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This is another of my frequent attempts to bridge the gap between the usual lectures on exper-
imental or theoretical high–energy physics and the basic knowledge needed to understand research
seminars on issues related to the upcoming LHC. During the LHC years we expect to hear many
exciting talks about Higgs physics, and it might come in handy to know some basics about how
the Higgs can be produced at the LHC, how it typically decays, which search channels are valid
discovery channels or where we can measure properties of the Higgs boson. I hope this little writeup
will be useful to cover some of the very basics of Higgs physics at the LHC and allow the more
or less experienced reader to step into the middle of the endless literature on Higgs physics at the
LHC...
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I. THEORY CONSTRAINTS ON HIGGS SECTOR

Before we start looking for the famous Higgs Boson, mostly at the LHC, let us briefly review the Higgs mechanism.
To make it a little more interesting we include higher dimensional operators on top of the usual renormalizable
(dimension–four) operators in the Higgs potential. Such operators generally occur in effective weak–scale models
which involve an ultraviolet completion of the Standard Model, but their effects are often small or assumed to be
small.

A. Higgs and higher-dimensional operators

In the renormalizable Standard Model all terms in the Lagrangian are of mass dimension four, like mf ψ̄ψ or ψ̄∂µψ or
FµνF

µν . This mass dimension is easy to read off if we remember that for example, scalar fields or vector–boson fields
contribute mass dimension one, while fermion spinors carry mass dimension 3/2. The renormalizability assumption
we usually also make for all terms in the Higgs potential, leaving us with only two possible terms:

VSM = µ2|φ|2 + λ|φ|4 + const. (1)

To make this brief review of the Higgs mechanism a little less boring to everyone who has seen it before, and to
emphasize that renormalizability is a strong (and not necessarily very justified) theoretical assumption in LHC Higgs
physics, we simply allow for a few more operators in the Higgs potential. If we expand the possible mass dimensions
and the operator basis, there are exactly two gauge-invariant operators of dimension six we can write down in terms

of the Higgs doublet |φ|2, i.e. before electroweak symmetry breaking:

O1 =
1

2
∂µ(φ†φ) ∂µ(φ†φ) O2 = −1

3
(φ†φ)3 (2)

The prefactors in the Lagrangian are conventional, because to construct a Lagrangian we have to multiply these
operators with coefficients of mass dimension (−2):

LD6 =
2∑

i=1

fi
Λ2
Oi (3)

The mass scale Λ suppresses these additional operators. In other words, as long as the typical energy scale E in the
numerator in our matrix element is small (E � Λ), the corrections from the additional operators are small as well.

There is in principle one additional operator (Dµφ)†(φ†φ)(Dµφ), but it violates the custodial symmetry and leads
to a very large contribution to the Peskin–Takeuchi parameter ∆S = −f3v

2/(2Λ2). Such large contributions to S
are firmly ruled out by electroweak precision data, so we ignore this operator in our analysis. With the additional
dimension-6 operator O2 we can write the Higgs potential as

V = µ2|φ|2 + λ|φ|4 +
f2

3Λ2
|φ|6 (4)

Note the positive sign in the last term of the potential V , which corresponds to a negative sign in the Lagrangian and
ensures that for f2 > 0 the potential be bounded from below for large field values φ. The non–trivial minimum for
φ 6= 0 is given by

∂V

∂ |φ|2 = µ2 + λ|φ|2 +
f2

3Λ2
|φ|4 !

= 0

|φ|4 +
2λΛ2

f2
|φ|2 +

µ2Λ2

f2
= 0 (5)
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which translates into

|φ|2 = −λΛ2

f2
±
[(

λΛ2

f2

)2

− µ2Λ2

f2

] 1
2

=
λΛ2

f2

[
−1 ±

√
1− µ2f2

Λ2λ2

]

' λΛ2

f2

[
−1 ±

(
1− f2µ

2

2λ2Λ2
+

f2
2µ

4

8λ4Λ4
+O(Λ−6)

)]

=





−µ
2

2λ
+

f2µ
4

8λ3Λ2 +O(Λ−4) = −µ
2

2λ

(
1− f2µ

2

4λ2Λ2 +O(Λ−4)

)
=
v2

0
2

(
1− f2v

2
0

4λΛ2 +O(Λ−4)

)

−2λΛ2

f2
2

(6)

The first solution we have expanded around the Standard Model minimum, v2
0 = −µ2/λ. Note that from the W,Z

masses we know that v = 246 GeV so in a way v is our first observable in the Higgs sector, sensitive to the higher–
dimensional operators.

Before we compute the corrections to the Higgs mass and self coupling due to O2 we will first look at the effects of
the dimension–6 operator O1. It contributes to the kinetic term the Higgs field in the Lagrangian (before or after
symmetry breaking)

O1 =
1

2
∂µ(φ†φ) ∂µ(φ†φ)

=
1

2
∂µ

(
1

2
(H̃ + v)2

)
∂µ
(

1

2
(H̃ + v)2

)

=
1

8
(∂µH̃

2 + 2v∂µH̃)(∂µH̃2 + 2v∂µH̃)

=
1

8
(2H̃∂µH̃ + 2v∂µH̃)(2H̃∂µH̃ + 2v∂µH̃)

=
1

2
∂µH̃ ∂µH̃ (H̃ + v)2 (7)

Note that I have used H̃ for the Higgs field as part of φ, because from the formula above it is clear that there will
be a difference between H̃ and the physics Higgs field at the end of the day. The contribution of O1 leaves us with a
combined kinetic term in the Lagrangian

Lkin ∼
1

2
∂µH̃∂

µH̃

(
1 +

f1v
2

Λ2

)
!

=
1

2
∂µH ∂µH ⇔ H =

√
1 +

f1v2

Λ2
H̃ ≡ N · H̃ (8)

This is a simple rescaling to define the canonical kinetic term in the Lagrangian, but it also means we have to make
sure we use H in the complete Higgs sector.

The additional potential operator in terms of H (or H̃) reads

O2 = −1

3
(φ†φ)3 = −1

3

(
1

2
(H̃ + v)2

)3

= − 1

24
(H̃ + v)6

= − 1

24
(H̃6 + 6H̃5v + 15H̃4v2 + 20H̃3v3 + 15H̃2v4 + 6H̃v5 + v6) (9)
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which gives us a combined mass term:

Lmass = −m2
HH

2 = −µ2H̃2 − 6

2
λv2H̃2 − f2

Λ2

15

24
v4H̃2

= −
(
µ2 + 3λv2 +

5

8

f2v
4

Λ2

)
H̃2

= −
(
−λv2

(
1 +

f2v
2

4λΛ2

)
+ 3λv2 +

5

8

f2v
4

Λ2

)
H̃2

= −
(

2λv2 − f2v
4

4Λ2
+

5

8

f2v
4

Λ2

)(
1 +

f1v
2

Λ2

)−1

H2

= −2λv2

(
1 +

f2v
2

8Λ2λ

(
−1 +

5

2

))(
1− f1v

2

Λ2
+O(Λ−4)

)
H2

= −2λv2

(
1− f1v

2

Λ2
+

3f2v
2

16Λ2λ
+O(Λ−4)

)
H2 (10)

In other words, the relation between the vacuum expectation value, the Higgs masses and the factor in front of the
|φ|4 term in the potential has changed. Because we do not know the Higgs mass, this does not change much. However,
we can now compute the trilinear and quadrilinear Higgs self couplings (just as the Higgs-mass term) and find

Lself =− m2
H

2v

[(
1− f1v

2

2Λ2
+

2f2v
4

3Λ2m2
H

)
H3 − 2f1v

2

Λ2m2
H

H ∂µH ∂µH

]

− m2
H

8v2

[(
1− f1v

2

Λ2
+

4f2v
4

Λ2m2
H

)
H4 − 4f2v

2

Λ2m2
H

H2 ∂µH∂
µH

]
(11)

This gives the Feynman rules

− i3m
2
H

v


1− f1v

2

2Λ2
+

2f2v
4

3Λ2m2
H

+
2f1v

2

3Λ2m2
H

4∑

j<k

(pj · pk)


 (12)

− i3m
2
H

v2


1− f1v

2

Λ2
+

4f2v
4

Λ2m2
H

+
2f2v

2

3Λ2m2
H

4∑

j<k

(pj · pk)


 (13)

From this discussion we see that in the Higgs sector the Higgs self couplings as well as the Higgs mass are fixed by
the operators Higgs potential and depend on the operator basis we take into account. As mentioned before, in the
Standard Model we usually use only the dimension-4 operators which appear in the renormalizable Lagrangian

Lself = −m
2
H

2v
H3 − m2

H

8v2
H4 with m2

H = 2λv2 = −2µ2 (14)

but we should keep in mind that when the Higgs sector becomes more complicated, not the existence but the form of
such relations between masses and couplings will change.

Before we move on and discuss unitarity as another source of theoretical constraints on the Higgs sector we discuss
the Goldstone theorem:
If we spontaneously break a continuous symmetry the Lagrangian will include massless scalar degrees of freedom,
called Goldstone bosons. Their number is equal to the number of broken generators. For example, if we break
SU(2)L × U(1)Y → U(1)Q we expect 3 Goldstone bosons (plus a fundamental massive Higgs boson). We know that
these Goldstones do not appear in the Standard Model; they become part of the weak gauge bosons and promote
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those from massless gauge bosons (with 2 degrees of freedom) to massive gauge bosons (with 3 degrees of freedom).
For example in a general R − ξ gauge we can see these Goldstone modes appear in the gauge-boson propagators

∆µν
V V (q) =

−i
q2 −m2

V + iε

[
gµν + (ξ − 1)

qµqν

q2 − ξm2
V

]

=
−i

q2 −m2
V + iε

[
gµν − qµqν

m2
V

]
(unitary gauge ξ →∞)

−i
q2 −m2

V + iε
gµν (Feynman gauge ξ = 1)

−i
q2 −m2

V + iε

[
gµν − qµqν

q2

]
(Landau gauge ξ = 0) (15)

Obviously, these gauge choices are physically equivalent. However, something has to compensate, for example, for
the fact that in the Feynman gauge this whole Goldstone term vanishes and the polarization sum looks like that for
massless gauge bosons, while in the unitary gauge we can see the effect of these modes directly. The key is the actual
Goldstone propagator, i.e. additional propagating scalar degrees of freedom

∆V V (q2) =
−i

q2 − ξm2
V + iε

(16)

The Goldstone mass is something like ξm2
V , dependent on the gauge (V = Z,W+). In unitary gauge the infinitely

heavy Goldstones do not propagate (∆V V (q2) = const), while in Feynman gauge and in Landau gauge we have to
include them as particles. From the form of the Goldstone propagators we can guess that they will indeed cancel the
second term of the gauge-boson propagators.

B. Unitarity constraints

If we want to compute transition amplitudes at very high energies, the Goldstone picture becomes very useful. In the
V rest frame we can write the three polarization vectors of the gauge bosons as

εµT,1 =




0
1
0
0


 εµT,2 =




0
0
1
0


 εµL =




0
0
0
1


 (17)

If we boost V into the z direction, giving it a 4-momentum pµ = (E, 0, 0, |~p|), the polarization vectors become

εµT,1 =




0
1
0
0


 εµT,2 =




0
0
1
0


 εµL =

1

mV



|~p|
0
0
E


 E�mV−→ 1

mV



|~p|
0
0
|~p|


 ≡ 1

mV
pµ (18)

Or in other words, very relativistic gauge bosons are dominated by their longitudinal polarization |εµL| ∼ E/mV � 1.
However, this longitudinal degree of freedom is precisely the Goldstone boson. This means that at high energies we
can approximate the complicated vector bosons Z,W± as scalar Goldstone bosons θ0, θ±. This comes in handy for
example when we next talk about unitarity, another theory constraint on the Higgs sector. This relation between
Goldstones and gauge bosons at very high energies is, by the way, called the equivalence theorem.
If we want to compute cross sections using the equivalence theorem we need some basic Feynman rules, for example
the Goldstone coupling to the Higgs boson. If we write down the Higgs doublet, now including the Goldstone modes

φ =

(
θ2 + iθ1

v +H√
2
− iθ3

)
⇒ φ†φ = θ2

1 + θ2
2 + θ2

3 +
(v +H)2

2

⇒
(
φ†φ

)2
=

(∑

i

θ2
i

)2

+
(
v2 +H2

)∑

i

θ2
i +

(v +H)4

4

=

(∑

i

θ2
i

)2

+ 2vH
∑

i

θ2
i + · · · (19)
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we find for the potential — only keeping the relevant terms at dimension four

V = µ2|φ|2 − µ2

v2
|φ|4

= −m
2
H

2
|φ|2 +

m2
H

2v2
|φ|4

⊃ m2
H

2v2



(∑

i

θ2
i

)2

+ 2vH
∑

i

θ2
i + · · ·




=
m2
H

2v2

(∑

i

θ2
i

)2

+
m2
H

v
H
∑

i

θ2
i + · · · (20)

with θ± = (θ1 ± iθ2)/
√

2 or θ+θ− = (θ2
1 + θ2

2)/2 we find for example

V =
m2
H

2v2
4 (θ+θ−)2 +

m2
H

v
H 2 θ+θ− + · · ·

=
2m2

H

v2
θ+θ−θ+θ− +

2m2
H

v2
Hθ+θ− + · · · (21)

which fixes for example the charged Goldstone couplings to the Higgs..
In terms of scalar Goldstones bosons we can compute the amplitude for WW →WW scattering at very large energies
(E � mW ) and write it in terms of the particle waves as

A = −
[

2
m2
H

v2
+

(
m2
H

v

)2
1

s−m2
H

+

(
m2
H

v

)2
1

t−m2
H

]
= 16π

∞∑

l=0

(2l+ 1)Pl(cos θ)al (22)

for orbital angular momentum l. Pl are the Legendre polynomials of the scattering angle θ, which obey the orthogo-
nality condition

∫ 1

−1

dxPl(x)Pl′ (x) =
2

2l+ 1
δll′ (23)

The scattering cross section is then given by

σ =

∫
dΩ
|A|2

64π2s

=
(16π)22π

64π2s

∫ 1

−1

d cos θ
∑

l

∑

l′

(2l + 1)(2l′ + 1) ala
∗
l′ Pl(cos θ)Pl′ (cos θ)

=
8π

s

∑

l

2(2l+ 1) |al|2 =
16π

s

∑

l

(2l + 1) |al|2 (24)

The optical theorem tells us that for any cross section (of asymptotically free fields)

σ =
1

s
ImA(θ = 0) ⇔ 16π

s
(2l + 1) |al|2 =

1

s
16π(2l+ 1) al (25)

using Pl(cos θ = 1) = 1. This condition we can rewrite as

(Re al)
2 + (Im al)

2 = Im al ⇔ (Re al)
2 +

(
Im al −

1

2

)2

=
1

4

⇔ |Re al| <
1

2
(26)

The last step is obvious once we recognize that the condition on Im al an on Re al is a unit cycle around al = (0, 1/2)
with radius 1/2. Applying the perturbative unitary constraint to a0 we find

a0 =
1

16πs

∫ 0

s

dt |A| = − 1

16πs

∫ 0

s

dtA

= − m2
H

16πv2

[
2 +

m2
H

s−m2
H

− m2
H

s
log

(
1 +

s

m2
H

)]
∼ − m2

H

16πv2

(
2 +O

(
m2
H

s

))
(27)
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which in the limit of s� m2
H means

m2
H

8πv2
<

1

2
⇔ m2

H < 4πv2 ≤ (870 GeV)2 (28)

This is the maximum value of mH which we can choose to maintain perturbative unitarity for WW →WW scattering.
Of course, if we limit s to a finite value this bound changes, and we can even compute a maximum scale smax which
leaves WW →WW perturbatively unitary for fixed mH : for mH . v this typically becomes

√
smax ∼ 1.2 TeV.

One last word: this unitarity argument only works if the WWH coupling is exactly what it should be. Or in other
words, while perturbative unitarity only gives us an upper limit on mH it uniquely fixes gWWH . Looking at processes
like WW → f f̄ or WW → WWH or WW → HHH we can exactly the same way fix all Higgs couplings in the
Standard Model, including gHff , gHHH , gHHHH . In other words, the most important effect of unitarity might not be
the upper bound on the Higgs mass, but that the entire argument only works if all Higgs couplings to Standard-Model
particle are the exactly as given in the Standard Model.

C. Constraints from the renormalization group

Two theoretical constraints we can derive from the renormalization group equation of the Higgs potential, specifically
from the renormalization scale dependence of the self coupling λ(Q2). Such a scale dependence arises automatically
when we encounter ultraviolet divergences of parameters and absorb the 1/ε divergences into a counter term. From
the quartic Higgs coupling λ alone the relevant s, t and u-channel diagrams are

+ + + (29)

Skipping the calculation we quote the complete renormalization group equation

d λ

d logQ2
=

1

16π2

[
12λ2 + 6λλt − 3λ4

t −
3

2
λ
(
3g2

2 + g2
1

)
+

3

16

(
2g4

2 + (g2
2 + g2

1)2
)]

(30)

with λt =
√

2mt/v. The first regime we can study is where this coupling λ becomes strong

d λ

d logQ2
=

1

16π2
12λ2 + · · · = 3

4π2
λ2 + · · · (31)

This equation we can solve by replacing λ = g−1

d λ

d logQ2
=

d

d logQ2

1

g
= − 1

g2

d g

d logQ2

!
=

3

4π2

1

g2

⇔ d g

d logQ2
= − 3

4π2
⇔ g(Q2) = − 3

4π2
logQ2 + C (32)

If we define a boundary condition λ(Q2 = v2) = λ0 we find:

g0 =
1

λ0
= − 3

4π2
log v2 + C ⇔ C = g0 +

3

4π2
log v2

⇒ g(Q2) = − 3

4π2
logQ2 + g0 +

3

4π2
log v2 = − 3

4π2
log

Q2

v2
+ g0

⇔ λ(Q2) =

[
3

4π2
log

Q2

v2
+

1

λ0

]−1

= λ0

[
1− 3

4π2
λ0 log

Q2

v2

]−1

(33)
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For very large values of Q we know from the original differential equation that dλ/d logQ2 > 0, which means λ is
divergent eventually. It will have a pole at

1− 3

4π2
λ0 log

Q2
c

v2
= 0 ⇔ 3

4π2
λ0 log

Q2
c

v2
= 1

⇔ log
Q2
c

v2
=

4π2

3λ0

⇔ Qc = v exp
2π2

3λ0
= v exp

4π2v2

3m2
H

(34)

Such a pole is called a Landau pole and gives us a maximum scale beyond which we cannot rely on our perturbative
theory to work. This limit is often referred to as the triviality bound. For a given value of Qc it translates into a
maximum value of mH for which the theory is well defined. The name originates from the behavior in the opposite
limit Q� v2

λ(Q2) ∼
[

3

4π2

∣∣∣∣log
Q2

v2

∣∣∣∣
]−1

→ 0 (35)

It means that if we want our Higgs potential to be perturbative at all scales the coupling λ has to stay zero for all
scales, otherwise it will hit a Landau pole at some scale. A theory with zero interaction is called trivial.

We can look at the same renormalization group equation again and ask the question: how long will λ > 0 ensure that
our Higgs potential is bounded from below. This bound is called the stability bound. In the equation for dλ/d logQ2

there are two forms with a negative sign which in principle drive λ through zero, one of which did not vanish for
λ ∼ 0, so we approximately have competing terms around λ = 0

d λ

d logQ2
∼ 1

16π2

[
−3

4m4
t

v2
+

3

16

(
2g4

2 +
(
g2

2 + g2
1

)2)
]

⇔ λ(Q2) ∼ λ(v2) +
1

16π2

[
−12m4

t

v4
+

3

16

(
2g4

2 +
(
g2

2 + g2
1

)2)
]

log
Q2

v2
(36)

with the usual boundary condition in terms of λ(v2). Requiring λ > 0 means

λ(v2) =
m2
H

2v2
>
−1

16π2

[
−12m4

t

v4
+

3

16

(
2g4

2 +
(
g2

2 + g2
1

)2)
]

log
Q2

v2

⇔ m2
H >

v2

8π2

[
−12m4

t

v4
+

3

16

(
2g4

2 +
(
g2

2 + g2
1

)2)
]

log
Q2

v2

⇔ mH =

{
70 GeV for Q < 103 GeV

130 GeV) for Q < 1016 GeV
(37)

This means that from the renormalization group we have two constraints on the Higgs mass in the renormalizable
Standard model: the Landau pole (or triviality bound) gives an upper limit on mH as a function of the cutoff scale,
while the vacuum stability gives a lower bound on mH as a function of the cutoff scale. Running this scale towards
the Planck mass Q→ 1019 GeV, we find that only values around mH = 180 · · ·190 GeV are allowed. As a matter of
fact, in the Standard Model electroweak precision data also experimentally points to mH ≤ 250 GeV, which means
we are probably looking for a Higgs boson well below 1 TeV at the LHC.

II. HIGGS DECAYS

All decay rates are at tree level determined by the Higgs coupling to Standard Model particles, which are
fixed by unitarity. The rule for Higgs decays is simple: because the Higgs couples to all particles (including it-
self) proportional to their masses it tends to decay to the heaviest states allowed by phase space. We can see this in
Fig. 1. Starting at low masses this is true for the decays to ττ and bb̄. When the (off-shell) decays to WW open, they
very soon dominate. Because of the small mass difference between the W and Z bosons the decay to ZZ is not as
dominant, compared to the WW decay which has two degrees of freedom (W+W− and W−W+) in the final state.
Above the top threshold the tt̄ decay becomes sizeable.
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FIG. 1: Branching ratios of the Standard–Model Higgs boson as a function of its mass. Off-shell effects in the decays to WW
and ZZ are taken into account.

At low masses there is also a loop-induced decay to two photons which plays an important role in LHC phenomenology.
It proceeds via a top and a W triangle, both of which entering with opposite signs in the amplitude. Its structure is
similar to the production process gg → H which we will discuss in the following section. The reason for considering
this decay channel are the LHC detectors. To extract a Higgs signal from the backgrounds we usually try to measure
the 4-momenta of the Higgs decay products and reconstruct the invariant mass of them. The signal should then peak
around mH , while the backgrounds we expect to be more or less flat. The LHC detectors, and in particular CMS are
designed to measure the photon momentum and energy particularly well. The resolution on mγγ will at least be a
factor of 10 better than for any other decay channel, except for four muons. Moreover, photons do not decay, so we
can use all photon events in the Higgs search, while for example hadronically decaying W → 2 jets are not particularly
useful at the LHC. These enhancement factors make the Higgs decay to two photons a promising signature, in spite
of its small branching ratio.

Because the Higgs sector could easily deviate from the minimal Standard Model, the LHC should study the different
Higgs decays and (as a function of mH) determine:

– are gauge-boson couplings proportional to mW,Z?

– are fermion Yukawa couplings proportional to mf?

– is there a self coupling, i.e. a Higgs potential?

– do λHHH and λHHHH show signs of additional operators?

We unfortunately know already that in the Standard Model the quadrilinear couplings will not be observed at any
planned collider. But in any case, before we decay the Higgs we need to produce it!

III. HIGGS PRODUCTION IN GLUON FUSION

Numerically, the production of Higgs bosons in gluon fusion is the dominant process at the LHC, as shown in Fig. 2.
It turns out to have the largest production cross section and can be combined with many decay channels to form LHC
signatures.

A. Effective ggH coupling

The dominant contribution to the gluon-fusion Higgs production will obviously come from the triangular top quark
loop.
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FIG. 2: Production cross section for a Standard–Model Higgs boson at the LHC, as a function of the Higgs mass. We will only
discuss the two leading production mechanisms, gluon fusion and weak–boson fusion.
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Let us first evaluate the Dirac trace occurring in these diagrams, using all incoming momenta with k2
1 = k2

2 = 0 and
p2 = mH . The Dirac indices of the two gluons are µ, ν and the loop momentum is q, so we need to compute

Trµν = Tr
[
(q/+mt) γ

µ (q/+ k/1 +mt) γ
ν (q/+ k/1 + k/2 +mt)

+(q/+mt) γ
ν (q/+ k/2 +mt) γ

µ (q/+ k/1 + k/2 +mt)
]

(38)

The problem is the tensor structure of this trace. Because of gauge invariance we can neglect terms proportional to
kµ1 and kν2 , because they would not survive the multiplication with the transverse gluon polarization (k · ε = 0). In
a so-called axial gauge we can also get rid of the remaining terms proportional to kν1 and kµ2 . However, we cannot
get rid of the remaining qµqν terms. To save some time and nevertheless show how the calculation works we will
remove these terms by computing only the gµν term in Trµν and correct for them later. The gµν we can compute by
projecting

gµν Trµν = −8mt(m
2
H − 4m2

t ) ⇒ Trµν = −2mt(m
2
H − 4m2

t )g
µν + . . . (39)

Next, we have to compute the integral over the loop momentum q, which in our Gµν terms luckily does not occur in
the trace. The scalar integral

C(k2
1 , k

2
2 ,m

2
H ;mt,mt,mt) ≡ C(mH ,mt) =

∫
d4q

iπ2

1

[q2 −m2
t ][(q + k1)2 −m2

t ][(q + k1 + k2)2 −m2
t ]

(40)
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is given in the literature as a special case of

C(mH ,mt) =
1

m2
H

F (m2
H ,m

2
t , 0)

F (a, b, y) =

∫ 1

0

dx

x− y log

(
ax(1− x)− b
ay(1− y − b)

)

y=0
=

∫ 1

0

dx

x
log

(
m2
Hx(1− x)−m2

t

(−m2
t )

)

=
1

2
log2

[
−1 +

√
1− 4m2

t/m
2
H

1−
√

1− 4m2
t/m

2
H

]

⇒ C(mH ,mt) =
1

2m2
H

log2

[
−1 +

√
1− 4m2

t/m
2
H

1−
√

1− 4m2
t/m

2
H

]
for

4m2
t

m2
H

< 1 (41)

We can now collect the factors of i and 2π and write for our (still wrong) effective ggH coupling

i3 (−igs)2 Tr(T aT b)
imt

v

iπ2

16π4
(−2) mt

(
m2
H − 4m2

t

)
C(mH ,mt)

=− ig2
s

1

8π2
Tr(T aT b)(−1)

m2
t

v

(
m2
H − 4m2

t

)
C(mH ,mt) Tr(T aT b) =

1

2
δab

= + ig2
s

1

16π2
δab

m2
t

v

(
m2
H − 4m2

t

) 1

2m2
H

log2[− . . .] τ =
4m2

t

m2
H

⇔ m2
t = τ

m2
H

4

= + ig2
s

1

16π2
δab

1

v

τm2
H

4

1

2
(1− τ) log2

[
−1 +

√
1− τ

1−
√

1− τ

]
(42)

This result we can now correct for the missing qµqν terms by replacing

(1− τ) log2[. . .] 7→ (1− τ) log2[. . .]− 4 = −4

[
1 + (1− τ)

(−1)

4
log2[. . .]

]
(43)

Another short cut was that we only solved C(mH ,mt) for τ < 1. We can in general write (with prefactors like in the
usual literature).

(1− τ) log2[. . .] 7→ − 4 [1− (1− τ) f(τ)]

with f(τ) =





[
sin−1

√
1
τ

]2

τ > 1

− 1
4

[
log

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

τ < 1

(44)

including imaginary (absorptive) terms for τ < 1. We then write for the effective ggH coupling

−i g2
s

1

32π2

m2
h

v
τ [1 + (1− τ)f(τ)] (45)

This expression is valid for all values of mt and mH . It corresponds to an effective Lagrangian with a term HGµνGµν
which has mass dimension five and is therefore not renormalizable. Sine we started the calculation of the ggH coupling
in axial gauge we have to write GµνGµν consistently in the same gauge:

HGµνGµν ∼ H
(
ε1µk1ν − k1µε1ν

)
(ε2

µk2
ν − k2

µε2
ν)

= 2H [(k1 · k2)(ε1 · ε2)− (k1 · ε2)(k2 · ε1)] (46)

Usually, we would use the transverse tensor gµν − kµ1 kν2/(k1k2) to write down the ggH coupling. However, in axial
gauge the second term is gauged away, so we only need to consider

H GµνGµν ∼ 2H (k1 · k2)(ε1 · ε2) = m2
H H (ε1 · ε2) (47)
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This means that the actual ggH coupling is given by

LggH ⊃
1

v
gggH H GµνGµν

1

v
gggH = −i αs

8π

1

v
τ [1− (1− τ)f(τ)] (48)

with the appropriate factors of (−) and i removed in the Feynman rule. The tensor structure in the usual unitary
gauge is gµν − kµ1 kν2/(k1 · k2). Note that the necessary factor 1

Λ in front of the dimension-5 operator is 1
v and not 1

mt
.

Of course, just like we have 3-gluon and 4-gluon couplings in QCD we can compute the gggH and the ggggH couplings
from the ggH coupling simply using gauge invariance. This set of n-gluon couplings to the Higgs boson is not an
approximate result e.g. in the top mass. Gauge invariance completely fixes the n-gluon coupling to the Higgs via one
exact dimension-5 operator in the Lagrangian.

B. Low–energy theorem

The expression for gggH is not particularly handy, so we can for light Higgs bosons write it in a more compact form.
We start with a Taylor series for f(τ) in the heavy–top limit τ � 1

f(τ) =

[
sin−1

√
1

τ

]2

=
1

τ
+

1

3τ2
+O(τ−3)→ 0 (49)

and combine it with all other τ -dependent terms in the full expression

τ [1 + (1− τ)f(τ)] =τ

[
1 + (1− τ)

(
1

τ
+

1

3τ2
+O(τ−3)

)]

=τ

[
1 +

1

τ
− 1− 1

3τ
+O(τ−2)

]

=τ

[
2

3τ
+O(τ−2)

]

=
2

3
+O(τ−1) (50)

In this low-energy or heavy–top limit where we have decoupled the top quark from the list of propagating particles.
The ggH coupling does not depend on mt anymore and gives a finite result. Note that for this finite result we had to
introduce the top Yukawa coupling in the numerator. We emphasize again that while this low–energy approximation
is very compact to analytically write down the effective ggH coupling, it is not necessary to numerically compute
processes involving ggH coupling!

In the low-energy limit we can add more Higgs bosons to the loop. Attaching an external Higgs leg to the gluon
self–energy diagram simply means replacing one of the two top propagators with two top propagators and adding a
Yukawa coupling

1

q/−mt
7→ 1

q/−mt

mt

v

1

q/−mt
(51)

This we can compare to a differentiation with respect to mt

mt

v

∂

∂mt

1

q/−mt
∼ mt

v

−1

(q/−mt)(q/−mt)
(−1) ∼ 1

q/−mt

mt

v

1

q/−mt
(52)

While this treatment of the gamma matrix is, strictly speaking, nonsense, it still gives us the idea how we can in the
limit of heavy top mass derive ggHn couplings from the gluon self energy or the ggH coupling:

LggH = GµνGµν
αs
π

(
H

12v
− H2

24v2
+ . . .

)
=

αs
12π

GµνGµν log

(
1 +

H

v

)
(53)

Such a form is very convenient for simple calculations but note that for example for gg+jets production it only holds
in the limit that all jet momenta are much smaller than mt. It also becomes problematic for example in the gg → HH
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FIG. 3: Simulated statistical significance for different Higgs production and decay channels for an integrated luminosity of
30 fb−1, by Atlas. Five standard deviations σ over the backgrounds are required by the high–energy physics community as the
condition for any discovery. The phrase ‘discovery channel’ we use only for the best signature given a certain Higgs mass value.

process close to threshold, where the momenta of slow–moving Higgs bosons lead to an additional scale in the process.
We will come to this process later in a little more detail.

Now that we can compute Higgs production at the LHC, we can go through all decay signatures from the gluon–fusion
production process and look at their strengths and challenges. Simulation result for all Higgs signatures (as simulated
by Atlas) we show in Fig. 3.

gg → H → bb̄ hopeless, because of sheer size of the QCD continuum background gg → bb̄. Note that there
is little to cut on except for the invariant mass of the bb̄ pair.

gg → H → τ+τ− problematic, because of very small pT H which makes the reconstruction of mττ ∼ mH hard.
We will discuss this decay and its reconstruction in detail later.

gg → H → γγ in spite of the small rate great to measure the Higgs mass, because mγγ can be reconstructed
to the order of a per-cent. A major problem is a detector background from pions mistaken for
photons.

gg → H → Zγ like γγ, but smaller rate and small branching ratio of Z → µ+µ− or Z → e+e−. Unlikely to
be seen.

gg → H →W+W− large rate, but hard to reconstruct mH in the most promising leptonic channel due to escaping
neutrinos. Analysis relying on angular correlation of the two leptons, which makes it hard
below threshold.

gg → H → ZZ great for ZZ to four leptons, again because of reconstructed m4` ∼ mZZ ∼ mH . Therefore
usually referred to as ‘golden channel’.

gg → H → invisible not predicted in Standard Model, hopeless if only the Higgs is produced.

IV. HIGGS PRODUCTION IN WEAK–BOSON FUSION

Since the Higgs has sizeable couplings only to the W , Z bosons and to the top quark we can alternatively produce
it from two incoming quarks which each radiate a W or Z boson: qq → qqH . Because the LHC is a pp collider and
because the proton mostly contains the valence quarks (uud) and low-x gluons it is important that this process can
proceed as ud→ dutt, where the u radiates a W+ and the d radiates a W−. The Feynman diagram for this process
is:
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If the Higgs were a Z boson, it could also bremsstrahlung off the quarks, but for Higgs signals at colliders we safely
assume mq = 0 for the first two generations. In a way, this process looks like deep inelastic scattering one from each
of the protons — at least from a QCD point of view.

A. Final–state kinematics

Of course, we could describe the W bosons in the protons just like partons, assuming it to be essentially massless.
This approximation is called effective W approximation and is bad at the LHC. The reason is that the Higgs mass is
of the order of the W mass, as are the transverse momenta of the W or of the final state jets. We can see this from
the typical momentum dependence of the intermediate W boson, which peaks at

0
!

=
∂

∂pT

pT
−p2

T −m2
W

=
∂

∂pT
pT (−p2

T −m2
W )−1

=
(
−p2

T −m2
W

)−1
+ pT (−1) (−p2

T −m2
W )−2 (−2pT )

=
−p2

T −m2
W + 2p2

T

(p2
T +m2

W )2

=
p2
T −m2

W

(p2
T +m2

W )2

⇒ p2
T = m2

W (54)

Note the (−) in the denominator which arises because of p2 = E2 − p2
T − p2

z.

From a jets perspective this WBF signal has a particular geometry: because of the collinear enhancement which means
that the cross section would diverge like log pT in the absence of the mW regulators, both jets prefer to be forward in
the detector. The exchange of a gluon between the two quark legs multiplied with the Born diagram is proportional
to the color factor TrT a TrT bδab = 0. Additional jet activity is therefore limited to collinear jets from the initial-state
and final-state quarks, i.e. again forward in the detector. If we want, we can even try to veto additional hard jets in
the central region, above pT j ≥ 20 GeV or 30 GeV, to suppress backgrounds like tt̄+jets.
In contrast, the Higgs and its decay products are expected in the central detector. So we are looking for two forward
jets and for example two τ leptons in the central detector. Moreover, the Higgs is produced with a finite pTH , which
is largely given by the acceptance cuts on the forward jets.

Compared to the Higgs production in gluon fusion we buy this distinctive signature, i.e. the improved extraction
of the Higgs signal out of the background, at the expense of the rate. The one-loop amplitude for gg → H is
proportional to αsyt/(4π) ∼ (1/10) (2/3) (1/12) = 1/180. The cross section for WBF is proportional to g6, but
with two additional jets in the final state. Including the additional phase-space for two jets this very roughly means
(2/3)6 1/(16π)2 = (64/729) (1/2500) ∼ 1/25000. This number we can compare with (1/180)2 ∼ 1/40000 for the gluon
fusion process and find that the one–loop amplitude and the additional jets and weak couplings roughly balance each
other. The difference comes from the quark and gluon luminosities. In the WBF signature, the 2 forward jets always
combine to a large partonic ŝ = x1x2s > (pj,1 + pj,2)2 = 2(pj,1 · pj,2), while a single Higgs probes the already large
gluon parton density at typical x values of 10−3. This means that each of the two production processes probes its
most favorable parton x values: low-x for gluon fusion and high-x for quark-quark scattering. Looking at typical LHC
energies, the gluon parton density grows very steeply for x . 10−2. So for a 150 GeV Higgs the gluon-fusion rate of
∼ 30 pb clearly exceeds the WBF rate of ∼ 4 pb. On the other hand, these numbers mean little, for example when
we battle an 800 pb tt̄ background and for this have to rely on cuts either on forward jets or on Higgs decay products.

As one final remark — we also see that for large mH the WBF rate starts to exceed the gluon-fusion rate. One reason
is that for larger x values the rate for gg → H decreases steeply with the gluon density, while for the already large
partonic ŝ due to the tagging jets the increase in mH makes no difference to the quark parton densities. The more
important aspects are large logarithms: if we neglect mW ∼ 0 in the WBF process the pT,j distributions will diverge
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for small pT,j like 1/pT,j . This yields a log pmax
T,j /p

min
T,j in the total rate. With the W mass a a typical hard scale given

by mH this logarithm becomes (on each side)

σWBF ∝
(

log
pmax
T,j

pmin
T,j

)2

∼
(

log
mW

mH

)2

(55)

For mH → 1 TeV this logarithm can give us the enhancement factors of up to 10 which WBF needs to make it the
dominant Higgs production process. This large logarithms is, by the way, resummed in the effective W approximation,
but with very bad results for the final–state kinematics.

B. Approximate Higgs mass reconstruction

The pTH in the WBF process allows us to even reconstruct the invariant mass of a ττ system in the
collinear approximation. If we assume that a τ with momentum p decays into a lepton with the momentum xp
which moves into the same direction as ~p we can write the transverse directions of the decay lepton as:

~k1

x1
+

~k2

x2
= ~p1 + ~p2 = ~k1 + ~k2 + ~k/ (56)

This works because the missing–energy vector at the LHC can be measured in the transverse plane, i.e. it has two

components. Given the measured momenta ~ki we can solve these two equations for x1 and x2 and compute the
invariant ττ mass

mττ = 2 (p1 · p2) = 2x1 x2 (k1 · k2) (57)

From the formula above it is obvious that this approximation does not only require a sizeable pi � mτ , but also that

back-to-back taus will not work — the vector ~k/ then largely cancels and in the Higgs center-of-mass frame and the
computation fails. This is what happens for the other production channel gg → H → ττ .

Again, we can make a list of signatures which work more or less well in connection to WBF production. The WBF
channels are also included in the summary plot by Atlas, shown in Fig. 3.

WBF: H → bb̄ problematic because of large QCD 4-jet backgrounds and trigger in Atlas. Likely not to work
in high-luminosity environment, because of structure in underlying event, due to multi-proton
scattering.

WBF: H → ττ new prime discovery channel for a light Higgs with mH . 130 GeV. Mass reconstruction good
to ∼ 5 GeV?

WBF: H → γγ compatible with gg → H → γγ with its smaller rate but improved background suppression.
Mostly included in inclusive H → γγ analysis.

WBF: H → Zγ difficult due to simply too small event rate σ ×BR
WBF: H → WW discovery channel for mH ≥ 135 GeV. In contrast to gg → H → WW it works for off-shell W

decays, because of a multitude of background–rejection cuts.
WBF: H → ZZ likely to work in spite of the smaller rate. Maybe even possible with one hadronic Z decay,

but not many detailed studies.
WBF: H → invisible only discovery channel for an invisible Higgs which works at the LHC. It relies on a pure

tagging-jet signature, which means it is seriously hard.

Just a side remark: WBF was essentially unknown as a production mode for light Higgses until ∼ 1998. Which means
the Higgs chapter in the Atlas TDR had and still has to be completely re-written. It is simply not true that there is
nothing new and yet simple to discover in LHC physics!

V. BEYOND HIGGS DISCOVERY

At the end of this lecture we will cover a few more advanced and interesting topics, somewhat unrelated with each
other, except that they are all clearly relevant to LHC Higgs physics.
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A. Minijet veto

Following the general WBF argument concerning the reduced jet activity in the central detector we need to estimate
the probability of not observing additional central jets for different signal and background processes. One way to
quantify this effect is a variable cut-off in the pT of the additional jets, defined by the matching point

σn+1(pcrit
T ) ≡ σn (58)

where the indices n+ 1 and n are the numbers of final-state jets. This condition implicitly defines a critical pT , below
which our perturbation theory in αs, i.e. in counting the number of external partons, breaks down. For WBF Higgs
production we find pcrit

T ∼ 10 GeV, while for QCD processes like tt̄ production it becomes pcrit
T = 40 GeV. In other

words, jets down to pT =10 GeV are perturbatively well defined for WBF signatures, while in QCD processes jets
below 40 GeV are much more frequent than they should be looking at the perturbative series in αs.

Hence, we can suppress QCD backgrounds by applying a veto of the kind

pT,j > 20 GeV and ηtag1
j < ηj < ηtag2

j (59)

If we naively assume that the radiation of additional jets proceeds with a constant probability, independent of the
number of jets already radiated, we can even compute the survival probability after this veto starting from the
computable probability

Prad =
σ3(pcrit

T )

σ2(pcrit
T )

!
=
σn+1(pcrit

T )

σn(pcrit
T )

(60)

Using Poisson statistics the probability of observing n jets now is

f(n;Prad) =
Pnrade

−Prad

n!
⇒ f(0;Prad) = e−Prad (61)

which means the probability of surviving the veto comes out as exp(−Prad). This comes out roughly as 88% for
the WBF signal and as 24% for the tt̄ backgrounds. Notice, however, that this number does not incorporate the
underlying event, i.e. additional energy–dependent but process–independent jet activity in the detectors from many
not entirely understood sources.

B. CP Properties

Once we see a Higgs boson at the LHC, how do we test its quantum numbers? For example, the CP-even Standard-
Model Higgs bosons couples like gµν to the W and Z bosons. However, for general CP-even and CP-odd Higgs bosons
there are two more gauge–invariant ways to couple to W bosons, proportional to

gµν − pµ1p
ν
2

p1 · p2
and εµνρσ p

ρ
1p
σ
2 (62)

Note that the first tensor is not orthogonal to gµν , so we could in principle replace it with any linear combination
with gµν . However, these two coupling structures nicely correspond to the gauge–invariant combinations W µνWµν

and W µνW̃µν in the electroweak Lagrangian.

One way to tell apart the gµν structure and the CP-odd coupling is to look at the H → ZZ decay. Each of the
decaying Z bosons defines its own decay plane opened by the two lepton momenta. If the angle between these two
planes in the Higgs rest frame is φ, the φ distribution can generally be written as

dσ

dφ
∝ 1 + a cos(φ) + b cos(2φ) (63)

For the CP-odd Higgs coupling to W µνW̃µν we find a = 0 and b = 1/4, while for the CP-even Higgs coupling gµν we
find a > 1/4 depending on mH .Note, however, that this method only works if we observe the decay H → ZZ → 4`
with a good signal-background ratio S/B.
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FIG. 4: Distribution for the azimuthal angle between the two forward jets in WBF production with a subsequent decay
H → ττ . The signal and the leading Z background are simulated on the parton level. All signal rates are normalized to the
Standard–Model value.

Starting from the Feynman diagram for H → ZZ → 4` we can turn around two fermion legs

−→ (64)

and read the diagram right-to-left. In other words, exactly the same information as in the decay–angle correlation is
included in the angular correlation of the tagging jets in WBF production, independent of the Higgs decay! Indeed,
for the three gauge–invariant coupling structures we find three distinctly different normalized distributions for the
azimuthal angle between the tagging jets. One feature is obvious: the CP-odd εµνρσ coupling vanishes once two
momenta become equal, because of the antisymmetric structure. Which explains the behavior of the φ distribution
in that case for φ = 0, 180◦. The difference between the two CP-even couplings can be explained by the behavior of
the fermion currents involved, but we have to move on and defer this discussion to the literature.

C. Higgs Self Coupling

The only way to probe the trilinear coupling at the LHC is to study HH production, for example in gluon fusion as
shown in Fig. 5. In the low-energy limit we can compute the leading form factors associated with the triangle and
box diagrams, multiplying the gµν − kµ1 kν2/(k1 · k2) Dirac structure

F4 = −F� =
2

3
+O

(
m2
H

4m2
t

)
(65)

The loop-induced production cross section for gg → HH in terms of these form factors at threshold ŝ ∼ (2mH)2 is
proportional to

[
3m2

H

F4
ŝ−m2

H

+ F�

]2

=

[
3m2

H

F4
ŝ−m2

H

− F4
]2

∼
[
3m2

H

F4
3m2

H

− F4
]2

→ 0 (66)

Note that in this relation we have used the fact that the Higgs self coupling is proportional to mH . To see effects
of the self coupling proportional to the first term above we should be looking at something like the ŝ distribution or
the mHH distribution and measure its threshold behavior. In the absence of a self coupling this threshold behavior
should be completely spoiled. This shape analysis of the threshold behavior would allow us to exclude the case of
λHHH = 0 because of the expected large enhancement of the production cross section at threshold. It is still under
study if such a measurement will work at the LHC.

The last two examples of measuring Higgs properties at the LHC are only a small fraction of the work which has
gone into LHC Higgs physics over recent years. Also based on the success of the WBF signatures we now believe
that the LHC will indeed be able to study in detail the Higgs sector and determine if it is really only the minimal
Standard–Model version or maybe a supersymmetric two-Higgs-doublet model or something we have not even thought
about....
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coupling. The analysis is based on the decay HH →WW .
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