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Abstract

While for this lecture I am mostly following Mark Srednicki’s book there are a few chapters where I deviate from
his arguments but derive essentially the same equations. The chapter numbering corresponds to the book.
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2 16 LOOP CORRECTIONS TO THE VERTEX

16 Loop corrections to the vertex
In the following sections we will introduce renormalization using scalar ϕ2 theory in six dimensions. Technically, we
have already introduced the necessary parameters which we need to renormalize amplitudes and absorb ultraviolet
divergences whenever they appear in perturbative calculations. To fulfill the LSZ consistency conditions for an
interacting theory in Eq.(5.27) we generalize the Lagrangian for a real scalar field to

L =
Zϕ
2
∂µϕ ∂µϕ−

Zm
2

m2 ϕ2 +
Zg
6
g ϕ3 + Y ϕ . (16.1)

Of the four Z and Y factors we need two to ensure 〈0|ϕ(x)|0〉 = 0 and 〈p|ϕ(x)|0〉 = 1. The first condition leads to a
shift in ϕ(x), the second to a change of normalization. Following Eq.(9.20) we can use Y = ig∆0/2 and Zϕ to
ensure the correct properties of the scalar field. The remaining constants Zm and Zg we have to fix based on physical
conditions on the measured masses and couplings.

Our line of thinking we already know from the exact propagator in Eqs.(14.1) and (14.6)

∆(x1 − x2) = i 〈0|Tϕ(x1)ϕ(x2)|0〉 = δ1δ2 iW (J)

∣∣∣∣∣
J=0

∆̃(k2) =
−1

k2 −m2 + iε+ Π(k2)
=

−1
k2 −m2 + iε

+O(g2) . (16.2)

The field normalization Zϕ and the mass definition Zm we can both fix using the exact propagator. The result for
∆(k2) should have a single pole at k2 = m2 with residue one. The two conditions

Π(m2) = 0 Π′(m2) = 0 (16.3)

ensure this. Eqs.(14.37) and (14.38) give the explicit formulas for d = 6− ε space-time dimensions

Zϕ = 1− g2

6(2π)3

(
1
ε

+ log
µ

m
+ finite terms

)
+O(g4)

Zm = 1− g2

(2π)3

(
1
ε

+ log
µ

m
+ finite terms

)
+O(g4) , (16.4)

with α = g2/(2π)3. From the four constants from Eq.(16.1) only Zg is left to be fixed by an appropriate condition on
an interaction process.

In analogy to the exact propagator we define an exact three-point vertex function, for which the original vertex iZgg is
the leading term,

iV3(k1, k2, k3) = iZgg + (ig)3

∫
dd`

(2π)d
i

`2 −m2

i

(`+ k1)2 −m2

i

(`+ k1 + k2)2 −m2
+O(g5) , (16.5)

with all incoming momenta k1 + k2 + k3 = 0. One difference between the two formulas which will become important
later is that the form of the propagator in terms of the self energy Π is true to all orders while the vertex function is
defined order by order. For a scalar theory the loop integral has a particularly simple structure, because the numerator
does not depend on the loop momentum `. Such scalar loop integrals are important building blocks for a computation
of higher order corrections and are available in the literature (if a convenient analytic formula exists) or numerically.
The three point function with three external legs and three external propagators we write as:

C(k2
1, k

2
2, k

2
3;m,m,m) ≡

∫
d6−ε`

(2π)6−ε
1

`2 −m2

1
(`+ k1)2 −m2

1
(`+ k1 + k2)2 −m2

= Γ
( ε

2

) 1
2i

(4π)−3+ε/2m−ε + Cfin(k2
1, k

2
2, k

2
3;m,m,m) . (16.6)
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First, the factor m−ε looks weird, but it simply corresponds to the non-integer dimensionality of the loop integration.
Because the scalar three point function is not guaranteed to be finite we split it into a divergent part and a finite
remainder. As long as all three propagators involve a mass m none of them can diverge for vanishing internal or
external momenta, so the result is infrared finite.
In the ultraviolet, the loop integration diverges for d ≥ 6. This is where dimensional regularization comes in, reducing
the number of dimensions below the critical value d = 6. As we will see next, a pole appears in the form of Γ(ε/2).
The The finite term Cfin cannot be expressed easily, so we leave it for numerical evaluation. If the external momenta
all add to zero there is no scalar product of external momenta which we cannot write in terms of the three k2

j .

In text books we usually compute such scalar integrals using Feynman parameters

1
a1a2...an

= Γ(n)
∫ 1

0

dx1

∫ 1

0

dx2...

∫ 1

0

dxn
δ(1− x1 − x2 − ...− xn)

(a1x1 + a2x2 + ...+ anxn)n
, (16.7)

where each aj is one of the inverse propagators. This parameterization leads us to integrals of the type∫
dd`

iπd/2
(`2)R

(`2 −D)M
=

(4π)d/2

i

∫
dd`

(2π)d
(`2)R

(`2 −D)M

= (−1)R−M DR−M+d/2 Γ(R+ d/2)Γ(M −R− d/2)
Γ(d/2)Γ(M)

, (16.8)

with some function D depending on the masses and external momenta. For positive integers the gamma function is
defined as Γ(n+ 1) = n!. Some of these gamma functions arise from the angular integration over the unit sphere
while others come from the iterative solution of the |~̀| integral.
We already know from Eq.(16.6) that we are interested in the value of Γ(ε/2) for ε→ 0, which we can compute
starting with the digamma function in an appropriate representation

Ψ(1 + x) =
Γ′(1 + x)
Γ(1 + x)

= −γE +
∞∑
n=2

(−1)nxn−1ζn , (16.9)

valid for |x| < 1. This differential equation for the gamma function itself we can integrate with the boundary
condition Γ(1) = 1

log Γ(1 + x) = −γEx+
∞∑
n=2

(−1)nxnζn
n

+ const

= −γEx+
x2

2
ζ2 +O(x3) . (16.10)

This result we can simply exponentiate for small values of x, giving us

Γ
(

1 +
ε

2

)
= e−γEε/2

(
1 +

ζ2
8
ε2 +O(ε3)

)
Γ
( ε

2

)
= 2e−γEε/2

(
1
ε

+
ζ2
8
ε+O(ε2)

)
with Γ(x+ 1) = xΓ(x) . (16.11)

Note that usually we compute the loop integrals in d = 4− 2ε dimensions while for our ϕ3 theory we choose
d = 6− ε. Independent of the number of dimensions there exists a problem with Eq.(16.5): the vertex function
develops a dimension which it should not have. Dimensional regularization only affects the loop or phase space
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integrals and should be removed via analytic continuation by the time we compute an observable. To be on the safe
side we introduce a factor µ̃ε into the expression for V3

1
g
V3(k1, k2, k3) = Zg +

(ig)3

ig
i3 µ̃ε C(k2

1, k
2
2, k

2
3;m,m,m) +O(g5)

= Zg + ig2µ̃ε
(

Γ
( ε

2

) 1
2i

(4π)−3+ε/2m−ε + Cfin

)
+O(g5)

= Zg +
1
2

g2

(4π)3
Γ
( ε

2

)(4πµ̃2

m2

)ε/2
+ · · ·

= Zg +
1
2

g2

(4π)3

2
ε

(
4πµ̃2

m2
e−γE

)ε/2
+ · · ·

= Zg +
α

ε

( µ
m

)ε
+ · · · (16.12)

In the last step we simply rescale µ̃→ µ conveniently and introduce α = g2/(4π)3. Terms we neglect are either of
higher power in g or finite. To absorb the pole in the expression for V3 we can write

Zg = 1 + δZg

= 1− α

ε

( µ
m

)ε
+ δZfin

= 1− α

ε
eε log(µ/m) + δZfin

= 1− α
(

1
ε

+ log
µ

m
+O(ε)

)
+ δZfin , (16.13)

allowing for an arbitrary finite contribution Zfin. This form gives us the vertex function to net-to-leading order

V3(k1, k2, k3) = g + finite terms , (16.14)

where the finite contributions arise from Cfin as well as from δZfin. Different choices for δZfin correspond to different
definitions of the (measurable) coupling. In the absence of a more physically motivated definition we can for example
choose the minimal scheme δZfin = 0.

Before we move on, future collider physicists might benefit from a naming convention: whenever a scale µ appears in
association with an ultraviolet pole we call it the renormalization scale µR, if it is associated with an infrared pole we
call it the factorization scale µF . What the appearance of such a scale says on a more fundamental level is that it is not
possible to regularize a divergent loop integral without introducing any scale. We could have introduced a cutoff scale
directly, and dimensional regularization at first appeared to avoid this introduction of a scale, but it turns out that the
scale appears again through the back door.
The appearance of scales is an ubiquitous feature of perturbative field theory. They are artifacts due to order-by-order
regularization and renormalization (or more general pole subtraction), and the dependence of observables on these
scales should vanish at arbitrary loop order. This is why sometimes we can use the renormalization and factorization
scale dependence to estimate the minimum theory uncertainty of a perturbative prediction.
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17 Other 1PI vertices
Similar to the three-point vertex we can compute the n-point interaction. For n > 3 such interactions are not present
at leading order in the ϕ3 Lagrangian, but they of course occur at one-loop order. One example is n = 4 with four
incoming momenta k1 + k − 2 + k3 + k4 = 0, which we write as

iV4(k1, k2, k3, k4) = 0 + (ig)4 (−1)4

i4

∫
dd`

(2π)d

× 1
`2 −m2

1
(`+ k1)2 −m2

1
(`+ k1 + k2)2 −m2

1
(`+ k1 + k2 + k3)2 −m2

+ ...

= g4D(k1, k2, k3, k4;m,m,m,m,m)

+ g4D(k2, k1, k3, k4;m,m,m,m,m)

+ g4D(k1, k3, k2, k4;m,m,m,m,m) +O(g6) . (17.1)

Unlike for the three-point function there now exist non-trivial permutations of the four external momenta. As for the
scalar three-point function C the infrared momentum regime is cut off by the mass m, which means the scalar
four-point integral is IR finite. Comparing the power of the loop momentum ` in the integration measure to the four
denominators, which for large internal momenta scale like (l2)4 we guess that also the ultraviolet regime is finite

D(k1, k2, k3, k4;m,m,m,m,m) = Dfin(k1, k2, k3, k4;m,m,m,m,m) . (17.2)

Because of the slightly complicated structure of the (5 + 1)-dimensional integral we can resort to the Feynman
parameterization Eq.(16.7). Four scalar propagators turn into a sum of all propagators to the fourth power. For
Eq.(16.8) this means R = 0 and M = 4 with d = 6, so the ratio of gamma functions involved reads∫

dd`

iπd/2
1

(`2 −D)4
= (−1)−4 D−4+3 Γ(3)Γ(4− 3)

Γ(3)Γ(4)
, (17.3)

for some value of D. None of these gamma functions are divergent. From Eq.(16.8) we see that for scalar theories
with R = 0 the dangerous gamma function is Γ(M − d/2). It leads to an ultraviolet pole corresponding only for
M ≤ 3. From the four-point vertex on all higher loop-induced vertices are UV finite and do not have to be taken care
of with the help of Z factors. This is excellent news because of the four constants in the Lagrangian Eq.(16.1) none
are left once the LSZ conditions, the pole of the massive propagator, and the three-point coupling are properly defined.
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27 Other renormalization schemes
In the first part of his Section 27 Mark Srednicki introduces the MS renormalization scheme and computes the
physical scalar mass, i.e. the position of the propagator pole in both schemes. The difference between the two
schemes is of order α and finite.
Next, we can compute an observable in both schemes. A specific simplification is that our observable mpole coincides
with the prediction of the on-shell renormalization scheme. If this observable does not depend on the unphysical
renormalization scale µ the MS mass needs to run. Its derivative with respect to logµ2 is essentially called the
anomalous dimension γm. The same argument we can apply to a transition amplitude, to find a running coupling
α(µ2).

To compute the 2→ 2 scattering process in the MS scheme we need to combine the same building blocks we
combined in Section 20 and add the correction factors in the LSZ equation. The leading oder result for the massless
transition amplitude is given in Eq.(20.1)

Ttree = g2
(

∆̃(s) + ∆̃(t) + ∆̃(u)
)

= g2

(
1

−s− iε
+

1
−t+ iε

+
1

−u+ iε

)
, (27.1)

remembering s+ t+ u = 0. The full expression given in Eqs.(20.18) and (20.19) consists of three distinct channels,
corresponding to s-channel, t-channel, and u-channel exchange. They are related through crossing symmetries, so all
we need to quote is for example the s-channel part, renormalized in the usual on-shell scheme

Ts = V2
3(s)∆̃(s) + V4,s

= g2 1
−s

[
1− 11α

12
log
−s
m2
− α

2
log2 t

u
+
α

12

(
39− π

√
3− π2

)]
+O(α2) . (27.2)

This expression is not defined in the massless limit m→ 0. As we will see later, the log s/m2 can have two origins:
for fixed masses and large energies s it describes an ultraviolet divergence. This one is linked to renormalization and
is, as we will see, cured by the new renormalization scheme. For fixed energy s and small masses it describes an
infrared pole and its discussion we will have to postpone.

Switching to the MS scheme the building blocks for the transition amplitude have different values in the massless
limit:

Π(s) = − α

12
(
−s+ 6m2

)
+
α

2

∫ 1

0

dxD log
D

µ2
+O(α2)

=
α

12
s− α

2
s

∫ 1

0

dx x(1− x) log
−x(1− x)s

µ2
+O(α2)

=
α

12
s− α

12
s log

−s
µ2
− α

2
s

∫ 1

0

dx x(1− x) log (x(1− x)) +O(α2)

=
α

12
s− α

12
s log

−s
µ2

+
5α
36
s+O(α2)

= s

[
2α
9
− α

12
s log

−s
µ2

+O(α2)
]

∆̃(s) =
1

−s−Π(s)

=
1
−s

(
1− Π(s)

s

)
+O(α2)

=
1
−s

(
1 +

α

12
log
−s
µ2
− 2α

9

)
+O(α2) . (27.3)
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In a similar fashion the triple vertex function now has a result which is well defined in the massless limit, which we
can read of the on-shell result just replacing m2 with µ2 in the logarithm

V3(s) = g

(
1− α

2
log
−s
µ2

+
3α
2

)
+O(α2) . (27.4)

The last contribution which we have to take into account to compute the transition amplitude Eq.(27.2) did not exist in
the on-shell scheme. This is because Π′(m2) ensured that the LSZ condition on the residue of the propagator was
automatically fulfilled by the definition of the counter term Zϕ.

If the LSZ condition is not automatically fulfilled, i.e. the fields ϕ do not have the correct normalization of the
one-particle state, we know that we have to apply a multiplicative normalization of each field. The correction factor
we can derive from the definition of the propagator in position space,

∆(x1 − x2) = i〈0|Tϕ(x1)ϕ(x2)|0〉 . (27.5)

The normalization of the propagators in position space and in momentum space is given by the same number. If in
momentum space the residue is given by

R =

 d

dk2

1
∆̃(k2)

∣∣∣∣∣
k2=m2

pole

−1

6= 1 , (27.6)

we can ensure the proper normalization of the scalar fields by shifting ϕ(x)→ ϕ(x)/
√
R. This applies for example to

the LSZ formula, Eq.(5.15), which requires appropriately normalized fields

〈f |i〉 = in+n′
∫
d4x1e

−ik1x1
(
∂2

1 +m2
)
· · · d4x′1e

−ik′1x
′
1
(
∂2

1′ +m2
)
· · · 〈0|Tϕ(x1) · · ·ϕ(x′1) · · · |0〉 (27.7)

→ in+n′
∫
d4x1e

−ik1x1
(
∂2

1 +m2
pole

)
· · · d4x′1e

−ik′1x
′
1
(
∂2

1′ +m2
pole

)
· · · 〈0|T ϕ(x1)√

R
· · · ϕ(x′1)√

R
· · · |0〉 .

In the computation of an actual process, for example in Section 10, each of the Klein-Gordon operators gets combined
with propagators from the time ordered vacuum expectation values of the scalar field. For example in Eq.(10.10) we
remove all propagators from the external legs this way. Only the internal propagators are left to contribute when we
for example use Feynman rules. The Klein-Gordon operator acting on a field without the appropriate field
normalization will include the residue(

∂2
1 +m2

pole

)
∆(x1 − x2) = R δ4(x1 − x2) . (27.8)

Again, this factor applies to all external fields in the LSZ equation, so we find an additional dependence of the
transition matrix element on R,

〈f |i〉 = in+n′
∫
d4x1e

−ik1x1
(
∂2

1 +m2
pole

)
· · · d4x′1e

ik′1x
′
1
(
∂2

1′ +m2
pole

)
· · · 〈0|T ϕ(x1)√

R
· · · ϕ(x′1)√

R
· · · |0〉

= Rn+n′ 1
R(n+n′)/2

· · · ⇒ T = R(n+n′)/2 T

∣∣∣∣∣
LSZ

(27.9)

The residue factor R we can compute from its definition

1
R

=
d

dk2

(
−k2 +m2 −Π(k2)

) ∣∣∣∣∣
k2=m2

pole

= −1−Π′(m2
pole)

= −
(
1 + Π′(m2)

)
+O(α2)

= −
[
1 +

α

12

(
log

µ2

m2
+

17
3
− π
√

3
)]

(27.10)
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The integral giving us the last line we quote from Srednicki’s book. The fact that the residue comes out as (−1)
instead of one is simply an effect of our metric in combination with the definition of the propagator following
Srednicki’s conventions. This field renormalization constant is the only contribution to the MS transition amplitude
which includes a logarithm of the mass, i.e. which is not defined in the massless limit.

The result from Eqs.(27.3), (27.4), and (27.10) together with the unchanged expression for the unrenormalized
4-vertex we can combine to

Ts =R(s)2
(
V2

3(s)∆̃(s) + V4,s

)
=
[
1− α

6

(
log

µ2

m2
+

17
3
− π
√

3
)]
×[(

1− α log
−s
µ2

+ 3α
)

g2

−s

(
1 +

α

12
log
−s
µ2
− 2α

9

)
+
g2

6
3α
s

(
π2 + log2 t

u

)]
+O(α2)

=− g2

s

[
1− 11α

12
log

s

µ2
− α

6

(
log

µ2

s
+ log

s

m2

)
+ constant terms

]
+O(α2)

=− α(4π)3

s

(
1− 3α

4
log

s

µ2
− α

6
log

s

m2
+ constant terms

)
+O(α2) using α =

g2

(4π)3
. (27.11)

The factor −g2/s in front is the tree level value Ttree.s. In this expression we omit all constant terms because all are
interested in are the two kinds of logarithms. In the massless limit the second log s/m2 still diverges. It corresponds
to an infrared divergence which is physical and can be removed through a modification of our perturbative series.
Properly understanding the implications of such universal infrared divergences we unfortunately have to postpone on
the introduction of the DGLAP equation in QCD, which we will discuss in detail in the next semester.
The scaling logarithm logµ2/s is new to the MS computation — for the physical on-shell renormalization scheme the
scale did not appear in the final result for the transition amplitude. To compute an observable cross section, all we
have to do is add the s, t, and u-channel contributions and square Eq.(27.11), which means that somewhere within the
expression for the transition amplitude the scale dependence has to vanish,

dTs
d logµ2

!= 0 . (27.12)

In the massless limit, the only candidate parameter which might cancel the explicit logarithm is a scale dependence of
the coupling α, so we deduce

0 =
d

d logµ2

(
α− 3α2

4
log

µ2

s
+O(α2)

)
=

dα

d logµ2
+

3α2

4
+O

(
α

dα

d logµ2

)
=

dα

d logµ2
(1 +O(α)) +

3α2

4

⇔ dα

d logµ2
= −3α2

4
+O(α3) . (27.13)

This is the renormalization group equation describing the running of the coupling constant of a ϕ3 theory in six
dimensions. We can expand this equation to all orders in the couplings constant,

dα

d logµ2
= β = −α2

∑
n=0

bnα
n with b0 =

3
4
. (27.14)

The right-hand side is called the beta function (note that the value of the beta function depends on if we compute the
running with respect to µ or to µ2). This equation we can solve by integrating the coupling it from one scale µ to
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another, higher, scale p

α(p2) = α(µ2) + β log
p2

µ2

= α(µ2)
(

1− α(µ2)b0 log
p2

µ2
+O(α2)

)
=

α(µ2)

1 + α(µ2)b0 log
p2

µ2
+O(α2)

. (27.15)

The scale of α in the denominator can be chosen freely within reason because a change in scale is or order α and
hence absorbed in the unknown higher order terms. For p2 > µ2 we see that the coupling decreases for larger scale
choices. This feature is called asymptotic freedom and one of the most distinctive properties of QCD. It is linked to
the negative sign of the beta function. In the form of Eq.(27.15) we are save because the denominator of this
expression is always positive. However, eventually this will change once we include an improved description of the
loop effects. In addition, the improved treatment of the running coupling goes beyond fixed-order perturbation theory
and leads to scaling violations: the transition matrix element does depend on the unphysical renormalization scale.
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71 The path integral for nonabelian gauge theory
The definition of the path integral in a nonabelian gauge theory like QCD has serious implications on the definition of
the relevant degrees of freedom. As we will see later, we can describe these in terms of anti-commuting scalar fields.
Therefore, we start this section defining Grassmann variables, i.e. anti-commuting numbers which obey

{ψi, ψj} = 0 for i, j = 1, ..., n . (71.1)

Starting from these numbers we will collect a set of useful formulas which will then allow us to solve a problem in the
definition of the path integral for gluon fields.
From our experience with the harmonic oscillator (chapter 7), free scalar fields (chapter 8), interacting scalar fields
(chapter 9), and photons (chapter 57) we know that path integrals essentially come down to Gaussian integrals, where
the integration variables are promoted to field configurations. So let us derive the relevant formulas step by step.

1. To begin, we limit ourselves to just one such number (n = 1), which has a set of interesting implications:

ψ2 = 0
f(ψ) = a+ ψb for a general power series

∂ψf(ψ) = b form the usual ‘be ε > 0’ construction∫ ∞
−∞

dψ f(ψ) = b requiring linearity and shift invariance . (71.2)

The value of the integral in the last line is only fixed modulo an over-all factor which we define to be unity.

2. Generalizing this case we now allow for n Grassmann variables, organized in a vector ψ. The most general
power series now is

f(ψ) = a+ bj ψj +
1
2
cj1j2 ψj1ψj2 + · · ·+ 1

n!
dj1···jn ψj1 · · ·ψjn , (71.3)

where we imply the usual summing convention. The last prefactor we can simplify using the anti-commutation
properties of the fields, getting dj1···jn = dεj1···jn in terms of the generalized totally anti-symmetric Levi-Civita
tensor ε. The integral over the Grassmann variable space becomes∫ ∞

−∞
dnψ f(ψ) = d . (71.4)

3. On the way to Gauss-type integrals over Grassmann variables we next consider linear shifts or rotations

ψi = Rij ψ
′
j with

∫ ∞
−∞

dnψ f(ψ) =
1

detR

∫ ∞
−∞

dnψ′ f(ψ(ψ′)) . (71.5)

The corresponding formula for a vector of real numbers is∫ ∞
−∞

dnx f(x) = detR
∫ ∞
−∞

dnx′ f(x(x′)) , (71.6)

so we see that the structure is very similar, with the exception that for Grassmann variables the determinant has
moved into the denominator.

4. The generalization of Eq.(71.5) to quadratic forms leads to a modified Gaussian integral∫ ∞
−∞

dnψ e
1
2ψ

TMψ =
√

detM

while
∫ ∞
−∞

dnx e−
1
2x
TMx =

(2π)n√
detM

, (71.7)

again close in structure to the case of real numbers x.
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5. Complex Grassmann variables we can define just as one would expect

ψ =
1√
2

(ψ1 + iψ2)

ψ̄ =
1√
2

(ψ1 − iψ2) . (71.8)

The complex integral we define either in terms of the real an imaginary parts or in terms of d2ψ = idψdψ̄,
giving us ∫ ∞

−∞
dnψ dnψ̄ e

1
2ψ

†Mψ = detM

while
∫ ∞
−∞

dnx dnx̄ e−
1
2x
†Mx =

(2π)n

detM
, (71.9)

All relations to this point can be proven with relatively little effort, but since the structure is straightforward we
can use them just as a collection of useful formulas.

6. From Eq.(71.9) we know how to get to complex scalar fields and their path integral. We start with the
Lagrangian

L = ∂µφ
† ∂µφ−m2φ†φ+ gΣφ†φ

= −φ†(y) δ4(x− y)
(
∂2
x +m2 − gΣ

)
φ(x) ≡ −φ†(y)M(x− y)φ(x) , (71.10)

where φ is the usual complex scalar field (or vector of complex scalar fields) and Σ is a real, non-propagating,
constant background field. Note the explicit minus sign in this definition of M corresponds to the Gaussian
integral for complex numbers. The corresponding path integral is

Z(φ) =
∫
Dφ†Dφ ei

R
d4xL , (71.11)

modulo appropriate normalization and an adjustable phase ei. Using the appropriate definition of a functional
determinant we should be able to write

Z(φ) =
∫
Dφ†Dφ e−i

R
d4x d4y φ†Mφ ≡ 2(2π)n

detM
(71.12)

For the functional determinant there does not exist a handy definition, so Eq.(71.12) is as good a definition as
any other. The prefactor 2(2π)n we can ignore, since the normalization of the path integral is still arbitrary. The
property det(M1M2) = (detM1)(detM2) which we will need later is clearly true.

From the usual argument we know that only the part of the path integral which includes external sources
contributes to the transition amplitude, while the free Lagrangian gets absorbed into the normalization. In the
same spirit we can separate the matrix M into the free Lagrangian and the interaction with the background field

M = δ4(x− y)
(
∂2
x +m2 − gΣ

)
=
∫
d4z δ4(x− z)

[
∂2
x +m2

] [
δ4(z − y)− g∆(z − y)Σ(z)

]
, (71.13)

provided the propagator cancels the free Lagrangian contribution, ∆(z − y)(∂2
z +m2) = δ4(z − y). In the path

integral Eq.(71.11) only the interaction term will eventually contribute, so we limit ourselves to

Z(φ) =
1

det (δ4(x− y)− g∆(x− y)Σ(x))
. (71.14)

If we interpret the delta distribution as unity we can evaluate the path integral following the general property
detM = exp Tr logM . This way we can reproduce the known results for the transition amplitude in this model
and confirm the functional determinant approach.
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7. The last step in terms of complex scalar fields we should be able to define in terms of Grassmann valued fields.
Naively, those would be fermions in the spinor representation of the Lorenz group, but from the above
discussion it should be clear that we can as well define scalar anti-commuting fields. The net result of the switch
to anti-commuting scalars will be that we can express determinants instead of inverse determinants as path
integrals.

Without an actual motivation we can start from a Lagrangian for an anti-commuting scalar field ca with adjoint
SU(3) charge which couples to gluons. The change in conventions from φ and φ† to c and c̄ just reflects the
conventions in the literature. The color-octet fields c and c̄ we call Fadeev-Popov ghosts. We write the kinetic
and coupling terms for the ghosts independently,

L = ∂µc̄
a∂µca − gfabcAcµ(∂µc̄a)cb , (71.15)

there this form of the dimension-4 interaction term requires some justification. If we could write it in terms of
the covariant derivative this would definitely be helpful, so we find

L = ∂µc̄
a∂µca − ig(T cA)abAcµ(∂µc̄a)cb using fabc = i(T cA)ab

= ∂µc̄
a
[
δab∂µ − ig(T cA)abAcµ

]
cb

≡ ∂µc̄a(Dµ)abcb

= −c̄a∂µ(Dµ)abcb ≡ c̄a(x)Mab(x− y)cb(y) . (71.16)

In the second to last step we use the definition of the covariant derivative, acting on a color-adjoint field, as
defined in Eq.(69.25) of Srednicki’s book. By pure analogy we include this Lagrangian in our path integral and
find

Z(c) =
∫
Dc̄Dc e+i

R
d4xd4y c̄aMabcb = detMab =det δ4(x− y)

[
−∂µ(Dµ)ab

]
. (71.17)

The factor 1/2 in the exponent of Eq.(71.9) can be absorbed into the definition of the fields c and c̄ because we
never really use the integral measure of the path integral. Of course, all this only helps if this object ∂µ(Dµ)ab

ever appears inside a path integral and needs to be removed. So let us look at the path integral in QCD and its
problems.

The trick which we apply to the photon path integral is a projection of the photon field on its transverse degrees of
freedom. In other words, we only consider degrees of freedom which in momentum space fulfill kµÃµ = 0. The local
U(1) gauge transformation

Aµ → Aµ − ∂µΓ or Ãµ → Ãµ + ikµΓ̃ (71.18)

induces only a longitudinal shift in Ã, which means that the projection on transverse states is gauge invariant. In QCD
the same relation reads

Aaµ → Aaµ −Dab
µ θb , (71.19)

which means that gauge transformations will ruin our projection onto transverse gluons inside the path integral. What
we need to do is include the gauge transformations θa in the path integral, knowing that we can remove them from the
Lagrangian. We will see that they indeed cannot be neglected. In his Eq.(71.14) Mark Srednicki shows how in an
n-dimensional double integral we can include a set of integration variables which get removed by a set of boundary
conditions Gj(x, y) = 0:

Z =
∫
dnx eiS(x) =

∫
dnx dny δn(y) eiS(x) =

∫
dnx dny det

(
∂Gi
∂yj

)
δn(G) eiS(x) . (71.20)
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The additional determinant arises because we change the form of the boundary condition. For example in QED or
QCD such functions G fix the gauge. In QED we usually use the Lorenz gauge G ≡ ∂µAµ = 0. The general Rξ
gauge is a generalization of this form with its gauge transformation gives us the dependence of Ga on θb,

Ga(x) = ∂µAaµ(x)− ωa(x)

→ ∂µAaµ(x)− ∂µDab
µ θb − ωa(x) = Ga(x)− ∂µDab

µ θb . (71.21)

The additional factors ω are not necessary, but there is no reason why we should not be able to include them. The path
integral version of Eq.(71.20) for gluons is

Z(Aµ) =
∫
DADθ det

(
δG

δθ

)
δ(Ga(x)) ei

R
d4x(− 1

4F
aµνFaµν−J

aµAaµ) . (71.22)

From Eq.(71.21) we can compute the functional derivative

δGa(x)
δθb(y)

= −δ4(x− y) ∂µDac
µ . (71.23)

The Fadeev-Popov determinant is precisely what the Lagrangian of two Grassmann scalars gives us in Eq.(71.17), so
we can write the gluon path integral as

Z(Aµ, c, c̄) =
∫
DADθDc̄Dc δ(Ga(x)) ei

R
d4xd4y c̄aMabcb ei

R
d4x(− 1

4F
aµνFaµν−J

aµAaµ)

=
∫
DADθDc̄Dc δ(Ga(x)) ei

R
d4xL

with L = −1
4
F aµνF aµν + ∂µc̄

a∂µcb − gfabcAcµ∂µc̄acb − JaµAaµ . (71.24)

Note that in the literature the explicit path integral over θ is often omitted, assuming that gauge transformations are
part of the path integral over A. Because later on it will be convenient, we can add terms including ωa to the
Lagrangian at will. If we consider it an auxiliary field ωa is fixed by the gauge condition Ga = 0. Such terms will not
affect the active field content or the interaction, they will merely contribute to the normalization of the path integral.
What will come in handy is that we can mimic kinetic terms for the gluons,

ωaωa = (∂µAaµ)(∂νAaν) (71.25)

The complete gluon Lagrangian including Fadeev-Popov ghost and the gauge-fixing term now reads

L = −1
4
F aµνF aµν + ∂µc̄

a∂µca − gsfabcAcµ∂µc̄acb −
1
2ξ

(∂µAaµ)(∂νAaν)− JaµAaµ

with F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (71.26)

The derivation of the QCD Lagrangian including Fadeev-Popov ghosts is the reason why (to the best of my
knowledge) we need the path integral formalism in any field theory lecture. Without it, we would miss this part of the
QCD Lagrangian. To avoid confusion, the strong coupling now consistently carries an index gs. I should admit that I
am not 100% sure about the prefactor of the ghost-ghost-gluon interaction, which is tied to the definition of the
covariant derivative. Mark Srednicki defines it as Dµ = ∂µ − igAµ while my usual reference Ellis-Stirling-Webber
defines Dµ = ∂µ + igAµ, while Otto Nachtmann’s book has the same conventions as Srednicki’s. For the Feynman
rules in the next chapter I refer to Otto Nachtmann’s appendix as the standard reference.
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72 The Feynman rules for nonabelian gauge theory
The Feynman rules for QCD we can largely read off the gluon Lagrangian in Eq.(71.26). All we need to add is a set of
fermions (quarks) which live in the fundamental representation of SU(3). These fermions also carry electric as well
as weak SU(2) charges, but as long as we are only interested in perturbative series in the strong coupling gs we do not
have to worry about those weaker interactions.
The complete QCD Lagrangian including one massless quark flavor and without the coupling to the external current is

L = −1
4
F aµνF aµν + iψ /Dψ + ∂µc̄

a∂µca − gsfabcAcµ∂µc̄acb −
1
2ξ

(∂µAaµ)(∂νAaν)

with F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν

Dµψi = ∂µψi − igs T aijAaµ ψj . (72.1)

The interactions between quarks, gluons, and ghosts we can simply read off the respective terms in Eq.(72.1). The
only object we need to study a little more carefully is the gluon propagator.

For the kinetic term of the gluon we can translate the energy-momentum tensor squared into gluons fields. For the
photon we know from chapter 54 how this looks:

FµνFµν = −2Aµ
(
gµν∂2 − ∂µ∂ν

)
Aν (72.2)

In the gluon case the FµνFµν term will also give rise to three and four gluon interactions, but the structure of the
propagator is the same as for the photon. Combining this term with the gauge fixing term we find

L ⊃ −1
2
Aaµ

(
gµν∂2 − ∂µ∂ν

)
Aaν −

1
2ξ
Aaµ∂

µ∂νAaν

= −1
2
Aaµ

(
gµν∂2 − ∂µ∂ν +

1
ξ
∂µ∂ν

)
Aaν . (72.3)

The corresponding momentum-space gluon propagator in Rξ gauge we can construct after replacing ∂µ → −ikµ.
Using the path integral this means inverting the quadratic term in Ã as it appears in the quadratic term in J̃ . We use
the method of the known result, namely

1
4

(
gµν − kµkν

k2
+

1
ξ

kµkν

k2

) (
gµν − kµkν

k2
+ ξ

kµkν

k2

)
= 1 . (72.4)

Unlike in QED this does not lead to a projector in the propagator. Interestingly enough, it turns out that the form of the
propagator does not depend on the sign of the 1/ξ term in Eq.(72.1); and I have no idea why this symmetry exists.
Taking into account the over-all factor +k2/2 of the Lagrangian after Fourier transform, we now

∆̃ab
µν =

δab

k2

(
gµν − (1− ξ)k

µkν

k2

)
Feynman rule: − i∆̃ab

µν (72.5)

While this propagator depends on the gauge parameter ξ, observables like cross sections will of course not. The
propagator for the ghost field is the usual scalar propagator, because the Grassmann property only appears in
symmetry factors,

∆̃ab =
δab

k2
Feynman rule: + i∆̃ab (72.6)

Just for completeness, we repeat the Feynman rule for a propagating quark,

i
/p+m

p2 −m2
(72.7)



15

Of the different interactions we also start with the F aµνF aµν term. In addition to the quadratic term shown in Eq.(72.3)
the covariant derivative includes higher powers of the gluon field

L ⊃ −1
4
(
∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν

) (
∂µAaν − ∂νAaµ + gsf

adeAdµAeν
)

⊃ −1
4
(
∂µA

a
ν − ∂νAaµ

)
gsf

adeAdµAeν − 1
4
gsf

abcAbµA
c
ν (∂µAaν − ∂νAaµ)− 1

4
g2
sf

abcfadeAbµA
c
νA

dµAeν

= −gsfabc(∂µAaν)AbµAcν − 1
4
g2
sf

abcfadeAbµA
c
νA

dµAeν (72.8)

The four terms contributing to the triple gluon Lagrangian are all identical. However, when we derive the Feynman
rule for the triple gluon vertex we need to take into account all possible assignments of the external gluon indices and
momenta. In terms of three incoming gluon momenta kj we find

−gsfa1a2a3 [gµ1µ2(k1 − k2)µ3 + gµ2µ3(k2 − k3)µ1 + gµ3µ1(k3 − k1)µ2 ] , (72.9)

while the corresponding four-gluon expression is

ig2
sf

a1a2afaa3a4 [gµ2µ3gµ1µ4 − gµ1µ3gµ2µ4 + cyclical permutations] . (72.10)

These multi-gluon interactions tend to make calculations even of simple processes very lengthy. It is highly
recommended to use a tool like FORM for such computations.

The Feynman rule for the quark-quark-gluon interaction is

igs T
a γµ , (72.11)

in complete analogy to the QED case ieγµ. The (3× 3) color matrix T a(a = 1, ..., 8) is sandwiched between the
quark indices. Similarly to the gamma matrices we usually have to evaluate traces of color matrices. This is why the
index and the quadratic Casimir introduced in chapter 70 turn out useful. Two color matrices which linked by a gluon
will have the same index a1 = a2.
Finally, the interaction of a gluon Aaµ with two ghost cbout, c

c
in, includes a derivative in position space, translating into

gsf
abc pµout (72.12)

The momentum is defined in the direction of the outgoing ghost leg.

Because they are new in QCD we need to briefly discuss the impact of the ghosts. Whenever we encounter virtual
gluons we need to check if corresponding virtual ghost diagrams exist. One example will be the gluon self energy
which we will compute soon. Because of their Grassmann property ghost loops come with a symmetry factor (−1),
just like closed fermion loops. The gluon propagator depends on the gauge choice:

– Feynman gauge ξ = 1 gives a particularly simple propagator gµν/k2

– Landau gauge ξ = 0 guarantees a transverse gluon propagator kµ∆̃µν = 0

– Unitary gauge ξ →∞ is only useful for massive weak gauge bosons

From the QED case we know that the polarization sum for external gluons is essentially identical to the residue of the
gluon propagator. If we use the simple (Feynman) form

∑
pols εµε

∗
ν = −gµν we need to take into account external

ghosts. Only if we project the external gluons onto the transverse degrees of freedom external ghosts do not appear. In
general, we need to square the matrix elements for external gluons and ghosts independently, add them after taking
into account all statistics factors, and consider the sum as the result for external physical gluons.
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73 The beta function in nonabelian gauge theory

The computation of the beta function for the strong coupling gs from one-loop vertices and propagators follows
exactly the same path as the QED case. The only difference is the appearance of new diagrams in the gluon self
energy, both from the gluon self coupling and from Fadeev-Popov ghosts. Before we can compute these contributions
we need to define the QCD Lagrangian including its Z factors. Note that for these Z factors I am not following Mark
Srednicki’s conventions

L = −ZA
2
Aaµ

(
gµν∂

2 − ∂µ∂ν
)
Aaν +

1
2ξ
Aaµ ∂µ∂νA

aν

− Zg,3gsfabc ∂µAaνAbµAcν −
Zg,4g

2
s

4
fabcfadeAbµA

c
νA

dµAeν

+ Zc∂µc̄
a∂µca − Zg,cgsfabcAaµ(∂µc̄b)cc + iZq ψ /∂ψ + Zg,qgs ψ /AaT aψ . (73.1)

Altogether, there are four renormalization constants for the strong coupling Zg,∗ which should lead to identical
definitions gs,0 → gs. To write down this relation we first have to compute the mass dimension of gs in d = 4− ε
dimensions. Compared to the corresponding argument for e0 → e in QED nothing changes, so we can use it to write

gs,0 =
Zg,q

Zq
√
ZA

µ̃ε/2 gs or αs,0 =
Z2
g,q

Z2
qZA

µ̃ε αs (73.2)

If it is indeed true that the same strong coupling governs all the interactions listed in Eq.(73.1) this should hold for the
bare as well as for the renormalized strong coupling,

Zg,q

Zq
√
ZA

=
Zg,c

Zc
√
ZA

=
Zg,3

Z
3/2
A

=

√
Zg,4
Z2
A

. (73.3)

This is the non-abelian version of the Ward identities in QED, where we found Z1 = Z2, or Zg,q = Zq in QCD
conventions. We will find that this relation is not true for QCD. This means that while for QED we would only have
needed to compute Z3 for the running of the coupling constant, in QCD we need to compute all three renormalization
constants involved.

The easiest Z factor we need to compute is the quark self energy correction. In Feynman gauge the gluon propagator
becomes ∆ab

µν = δabgµν/k
2, which is identical to the photon propagator in the same gauge. The only modification is

the additional color factor. Two color matrices T a linked by a gluon have the same index, so for external quarks j and
i we find

(T aT a)ij = C(R) δij . (73.4)

Adding the color factor to the QED result from Eq.(62.34) gives

Zq = 1− g2
s

8π2
C(R)

(
1
ε

+ finite
)

+O(g4
s) . (73.5)

Part of the one-loop correction to the quark-quark-gluon vertex we can also read off the QED result. Here, the series
of color matrices T a is evaluated along the fermion line, with the additional condition that a gluon propagator
identifies the two indices. This means that for an external gluon with color index a attached between the external
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quarks j and i we need to compute(
T bT aT b

)
ij

=
(
T b
(
T bT a + [T a, T b]

))
ij

=
(
T b
(
T bT a + ifabcT c

))
ij

=
(
C(R)T a +

i

2
fabc[T b, T c]

)
ij

=
(
C(R)T a − 1

2
fabcf bcdT d

)
ij

=
(
C(R)T a +

1
2

(T aA)bc(T dA)bcT d
)
ij

=
(
C(R)T a − 1

2
Tr(T aAT

d
A)T d

)
ij

=
(
C(R)− T (A)

2

)
T aij =

(
4
3
− 3

2

)
T aij . (73.6)

Applying this factor to Eq.(62.50) we find

Zabelian
g,q = 1− g2

s

8π2

(
CR −

T (A)
2

) (
1
ε

+ finite
)

+O(g4
s) . (73.7)

Note that the quark self energy and the abelian vertex corrections do not share the same color factor. The second
Feynman diagram we need to compute for Zg,q is the external gluon attached to the gluon inside the loop. We only
compute the color factor for this diagram

fabc
(
T bT c

)
ij

=
1
2
fabc

(
[T b, T c]

)
ij

=
i

2
fabcf bcd T dij

= − i
2

(T aA)bc(T dA)bc T dij = − i
2
T (A)T aij (73.8)

The contribution of the three-gluon vertex to Zg,q altogether gives

Znon-abelian
g,q = 1− g2

s

8π2

3T (A)
2

(
1
ε

+ finite
)

+O(g4
s)

Zg,q = Zabelian
g,q + Znon-abelian

g,q = 1− g2
s

8π2
(CR + T (A))

(
1
ε

+ finite
)

+O(g4
s) . (73.9)

Finally, we need to compute the one-loop correction to the gluon propagator. Four diagrams contribute at one loop:

1. the (abelian) quark loop we can generalize from the QED case — remember the factor (-1) for the closed
fermion loop. Its color factor is Tr(T aT b) = T (R)δab = δab/2.

2. the gluon loop with two three-gluon vertices gives a color factor facdf bcd = −T (A)δab. Remember that it
requires a phase space factor 1/2 for two identical particles running in the loop.

3. the one-point diagram with one four-gluon interaction would only contribute for a massive particle in the loop.
For a massless gluon it vanishes based on symmetry arguments.

4. the ghost loop looks like a purely scalar integral at first, but the interaction gives a momentum dependence in
the numerator. Its color factor is the same as for the gluon loop. For a closed loop of anti-commuting field we
again have to add a factor (−1).

Adding all contributions gives

ZA = 1 +
g2
s

8π2

(
5
3
T (A)− 4

3
T (R)

) (
1
ε

+ finite
)

+O(g4
s) . (73.10)
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We can insert Eq.(73.5), (73.9) and (73.10) into Eq.(73.2) and find

logαs,0 = log
Z2
g,q

Z2
qZA

+ ε log µ̃+ logαs + · · ·

=
g2
s

8π2ε

(
−2C(R)− 2T (A) + 2C(R)− 5

3
T (A) +

4
3
T (R)

)
+ ε log µ̃+ logαs + · · ·

=
αs
2πε

(
−11

3
T (A) +

4
3
T (R)

)
+ ε log µ̃+ logαs + · · · (73.11)

The dots stand for higher order corrections and finite terms. Starting from the condition that αs,0 should not depend
on the scale µ̃ we can use Eq.(66.9) with an additional square in the scale logarithm to compute the running of the
strong coupling constant

β ≡ dαs
d log µ̃2

=
α2
s

2
d

dαs

αs
2π

(
−11

3
T (A) +

4
3
T (R)

)
=
α2
s

4π

(
−11

3
T (A) +

4
3
T (R)

)
. (73.12)

In general, the beta function of the strong coupling constant is given by a series in αs, so in general we write

β =
α2
s

12π

∑
colored states

DjTj= −α2
s

∑
n=0

bnα
2
s , (73.13)

with Tj = T (R) = 1/2 for particles in the fundamental representation of SU(3) and Tj = T (A) = 3 for particles in
the adjoint representation. The factors Dj are -11 for a the gluon, +4 for a Dirac fermion or quark, +2 for a Majorana
fermion, +1 for a complex scalar, and +1/2 for a real scalar. In this form we can compute the running of αs in
essentially any renormalizable theory. For the Standard Model with six quarks we find

b0 =
1

4π

(
11− 6× 2

3

)
> 0 . (73.14)

The positive sign of b0 or the negative sign of β imply that the strong coupling decreases for larger energy scales or
smaller distances. Just like the φ3 theory in six dimensions, which we discussed in chapter 27, QCD is asymptotically
free.

Following our argument from chapter 27 we can use the beta function to relate the strong coupling at one energy scale
to the strong coupling at another energy scale. In Eq.(27.15) of these notes we solve the one-loop renormalization
group equation. For QED we have learned in Eq.(62.10) that we can resum photon self energy diagrams when they are
one-particle irreducible, so we find

αs(µ2
2) = αs(µ2

1)
(

1− αs b0 log
µ2

2

µ2
1

+O(α2
s)
)

→ αs(µ2
1)

1 + αs b0 log
µ2

2

µ2
1

+O(α2
s)
. (73.15)

Of course, to fixed order in perturbation theory the two expressions are identical. As long as µ2 > µ1 asymptotic
freedom b0 > 0 ensures that the strong coupling is well defined everywhere. On the other hand, towards small scales
µ2 < µ1 this is not true any longer. We can define a low-scale reference value µ2 = ΛQCD where the denominator of
Eq.(73.13) becomes zero. This is the Landau pole of the strong coupling. If we want to compute this pole it makes
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sense to identify the scale of the strong coupling in the denominator with µ1, so at one loop order we find

1 + αs(µ2
1) b0 log

Λ2
QCD

µ2
1

= 0 ⇔ log
Λ2

QCD

µ2
1

= − 1
αs(µ2

1)b0

αs(µ2
2) =

αs(µ2
1)

1 + αs(µ2
1) b0

(
log

µ2
2

Λ2
QCD

+ log
Λ2

QCD

µ2
1

)

=
αs(µ2

1)

αs(µ2
1) b0 log

µ2
2

Λ2
QCD

=
1

b0 log
µ2

2

Λ2
QCD

. (73.16)

This scheme can be generalized to any order in perturbative QCD and is not that different from the Thomson limit
renormalization scheme of QED, except that with the introduction of ΛQCD we are choosing a reference point which is
particularly hard to compute perturbatively. One thing that is interesting in the way we introduce ΛQCD is the fact that
we introduce a scale into our theory without ever setting it. All we did was renormalize a coupling which becomes
strong at large energies and search for the mass scale of this strong interaction. This trick is called dimensional
transmutation.
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Running couplings and resummation

In the last chapter we have introduced the running strong coupling, not really linked to physics. To interpret the effect
of a running coupling we look for an observable which depends on just one energy scale. One simple example which
includes αs at least in the one-loop corrections is the R parameter in QED and QCD

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc
∑

quarks

Q2
q =

11Nc
9

. (73.17)

The numerical value at leading order assumes five quarks. Including higher order corrections we can express the result
in a power series in the renormalized strong coupling αs. The only physical scale is the energy of the e+e− system p2.
The strong coupling we can in principle evaluate at any scale µ2. The parameter R has no mass dimension, so the
perturbative series in αs including all scale dependences reads

R

(
p2

µ2
, αs

)
=
∑
n=0

rn

(
p2

µ2

)
αns (µ2) r0 =

11Nc
9

. (73.18)

Because R is an observable it cannot depend on any artificial scale choices µ. Writing this dependence as a total
derivative and setting it to zero we find an equation which would be called a Callan-Symanzik equation if instead of
the running coupling we had included a running mass

0 !=
d

d logµ2
R

(
p2

µ2
, αs(µ2)

)
= µ2

[
∂

∂µ2
+
∂αs
∂µ2

∂

∂αs

]
R

(
p2

µ2
, αs

)
=
[
µ2 ∂

∂µ2
+ β

∂

∂αs

] ∑
n=0

rn

(
p2

µ2

)
αns for the two arguments of R(µ2, αs)

=
∑
n=1

µ2 ∂rn
∂µ2

αns +
∑
n=1

β rn nα
n−1
s with r0 =

11Nc
9

= const

= µ2
∑
n=1

∂rn
∂µ2

αns −
∑
n=1

∑
m=0

nrn α
n+m+1
s bm with β = −α2

s

∑
m=0

bmα
m
s

= µ2 ∂r1

∂µ2
αs +

(
µ2 ∂r2

∂µ2
− r1b0

)
α2
s +

(
µ2 ∂r3

∂µ2
− r1b1 − 2r2b0

)
α3
s +O(α4

s) . (73.19)

This series has to vanish in each order of perturbation theory. The non-trivial structure, namely the mix of rn
derivatives and the perturbative terms in the β function we can read off the α3

s term in Eq.(73.19): first, we have the
appropriate NNNLO corrections r3. Next, we have one loop in the gluon propagator b0 and two loops for example in
the vertex r2. And finally, we need the two-loop diagram for the gluon propagator b1 and a one-loop vertex correction
r1. The kind-of Callan-Symanzik equation Eq.(73.19) requires

∂r1

∂ logµ2
= 0

∂r2

∂ logµ2
= r1b0

∂r3

∂ logµ2
= r1b1 + 2r2b0

· · · (73.20)

There will be integration constants cn which are independent of µ2. Their p2 dependence has to cancel the mass units
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inside logµ2, so we find

r0 = c0 =
11Nc

9
r1 = c1

r2 = c2 + r1b0 log
µ2

p2
= c2 + c1b0 log

µ2

p2

r3 =
∫
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2
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(
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(
c2 + c1b0 log
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2
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)
b0

)
= c3 + (c1b1 + 2c2b0) log

µ2

p2
+ c1b

2
0 log2 µ

2

p2

· · · (73.21)

This chain of rn values looks like we should interpret the apparent fixed-order perturbative series for R in Eq.(73.18)
as a series which implicitly includes terms of to the order αs ×

(
αs logµ2/p2

)n−1
. They become problematic if we

evaluate the strong coupling at scales far away from the generic scale of R, i.e. logµ2/p2 & 1/αs ∼ 10,

Instead of the series in rn we can use the conditions in Eq.(73.21) to express R in terms of the cn and collect the
logarithms appearing with each cn. The geometric series we then resum to

R =
∑
n

rn

(
p2

µ2

)
αns (µ2) = c0 + c1

(
1 + αsb0 log

µ2

p2
+ α2

sb
2
0 log2 µ

2

p2
+ · · ·

)
αs(µ2)

+ c2

(
1 + 2αsb0 log

µ2

p2
+ · · ·

)
α2
s(µ

2) + · · ·

= c0 + c1
αs(µ2)

1− αsb0 log
µ2

p2

+ c2

 αs(µ2)

1− αsb0 log
µ2

p2


2

+ · · ·

≡
∑

cn α
n
s (p2) . (73.22)

In the last step we use what we know about the running coupling from Eq.(73.15). Note that in contrast to the rn
integration constants the cn are by definition independent of µ2/p2.
This re-organization of the perturbation series for R can be interpreted as re-summing all logarithms of the kind
logµ2/p2 and absorbing them into the running strong coupling, now evaluated at the scale p2. All scale dependence in
the dimensionless observable R is moved into αs. In Eq.(73.22) we also see that this series in cn will never lead to a
scale-invariant result when we include a finite order in perturbation theory.

Some higher-order factors cn are known, for example inserting Nc = 3 and five quark flavors just as we assume in
Eq.(73.17)

R =
11
3

(
1 +

αs
π

+ 1.4
(αs
π

)2

− 12
(αs
π

)3

+O
(αs
π

)4
)
. (73.23)

This alternating series with increasing perturbative prefactors seems to indicate the asymptotic instead of convergent
behavior of perturbative QCD. At the bottom mass scale the relevant coupling factor is only αs(m2

b)/π ∼ 1/14, so a
further increase of the cn would become dangerous. However, a detailed look into the calculation shows that the
dominant contributions to cn arise from the analytic continuation of logarithms, i.e. large finite terms for example
from Re(log2(−E2)) = log2E2 + π2. In the literature such π2 terms arising from the analytic continuation of loop
integrals are often phrased in terms of ζ2 = π2/6.
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