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After last semester’s introduction into the Higgs mechanism and into Higgs searches at the LHC I
am now following the example of the CERN theory group, covering my back and discussing models
which more or less successfully avoid including a fundamental Higgs boson. Such ideas have a long
history, for example as technicolor models. After we thought LEP had killed all of them, they have
recently surfaced in the context of extra dimensions. This introduction is based on a brief SUPA
course, it is as usually full of typos which completely reflect the fact that I am trying to learn the
topic while teaching it...
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I. ELECTROWEAK SYMMETRY BREAKING

The usual argument for the existence of a Higgs boson starts from a completely massless Lagrangian of a gauge
theory with matter fermions — and the fact that neither gauge–boson nor fermion masses can be simply included
without breaking gauge invariance. This is of course correct, but it does not automatically imply the existence of
a fundamental scalar Higgs boson. As an introduction to this topic, let us try to give masses to a photon and to
fermions and this way break electroweak gauge invariance, but avoiding to postulate a fundamental Higgs boson.

A. Massive photon

As a starting point we choose electrodynamics, i.e. a (massless) photon in a locally U(1)–symmetric Lagrangian. To
its kinetic F ·F term we add a photon mass and a real uncharged scalar field without a mass and without a coupling
to the photon, but with a scalar–photon mixing term:

L = −1
4
FµνF

µν +
1
2

(∂µφ)2 +
1
2
e2f2A2

µ − efAµ∂
µφ

= −1
4
FµνF

µν +
1
2

(∂µφ)2 +
1
2
e2f2

(
Aµ − 1

ef
∂µφ

)2

− 1
2

(∂µφ)2

= −1
4
FµνF

µν +
1
2
e2f2

(
Aµ − 1

ef
∂µφ

)2

(1)

e is the usual electric charge, i.e. just a c-number without any specific relevance in this interaction–less Lagrangian,
while f is a mass scale describing the photon mass as well as the mixing term. The Lagrangian includes only terms
with mass dimension four, if we remember that bosonic fields like Aµ and φ have mass dimension one. We can define
a simultaneous gauge transformation of both fields in the Lagrangian

Aµ −→ Aµ +
1
ef
∂χ φ −→ φ+ χ (2)

under which the Lagrangian is indeed invariant. Here, χ is a real number. If we now re-define the photon field as
Bµ = Aµ − ∂µφ/(ef) we can first compare the two kinetic terms

Fµν

∣∣∣
B

= ∂µBν − ∂nuBµ = ∂µ

(
Aν − 1

ef
∂νφ

)
− ∂ν

(
Aµ − 1

ef
∂µφ

)

= ∂µAν − ∂nuAµ = Fµν

∣∣∣
A

(3)

and then rewrite the Lagrangian as

L = −1
4
FµνF

µν +
1
2
e2f2B2

µ = −1
4
FµνF

µν +
1
2
m2

BB
2
µ (4)

This Lagrangian effectively describes a massive photon field Bµ, which has absorbed the real scalar φ as its additional
longitudinal component. Remember that a massless gauge boson Aµ has only two on-shell degrees of freedom, namely
left and right–handed polarization, while the massive Bµ has an additional longitudinal polarization degree of freedom.
Without any fundamental Higgs boson appearing, the photon has ‘eaten’ the real scalar field φ.

The difference to the usual SU(2) Higgs mechanism is that we have chosen not to introduce a charged SU(2) doublet,
so there are no degrees of freedom left after the photon gets is mass. On the other hand, this little trick means that
our toy model is not going to well-suited to make SU(2) gauge bosons massive. What is illustrates is only how by
introducing a neutral scalar particle without an interaction but with a mixing term we make gauge bosons heavy.
This mechanism we will use later again.
What kind of properties does this field φ need to have, so that we can use it to provide a photon mass? From the
combined gauge transformation we immediately see that any additional purely scalar terms in the Lagrangian (like
a scalar potential V (φ)) need to be symmetric under the linear shift φ → φ+ χ, not to spoil gauge invariance. This
means that we cannot write down polynomial terms φn, like a mass or a self coupling of φ. Similarly, a regular φAA
interaction would not be possible, either. Only derivative interactions proportional to ∂φ to any conserved currents
are fine. In that case we can absorb the shift by χ into a total derivative in the Lagrangian.
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B. Fermion masses and chiral symmetry

Giving a mass to a fermion without a Higgs boson is a little more involved. We start by splitting a Dirac fermion,
i.e. a 4-spinor, into its left-handed and right-handed projections

ψL =
11− γ5

2
ψ ≡ PLψ ψR =

11 + γ5

2
ψ ≡ PRψ (5)

where PL,R are projectors in the 4× 4 Dirac space. The kinetic term of the Dirac fermion can be rewritten as

L ⊃ ψ i 6∂ψ = ψ i 6∂ (PL + PR)ψ

= ψ i 6∂ (
P 2

L + P 2
R

)
ψ

= iψ (PR 6∂PL + PL 6∂PR)ψ with {γ5, γµ} = 0

= i(PLψ) 6∂(PLψ) + i(PRψ) 6∂(PRψ) with ψ = ψ†γ0

= ψL i 6∂ψL + ψR i 6∂ψR (6)

Under a global so-called chiral symmetry transformation U(1)L × U(1)R which independently transforms the two
chiralities φL,R

ψL −→ e−iθψL ψR −→ e−iωψR (7)

this Lagrangian is symmetric. Obviously, we can combine these two parts of the chiral transformation into different
basis elements, constructing a vector-type and an axial-vector-type combination:

ψL −→ e−iθψL ψL −→ e−iθψL

ψR −→ e−iθψR ψR −→ e+iθψR (8)

A gauge-invariant Lagrangian under one definition of the chiral symmetry will always be invariant under the other.
The same way we can now rewrite a Dirac mass in terms of the two chiralities

L ⊃ m ψψ = m ψ
(
P 2

L + P 2
R

)
ψ

= m (PRψ)(PLψ) +m (PLψ)(PRψ)

= m
(
ψRψL + ψLψR

)
(9)

and immediately notice that the U(1)L × U(1)R symmetry is broken and only its vector combination θ = ω remains.
The question arises — can we write down a fermion mass while keeping the chiral symmetry intact, and without
introducing an additional fundamental Higgs boson.

Just like in the Standard Model we first introduce a complex scalar field Φ with a Yukawa coupling to the fermions:

L ⊃ ψ i 6∂ψ − g
(
ψLψRΦ + ψRψLΦ∗

)
+ |∂µΦ|2 − V (|Φ|) (10)

If the scalar field transforms under the U(1)L × U(1)R chiral symmetry as

Φ −→ e−i(θ−ω) Φ (11)

the Yukawa couplings as well as the kinetic and the potential terms for Φ are gauge invariant. As usual, we now
spontaneously break the chiral symmetry by introducing a potential for Φ with a nontrivial (i.e. Φ 6= 0) minimum:

V = −M2|Φ|2 +
λ

2
|Φ|4 = −λ

2
v2|Φ|2 +

λ

2
|Φ|4 =

λ

2

(
|Φ|2 − v2

2

)2

+ const with 〈Φ〉 ≡ v√
2

=
M√
λ

(12)

Note that there are definitions with a factor λ and those with λ/2 around. I am here sticking to the conventions
in the technicolor review. We can define the two on-shell degrees of freedom of a complex scalar (c-number) as
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√
2Φ = (v+h(x)) exp(iφ(x)/f), again with a dimensionful constant f compensating the mass dimension of the scalar

field in the exponent. The Φ-dependent part of the Lagrangian becomes

L ⊃ 1
2
(∂h)2 +

M2

2
(v + h)2 − λ

8
(v + h)4 +

1
2
(v + h)2

∣∣∣∣
∂φ

f

∣∣∣∣
2

=
1
2
(∂h)2 +

M2

2

(
h+

√
2M√
λ

)2

− λ

8

(
h+

√
2M√
λ

)4

+
1
2
(v + h)2

∣∣∣∣
∂φ

f

∣∣∣∣
2

=
1
2
(∂h)2 +

M2

2
h2 +M2h

√
2M√
λ

− λ

8
h4 − λ

2
h3

√
2M√
λ

− 3λ
4
h2 2M2

λ
− λ

2
h

2M2

λ

√
2M√
λ

+
1
2
(v + h)2

∣∣∣∣
∂φ

f

∣∣∣∣
2

+ const.

=
1
2
(∂h)2 − M2

2
h2 −

√
λ

2
Mh3 − λ

8
h4 +

1
2
(v + h)2

∣∣∣∣
∂φ

f

∣∣∣∣
2

+ const. (13)

Again, the field φ has no mass or coupling and only appears as (∂φ).
The Higgs field h has a mass M and a self coupling λ. However, in our calculation we have only made use of the finite
combination v =

√
2M/

√
λ. As long as v stays finite we can take the combined limit M →∞ and λ→∞. This way,

all terms proportional to hn(n = 2, 3, 4) become very large. In contrast, after Fourier-transforming we know that the
kinetic term (∂h)2 will give contributions o f the order of the typical momentum or energy scale E we are probing in a
given process. If we make M and with it

√
λ much larger than that, M À E, we can neglect the kinetic term for the

Higgs field in the Lagrangian (∂h)2 ¿M2h2. Note that this inequality is not really mathematically correct, because
for the kinetic term it refers to its size when evaluated for a given process. In that case, our Lagrangian becomes

L ⊃ −M
2

2
h2 −

√
λ

2
Mh3 − λ

8
h4 +

1
2
(v + h)2

∣∣∣∣
∂φ

f

∣∣∣∣
2

(14)

Because the Higgs field h does not propagate, we can use its Euler–Lagrange equation ∂L/∂h = 0 to compute its
(constant) field value. If we neglect its appearance in the kinetic term of φ (with a prefactor of order vE2/f ¿M) we
see that there is no linear term in h in the Lagrangian, which means that ∂L/∂h is proportional to h, so one solution
is h(x) = 0. Our weak–scale Lagrangian becomes simply the kinetic term for a massless scalar field φ. To obtain the
correct normalization of this kinetic term for h = 0 we need to fix f2 = v2:

L ⊃ 1
2
v2

f2
(∂φ)2 =

1
2
(∂φ)2 (15)

Going into the limit M → ∞ has one profound consequence for our theory. Usually we attempt to construct
renormalizable Lagrangians, i.e. Lagrangians which describe physics to arbitrarily high scales. Such a construction
ensures for example that any transition amplitude is bounded from above at all energy scales, so that our theory
is unitary at all energy scales. Now, in the large-M limit we have explicitely required E/M ¿ 1, which means
that we can still apply our theory to larger and larger energies, but not for a fixed value of M . We have to make
sure that E/M ¿ 1 always applies. This is the typical condition for an effective field theory — it only produces
sensible predictions at energy scales below a given cut–off scale M . Or in other words, our theory is not anymore
renormalizable or unitary.
Such a model breaking a gauge symmetry like the chiral symmetry is called a non-linear σ model, because of the non-
linear dependence of Φ on the one remaining physical field φ. The σ field is our Higgs field, which can be decoupled,
while the remaining massless field φ is usually referred to as the π field.

Let us now study the Yukawa terms in this limit and see if they still give rise to fermion masses. The original field
Φ simply becomes

√
2Φ = f exp(iφ/f) with one fixed energy scale f = v. The complete Lagrangian modulo the
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potential term becomes

L ⊃ ψ i 6∂ψ +
1
2
(∂φ)2 − gf√

2

[
ψLψRe

+iφ/f + ψRψLe
−iφ/f

]

= ψ i 6∂ψ +
1
2
(∂φ)2 − gf√

2

[
ψLψR

(
1 + i

φ

f

)
+ ψRψL

(
1− i

φ

f

)]
+O

(
1
f2

)

= ψ i 6∂ψ +
1
2
(∂φ)2 − gf√

2
ψψ − ig√

2
ψ

(
P 2

R − P 2
L

)
ψ φ+O

(
1
f2

)

= ψ i 6∂ψ +
1
2
(∂φ)2 − gf√

2
ψψ − ig√

2
ψγ5ψ φ+O

(
1
f2

)
with PR − PL = γ5 (16)

In this form we can read off that φ is a massless pseudoscalar with a coupling strength ig/
√

2 which in terms of the
fermion mass m = fg/

√
2 can be written as im/f . This relation between mass and pseudoscalar coupling is called

Goldberger–Treiman relation. It can for example be verified in the case of the QCD pion’s interaction in comparison
to the nucleon masses.
This example of a non-linear sigma model illustrates how using a SU(2) doublet scalar field we can give masses to
fermions via Yukawa couplings. The chiral SU(2)L × SU(2)R symmetry is broken by the vacuum expectation value
of the scalar field. Its radial excitations around the minimum we can decouple, while the massless scalar becomes a
physical mode in our theory. On the other hand, we could of course use such a mode to give masses to gauge bosons,
as seen before.

C. Goldstone’s theorem

Those who know more about spontaneous symmetry breaking have noticed that using these two examples we have
illustrated a few vital properties of Nambu–Goldstone bosons (NGB). Such massless physical states appear in many
areas of physics and are described by Goldstone’s theorem:
If a global symmetry group is spontaneously broken into a group of lower rank, its broken generators correspond to
physical Goldstone modes. These fields transform non-linearly under the larger and linearly under the smaller group.
They have to be massless, as the non-linear transformation only allows derivative terms in the Lagrangian.
If the spontaneous symmetry breaking induces gauge–boson masses, these massive degrees of freedom are ‘eaten’
Goldstone modes, and the mass is given by the vev breaking the larger symmetry. If the smaller symmetry is also
broken, the NGBs become pseudo-NGB and acquire a mass of the size of this hard-breaking term.

For an alternative introduction into non–linear σ models and into Goldstone modes, you can have a look into the
introduction of my little–Higgs lecture notes.

II. TECHNICOLOR

Technicolor is a way to break our electroweak symmetry and create masses for gauge bosons essentially using a non-
linear sigma model, as we have seen it in the last section. In this example we have given the scalar field Φ a vacuum
expectation value v through a potential, which is basically the Higgs mechanism. However, we know another way to
break (chiral) symmetries through condensates — QCD. So let us review very few aspects of QCD which we will need
later.

First, we should illustrate why an asymptotically free theory like QCD is a good model to explain electroweak
symmetry breaking. For this we recall the main theoretical problem with the Higgs mechanism, i.e. spontaneous
symmetry breaking with a fundamental scalar Higgs boson: If we think of our gauge theories as a stack of fundamental
renormalizable field theories with some kind of cutoff scale (like for example the Planck scale) we can compute the
quantum corrections to the Higgs mass with this cutoff. We find that the Higgs mass, and only the Higgs mass,
corrections are quadratically divergent with the cutoff. This behavior is called the hierarchy problem between the
electroweak scale v and for example the Planck mass. In other words, we introduce the Higgs boson to construct a
renormalizable truly fundamental field theory perturbatively valid to all energies, and the Higgs mass itself spoils the
high–energy behavior. The only easy way out is to tune the Higgs–mass counter term to cancel this cutoff dependence
order by order, but this way we betray our original idea that small parameters in the Lagrangian cannot just occur,
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but need to be protected by some kind of symmetry. The alternative would be to postulate a UV completion of the
Standard Model which cures this behavior and makes the complete theory consistent again. The most famous such
completion is TeV–scale supersymmetry.

How can an interaction which becomes strong at small energies solve this problem — or why have we never heard
of the hierarchy problem ΛQCD ¿ MPlanck? The inherent mass scale of QCD is ΛQCD ∼ 200 MeV. It describes the
scale at which the running QCD coupling constant αs = g2

s/(4π) becomes strong, i.e. perturbation theory in αs

breaks down, and quarks and gluons stop being QCD’s physical degrees of freedom. At the leading one-loop level we
can easily see where ΛQCD comes from. Summing all gluon self–energy bubbles for example in the s–channel of the
process qq̄ → q′q̄′ corresponds to the definition of an effective coupling

αs → αs

(
1− αs

4π
β log

p2

µ2
R

)
→ αs

(
1 +

αs

4π
β log

p2

µ2
R

)−1

≡ αeff
s (p2) (17)

where p2 is the momentum flowing through the gluon propagator and µR is the (artifical) renormalization scale we
are forced to introduce because we cannot write down a logarithm of a mass dimension. The form of the β function
depends on the particle content of QCD, but not on the particle masses:

β =
11
3
Nc − 2

3
nf > 0 with Nc = 3, nf = 5 (below the top threshold) (18)

This way, at large values of p2 the denominator in parentheses becomes large and the effective running αs becomes
small, i.e. QCD is asymptotically free at large energies. We can relate the αs values at two scales via

1
αs(p2)

=
1

αs(p2
0)

(
1 +

αs(p2
0)β

4π
log

p2

p2
0

)
=

1
αs(p2

0)
+

β

4π
log

p2

p2
0

!=
β

4π
log

p2

Λ2
QCD

(19)

and parameterize its energy behavior using one dimensionful parameter ΛQCD. The functional form including ΛQCD

only reflects the general polynomial form of the one-loop running α−1
s (p2) = C0 + C1 log p2. Practically, the value of

ΛQCD is extracted for example in a combined with with the parton densities. At leading order we can solve the above
definition for ΛQCD:

1
αs(p2

0)
=

β

4π
log

p2
0

Λ2
QCD

⇔ log
Λ2

QCD

p2
0

= −4π
β

1
αs(p2

0)
⇔ Λ2

QCD

p2
0

= exp
[
−4π
β

1
αs(p2

0)

]
(20)

This means that because QCD is not scale invariant, i.e. we have to introduce a renormalization scale in our
perturbative expansion, the running of a dimensionless coupling constant can be translated into an inherent mass
scale. This mass scale characterizes the theory, e.g. QCD, in the sense that αs(p2 = Λ2

QCD) ∼ 1 and for scales below
ΛQCD the theory will become strongly interacting. Note that first of all this scale could not appear if for some reason
β ' 0 and that it secondly does not depend on any mass scale in the theory. This phenomenon of a logarithmically
running coupling introducing a mass scale in the theory is called dimensional transmutation. It is the reason why
there is no hierarchy problem between ΛQCD and MPlanck: if at a high scale we start from a strong coupling in the
10−2 · · · 10−1 range the QCD scale will arrive at its known value without any need for fine tuning.

Just including the quark doublets and the covariant derivative describing the qqg interaction the QCD Lagrangian
reads

LQCD ⊃ ΨL i 6DΨL + ΨR i 6DΨR (21)

We immediately see that it is symmetric under a chiral-type SU(2)L × SU(2)R symmetry. This symmetry forbids
quark masses, i.e. it acts as a custodial symmetry for the tiny quark masses we measure for example for the valence
quarks u, d. Because QCD is asymptotically free, at energies below roughly ΛQCD the essentially massless quarks form
condensates, i.e. two–quark operators will develop a vacuum expectation value

〈
ΨΨ

〉
. This operator spontaneously

breaks the SU(2)L×SU(2)R symmetry into the (diagonal) SU(2) of isospin. The valence quarks at low energies develop
masses of the order of mnucleon/3 ∼ ΛQCD, and the different composite color–singlet mesons and baryons become the
relevant physical degrees of freedom. Their masses are of the order of the nucleon masses mnucleon ∼ 1 GeV.
The only remaining massless particles are the NGBs from the breaking of SU(2)L×SU(2)R, the pions. Their masses
are not strictly zero, because the valence quarks do have a small mass of a few MeV. Their coupling strength (or decay
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rate) is governed by fπ. It is defined by
〈
0|j5µ|π

〉
= ifπpµ, i.e. it parameterizes the breaking of the chiral symmetry

via breaking the axial-vector-like U(1)A. The axial current can be computed as j5µ = δL/δ(∂µπ) and in the SU(2)
basis reads j5µ = ψγµτψ/2. From the measured decays of the light color–singlet QCD pion into two leptons we know
that fπ ∼ 100 MeV.

There are two QCD parameters which we need to adjust when building the simplest technicolor model: the size of
the new gauge group and the scale at which the asymptotically free theory becomes strongly interacting. In terms of
the two parameters Nc and ΛQCD there are scaling rules in QCD which are based on for example β ∝ Nc (and which
strictly speaking do not hold arbitrarily well):

fπ ∼
√
Nc ΛQCD

〈
QQ

〉 ∼ Nc Λ3
QCD mfermion ∼ ΛQCD (22)

The ΛQCD dependence simply follows from the mass dimension. The dimension of the vev is given by the mass
dimension 3/2 of each fermion field.
The Nc dependence of fπ can be easily guessed: the pion decay rate is by definition proportional to f2

π . The Feynman
diagrams for this decay are (apart from the strongly interacting complications, parameterized by the appearance of
fπ) the same as for the Drell–Yan process qq̄ → γ, Z. The color structure of this process leads to an explicit factor
of δabδab = Nc and an averaging factor of 1/Nc for each of the quarks. Together, this gives a factor 1/Nc for a color
singlet decaying to a non-colored photon, the pion decay rate is proportional to f2

π/Nc. This means the pion decay
constant scales like fπ ∼

√
Nc. The vev–operator represents two quarks exchanging a gluon at energy scales small

enough for αs to become large. The color factor (without any averaging over initial states) simply sums over all colors
states for the color-singlet condensate, i.e. it is proportional to Nc. The fermion masses have nothing to do with
color states and hence should not depend on the number of colors. For details you should ask a lattice gauge theorist,
but we already get the idea how would should construct our high–scale version of QCD, dubbed technicolor.

A. Scaling up QCD

Let us work out the idea that a mechanism just like QCD condensates could be the underlying theory of the non-
linear σ model described in the introduction. in contrast to QCD we now have a gauged custodial symmetry of the
gauge–boson masses. The longitudinal modes of the massive W and Z bosons are then the NGBs (techni-pions) of the
symmetry breaking induced by a condensate. The corresponding mass scale would have to be ΛT ∼ f ∼ v = 246 GeV.
Fermion masses we postpone to the next section — in the 70s, when technicolor was developed, all known fermions
had masses of the order of GeV or much less, so they were to a good approximation massless compared to the gauge
bosons.
To induce W and Z masses we write down the non–linear sigma model in its SU(2) version, at this point without
talking about the source of the vacuum expectation value fT appearing in

Φ =
1√
2
ei(π·τ)/fT

(
fT
0

)
=

1√
2

(
fT + i(π · τ) +O(f−1

T )
0

)
(23)

As basis vectors we use the three Pauli matrices {τj , τk} = 2δjk. We will in a second need their property

∑

j

τj




(∑

k

τk

)
=

∑

j<k

(τjτk + τkτj) +
∑

j

τ2
j = 3 11 ⇒ (τ · π1) (τ · π2) =

∑

j

π1,jπ2,j = (π1 · π2) (24)

The SU(2)-covariant derivative in the charge basis of the Pauli matrices

(τ · π) ≡
∑

(+,−,3)

τjπj =
τ1 + iτ2

√
2

π1 − iπ2

√
2

+
τ1 − iτ2

√
2

π1 + iπ2

√
2

+ τ3π3 =
∑

(1,2,3)

τjπj (25)

gives, when to simplify the formulas we for a moment forget about the U(1)Y contribution and only keep the non-zero
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upper entry:

iDµΦ =
[
i∂µ − g2

2
(τ ·Wµ)

] 1√
2

[
fT + i(τ · π) +O(f−1

T )
]

=
1√
2

[
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

]

(DµΦ)†DµΦ =
1
2

[
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

] [
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

]

⊃ 1
2
(∂π)2 +

fTg2
2

(Wµ · (∂µπ)) (26)

If we also include the generator of the hypercharge U(1) we find a mixing term between the techni-pions and the
SU(2) gauge bosons

L ⊃ g2fT
2

W+
µ ∂

µπ− +
g2fT

2
W−

µ ∂
µπ+ + fT

(g2
2
W 0

µ +
g1
2
Bµ

)
∂µπ0 (27)

This is precisely the mixing term from the massive–photon example which we need to absorb the NGBs into the
massive vector bosons, with fT = v from the known W and Z masses. We have strictly speaking not shown that the
fT appearing in the scalar field Φ is really the correctly normalized fT, defined as the decay constant of the techni-
pions (and there is a lot of confusion about factors

√
2 in the literature which I will ignore in this sketchy argument).

But if we assume this correct normalization then fT ≡ v is the scaled-up version of fπ we see that technicolor is
something like a scaled-up version of QCD by a factor v/ΛQCD ∼ 2000.

This scaling factor we better compute in the more general case, where technicolor involves a gauge group SU(NT )
instead of SU(Nc) and ND left-handed fermion doublets in the fundamental representation of SU(NT ). To be able
to write down Dirac masses for the fermions at the end of the day we also need (2ND) right-handed fermion singlets.
If instead of one set of techni-pions we have ND of them, we remember that the W,Z masses arise from the quadratic
term associated with the techni-pion mixing above, proportional to g2v2. In the sum, the ND techni-pions need to
reproduce the measured mass squares, which means that the vacuum expectation value scales like v ∼ √

NDfT. The
known scaling rules then give:

fT ∼
√
NT

Nc

ΛT

ΛQCD
fπ v =

√
NDfT ∼

√
NDNT

Nc
fπ (28)

We can solve these scaling rules for the unknown technicolor parameters and obtain:

fT ∼ v√
ND

ΛT ∼ ΛQCD
fT
fπ

√
Nc

NT
∼ v

ΛQCD

fπ

√
Nc

NDNT
with v = 246 GeV (29)

One simple example for such a technicolor model is the Susskind–Weinberg model. Its gauge group is SU(NT ) ×
SU(3)c×SU(2)L×U(1)Y . The matter fields forming the condensate which in turn breaks the electroweak symmetry
we include one doublet (ND = 1) of charged color-singlet techni-fermions (uT , dT )L,R. In some ways this doublet and
the two singlets look like a fourth generation of chiral fermions, but with different charges under all Standard–Model
gauge groups: for example, their hypercharges Y need to be chosen such that gauge anomalies do not occur and we
do not have to worry about non-perturbatively breaking any symmetries, namely Y = 0 for the left–handed doublet
and Y = 1/2,−1/2 for uT

R and dT
R. The formula Q = I3 + Y/2 then gives charges of ±1/2 to the heavy states uT and

dT .
The additional SU(NT ) gauge group gives us a running gauge coupling which becomes large at the scale ΛT. As a
high-scale boundary condition we can for example choose αs(MGUT) = αT (MGUT). The beta function is modelled
after the QCD case

βQCD =
11
3
Nc − 2

3
nf βT =

11
3
NT − 4

3
ND (30)

keeping in mind that ND counts the doublets, while nf = 6 counts the number of flavors at the GUT scale. This
relation holds for a simple model, where quarks are only charged under SU(3)c and techniquarks are only charged
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under SU(NT ). Of course, both of them can carry weak charges. Using the one-loop formula for ΛQCD we can
compute

Λ2
T

Λ2
QCD

= exp
[
− 4π
βQCD

1
αs(mGUT)

]
exp

[
+

4π
βT

1
αT (mGUT)

]

= exp
[

4π
αs(mGUT)

(
1
βT

− 1
βQCD

)]
= exp

[
4π

αs(mGUT)
βQCD − βT

βTβQCD

]
(31)

For NT = ND = 4 and αs(MGUT) ∼ 1/30 we find ΛT ∼ 800 ΛQCD ∼ 165 GeV. This gives a reasonable v = 270 GeV
and generates the required hierarchy between v and MGUT via dimensional transmutation.

At this stage, our fermion construction has two global chiral symmetries SU(2)× SU(2) and U(1)× U(1) protecting
the techni-fermions from getting massive, which we will of course break together with the local weak SU(2)L×U(1)Y

symmetry. Details about fermion masses we postpone to the next sections. Let us instead briefly look at the spectrum
of our minimal model:
techniquarks — From the scaling rules we know that the techniquark masses will be of the order ΛT as give above.
Numerically, the factor ΛT/ΛQCD ∼ 800 pushes the usual quark constituent mass to around 700 GeV for the minimal
model with NT = 4 and ND = 1. Because of the SU(NT ) gauge symmetry there should exist four–techniquark
bound states (technibaryons) which are stable due to the asymptotic freedom of the SU(NT ) symmetry. Those are
not preferred by standard cosmology, so we should find ways to let them decay.
NGBs — Of course, from the breaking of the global chiral SU(2) × SU(2) and the U(1) × U(1) we will have four
Goldstone modes. The three SU(2) Goldstones are massless technipions, following our QCD analogy. Because we
gauge the remaining Standard–Model subgroup SU(2)L, they become the longitudinal polarizations of the W and Z
boson, after all this is the entire idea behind this construction. The remaining U(1) NGB also has an equivalent (η′)
in QCD, and its technicolor counter part acquires a mass though non–perturbative instanton breaking. Its mass can
be estimates to ∼ 2 TeV, so we are out of trouble.
more stuff — Just like in QCD we will have a whole zoo of additional technicolor vector mesons and heavy resonances,
but all we need to know about them is that they are heavy (and therefore not a problem for example for cosmology)
and that at this stage we should really move on and think about fermion masses...

B. Fermion masses: ETC

Before we move on, let us put ourselves into the shoes of the technicolor proponents in the 70s. They knew how
QCD gives masses to protons, and the Higgs mechanism had nothing to do with it. Just copying this appealing idea
of dimensional transmutation (without any hierarchy problem) once more they explained the measured W and Z
masses. And just like in QCD, the masses of the four light quarks and the leptons are well below a GeV and could be
anything, but not linked to weak–scale physics. And then people found the massive bottom quark and the even more
massive top quark and it became clear that at least the top mass was very relevant to the weak scale. In this section
we will very briefly discuss how this challenge to technicolor basically removed it from the list of models people take
seriously — until extra dimensions came and brought it back...

Extended technicolor is a version of the original idea of technicolor which attempts to solve two problems: create
fermion masses for three generations of quarks and leptons and let the heavy techniquarks decay, to avoid stable
technibaryons. From the introduction we in principle know how to obtain a fermion mass from Yukawa couplings,
but to write down the Yukawa coupling to the sigma field or to the TC condensate we need to write down some
Standard–Model and technifermion operators. This is what ETC offers a framework for.

First, we need to introduce some kind of multiplets of matter fermions. Just as before, the techniquarks, like all
matter particles have SU(2)L and U(1)Y or even SU(2)R quantum numbers. However, there is no reason for them
all to have a SU(3)c charge, because we would prefer not to change βQCD too much. Similarly, the Standard–Model
particles do not have a SU(NT ) charge. This means we should write matter multiplets with explicitely assigned color
and technicolor charges. This means:

(
QT

a=1..NT
, Q

(1)
j=1,...,Nc

, Q
(2)
j=1,...,Nc

, Q
(3)
j=1,...,Nc

, L(1), L(2), L(3)
)

(32)

These multiplets replace the usual SU(2)L and SU(2)R singlets and doublets in the Standard Model. The upper
indices denote the generation, the lower indices count the NT and Nc fundamental representations. In the minimal
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model NT = 4 this multiplet has 4 + 3 + 3 + 3 + 1 + 1 + 1 = 16 entries. In other words, we have embedded SU(NT )
and SU(Nc) in a local gauge group SU(16). If without further discussion we also extend the Standard–Model group
by a SU(2)R gauge group, the complete ETC symmetry group is SU(16) × SU(2)L × SU(2)R, where we omit the
additional U(1)B−L throughout the discussion.
A technicolor condensate will now break SU(2)L × SU(2)R, while leaving SU(3)c untouched. If we think of the
generators of the ETC gauge group as (16 × 16) matrices we can put a (4 × 4) block of SU(NT ) in the upper left
corner and then three (3× 3) copies of SU(Nc) on the diagonal. The last three rows/columns can be the unit matrix.
Once we break SU(16)ETC to SU(NT ) and the Standard–Model gauge groups, the NGBs corresponding to the broken
generators obtain masses of the order of ΛETC. This breaking should on the way produce the correct fermion masses.
The remaining SU(NT )× SU(2)L ×U(1)Y will then break the electroweak symmetry through a SU(NT ) condensate
and create the measured W and Z masses as described in the last section.

In this construction we will have ETC gauge bosons which for example in the quark sector couple (QT γµ TETCQ
T ),

(QT γµ TETCQ) and (Qγµ TETCQ) currents. Here, TETC stands for the SU(16)ETC generators. The multiplets QT

and Q replace the SU(2)L,R singlet and doublets, which means the TETC include for example the chiral projectors.
Below the the ETC breaking scale ΛETC these currents become four–fermion interactions, just like a Fermi interaction
in the electroweak theory:

(QT γµ T
a
ETCQ

T ) (QT γµ T b
ETCQ

T )
Λ2

ETC

(QT γµ T
a
ETCQ) (Qγµ T b

ETCQ
T )

Λ2
ETC

(Qγµ T
a
ETCQ) (Qγµ T b

ETCQ)
Λ2

ETC

(33)

The mass scale in this effective theory can be linked to the mass of the ETC gauge bosons and their gauge coupling
and should be of the order 1/ΛETC ∼ gETC/METC. Let us see what these kind of interactions predict at energy scales
below ΛETC, which means somewhere around the weak scale, where we have data. Because currents are much harder
to interpret, we first Fierz–rearrange these operators and then pick out three relevant classes of scalar operators.

Maybe at this stage I should very briefly repeat without proof what a Fierz transformation is. We start from scalar
operators based on spinors in a Lagrangian. The complete set is defined schematically written as:

L ⊃ (
ψAjψ

) (
ψAjψ

)
with Aj = 11, γ5, γµ, γ5γµ, σµν (34)

The multi-index j implies summing over all open indices in the diagonal combination AjA
j . These five types of (4×4)

matrices form a basis of all real (4× 4) matrices which can occur in the Lagrangian. Note that in the equation above
we have not specified anything about the spinors. If they carry charges, the ψ and the ψ have to cancel in the entire
term, but of course not inside each current, i.e. there is more than one scalar operator of this type with a given set
of spinors.
If we now specify the spinors and exchange them in one of the terms in the Lagrangian, we should be able to write
the new (1,4,3,2) scalar term (or any new scalar term, for that matter) as a linear combination of the scalar basis
elements (1,2,3,4):

(
ψ1Aiψ4

) (
ψ3Aiψ2

)
=

∑

j

Cij

(
ψ1Ajψ2

) (
ψ3Ajψ4

)
(35)

Note that in this notation we have ignored the normal-ordering of the spinors in the Lagrangian. It is easy to show
C · C = 11. All we need to know is the value of the coefficients Cij , which I will list for completeness reasons, but
without using them at all in the technicolor context:

11 γ5 γµ γ5γµ σµν

11 −1/4 −1/4 −1/4 1/4 −1/8
γ5 −1/4 −1/4 1/4 −1/4 −1/8
γµ −1 1 1/2 1/2 0
γ5γµ 1 −1 1/2 1/2 0
σµν −3 −3 1/2 0 1/2

(36)

Applying this transformation to the three quark–techniquark four–fermion operators listed above we certainly obtain
scalar (A = 11) operators by Fierz–transforming the three current (A = γµ) operators listed above. Because we are
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model builders, these are the only operators we will discuss in this context, and which will give us all the information
we need:

(QT T a
ETCQ

T ) (QT T b
ETCQ

T )
Λ2

ETC

(QT
L T

a
ETCQ

T
R) (QR T

b
ETCQL)

Λ2
ETC

(QL T
a
ETCQR) (QR T

b
ETCQL)

Λ2
ETC

(37)
Note that we have now picked certain chiralities of the Standard Model fields and the technifermions. Let us go
through these operators once after the other in the following section.

C. Killing technicolor

From the title of this part it is fairly obvious that not all of the operators listed above will be our friends. On the
other hand, we need them to give masses to the Standard–Model fermions, which means we have to live with their
additional constraints:

(1) Once technicolor becomes strongly interacting and forms condensates of the kind
〈
QTQT

〉
∝ Λ3

T the first operator
will lead to masses for all TC generators which do not commute with the (broken) ETC generators. Without going into
the details we know from the scalar operators that these masses have to be proportional to 1/ΛETC. The TC condensate
will be proportional to NT , which means that by dimensional analysis these masses will be m ∼ NT Λ2

T/ΛETC. This
mechanism will be very useful once we go beyond the minimal NT = 4, ND = 1 structure of technicolor, which predicts
massless pseudoscalar NGBs which do not get eaten by the weak gauge bosons, so-called techni-axions. ETC has a
mechanism to give these particles a mass of the order ΛT. So the first scalar operator is our friend.

(2) Condensating the techniquarks in the second operator will according to the QCD scaling rules give us fermion
mass terms of the kind

L ⊃ NT Λ3
T

Λ2
ETC

QLqR ≡ mQ QLqR ⇔ ΛETC ∼
√
NT Λ3

T

mQ
∼

{
2 TeV mQ = 1 GeV
200 GeV mQ = 100 GeV

(38)

for NT = 4 and ΛT = 100 GeV. Remember that Dirac mass terms involve a left–right mixing, which means that they
form an SU(2) doublet, which in turn means that gauge invariance forces us to couple them to a techniquark doublet
as well. From the numbers above we see that this operator appears to be our friend for light quarks, but it becomes
problematic for the top quark, where ΛETC needs to be probably too low for current constraints.
Moreover, the operator responsible for the top mass can be fierzed into a fermion–technifermion current which can
occur for either chirality

(
QT

LQ
T
R

) (
QRQL

) →
(
QT

LγµQL

) (
QRγ

µQT
R

)
and

(
QT

LγµQL

) (
QLγ

µQT
L

)
(39)

where we omitted the prefactor g2
ETC/M

2
ETC. Of course, until now we have identified the right–handed Standard

Model field with the right-handed top singlet. But because of the SU(2)R symmetry which as we will see later it
necessary to avoid electroweak precision data as a custodial symmetry, we can rotate this tL,R into a bL,R. So the
operator we are looking at it of the kind

g2
ETC

M2
ETC

(
QT

LγµbL

) (
QLγ

µQT
L

)
(40)

where the techniquarks carry the index T . This operator induces a coupling of a charged ETC gauge boson to TLbL.
Such a diagram contributes to the decay Z → bb̄, where the two outgoing b quarks exchange a heavy charged ETC
gauge boson and this propagator is pinched after integrating out the ETC gauge bosons. It contributes to the effective
bbZ coupling

gL =
e

swcw

(
−1

2
+
s2w
3

)
→ gL − ξ2

4
Λ2

T

Λ2
ETC

e

swcw
= gL − ξ2

4
mt

NT ΛT

e

swcw
(41)

The angle ξ describes a possible mixing between theW and the ETC gauge boson. Unless we find a good argument why
the different gauge boson cannot mix at all, this contribution will be considerably too big for the LEP measurement
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of Rb = ΓZ(bb̄)/ΓZ(hadrons). Note that this constraint from B decay will affect any theory which induces a top mass
through a partner of the top quark and allows for a general set of (fierzed) operators corresponding to this mass term,
not just extended technicolor.
The way out of these problem with 1/METC operators we can read off the formula: we need to increase ΛETC while
at the same time still getting the correct mt. This can be achieved by so-called walking technicolor, which we will
not discuss here, though.

(3) The third operator on the list does not include any techniquarks, but all combinations of four–fermion couplings
of light quarks. In the Standard Model such operators are very strongly limited, in particular when they involve
different flavors of quarks. Typical operators of this form which are strongly constrained are

1
Λ2

ETC

(s̄γµd) (s̄γµd)
1

Λ2
ETC

(µ̄γµe) (ēγµµ) (42)

They are examples for flavor–changing neutral currents, i.e. couplings of a neutral gauge boson to two different
fermion generations. Note that if we only allow two different generations in any of the operators, Fierz transformations
will distribute them into all other operators. The currently strongest constraints come from kaon physics, for example
the mass splitting between the K0 and the K

0
. Its limit ∆MK . 3.5 ·10−12 MeV implies METC/(gETCθsd) & 600 TeV

in terms of the Cabibbo angle θsd. We can translate such a lower bounds on ΛETC into an upper bound on fermion
masses we can construct in our minimal model. ΛETC > 103 TeV simply translates in a maximum fermion mass which
we can explain in this model: m . 4 MeV for ΛT . 1 TeV. This is obviously not good news.

The last problem ETC runs into has to do with electroweak precision data, namely the two parameters S and T .
While I will probably not be able to cover this in the lecture, let met briefly sketch a really nice introduction into
electroweak precision observables from Csaba Csaki’s lecture which I believe he found in an article by Cliff Burgess.
If we allow for deviations from the Standard–Model gauge sector, but limit ourselves to only dimension–four operators
in the Lagrangian we can write down the additional terms

L ⊃ −Π′γγ

4
F̂µν F̂

µν − Π′WW

2
ŴµνŴ

µν − Π′ZZ

4
ẐµνẐ

µν − Π′γZ

4
F̂µνẐ

µν −ΠWW m̂2
W Ŵ+

µ Ŵ
−µ− ΠZZ

2
m̂2

ZẐ
+
µ Ẑ

−µ (43)

The field strengths F̂µν , Ŵµν , Ẑµν correspond to the photon and the W and Z gauge bosons, i.e. the fields Âµ, Ŵµ, Ẑµ.
The hats on the field are necessary, because these kinetic terms and therefore the fields do not (yet) have the canonical
normalization. If we assume that the parameters Π′γγ ,Π

′
WW ,Π′ZZ and Π′γZ are small, we can express the hatted

gauge–boson fields in terms of the properly normalized fields as

Âµ =
(

1− Π′γγ

2

)
Aµ + Π′γZZµ Ŵµ =

(
1− Π′WW

2

)
Wµ Ẑµ =

(
1− Π′ZZ

2

)
Zµ (44)

which means for example for the terms proportional to Π′γZ :

−1
4
F̂µν F̂

µν
∣∣∣
γZ

= −1
4

(
∂µÂν − ∂νÂµ

) (
∂µÂν − ∂νÂµ

) ∣∣∣
γZ

= −1
4

(
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) (
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) ∣∣∣
γZ

= −Π′γZ

4
(∂µAν − ∂νAµ) (∂µZν − ∂νZµ)− Π′γZ

4
(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −Π′γZ

2
(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −Π′γZ

2
ZµνF

µν +O(Π′x2) = −Π′γZ

2
Ẑµν F̂

µν +O(Π′2) (45)

So the two contributions to Z − γ mixing indeed cancel each other. This brings the kinetic terms in the Lagrangian
given above into the canonical form

L ⊃ −1
4
FµνF

µν − 1
2
WµνW

µν − 1
4
ZµνZ

µν − (1+ΠWW −Π′WW ) m̂2
WW+

µ W
−µ− 1

2
(1+ΠZZ +Π′ZZ) m̂2

ZZ
+
µ Z

−µ (46)
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The Z mass is given in terms of the additional small parameters m2
Z = (1 + ΠZZ + Π′ZZ) m̂2

Z . Just as in the usual
Lagrangian we can link the two gauge–boson masses through the (hatted) weak mixing angle m̂W = ĉwm̂Z , and in
terms of this mixing angle we can compute the muon decay constant. The relation we obtain is:

ŝ2w = s2w

[
1 +

c2w
c2w − s2w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
(47)

With all these corrections the W–mass term in the Lagrangian reads

L ⊃ −(1 + ΠWW −Π′WW ) m̂2
W W+

µ W
−µ = −(1 + ΠWW −Π′WW ) ĉ2w m̂2

Z W+
µ W

−µ

= −(1 + ΠWW −Π′WW )
[
1− s2w

c2w − s2w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
c2w (1−ΠZZ + Π′ZZ) m2

Z W+
µ W

−µ

=
[
1−Π′WW + Π′ZZ + ΠWW −ΠZZ − s2w

c2w − s2w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
m2

Z W+
µ W

−µ

=
[
1− αS

2(c2w − s2w)
+

c2wαT

c2w − s2w
+
αU

4s2w

]
m2

Z W+
µ W

−µ (48)

In the last step we have defined three typical combinations of the different correction factors as

αS = 4s2wc
2
w

(
−Π′γγ + Π′ZZ −Π′γZ

c2w − s2w
cwsw

)

αT = ΠWW −ΠZZ

αU = 4s4w

(
Π′γγ −

Π′WW

s2w
+ Π′ZZ

c2w
s2w

− 2Π′γZ

2cw
sw

)
(49)

These three so-called Peskin–Takeuchi can be understood fairly easily: the S parameter corresponds to a shift of
the Z mass. This is not quite as obvious because it seems to also involve anomalous terms involving the photon’s
kinetic term, but we have to remember that the weak mixing angle is defined such that the photon is massless (i.e.
corresponds to the unbroken U(1)Q), while all mass terms are absorbed in the Z boson. The T parameter obviously
compares contributions to the W and Z masses. Since the custodial SU(2) symmetry precisely protects this mass
ration, usually referred to as ρ = 1, the T parameter measures the amount of custodial symmetry violation. To get
an idea how additional fermions contribute to S and T I just quote the contributions from the heavy fermion doublet:

∆S =
Nc

6π

(
1− 2Y log

m2
t

m2
b

)
∆T =

Nc

4πs2wc2wm2
Z

(
m2

t +m2
b −

2m2
tm

2
b

m2
t −m2

b

log
m2

t

m2
b

)

∆ρ =
NcGF

8
√

2π2

(
m2

t +m2
b −

2m2
tm

2
b

m2
t −m2

b

log
m2

t

m2
b

)

=
Nc

8
√

2π2

√
2e2

8s2wc2wm2
Z

(
2m2

b + δ − 2(m2
b + δ)m2

b

δ
log

(
1 +

δ

m2
b

))
m2

t = m2
b + δ

=
Nc

4πs2wc2wm2
Z

e2

16π
(
1 +O(δ2)

)
(50)

Where Y = 1/6 for Standard–Model quarks and Y = −1/2 for Standard–Model leptons. The ρ parameter is defined
in terms of the W and Z masses and is one at tree level

ρ =
m2

W

c2wm
2
Z

= 1 (51)

One of the main differences between ρ and T is the reference point, where ρ = 1 refers to its tree-level value and
T = 0 is often chosen for some kind of light Higgs mass and including the Standard–Model top-bottom corrections.
For a slightly longer discussion of such contributions to the ρ parameter or ∆T , just have a look into my little–Higgs
notes.

Let us now get to the constraints on technicolor models from the very strongly constrained S, T plane. The central
point in this plane S = T = 0 is somewhat conventional, because the Standard Model predicts for example two
sources for finite T : the Higgs boson itself as well as the mass splitting between up-type and down-type quarks (like
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the bottom and top quarks). Moreover, the electroweak precision constraints typically form a diagonal ellipse in
the S − T plane. But unless we can rely on a clear correlations, we can assume that models which to not predict
−0.15 < ∆S < 0.25 and −0.1 < ∆T < 0.3 on the diagonal are ruled out with 95% C.L. For S = 0 or T = 0 the range
of the respective other parameter is typically out to ±0.1.
From the formulas we know that all we need to compute for S and T are the photon andW,Z self energies. Self energies
from a field theoretical point of view can be considered part of the renormalization of a field, because whatever we do
we need to reproduce the canonically normalized kinetic terms. If we introduce new particles with SU(2)L × U(1)Y

quantum numbers, all of these particles will contribute to these self–energy loops. From the appearance of Nc in the
formulas above we see that all these contributions simply add, unless the up-type and down-type contributions cancel.
This is for example the case for a chiral fourth generation, just as a side remark.
In technicolor models, the singlet techniquarks will contribute to the S parameter each with a factor NT /(6π) ∼
NT /20 ∼ 0.2, assuming the minimal model with ND = 1. This number can barely be tolerated if it is accompanied
with ∆T ∼ 0.2, due to the diagonal ellipse structure of the current constraints. Constructing an appropriate model
with an up-type and down-type is a challenge to technicolor model building in the minimal models. More complex
models easily get to ∆S ∼ O(1), which is firmly ruled out, no matter what kind of ∆T we manage to obtain. These
electroweak constraints are typically considered the last blow to technicolor models, even though we should mention
that good model builders will find ways to construct models around almost any constraint, even the deadly list of
technicolor constraints listed above. Only once we see (or do not see) a fundamental light Higgs at the LHC will we
know...

III. SYMMETRY BREAKING BY BOUNDARY CONDITIONS

A much more recent idea of electroweak symmetry breaking which will, however, have to deal with the same kind of
experimental constraints, is electroweak symmetry breaking from a fifth dimension. In other words, we extend our
usual picture of space-time by an additional spacial coordinate, i.e. µ = 0, 1, 2, 3 becomes M = 0, 1, 2, 3, 5. Giving
the additional fifth dimension the index ‘5’ instead of ‘4’ is meant to avoid confusion. Of course, we have to construct
our model such that for example gravitational measurements cannot detect the fact that there is this additional
dimension. This will be one of the requirements on the extra dimension, which at this stage we will not discuss. For
a very simple introduction into extra–dimensional theories and their benefits in solving the hierarchy problem you
could have a look into my lecture notes. In the following three lectures we will limit ourselves to a new mechanism of
breaking electroweak symmetry without introducing a Higgs field. In a way, this concept is more revolutionary than
technicolor, because as we have seen in the very beginning, we can always think of a non-linear sigma model as the
special case of a decoupled fundamental Higgs boson. Using extra–dimensional boundary condition really does not
resemble the usual Higgs mechanism anymore.

Before we break electroweak symmetry, we need to get a general feel for a field theory which involves a higher–
dimensional space (called bulk) and four–dimensional boundaries. Therefore, let us look at the action of a simple
scalar field in five dimensions. Naively, we just write down a Lagrangian which we integrate over five dimensions of
space-time:

Sbulk =
∫
d4x

∫
dy L5 =

∫
d4x L4 (52)

Already from this formula we know that our counting of powers of mass will be different - if the action still has mass
dimension zero, then the Lagrangian L5 now has to have mass dimension five instead of four.
Gravitational constraints suggest that the extra dimension cannot be arbitrarily large, because it would modify
Newton’s gravity at very large distances (or very low energies), and such modifications are ruled out by everything
we know about how our solar system or our galaxy works. Moreover, to get any mileage out of boundary conditions
we need to give our extra dimension such boundaries, which means a finite size. A finite–size additional dimension
we can obtain from an infinite dimensions two ways: either we think of it as a repeated interval, or we think of it
as running around a circle, where the ends are simply identified. The latter leads us to the concept of an orbifold
compactification which defines a brane. However, in comparison to the most general boundaries, such an orbifold
compactification limits the set of possible boundary conditions, so we will instead stick to a general boundary setup.
In both cases we can write the size of the fifth dimension as y = 0...πR.
The simplest field we can write down is a scalar field with a kinetic term and a potential, so our action reads:

Sbulk =
∫
d4x

∫ πR

0

dy

(
1
2
(∂Mφ)2 − V (φ)

)
=

∫
d4x

∫ πR

0

dy

(
1
2
(∂µφ)2 − 1

2
(∂5φ)2 − V (φ)

)
(53)
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Because the additional dimensions is a space dimension the metric tensor gMN is (+,−,−,−,−). The trouble with
this Lagrangian is that the kinetic term means that this scalar field has a mass dimension 3/2, but on the other hand
it is not clear what we could do instead.

A. Fields on the boundary

Trying to derive the equations of motion from this action will bring in the boundaries. The variation of the action is

0 != δSbulk =
∫
d4x

∫ πR

0

dy

(
(∂µφ)(∂µδφ)− ∂

∂φ
V (φ) δφ− (∂5φ)(∂5δφ)

)

=
∫
d4x

[∫ πR

0

dy

(
−∂µ∂µφ− ∂

∂φ
V (φ) + ∂5∂5φ

)
δφ− (∂5φ)δφ

∣∣∣
πR

0

]

=
∫
d4x

[∫ πR

0

dy

(
−∂M∂Mφ− ∂

∂φ
V (φ)

)
δφ− (∂5φ)δφ

∣∣∣
πR

0

]
(54)

We have simply integrated by parts in all five dimensions. In contrast to the four usual dimension where our Hilbert
space is defined such that all fields vanish at the infinite boundary we cannot require such a thing for the fifth
dimension. Instead, we need to keep the surface term in the variation of the action, which will generically give us
boundary terms from the originally five–dimensional Lagrangian. The first condition we read off this variation is the
five–dimensional bulk equation of motion ∂M∂Mφ = −∂V/∂φ.

In addition, the boundary term if the variation of the action has to vanish, which gives us the choice of two
boundary conditions:

∂5φ
∣∣∣
0,πR

= 0 (Neumann) or φ
∣∣∣
0,πR

= 0 (Dirichlet) (55)

There is in principle be a third possibility, namely that the contributions from both boundaries cancel, but this would
force is to treat the two boundaries equal, which as we will see later is not what we want.

From this short argument we see that it would be useful to study the behavior of additional Lagrangian terms only on
the boundary, to modify such boundary conditions. For example, what happens, if we add a boundary mass term?

S = Sbulk −
∫
d4x

1
2
Mφ2

∣∣∣
0

−
∫
d4x

1
2
Mφ2

∣∣∣
πR

(56)

The masses on the two boundaries can of course be different. Looking at the formula above we have gotten ourselves
into trouble, because the usual four–dimensional mass terms would be M2. However, this M2 would need to have
mass dimension one to arrive at the usual dimension–four Lagrangian in four dimensions. The variational principle
gives us

δS = δSbulk −
∫
d4x Mφ δφ

∣∣∣
0

−
∫
d4x Mφ δφ

∣∣∣
πR

=
∫
d4x

[∫ πR

0

dy (· · · ) δφ− ∂5φ δφ
∣∣∣
πR

0
−Mφ δφ

∣∣∣
0

−Mφ δφ
∣∣∣
πR

]

⇔ ∂5φ−Mφ
∣∣∣
0

= 0 and ∂5φ+Mφ
∣∣∣
πR

= 0 (57)

This form is interesting, because it interpolates between the two possible boundary conditions in the absence of the
mass term: for M = 0 we recover the Neumann BC, while for M →∞ we are left with the Dirichlet BC. Note again
that these conditions really do not look like equations of motion on the boundary because of mass dimension of the
scalar field. In fact, they look much more like a Dirac equation, which makes no sense for scalars, but then they are
not equations of motion either.

Moving on, let us try a boundary kinetic term on one of the boundaries:

S = Sbulk +
∫
d4x

1
2M

(∂µφ)(∂µφ)
∣∣∣
πR

(58)
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Note that on the four–dimensional boundary we are using the four–dimensional derivative of course. The variational
principle now gives us — as usually integrating by parts and keeping the factor two from the symmetric squared
kinetic term:

δS = δSbulk +
∫
d4x

1
M

(∂µφ)(∂µδφ)
∣∣∣
πR

=
∫
d4x

[∫ πR

0

dy (· · · ) δφ− ∂5φ δφ
∣∣∣
πR

0
− 1
M

(∂µ∂
µφ) δφ

∣∣∣
πR

]
⇔ ∂5φ = − 1

M
∂µ∂

µφ
∣∣∣
πR

= 0 (59)

Remembering the bulk equation of motion ∂M∂Mφ = 0 we can re-write this boundary conditions as ∂5φ = −(∂5)2φ/M .
On the other boundary, the relative sign would simply change. This form has an interesting consequence: if we want
the second-derivative operator φ′′ ≡ (∂5)2φ to be hermitian (f, g′′) = (f ′′, g) we have to redefine the scalar product
on the space of five–dimensional wave functions including a boundary term. Csaba nicely derives this in his lecture.

As the final step we will move away from the scalar toy model and introduce a five–dimensional photon field into our
theory:

S =
∫
d5x

(
−1

4
FMNF

MN

)
=

∫
d5x

(
−1

4
FµνF

µν − 1
2
Fµ5F

µ5

)
(60)

There would be the additional F55 term, but it vanishes due to the antisymmetric nature of FMN = ∂MAN − ∂NAM .
The additional term including the fifth component of the gauge field becomes

S = −1
2

∫
d4x

∫ πR

0

dy Fµ5F
µ5

= −1
2

∫
d4x

∫ πR

0

dy (∂µA5 − ∂5Aµ)
(
∂µA5 − ∂5Aµ

)

= −1
2

∫
d4x

∫ πR

0

dy
[
+∂µA5 ∂

µA5 + ∂5Aµ ∂
5Aµ − 2∂µA5 ∂

5Aµ
]

= −1
2

∫
d4x

∫ πR

0

dy
[−A5 ∂µ∂

µA5 + ∂5Aµ ∂
5Aµ + 2A5 ∂µ∂

5Aµ
]

= −1
2

∫
d4x

∫ πR

0

dy
[−A5 ∂µ∂

µA5 −Aµ ∂5∂
5Aµ − 2∂5A5 ∂µA

µ
]− 1

2

∫
d4x

[
Aµ ∂

5Aµ + 2A5(∂µA
µ)

]πR

0
(61)

again after integrating by parts first in the four–dimensional space (with vanishing boundary terms) and then in the
fifth dimension . The first term in the last line is obviously a kinetic terms for the scalar field A5. The second term
will after a Kaluza–Klein decomposition (i.e. a discrete Fourier transform in the periodic fifth dimension) become
a mass term for our photon in five dimensions. We can schematically write the five–dimensional wave functions by
separating variables

Aµ(x, y) = Āµ(x)f(y) ∼
∑

n

Â(n)
µ (x) einy/R ⇒ ∂2

5Aµ(x, y) =
∑

n

∂2
5Â

(n)
µ (x) einy/R = −

∑
n

m2

R2
Â(n)

µ (x) einy/R

(62)
Which means that if we write our five–dimensional photon field as an effective theory in four dimensions we obtain
towers of massive photons whose mass is given by the inverse size of our fifth dimension. Note, however, that we have
to clearly distinguish between two kinds of photon masses. The KK excitations will be massive, but this does not
mean that we break the symmetry of our Lagrangian. In particular, there will be a zero mode n = 0 with vanishing
mass. Which means we still have to find a mechanism for electroweak symmetry breaking. The role of the KK
excitations will become obvious later, when we discuss unitarity in these models.

From the formula above it also becomes clear what role boundary conditions play: Dirichlet boundary conditions
(A = 0) mean sine-type behavior, while Neumann boundary conditions (∂5A = 0) mean cosine at the respective
boundaries. This implies that if we want to write down a zero mode, i.e. a constant wave function in the y dimensions
which corresponds to exp(ny/R) for n = 0, we need a Neumann-Neumann setup on the two boundaries.

For the third term in eq.(61) we have to briefly remember something about gauge theories which I also had to read
again for example in the book by Peskin and Schroeder. It obviously mixes the scalar field and the photon. The
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same thing happens if we write down the usual Higgs mechanism: the NGB will mix with the transverse degrees of
freedom of the gauge boson which will then eat it as its longitudinal component. Such a term we do not want in
the Lagrangian — the definition of the gauge boson should instead absorb this term into the massive gauge boson.
This we can achieve in a general (R − ξ) gauge: gauge fixing means including a gauge–fixing term with including
the Lagrangian multiplier 1/ξ. You can find a discussion of this gauge for the Standard–Model Higgs mechanism
in Peskin & Schroeder section 21.1. For example, for an abelian massive photon we introduce a gauge–fixing term
(∂µA

µ − ξevφ)2/(2
√
ξ) to cancel the photon–NGB mixing and fix the photon gauge at the same time. The third

term from the gauge fixing gives us a mass for the NGB m2
φ = ξ(ev)2 = ξm2

A (in terms of the photon mass). Since
this mass is gauge dependent the NGB it not a well-defined physical degree of freedom, and it can be decoupled by
choosing ξ →∞, which is called unitary gauge. In that gauge the NGB survives only as the longitudinal component
of the massive photon, but does not appear in the Lagrangian anymore.
Precisely the same way we now introduce a gauge–fixing term in the five dimensional space (bulk):

SGF,bulk =
1
2ξ

∫
d4x

∫ πR

0

dy
(
∂µA

µ − ξ ∂5A
5
)2

=
∫
d4x

∫ πR

0

dy

[
1
2ξ

(∂µA
µ)2 − ∂µA

µ ∂5A
5 +

ξ2

2
(∂5A

5)2
]

=
∫
d4x

∫ πR

0

dy

[
1
2ξ

(∂µA
µ)2 − ∂µA

µ ∂5A
5 − ξ2

2
A5∂5∂

5A5

]
+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣
πR

0
(63)

The usual gauge fixing term (∂µA
µ)2 appears for the transverse degrees of freedom of the massless photon. The second

term cancels the mixing term between Aµ and A5. What is interesting is the last term in SGF,bulk: there is no need to
fix the gauge for the scalar field A5, and if we compute the equation of motion for A5 using the variational principle
for the contributions to δS proportional to δA5 it includes a term ξ2∂5A

5 ∂5(δA5). After integrating by parts this
leads to ξ2(∂5)2A5 appearing in the equation of motion for A5, which is nothing but a massive KK tower. The KK
masses will become infinitely large in unitary gauge ξ →∞, so that the entire A5 tower as a physical mode decouples
from the theory. Instead, its degrees of freedom now give KK masses to the excitation of the four–dimensional gauge
field Aµ. Note that a possible zero mode in the A5 tower would be linked to a finite mass for the lowest (i.e. Standard
Model) gauge boson. Dependent on the boundary conditions such a zero might or might not appear. We will discuss
the role of such a A5 zero term when we discuss ways to break electroweak symmetry.

We know that we are not living in five but in four dimensions. Which means that we should have a careful look at
the action on the boundaries in eq.(61). After fixing the gauge in the bulk, there is also a dangerous boundary mixing
term of the type A5(∂µA

µ). Again, we have to introduce a gauge fixing term, now on the boundary

SGF,bound =
1

2ξ̂

∫
d4x

(
∂µA

µ ± ξ̂A5

)2 ∣∣∣
0,πR

=
∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣
0,πR

+
ξ̂

2
A2

5

∣∣∣
0,πR

− (∂µA
µ)A5

∣∣∣
0

+ (∂µA
µ)A5

∣∣∣
πR

]

=
∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣
0,πR

+
ξ̂

2
A2

5

∣∣∣
0,πR

+ (∂µA
µ)A5

∣∣∣
πR

0

]
(64)

Note the difference between the upper and lower notation of the boundary terms. The last term precisely cancels
the boundary mixing term. We can now combine Sbound from the original Lagrangian and from the two gauge fixing
terms:

Sbound = −1
2

∫
d4x

[
Aµ ∂

5Aµ + 2A5(∂µA
µ)

]πR

0
+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣
πR

0

+
∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣
0,πR

+
ξ̂

2
A2

5

∣∣∣
0,πR

+ (∂µA
µ)A5

∣∣∣
πR

0

]

= −1
2

∫
d4x Aµ ∂

5Aµ
∣∣∣
πR

0
+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣
πR

0
+

∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣
0,πR

+
ξ̂

2
A2

5

∣∣∣
0,πR

]
(65)

For this action we can compute the variation, which needs to be zero. The two gauge parameters ξ in the bulk and ξ̂
on the boundary do not have to be identical. To simplify the results we can use the unitary gauge on the boundary
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ξ̂ →∞ and find for the terms proportional to the variation of A5

0 != δSbound

∣∣∣
A5

=
∫
d4x

[
ξ

2
∂5A

5 δA5

∣∣∣
πR

0
+
ξ

2
A5 ∂5(δA5)

∣∣∣
πR

0
+ ξ̂A5 δA5

∣∣∣
0,πR

]

∼ ξ̂

∫
d4x A5 δA5

∣∣∣
0,πR

⇔ A5
∣∣∣
0,πR

= 0 (66)

while the condition on ∂5A
5 we would have gotten from the gauge fixing in the bulk does not contribute anymore.

The second term proportional to ∂5δA5 looks funny at first, but it is taken care of by the boundary condition A5 = 0.
Secondly, the variational contributions proportional to the regular photon field Aµ are:

0 != δSbound

∣∣∣
Aµ

=
∫
d4x

[
−1

2
δAµ ∂5A

µ
∣∣∣
πR

0
− 1

2
Aµ ∂5δA

µ
∣∣∣
πR

0
+

1

ξ̂
(∂νA

ν) (∂µδA
µ)

∣∣∣
0,πR

]

=
∫
d4x

[
−1

2
δAµ ∂5A

µ
∣∣∣
πR

0
− 1

2
Aµ ∂5δA

µ
∣∣∣
πR

0
− 1

ξ̂
(∂µ∂νA

ν) δAµ
∣∣∣
0,πR

]

∼
∫
d4x

[
−1

2
∂5A

µ δAµ

∣∣∣
πR

0
− 1

2
Aµ ∂5δA

µ
∣∣∣
πR

0

]
⇔ ∂5A

µ
∣∣∣
0,πR

= 0 (67)

Because we fix ∂5A
µ on the boundaries, it does not contribute in the second term of δSbound, like any other constant

would not contribute. According to our very brief look at zero modes this set of boundary conditions means that
after Fourier–transforming the fifth dimension there will be a zero mode for the photon Aµ, while due to the Dirichlet
boundary conditions the scalar mode A5 will not have a zero mode. It will only occur with finite KK masses, which
are eaten by the massive KK gauge bosons. In other words, we expect a massless Standard–Model photon with a
massive KK tower, but no additional A5 fields.
Looking back at Sbound we see that the two sets of boundary conditions and in addition the boundary unitary gauge
ξ̂ →∞ implies Sbound = 0. All we have to consider for our five–dimensional QED is the bulk action in eq.(61).

S =
∫
d5x

[
−1

4
FµνF

µν − 1
2

(
∂µA5 ∂

µA5 + ∂5Aµ ∂
5Aµ − 2∂µA5 ∂

5Aµ
)]

(68)

B. Breaking the gauge symmetry on the boundaries

Since we now know how the basics of a five–dimensional version of QED, let us see what happens if we break the
gauge symmetry — in this case the U(1) — on the boundaries. From the introduction we know how to do this; let
us add a non-linear sigma model on the two boundaries.

S =
∫
d4x L4 L4 ⊃

∫ πR

0

dy

[
|DµΦ|2 − λ

2

(
|Φ|2 − v2

2

)2
]

Φ ∼ v√
2
eiπ/v (69)

Again, in these notes am using the technicolor version of the Higgs potential with a prefactor λ/2, instead simply
λ as I use it in my Higgs notes or Csaba uses it as well... In the last step we have already decoupled the physical
Higgs field and chosen λ→∞, with finite v. The two Higgs fields on the two boundaries should of course be labelled
differently, and the parameters λ and v will not be the same for both of them. To keep things short I will only spell
out the action for y = πR. This gives us the bulk contributions we computed before, remembering that in unitary
gauge and with given boundary conditions Lbound = 0:

L4 = L4,bulk + L4,σ

=
∫ πR

0

dy

[
−1

4
FµνF

µν − 1
2
(∂µA5)2 − 1

2
(∂5Aµ)2 + ∂µA5∂

5Aµ

]
+

1
2

(∂µπ − vAµ)2
∣∣∣
πR

(70)

The sigma-field contribution we simply copy from eq.(1) with ef → v. Note that writing down the boundary terms
we can see that if Aµ now has mass dimension 3/2, we need to assign mass dimension [v] = M1/2 and [π] = M1. In
contrast to our earlier discussion we now use a general (R− ξ) gauge, which means we need to introduce gauge–fixing
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terms to cancel the (A5 −Aµ) and (π −Aµ) mixing terms

L4,GF = − 1
2ξ

∫ πR

0

dy
(
∂µA

µ − ξ∂5A
5
)2 − 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣

πR

= − 1
2ξ

∫ πR

0

dy
[
(∂µA

µ)2 − ξ ∂µA
µ ∂5A

5 + ξ2(∂5A
5)

]− 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣

πR

= − 1
2ξ

∫ πR

0

dy
[
(∂µA

µ)2 − ξ ∂µA
µ ∂5A

5 − ξ2A5∂
2
5A

5)
]− ξ

2
A5∂5A

5
∣∣∣
πR

0
− 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣

πR

(71)

Again, we have copied the bulk contribution from eq.(63) and added the appropriate term needed for the NGB
contributions. After adding these gauge–fixing terms the bulk action involving only the gauge field Aµ is

LAµ =
∫ πR

0

dy

[
−1

4
(
(∂µAν)2 + (∂νAµ)2 − 2(∂µAν) (∂νAµ)

)− 1
2
(∂5Aµ)2 − 1

2ξ
(∂µA

µ)2
]

=
1
2

∫ πR

0

dy

[
−(∂µAν)2 + (∂µAν) (∂νAµ)− (∂5Aµ)2 − 1

ξ
(∂µA

µ)2
]

=
1
2

∫ πR

0

dy

[
Aν∂

µ∂µA
ν −Aν∂µ∂

νAµ +Aµ∂5∂
5Aµ +

1
ξ
Aν∂

ν∂µA
µ

]
− 1

2
Aµ∂5A

µ
∣∣∣
πR

0

=
1
2

∫ πR

0

dy Aν

[
gµν(∂ρ∂ρ − ∂µ∂ν + gµν∂5∂

5 +
1
ξ
∂ν∂µ

]
Aµ − 1

2
Aµ∂5A

µ
∣∣∣
πR

0

=
1
2

∫ πR

0

dy Aν

[
gµν(∂ρ∂ρ + ∂5∂

5)−
(

1− 1
ξ

)
∂µ∂ν

]
Aµ − 1

2
Aµ∂5A

µ
∣∣∣
πR

0
(72)

What we see in the last line it simply the gauge–boson propagator in (R − ξ) gauge, now including the KK term.
tp: for some reason this ∂2

5 has a weird sign...? The corresponding bulk equation of motion for the scalar
component in the absence of any additional mass terms arises from gauge fixing: L5 ⊃ −ξ/2 (∂5A

5)2.

To compute the boundary conditions for Aµ, we can for example collect all boundary contributions at y = πR after
removing the (A5 −Aµ) mixing:

LAµ = −(∂µπ)(vAµ) +
1
2
(vAµ)2 − 1

2ξ̂
(∂µA

µ)2 − 1

ξ̂
(∂µA

µ) ξ̂ (vπ) − 1
2
Aµ∂5A

µ

= −(∂µπ)(vAµ) +
1
2
(vAµ)2 − 1

2ξ̂
(∂µA

µ)2 +Aµ∂µ(vπ)− 1
2
Aµ∂5A

µ

=
1
2
v2AµA

µ − 1

2ξ̂
(∂µA

µ)2 − 1
2
Aµ∂5A

µ

∼ 1
2
Aµ

(
v2 − ∂5

)
Aµ (73)

In unitary gauge, this determines the boundary condition at πR and correspondingly at y = 0 to be

(∂5 ∓ v2)Aµ

∣∣∣
0,πR

= 0 (74)

Remember that now [v] = M1/2. From the general scalar boundary–mass case we expect that adding a boundary–
mass for the photon indeed means that the new boundary conditions will become an interpolation of Dirichlet and
Neumann conditions. What is new in this formula is that the mass scale is given by v, the vacuum expectation value
breaking electroweak symmetry on the boundaries. In other words, in the unbroken phase v = 0 the photon field has
to obey Neumann boundary conditions ∂5Aµ = 0, while in the broken phase v 6= 0 it will follow Dirichlet boundary
conditions Aµ = 0. We know that this means that only in the unbroken phase it will have a zero mode. We can turn
this argument around: a physical photon field with a Dirichlet boundary condition Aµ = 0 and hence without a zero
mode is indeed a sign for a broken symmetry on the respective boundary.

If a Dirichlet boundary condition for the physical gauge–boson field is indeed a sign for a broken symmetry, some
combination of A5 and the NGB π has to provide the degrees of freedom to make the photon (including its zero mode)
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massive. The boundary terms for A5 and π after removing all mixing terms and including a boundary mass m with
[m] = M1 for π are

LA5,π =
1
2
(∂µπ)2 − ξ

2
A5∂5A

5 − ξ̂

2
(vπ +A5)

2 − m2

2
π2

∼ −ξ
2
A5∂5A

5 − ξ̂

2

[(
v2 +

m2

ξ̂

)
π2 + 2vπA5 +A2

5

]
(75)

We then find for the π’s boundary conditions in combination with A5

0 !=
∂

∂π

[
· · ·

]
= 2

(
v2 +

m2

ξ̂

)
π + 2vA5 ⇔

(
v2 +

m2

ξ̂

)
π + vA5

∣∣∣
0,πR

= 0 (76)

The same way we can compute the boundary conditions for A5 in terms of both scalar fields:

0 != −ξ
2
∂5A5 − ξ̂

2
[2vπ + 2A5]

= −ξ
2
∂5A5 − ξ̂A5 + ξ̂v

vA5

v2 +m2/ξ̂

= −
[
ξ

2
∂5 + ξ̂

m2/ξ̂

v2 +m2/ξ̂

]
A5 (77)

From there we can read off the boundary condition for the scalar component A5

(
∂5 ∓ ξ̂

ξ

m2/ξ̂

v2 +m2/ξ̂

)
A5

∣∣∣
0,πR

= 0 (78)

For unitary gauge on the boundaries ξ̂ → ∞ we know from the last example without boundary scalars that indeed
we should find Dirichlet boundary conditions A5 = 0. In that limit the NGB mass terms become suppressed, because
these degrees of freedom are not physical and should be eaten by the gauge bosons.

If we want to study the behavior of the NGB in the bulk we can go into unitary gauge in the bulk ξ → ∞. We see
that breaking the symmetry on the boundaries shifts the A5 boundary conditions from originally Dirichlet (A5 = 0)
in eq.(67) to Neumann (∂5A5 = 0). This means that A5 now can develop a zero mode, which provides the necessary
degree of freedom for the photon which in the presence of v cannot include a zero mode any longer!
In general we see a pattern for the boundary conditions of the gauge boson and of the scalar A5 when we break the
symmetry on the boundaries. In the unbroken symmetry the gauge boson will have a zero mode, which corresponds to
Neumann BC, while we have seen that the scalar mode’s Dirichlet BC do not allow for a zero mode. After symmetry
breaking, the Dirichlet BC for the gauge boson forbids their zero mode, but the scalar A5 can include a zero mode,
provided the symmetry is broken on both boundaries. The necessary degree of freedom for this zero mode comes from
the boundary scalar π. This implies that the boundary conditions for the scalar component have to be the opposite
of the vector’s conditions, simply exchanging Neumann and Dirichlet BCs. It also means, that in the absence of
massless scalars we should concentrate on Neumann–Neumann and Dirichlet–Neumann boundary conditions on our
two boundaries y = 0, πR.

This mechanism now allows us to write down a very simple toy model for breaking a gauge symmetry by boundary
conditions. We start with three gauge bosons, corresponding to a SU(2) gauge group in the bulk. We will try to
make two of them (W,Z) heavy while leaving the third (γ) massless. The massless photon is simple, because we know
that we need Neumann–Neumann boundary conditions:

∂5A
3
µ

∣∣∣
0,πR

= 0 ⇒ Â3
µ ∼ cos

ny

R
⇒ m

(n)
A3 =

n

R
= 0,

1
R
,

2
R
· · · (79)

For the other two gauge bosons it is sufficient to require a Dirichlet boundary condition at at least one of the
boundaries. The choice of the second boundary condition will then affect the mass of the first KK excitation and the
mass ratios of the higher excitations:

∂5A
1,2
µ

∣∣∣
0

= 0 A1,2
µ

∣∣∣
πR

= 0 ⇒ Â1,2
µ ∼ cos

(2n+ 1)y
2R

⇒ m
(n)
A1,2 =

n+ 1/2
R

=
1

2R
,

3
2R

· · · (80)
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custodial SU(2)
   broken

FIG. 1: Symmetry–breaking pattern of the Higgsless toy model, Figure stolen from Csaba’s notes.

As discussed above, the boundary conditions for the scalar components are exactly the opposite of those for the
vectors derived here. We have deliberately not chosen any pure Dirichlet–Dirichlet boundary setup for the gauge
fields, because the corresponding scalar would then have purely Neumann boundary conditions, which would imply
an unwanted massless scalar zero mode in the model.
This means, we indeed built a model with a massless photon and a W and Z with the same mass terms. Because of
the factors of two between the ZZ and the W+W− mass terms in the Lagrangian we predict mZ/mW = 2 and for
their first KK modes mZ′/mZ = 2 and mW ′/mW = 3.
Nothing of that is anywhere close to reality, but we also have many aspect of the model to play with, so let us
see what we can do better. At this point we can for the first time see why knowing technicolor and its problems
helps us building models which break electroweak symmetry through boundary conditions: if we want to survive the
electroweak precision constraints we need to protect the relevant observables using symmetries in our model.

C. A toy model with custodial symmetry

From the section on electroweak precision data we know that the S and T parameters in the gauge sector are very
small. We also remember that the parameter T measures the different contributions to the W and Z masses from
quantum corrections to their propagators. In the Standard Model there are two sources of this global SU(2) symmetry
breaking: in the Feynman diagrams contributing to mZ we either find pure bottom or pure top loops, while mW

corrections include mixed bottom–top contributions. Modulo prefactors we can either say ∆T ∼ 0 or ρ ∼ 1 defined
as ρ = m2

W /(c2wm
2
Z). For mb 6= mt we find the contributions shown in eq.(50). In addition, electroweak symmetry

breaking giving the Higgs doublet a vev in one doublet component also breaks the SU(2) symmetry protecting T = 0.
We can think of the complete symmetry of the Lagrangian with a protected value of T = 0 as SU(2)L × SU(2)R. At
this stage, none of them needs to be gauged, even though we know that SU(2)L at some point will be gauged. If both
global SU(2)LR are unbroken, the left-right mixing Dirac masses of quark doublets will be degenerate mb = mt. If
following the example of the chiral U(1)L×U(1)R symmetry we are now willing to re-align the two SU(2) symmetries
such that Dirac masses only break one of the combinations, there will be a remaining (diagonal) SU(2)D to protect
T . To construct a realistic model of electroweak symmetry breaking we need to combine the electroweak symmetry
and the custodial SU(2)D symmetry.

Let us first collect the maximal symmetry structure of the Standard Model. We start from the SU(2)L symmetry
of the unbroken Lagrangian and expand it to SU(2)L × SU(2)R which protects the ρ parameter. In contrast to
SU(2)L we do not need to gauge the global SU(2)R, since we know there are no SU(2)R gauge bosons. But there is
an additional gauged U(1)Y which we need for the abelian electromagnetic symmetry, under which left-handed and
right-handed fermions are charged. So our unbroken electroweak symmetry can be viewed as a subset of the left-right
symmetry SU(2)L × SU(2)R ⊃ SU(2)L × U(1)Y , where SU(2)R now needs to be gauged.
In the presence of fermions we finally need to add another global symmetry which gives us the fermions’ hypercharges.
They need to be protected by a global symmetry to avoid anomalies, i.e. quantum effects violating the (B−L) number
conservation. Again, this U(1)B−L does not need to be gauged, unless we embed U(1)Y ⊂ SU(2)R × U(1)B−L. In
our model we will start from this complete unbroken SU(2)L × SU(2)R × U(1)B−L gauge symmetry in the bulk.
The five–dimensional gauge bosons we denote as A(L)

M , A
(R)
M , BM . On the two boundaries we will break this maximal

symmetry group into the electroweak SU(2)L × U(1)Y and into the custodial SU(2)D subgroups.
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We know how to break symmetries on the boundaries from the last section. For the massless B gauge boson we
require Neumann BCs while for the massive SU(2)L gauge bosons we assume a mixed set:

∂5Bµ

∣∣∣
0,πR

= 0 ∂5A
(L)
µ

∣∣∣
0

= 0 A(L)
µ

∣∣∣
πR

= 0 (81)

This is the same model as before, which means it will wrongly give us mZ/mW = 2, so we have to modify this setup.
What we would hope to achieve is implementing the custodial SU(2)D on the boundary which describes our TeV-scale
physics. For y = πR we therefore replace A(L,R) by (cA(R) + sA(L)) and (−sA(R) + cA(L)) where the ‘+′ combination
corresponds to the unbroken SU(2)D. The mixing angle we write in terms of c ≡ g5,R and s ≡ g5,L. For the boundary
conditions at y = πR this implies:

∂5Bµ

∣∣∣
πR

= 0 ∂5

(
g5,LA

(L) + g5,RA
(R)

) ∣∣∣
πR

= 0
(
g5,LA

(L) − g5,RA
(R)

) ∣∣∣
πR

= 0 (82)

The still unbroken electroweak symmetry SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y we realize on the other
boundary. Note that we will not discuss in detail how the large symmetry in the bulk will be broken on the two
boundaries, but we do know how to write a non-linear sigma model on the boundaries. Also note that the electroweak
symmetry SU(2)L × U(1)Y is not broken anywhere directly to U(1)Y , this will happen by the boundary conditions
automatically.
Our setup of the two U(1) symmetries implies a mixing between Bµ and A(R)

µ . Again, we define the unbroken U(1)Y

gauge boson as one of the linear combinations (cA(R,3) +sB) and break the other linear combination (−sA(R,3) +cB).
The mixing angles are now c ≡ g′5 and s ≡ g5,R. This gives us for y = 0:

∂5A
(L)
µ

∣∣∣
0

= 0 ∂5

(
g5,RB + g′5A

(R,3)
) ∣∣∣

0

= 0
(
g′5B − g5,RA

(R,3)
) ∣∣∣

0

= 0 A(R,12)
µ

∣∣∣
0

= 0 (83)

The one remaining question is what to do with the two remaining fields A(R) at y = 0. We do not want a zero mode
for the corresponding gauge fields, so we give them a Dirichlet BC there. This setup produces precisely the symmetries
in Csaba’s Fig. 1. Notice that we do not have to specify the boundary conditions for the scalar fifth components,
because they are as usually fixed by exchanging Neumann and Dirichlet conditions.

We first see that each five–dimensional field combines different types of boundary conditions and that by construction
the zero-mode photon will be built out of components of Bµ and A(R,3)

µ mixed at y = 0 and A(L,3)
µ and A(R,3)

µ mixed
at y = πR. This linear combination is the only field with purely Neumann boundary conditions. The physical Z
boson will come from the ‘−′ combination of A(L,3)

µ and A(R,3)
µ at y = πR, which has mixed boundary conditions. Its

mass we can in principle compute:

m
(n)
Z = m0 +

n

R
= m0,

(
m0 +

1
R

)
· · · m0 =

1
πR

arctan

√
1 +

g′2

g2
(84)

The mass scale lifting the first Z mode off the zero mode is given in terms of the gauge couplings, which acted as the
mixing angles in the rotation to a massless photon. This is really the same thing we know as the weak mixing angle
in the Standard Model. Similarly, we can compute the W boson masses. To make the analysis of the KK states easier
we can identify g5,L ≡ g5,R = g. This allows us to combine A(L) and A(R) into A(±), which should describe the W±

gauge bosons.

m
(n)
W =

2n+ 1
4R

=
1

4R
,

3
4R

· · · ⇒ m
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(0)
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π2

16

[
arctan

√
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g′2

g2

]−2

∼ 0.85 ⇒ ρ =
m

(0)
W

c2wm
(0)
Z

∼ 1.10

(85)

This is really not bad a result. At this stage we will have to believe that we can adjust the result by for example
bending our flat space and incorporating our setup in a Randall–Sundrum model. Such a model is built as a five–
dimensional theory with two branes, usually referred to as a Planck brane at y = 0 and a TeV brane at y = πR.
The difference will be that we cannot simply write sine and cosine Fourier series for the wave functions in the warped
fifth dimension, but that we have to solve a differential equation which will give us Bessel functions (except for zero
modes like the photon). In the usual RS language we can then play around with the location y = b of the TeV
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brane and the warp factor k, to adjust the gauge boson masses. In Csaba’s lecture he replaces the warp factor in
the metric exp(−A(z)) = 1/(1 + kz)2 by (R/z)2 with R ∼ 1/MPlanck. The TeV-scale in the RS models arises as
MPlanck exp(−kb) which can be written as R′ ∼ 1/TeV. In that case the KK mass scale is given in terms of 1/R′, but
including logarithms of the type logR/R′ from the Bessel functions, so we have parameters to play with. Instead of
discussing in detail how such a Randall–Sundrum embedding works we will move on and see how the KK towers of
massive electroweak gauge bosons behave in the usual unitarity argument for a light fundamental Higgs boson.

D. Unitarity and KK excitations

One of the ways to introduce a Higgs boson is the complete unitarization of a theory with massive gauge bosons, e.g.
from a non-linear sigma model. The classical example is the scattering process of longitudinal WLWL → WLWL,
where we can express the W polarization vector in terms of the energy and momentum as

εµ =
( |~p|
M
,
E

M

~p

|~p|
)
∝ E p(in)

µ =
(
E, 0, 0,±

√
E2 −M2

)
∝ E

p(out)
µ =

(
E,±

√
E2 −M2 sin θ, 0,±

√
E2 −M2 cos θ,

)
∝ E (86)

We have indicated the energy behavior of the longitudinal components. If we now compute the scattering amplitude at
high energies we find that for example the contact interaction contributes proportional to the maximum powerA ∝ E4.
However, with the s, t, u-channel gauge-boson exchange diagrams this E4 term cancels due to gauge invariance. What
we are left with is A ∝ E2, which still means that the transition amplitude diverges at high energies and will at
some point violate perturbative unitarity. The old argument for the existence of a Higgs boson with a mass smaller
than the scale at which unitarity is violated (the TeV scale) is that such a Higgs boson with all the proper couplings
will unitarize the WLWL → WLWL scattering process. In my notes on Higgs searches you can see for example how
to compute this behavior using the equivalence theorem between gauge bosons and Goldstone bosons. The obvious
question is: how will our theory without any fundamental Higgs boson cure this fundamental problem with massive
gauge bosons?

Csaba explicitly writes the form for the leading E4 term in the amplitude of four Standard–Model gauge boson with
index n and the exchanged KK tower k:

A(4) = i

(
g2

nnnn −
∑

k

g2
nnk

)
[
fabefcde

(
3 + 6 cos θ − cos2 θ

)
+ 2facef bde

(
3− cos2 θ

)]
(87)

No masses appear in this form, only coupling constants. This dangerous contribution vanishes only if the couplings
fulfill the appropriate sum rule. The coupling between different KK modes is given by the overlap of their wave
functions in the fifth dimension

gmnk = g5

∫
dy fm(y)fn(y)fk(y) gmnkl = g2

5

∫
dy fm(y)fn(y)fk(y)fl(y) (88)

The Fourier transforms of the wave functions have a completeness relation
∑

k

fk(y)fk(z) = δ(y − z) (89)

which we can use to show the couplings sum rule starting from the left-hand side
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Assuming that this sum rule — which really does not have anything to do with a Higgs boson, only with gauge
invariance between 3-point and 4-point couplings — we can write a compact form of the second diverging term in the
amplitude:

A(2) =
i

m2
n

(
4gnnnnm

2
n − 3

∑

k
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2
k

) [
−fabef cde sin2 θ

2
+ facef bde

]
!= 0 (91)

Again, there is a mass–couplings sum rule given by the first parentheses. It involves KK masses as well as the gauge
couplings, which is different from the Higgs mechanism. In other words, the KK tower with all couplings fixed properly
plays the role of the Higgs boson in the Standard Model. The problem is that while the Higgs mass can be chosen such
that its effects come in beyond the scale of unitarity violation, the KK tower involves an infinite sum over states with
arbitrarily high masses. This implies a cutoff scale of our effective theory, but then we always knew there would be
such a cutoff, namely the fundamental Planck scale, above which we cannot use the KK effective theory to compute
scattering effects.

If we had more time we would at this point need to talk about fermion masses in this model. The problem starts
long before writing down Yukawa terms in five dimensions, namely with the extension of chiral fermions into more
than four dimensions. In four dimensions spinors are another representation of the Lorentz group. We can express
the 4× 4 matrices γµ in terms of the 2× 2 Pauli matrices σj and −11 and define the transformation

xµ → [x] = x0 − xjσj =

[
x0 − x3 −x1 + ix2

−x2 − ix2 x0 + x3

]
(92)

which is nothing but a Lorentz transformation. When we write fermions in five dimensions we need to extend the
corresponding Dirac gamma–matrix basis γµ → γM . There is even a candidate for the fifth gamma matrix, namely
γ5. The problem is that this γ5 appears in the chiral projectors (11±γ5)/2, which means that it mixes chiralities. This
means that Lorentz transformations to not respect chirality. If we write the Dirac equation in five dimensions, the
derivative ∂5 will just like the mass term mix left-handed and right-handed Weyl fermions. Once we Fourier-transform
the fifth dimensions into a KK tower this is not surprising — after all ∂5 is nothing but a mass term. But to learn
more about writing down Yukawa couplings and making them into fermion masses you will need to read Csaba’s
review or some of the original papers for example by Tim Tait and friends...

One last word concerning these fermions. From extended technicolor we remember that giving the top quark a mass
using a dimension–six operator leads to problems with the effective Zbb̄ coupling. This happens because of the SU(2)L

symmetry in combination with a chiral or custodial SU(2)R symmetry. In extra–dimensional models we will define a
mass for all fermions via their position in the fifth dimension and a wave–function overlap with something playing the
role of a sigma field. By construction, we incorporate the SU(2)L and the SU(2)D symmetries, which means we will
run into precisely the same problem as extended technicolor did. Unless our really bright model–building colleagues
manage to solve this problem at some stage.
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Literature: In particular on the first part of the course there are many lectures available by all the experts on the
field. As usual, I find the TASI lecture notes the most useful, but not the only good source

– A very extensive introduction into technicolor and its successors can be found in hep-ph/0203079. Note that
this writeup is almost 200 pages long, but at least the first half of them are really instructive. Most of my notes
on technicolor are based on this review.

– A shorter and also very modern introduction into technicolor is Sekhar Chivucula’s hep-ph/0011264. If you
have already understood something and would like to refresh your memory on the ideas behind technicolor, it
is great.

– The short introduction on electroweak symmetry breaking from boundary conditions is based on Csaba Csaki’s,
Jay Hubisz’s and Patrick Meade’s TASI lecture hep-ph/0510275. I have no idea how Csaba managed to teach
all this material in four lectures, but I always had the suspicion that he is an extraordinarily good teacher.

– And finally, for an introduction to electroweak precision data there is the usually nicely written TASI lecture,
in that case by James Wells: hep-ph/0512342. James even teaches how to compute loops leading to S and T
contributions, so go and have a look.


