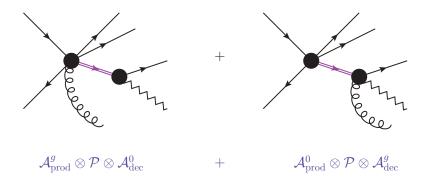
- they seem to be more difficult to compute (not really)
- they are generally small [Beenakker et.al; Pittau]
 - resonant \rightarrow non-resonant propagator unless $E \lesssim \Gamma$ is small (soft)
 - cancellations for "inclusive" observables [Fadin, Khoze, Martin]
- include off-shell effects: consistently combine non-factorizable with propagator corrections:

[Falgari et.al] e.g. transverse mass:
$$M_T = \sum_{J_b,\ell,\nu} |p_T|^2 - (\sum_{J_b,\ell,\nu} \vec{p}_T)^2$$



effective-theory inspired calculation (hard/soft through method of region)

real amplitude:



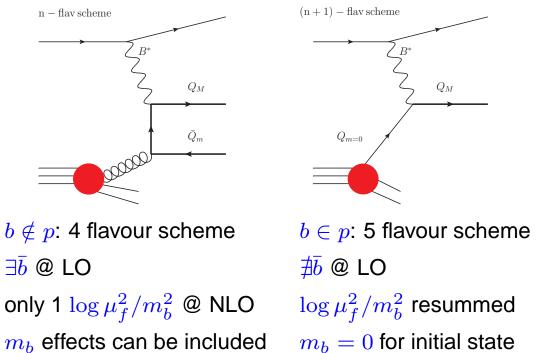
corrections to production (soft and coll singularities):

 $\int d\Phi_{n+1} \left| \mathcal{A}_{\mathrm{prod}}^g \otimes \mathcal{P} \otimes \mathcal{A}_{\mathrm{dec}}^0 \right|^2 \text{ plus (hard) virtual corrections for } t\text{-production is IR finite}$ corrections to decay (soft and coll singularities):

 $\int d\Phi_{n+1} \left| \mathcal{A}_{\mathrm{prod}}^0 \otimes \mathcal{P} \otimes \mathcal{A}_{\mathrm{dec}}^g \right|^2 \text{ combined with (hard) virtual correction for decay is IR finite non-factorizable corrections (soft singularities only):}$

$$\int d\Phi_{n+1} \, 2\operatorname{Re} \, \left(\mathcal{A}^0_{\operatorname{prod}} \otimes \mathcal{P} \otimes \mathcal{A}^{\operatorname{g}}_{\operatorname{dec}} \right) \left(\mathcal{A}^{\operatorname{g}}_{\operatorname{prod}} \otimes \mathcal{P} \otimes \mathcal{A}^0_{\operatorname{dec}} \right)^* \, \text{plus soft virtual is IR finite}$$

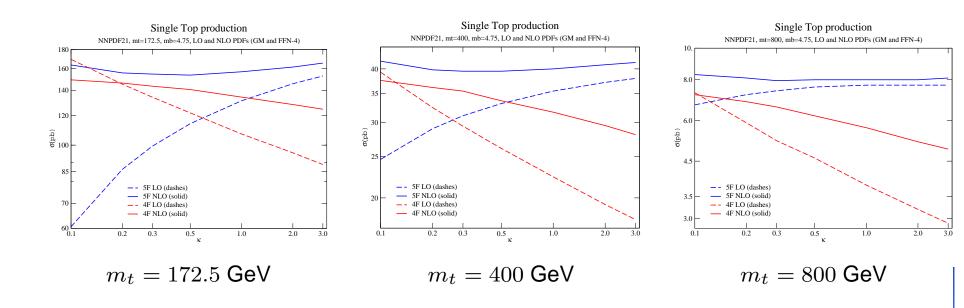
4-flavour scheme vs. 5-flavour scheme



- Comparison 4F vs 5F for single top at NLO [Campbell et.al]:
- Generally good agreement already at NLO
- A detailed single-top analysis POWHEG vs aMC@NLO in 4F (and 4F vs 5F including parton showers) is under way [Frederix, Re, Torrielli]

4-flavour scheme vs. 5-flavour scheme

- general analysis 4F vs 5F [Maltoni, Ridolfi, Ubiali (1203.6393)]
- resummation of $\log \mu_f^2/m_x^2$ numerically not very important (except for x large)
- scale in log suppressed through phase space



tools (no claim for completeness!)

- resummed total cross sections available
 - for s- and t-channel by two groups
 - for W t, H t by one group
- several fixed-order NLO calculations (including decay and spin correlations) available
- off-shell effects at NLO available
- all channels (s-, t-, W t, H t) implemented in POWHEG and MC@NLO
- t-channel in 4 flavour scheme (very soon) available in POWHEG and (a)MC@NLO
- all channels (s-, t-, W t, H t) available in WHIZARD
 - up to 6 final state partons at LO
 - including "background" diagrams
 - BSM models implemented
 - including interface to shower

Part V

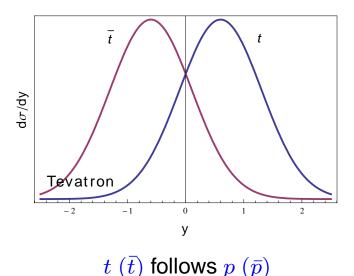
Forward-Backward Asymmetry

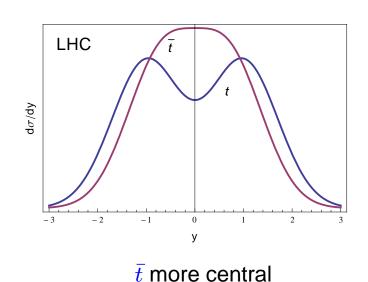
possible deviation from SM in forward-backward asymmetry $A_{\rm FB}$?

Note: this is a subtle quantity! A classic case of a detailed test of SM and our ability to compute and measure!

definition:

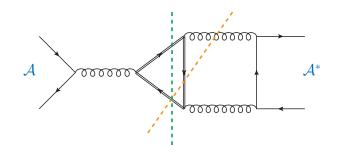
$$A_{\text{FB}}^{\text{Tev}} = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)} \quad \text{or} \quad A_{\text{FB}}^{\text{LHC}} = \frac{\sigma(\Delta |y| > 0) - \sigma(\Delta |y| < 0)}{\sigma(\Delta |y| > 0) + \sigma(\Delta |y| < 0)}$$
$$\Delta y \equiv y_t - y_{\bar{t}} \qquad \qquad \Delta[y] \equiv |y_t| - |y_{\bar{t}}|$$

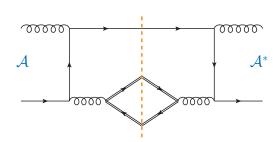




$$A_{\mathrm{FB}}^{\mathrm{Tev}} = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)} \ \text{or} \ A_{\mathrm{FB}}^{\mathrm{LHC}} = \frac{\sigma(\Delta |y| > 0) - \sigma(\Delta |y| < 0)}{\sigma(\Delta |y| > 0) + \sigma(\Delta |y| < 0)}$$

- zero for QCD @ LO, non-zero but small for EW @ LO
- QCD @ NLO (from $qar{q}\sim d_{abc}^2$ and qg initial states only) [Kuhn, Rodrigo]



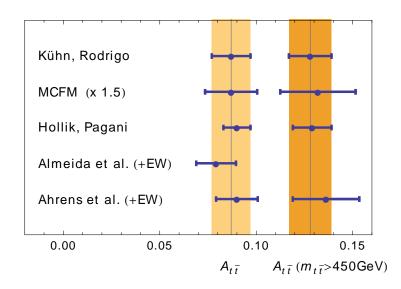


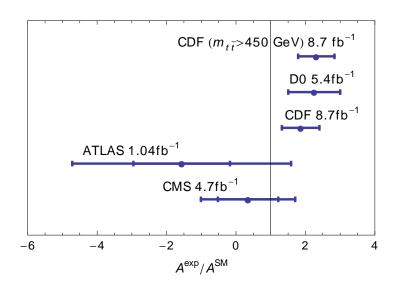
$$A_{\rm FB} = \frac{\alpha_s^3 + \mathcal{O}(\alpha_s^4)}{\alpha_s^2 + \mathcal{O}(\alpha_s^3)} = \sigma^{\rm virt} + \sigma^{\rm real} = +\infty - \infty \simeq \text{few}\% \quad \text{(soft singularities)}$$

- lacktriangle EW @ NLO: increase $A_{
 m FB}^{tar t}$, but not too much ($\sim 20\%$) [Hollik, Pagani]
- QCD @ NNLO: not known exactly, but from resummation small corrections expected, a SM value of $A_{\rm FB}^{t\bar{t}}\gtrsim 0.2$ seems highly unlikely. [Almeida et.al, Ahrens et.al]
- lacktriangle Need BSM (tree-level) contributions to get $A_{
 m FB}^{tar t}\gtrsim 0.2$

- effect enhanced for large $m_{t\bar{t}}$
- at LHC, effect smaller (small fraction of $q\bar{q}$ events)
- "eliminate" large denominator, i.e. gg initial state, use $f_q(x) > f_g(x), f_{\bar{q}}(x)$ for x large.
- enhance A_{FB} at LHC with cuts, e.g one-side asymmetry:

$$A = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)} \bigg|_{P_{t\bar{t}} > P_{\mathrm{cut}}, M_{t\bar{t}} > M_{\mathrm{cut}}}$$





[plots from Rodrigo]

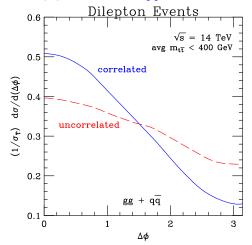
- there is a tension between experiment at the Tevatron and the theoretical SM value
- results at the LHC are in complete agreement with theory
- this could be BSM, but a more boring explanation is as likely
- complete NNLO QCD result not yet available (only total cross section known so far)
- too have a large effect, new physics should enter at tree level and have sizeable couplings (e.g. axigluon)
- it is easy to explain A_{FB} with BSM, but very difficult to do so without getting into conflict with other data
- use A_{FB} in $t\, ar{t}\, j$ and $t\, ar{t}\, j\, j$ as cross-check for new-physics scenarios

Part VI

Top and BSM

- $\Gamma_t > \Lambda_{\rm QCD} \Longrightarrow$ top quark decays before QCD blurs spin information [Mahlon, Parke; Bernreuther et.al; Motylinski; Cao et.al; Melnikov, Schulze, . . .]
- detailed test of $t \to Wb \to \ell \nu b$ possible
- details depend on process (top pair production / single top), collider (Tevatron / LHC) and kinematic regime (invariant mass)
- find observable that strongly depends on spin correlation, e.g.

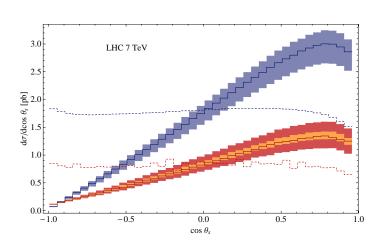
 $t\bar{t}:\Delta\phi_{\ell\,\ell'}$ with $M_{t\bar{t}}<400~{
m GeV}$



[Mahlon, Parke, arXiv:1001.3422]

test against SM and BSM predictions

single top: $\cos(ar{p}^*_{\mathrm{spec}},ar{p}^*_{\ell})$



[Falgari et.al: arXiv:1102.5267]

parametrizing ignorance [Aguilar-Saavedra et.al, Willenbrock et.al. . . .]

- general approach, finite number of possibilities, respect generic constraints
- general vertices (e.g. W t b) with anomalous couplings

$$-\frac{g}{\sqrt{2}}\,\bar{b}\gamma^{\mu}\,(V_{L}P_{L}+V_{R}P_{R})\,t\,W_{\mu}^{-}-\frac{g}{\sqrt{2}}\,\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}\,(g_{L}P_{L}+g_{R}P_{R})\,t\,W_{\mu}^{-}+\text{h.c.}$$

effective dimension 6 (and higher) operators e.g.

$$O_{\phi q} = i(\phi^+ \tau D_\mu \phi)(\bar{q}\gamma^\mu \tau q)$$
 or $O_{tW} = (\bar{q}\,\sigma^{\mu\nu}\tau\,t\,\tilde{\phi})W_{\mu\nu}$

complete analysis possible, devise sensitive observables

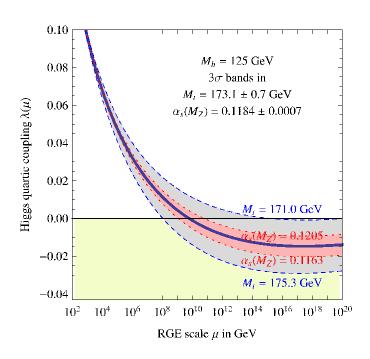
similar to anomalous triple-gauge couplings

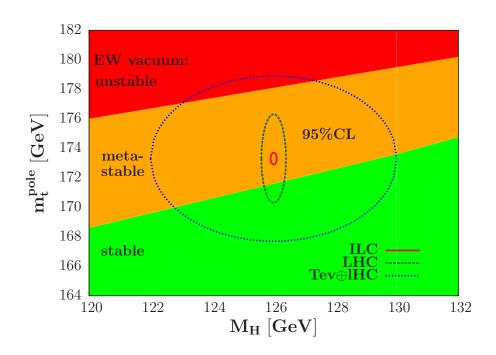
explicit models (i.e. a very long list of possible explicit models) [... (sorry)]

- more information
- can extend to high-energy region
- can compute anomalous couplings for a given explicit model

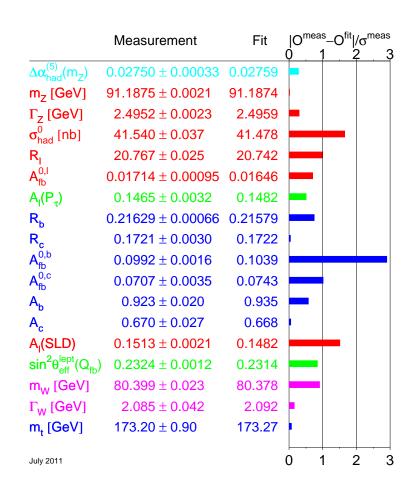
[Degrassi et.al; Alekhin, Djouadi, Moch]

- Running of Higgs quartic coupling $\lambda(\mu)$ crucially depends on m_t (and α_s)
- could SM be consistent up to very high energies? need $\lambda(\mu) > 0$
- remarkable coincidence (??) between m_H and m_t values





- overall theory of top is in pretty good shape, with further progress on its way
- so far, most experimental results agree reasonably well with SM predictions, apart from . . .
- possible problem in $A_{\rm FB}$ (this somehow sounds familiar)
- $2 3\sigma$ deviations are usually not due to new physics



[LEP EWWG]