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Welcome to the 2008 TASI lectures on the exciting topic of ‘tools and technicalities’ (original title). Tech-
nically, LHC physics is really all about perturbative QCD in signals or backgrounds. Whenever we look for
interesting signatures at the LHC we get killed by QCD. Therefore, I will focus on QCD issues which arise for
example in Higgs searches or exotics searches at the LHC, and ways to tackle them nowadays. In the last section
you will find a few phenomenological discussions, for example on missing energy or helicity amplitudes.
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I. LHC PHENOMENOLOGY

When we think about signal or background processes at the LHC the first quantity we compute is the total number
of events we would expect at the LHC in a given time interval. This number of events is the product of the
hadronic (i.e. proton–proton) LHC luminosity measured in inverse femtobarns and the total production cross
section measured in femtobarns. A typical year of LHC running could deliver around 10 inverse femtobarns per
year in the first few years and three to ten times that later. People who build the actual collider do not use these
kinds of units, but for phenomenologists they work better than something involving seconds and square meters,
because what we typically need is a few interesting events corresponding to a few femtobarns of data. So here are
a few key numbers and their orders of magnitude for typical signals:

Nevents = σtot · L L = 10 · · · 300 fb−1 σtot = 1 · · · 104 fb (1)

Just in case my colleagues have not told you about it: there are two kinds of processes at the LHC. The first
involves all particles which we know and love, like old-fashioned electrons or slightly more modernW andZ
bosons or most recently top quarks. These processes we call backgroundsand find annoying. They are described
by QCD, which means QCD is the theory of the evil. Top quarks have an interesting history, because when I was a
graduate student they still belonged to the second class of processes, the signals. These typically involve particles
we have not seen before. Such states are unfortunately mostly produced in QCD processes as well, so QCD is not
entirely evil. If we see such signals, someone gets a call from Stockholm, shakes hands with the king of Sweden,
and the corresponding processes instantly turn into backgrounds.
The main problem at any collider is that signals are much morerare that background, so we have to dig our signal
events out of a much larger number of background events. Thisis what most of this lecture will be about. Just
to give you a rough idea, have a look at Fig. 1: at the LHC the production cross section for two bottom quarks
at the LHC is larger than105 nb or 1011 fb and the typical production cross section forW or Z boson ranges
around 200 nb or2 × 108 fb. Looking at signals, the production cross sections for a pair of 500 GeV gluinos is
4 × 104 fb and the Higgs production cross section can be as big as2 × 105 fb. When we want to extract such
signals out of comparably huge backgrounds we need to describe these backgrounds with an incredible precision.
Strictly speaking, this holds at least for those backgroundevents which populate the signal region in phase space.
Such background event will always exist, so any LHC measurement will always be a statistics exercise. The high
energy community has therefore agreed that we call a five sigma excess over the known backgrounds a signal:

S√
B

= Nσ > 5 (Gaussian limit)

Pfluct < 5.8 × 10−7 (fluctuation probability) (2)

Do not trust anybody who wants to sell you a three sigma evidence as a discovery, even I have seen a great number
of those go away. People often have good personal reasons to advertize such effects, but all they are really saying
is that their errors do not allow them to make a conclusive statement. This brings us to a well kept secret in
the phenomenology community, which is the important impactof error bars when we search for exciting new
physics. Since for theorists understanding LHC events and in particular background events means QCD, we need
to understand where our predictions come from and what they assume, so here we go...

II. QCD AND SCALES

Not all processes which involve QCD have to look incredibly complicated — let us start with a simple question:
we know how to compute the production rate and distributionsfor Z production for example at LEPe+e− → Z.
To make all phase space integrals simple, we assume that theZ boson is on-shell, so we can simply add a decay
matrix element and a decay phase space integration for example compute the processe+e− → Z → µ+µ−.
So here is the question: how do we compute the production of aZ boson at the LHC? This process is usually
referred to as Drell–Yan production, even though we will most likely produce neither Drell nor Yan at the LHC. In
our first attempts we explicitly do not care about additionaljets, so if we assume the proton consists of quarks and
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FIG. 1: Production rates for different signal and background processes at hadron colliders. The discontinuity is due to the
Tevatron being a proton–antiproton collider while the LHC is a proton–protoncollider. The two colliders correspond to the
x–axis values of 2 TeV and 14 TeV. Figure borrowed from CMS.

gluons we simply compute the processqq̄ → Z under the assumption that the quarks are partons inside protons.
Modulo theSU(2) andU(1) charges which describe theZff̄ coupling

−iγµ (ℓPL + rPR) ℓ =
e

swcw

(

T3 − Qs2
w

)

r = ℓ
∣

∣

∣

T3=0
(3)

the matrix element and the squared matrix element for the partonic processqq̄ → Z will be the same as the
corresponding matrix element squared fore+e− → Z, with an additional color factor. This color factor counts the
number ofSU(3) states which can be combined to form a color singlet like theZ. This additional factor should
come out of the color trace which is part of the Feynman rules,and it isNc. On the other hand, we do not observe
color in the initial state, and the color structure of the incomingqq̄ pair has no impact on theZ–production matrix
element, so we average over the color. This gives us another factor1/N2

c in the averaged matrix element (modulo
factors two)

|M|2(qq̄ → Z) ∼ 1

4Nc
m2

Z

(

ℓ2 + r2
)

. (4)

Notice that matrix elements we compute from our Feynman rules are not automatically numbers without a mass
unit. Next, we add the phase space for a one-particle final state. In four space–time dimensions (this will become
important later) we can compute a total cross section out of amatrix element squared as

s
dσ

dy
=

π

(4π)2
(1 − τ) |M|2

(5)
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The mass of the final state appears asτ = m2
Z/s and can of course bemW or the Higgs mass or the mass of a KK

graviton (I know you smart-asses in the back row!). If we defines as the partonic invariant mass of the two quarks
using the Mandelstam variables = (k2 + k2)

2 = 2(k1k2), momentum conservation just meanss = m2
Z . This

simple one-particle phase space has only one free parameter, the reduced polar angley = (1 + cos θ)/2 = 0 · · · 1.
The azimuthal angleφ plays no role at colliders, unless you want to compute gravitational effects on Higgs
production at Atlas and CMS. Any LHC Monte Carlo will either random-generate a reference angleφ for the
partonic process or pick one and keep it fixed. The second option has at least once lead to considerable confusion
and later amusement at the Tevatron, when people noticed that the behavior of gauge bosons was dominated by
gravity, namely gauge bosons going up or down. So this is not as trivial a statement as you might think. At
this point I remember that every teacher at every summer schools always feels the need to define their field of
phenomenology — for example: phenomenologists are theorists who do useful things and know funny stories
about experiment(alist)s.

Until now we have computed the same thing asZ production at LEP, leaving open the question how to describe
quarks inside the proton. For a proper discussion I refer to any good QCD textbook and in particular the chapter
on deep inelastic scattering. Instead, I will follow a pedagogical approach which will as fast as possible take us to
the questions we really want to discuss.
If for now we are happy assuming that quarks move collinear with the surrounding proton,i.e. that at the LHC
incoming partons have zeropT , we can simply write a probability distribution for finding aparton with a certain
fraction of the proton’s momentum. For a momentum fractionx = 0 · · · 1 this parton density function(pdf)
is denoted asfi(x), wherei describes the different partons in the proton, for our purposesu, d, c, s, g. All of
these partons we assume to be massless. We can talk about heavy bottoms in the proton if you ask me about
it later. Note that in contrast to structure functions a pdf is not an observable, it is simply a distribution in the
mathematical sense, which means it has to produce reasonably results when integrated over as an integration
kernel. These parton densities have very different behavior — for the valence quarks (uud) they peak somewhere
aroundx . 1/3, while the gluon pdf is small atx ∼ 1 and grows very rapidly towards smallx. For some typical
part of the relevant parameter space (x = 10−3 · · · 10−1) you can roughly think of it asfg(x) ∝ x−2, towardsx
values it becomes even steeper. This steep gluon distribution was initially not expected and means that for small
enoughx LHC processes will dominantly be gluon fusion processes.

Given the correct definition and normalization of the pdf we can compute the hadronic cross sectionfrom its
partonic counterpart as

σtot =

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1) fj(x2) σ̂ij(x1x2S) (6)

wherei, j are the incoming partons with the momentum factionsxi,j . The partonic energy of the scattering process
is s = x1x2S with the LHC proton energy

√
S = 14 TeV. The partonic cross section̂σ corresponds to the cross

sectionsσ we already discussed. It has to include all the necessaryΘ andδ functions for energy–momentum
conservation. When we express a generaln–particle cross section̂σ including the phase space integration, the
xi integrations and the phase space integrations can of coursebe swapped, but Jacobians will make your life hell
when you attempt to get them right. Luckily, there are very efficient numerical phase space generators on the
market which transform a hadronicn–particle phase space integration into a unit hypercube, sowe do not have to
worry in our every day life.

A. UV divergences and the renormalization scale

Renormalization,i.e. the proper treatment of ultraviolet divergences, is one of the most important aspects of field
theories; if you are not comfortable with it you might want toattend a lecture on field theory. The one aspect
of renormalization I would like to discuss is the appearanceof the renormalization scale. In perturbation theory,
scales arise from the regularization of infrared or ultraviolet divergences, as we can see writing down a simple
loop integral corresponding to two virtual massive scalarswith a momentump flowing through the diagram:

B(p2;m,m) ≡
∫

d4q

16π2

1

q2 − m2

1

(q + p)2 − m2
(7)
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Such diagrams appear for example in the gluon self energy, with massless scalars for ghosts, with some Dirac
trace in the numerator for quarks, and with massive scalars for supersymmetric scalar quarks. This integral is UV
divergent, so we have to regularize it, express the divergence in some well-defined manner, and get rid of it by
renormalization. One way is to introduce a cutoff into the momentum integralΛ, for example through the so-called
Pauli–Villars regularization. Because the UV behavior of the integrand cannot depend on IR-relevant parameters,
the UV divergence cannot involve the massm or the external momentump2. This means that its divergence has
to be proportional tolog Λ/µ2 with some scaleµ2 which is an artifact of the regularization of such a Feynman
diagram.
This question is easier to answer in the more modern dimensional regularization. There, we shift the power of the
momentum integration and use analytic continuation in the number of space–time dimensions to renormalize the
theory

∫

d4q

16π2
· · · −→ µ2ǫ

∫

d4−2ǫq

16π2
· · · =

iµ2ǫ

(4π)2

[

C−1

ǫ
+ C0 + C1 ǫ + O(ǫ2)

]

(8)

The constantsCi depend on the loop integral we are considering. The scaleµ we have to introduce to ensure the
matrix element and the observables, like cross sections, have the usual mass dimensions. To regularize the UV
divergence we pick anǫ > 0, giving us mathematically well-defined poles1/ǫ. If you compute the scalar loop
integrals you will see that defining them with the integration measure1/(iπ2) will make them come out as of the
orderO(1), in case you ever wondered about factors1/(4π)2 = π2/(2π)4 which usually end up in front of the
loop integrals.
The poles inǫ will cancel with the counter terms,i.e. we renormalize the theory. Counter terms we include by
shifting the renormalized parameter in the leading-order matrix element,e.g. |M|2(g) → |M|2(g + δg) with a
couplingδg ∝ 1/ǫ, when computing|MBorn + Mvirt|2. If we use a physical renormalization condition there
will not be any free scaleµ in the definition ofδg. As an example for a physical reference we can think of the
electromagnetic coupling or chargee, which is usually defined in the Thomson limit of vanishing momentum flow
through the diagram,i.e. p2 → 0. What is important about these counter terms is that they do not come with a
factorµ2ǫ in front.

So while after renormalization the poles1/ǫ cancel just fine, the scale factorµ2ǫ will not be matched between the
UV divergence and the counter term. We can keep track of it by writing a Taylor series inǫ for the prefactor of the
regularized but not yet renormalized integral:

µ2ǫ

[

C−1

ǫ
+ C0 + O(ǫ)

]

= e2ǫ log µ

[

C−1

ǫ
+ C0 + O(ǫ)

]

=
[

1 + 2ǫ log µ + O(ǫ2)
]

[

C−1

ǫ
+ C0 + O(ǫ)

]

=
C−1

ǫ
+ C0 + 2 log µC−1 + O(ǫ) (9)

We see that the poleC−1/ǫ gives a finite contribution to the cross section, involving the renormalization scale
µR ≡ µ.

Just a side remark for completeness: from eq.(9) we see that we should not have just pulled outµ2ǫ out of the
integral, because it leads to a logarithm of a number with a mass unit. On the other hand, from the way we split
the original integral we know that the remaining(4 − 2ǫ)-dimensional integral has to includes logarithms of the
kind log m2 or log p2 which re-combine with thelog µ2 for example to a properly definedlog µ/m. The only loop
integral which has no intrinsic mass scale is the two-point function with zero mass in the loop and zero momentum
flowing through the integral:B(p2 = 0; 0, 0). It appears for example as a self-energy correction of external quarks
and gluons. Based on these dimensional arguments this integral has to be zero, but with a subtle cancellation of
the UV and the IR divergences which we can schematically write as1/ǫIR − 1/ǫUV. Actually, I am thinking right
now if following this argument this integral has to be zero orif it can still be a number, like 2376123/67523, but it
definitely has to be finite... And it is zero if you compute it.

Instead of discussing different renormalization schemes and their scale dependences, let us instead compute a
simple renormalization scale dependent parameter, namelythe running strong couplingαs(µR). It does not appear
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in our Drell–Yan process at leading order, but it does not hurt to know how it appears in QCD calculations. The
simplest process we can look at is two-jet production at the LHC, where we remember that in some energy range
we will be gluon dominated:gg → qq̄. The Feynman diagrams include ans–channel off-shell gluon with a
momentum flowp2 ≡ s. At next-to-leading order, this gluon propagator will be corrected by self-energy loops,
where the gluon splits into two quarks or gluons and re-combines before it produces the two final-state partons.
The gluon self energy correction (or vacuum polarization, as propagator corrections to gauge bosons are often
labelled) will be a scalar,i.e. fermion loops will be closed and the Dirac trace is closed inside the loop. In color
space the self energy will (hopefully) be diagonal, just like the gluon propagator itself, so we can ignore the color
indices for now. In Minkowski space the gluon propagator in unitary gauge is proportional to the transverse tensor
Tµν = gµν − pνpµ/p2. The same is true for the gluon self energy, which we write asΠµν ≡ ΠTµν . The one
useful thing to remember is the simple relationTµνT ρ

ν = Tµρ andTµνgρ
ν = Tµρ. Including the gluon, quark, and

ghost loops the regularized gluon self energy with a momentum flow p2 reads

1

p2
Π

(

µ2
R

p2

)

=
αs

4π

(

−1

ǫ
− log

µ2
R

p2

) (

13

6
Nc −

2

3
nf

)

+ O(log m2
t )

−→ αs

4π

(

−1

ǫ
− log

µ2
R

p2

)

βg + O(log m2
t )

with βg =
11

3
Nc −

2

3
nf . (10)

In the second step we have sneaked in additional contributions to the renormalization of the strong coupling
from the other one-loop diagrams in the process. The number of fermions coupling to the gluons isnf . We
neglect the additional termslog(4π) andlog γE which come with the poles in dimensional regularization. From
the comments on the functionB(p2; 0, 0) before we could have guessed that the loop integrals will only give a
logarithmlog p2 which then combines with the scale logarithmlog µ2

R. The finite top mass actually leads to an
additional logarithms which we omit for now — this zero-masslimit of our field theory is actually special and
referred to as its conformal limit.
Lacking a well-enough motivated reference point (in the Thomson limit the strong coupling is divergent, which
means QCD is confined towards large distances and asymptotically free at small distances) we are tempted to
renormalizeαs by also absorbing the scale into the counter term, which is called theMS scheme. It gives us a
running couplingαs(p). In other words, for a given momentum transferp2 we cancel the UV pole and at the same
time shift the strong coupling, after including all relative (−) signs, by

αs −→ αs(µ
2
R)

(

1 − 1

p2
Π

(

µ2
R

p2

))

= αs(µ
2
R)

(

1 − αs

4π
βg log

p2

µ2
R

)

. (11)

We can do even better: the problem with the correction toαs is that while it is perturbatively suppressed by
the usual factorαs/(4π) it includes a logarithm which does not need to be small. Instead of simply including
these gluon self-energy corrections at a given order in perturbation theory we can instead include all chains with
Π appearing many times in the off-shell gluon propagator. Such a series means we replace the off-shell gluon
propagator by (schematically written)

Tµν

p2
−→Tµν

p2
+

(

T

p2
· (−T Π) · T

p2

)µν

+

(

T

p2
· (−T Π) · T

p2
· (−T Π) · T

p2

)µν

+ · · ·

=
Tµν

p2

∞
∑

j=0

(

− Π

p2

)j

=
Tµν

p2

1

1 + Π/p2
(12)

To avoid indices we abbreviateTµνT ρ
ν = T · T which can be simplified using(T · T · T )µν = TµρT σ

ρ T ν
σ = Tµν .

This re-summation of the logarithm which occurs in the next-to-leading order corrections toαs moves the finite
shift in αs shown in eq.(11) into the denominator:

αs −→ αs(µ
2
R)

(

1 +
αs

4π
βg log

p2

µ2
R

)−1

(13)



7

If we interpret the renormalization scaleµR as one reference pointp0 andp as another, we can relate the values of
αs between two reference points with a renormalization group equation(RGE) which evolves physical parameters
from one scale to another:

αs(p
2) = αs(p

2
0)

(

1 +
αs(p

2
0)

4π
βg log

p2

p2
0

)−1

1

αs(p2)
=

1

αs(p2
0)

(

1 +
αs(p

2
0)

4π
βg log

p2

p2
0

)

=
1

αs(p2
0)

+
1

4π
βg log

p2

p2
0

(14)

The factorαs inside the parentheses can be evaluated at any of the two scales, the difference is going to be a
higher-order effect. The interpretation ofβg is now obvious: when we differentiate the shiftedαs(p

2) with respect
to the momentum transferp2 we find:

1

αs

dαs

d log p2
= −αs

4π
βg or

1

gs

dgs

d log p
= −αs

4π
βg = −g2

sβg (15)

This is the famous running of the strong coupling constant!

Before we move on, let us collect the logic of the argument given in this section: when we regularize an UV
divergence we automatically introduce a reference scale. Naively, this could be a UV cutoff scale, but even
the seemingly scale invariant dimensional regularizationcannot avoid the introduction of a scale, even in the
conformal limit of our theory. There are several ways of dealing with such a scale: first, we can renormalize our
parameter at a reference point. Secondly, we can define a running parameter,i.e. absorb the scale logarithm into
theMS counter term. This way, at each order in perturbation theorywe can translate values for example of the
strong coupling from one momentum scale to another momentumscale. If we are lucky, we can re-sum these
logarithms to all orders in perturbation theory, which gives us more precise perturbative predictions even in the
presence of large logarithms,i.e. large scale differences for our renormalized parameters. Such a (re–) summation
is linked with the definition of scale dependent parameters.

B. IR divergences and the factorization scale

After this brief excursion into renormalization and UV divergences we can return to the original example, the
Drell–Yan process at the LHC. In our last attempt we wrote down the hadronic cross sections in terms of parton
distributions at leading order. These pdfs are only functions of the (collinear) momentum fraction of the partons
in the proton.
The perturbative question we need to ask for this process is:what happens if we radiate additional jets
which for one reason or another we do not observe in the detector. Throughout this writeup I will use the
terms jets and final state partonssynonymously, which is not really correct once we include jet algorithms and
hadronization. On the other hand, in most cases a jet algorithms is designed to take us from some kind of en-
ergy deposition in the calorimeter to the parton radiated inthe hard process. This is particularly true for modern
developments like the so-called matrix element method to measure the top mass. Recently, people have looked
into the question what kind of jets come from very fast collimatedW or top decays and how such fat jets could
be identified looking into the details of the jet algorithm. But let’s face it, you can try to do such analyses after
you really understand the QCD of hard processes, and you should not trust such analyses unless they come from
groups which know a whole lot of QCD and preferable involve experimentalists who know their calorimeters very
well.

So let us get back to the radiation of additional partons in the Drell–Yan process. These can for example be gluons
radiated from the incoming quarks. This means we can start bycompute the cross section for the partonic process
qq̄ → Zg. However, this partonic process involves renormalizationas well as an avalanche of loop diagrams
which have to be included before we can say anything reasonable, i.e. UV and IR finite. Instead, we can look at
the crossed processqg → Zq, which should behave similarly as a2 → 2 process, except that it has a different
incoming state than the leading-order Drell–Yan process and hence no virtual corrections. This means we do not
have to deal with renormalization and UV divergences and canconcentrate on parton or jet radiation from the
initial state.
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The amplitude for this2 → 2 process is — modulo the charges and averaging factors, but including all Mandelstam
variables

|M|2 ∝ 8

[

− t

s
− s

t
+

2m2
Z(s + t − m2

Z)

st

]

(16)

The new Mandelstam variables can be expressed in terms of therescaled gluon-emission angley = (1 + cos θ)/2
ast = −s(1 − τ)y andu = −s(1 − τ)(1 − y). As a sanity check we can confirm thatt + u = −s + m2

Z . The
collinear limit when the gluon is radiated in the beam direction is given byy → 0, which corresponds tot → 0
with finite u = −s + m2

Z . In that case the matrix element becomes

|M|2 ∼ 8

[

s2 − 2sm2
Z + 2m4

Z

s(s − m2
Z)

1

y
− 2m2

Z

s
+ O(y)

]

(17)

This expression is divergent for collinear gluon radiation, i.e. for small anglesy. We can translate this1/y
divergence for example into the transverse momentum of the gluon orZ according to

sp2
T = tu = s2(1 − τ)2 y(1 − y) = (s − m2

Z)2y + O(y2) (18)

In the collinear limit our matrix element squared then becomes

|M|2 ∼ 8

[

s2 − 2sm2
Z + 2m4

Z

s2

(s − m2
Z)

p2
T

+ O(p0
T )

]

. (19)

The matrix element for the tree-level processqg → Zq diverges like1/p2
T . To compute the total cross section for

this process we need to integrate it over the two-particle phase space. Without deriving this result we quote that
this integration can be written in the transverse momentum of the outgoing particles, in which case the Jacobian
for this integration introduces a factorpT . Approximating the matrix element asC/p2

T , we have to integrate

∫ ymax

ymin

dy
C

y
=

∫ pmax

T

pmin

T

dp2
T

C

p2
T

= 2

∫ pmax

T

pmin

T

dpT pT
C

p2
T

≃ 2C

∫ pmax

T

pmin

T

dpT
1

pT
= 2C log

pmax
T

pmin
T

(20)

The formC/p2
T for the matrix element is of course only valid in the collinear limit; in the remaining phase space

C is not a constant. However, this formula describes well the collinear IR divergence arising from gluon radiation
at the LHC (or photon radiation ate+e− colliders, for that matter).

We can follow the same strategy as for the UV divergence. First, we regularize the divergence using dimensional
regularization, and then we find a well-defined way to get rid of it. Dimensional regularization now means we
have to write the two-particle phase space inn = 4−2ǫ dimensions. Just for the fun, here is the complete formula
in terms ofy:

s
dσ

dy
=

π(4π)−2+ǫ

Γ(1 − ǫ)

(

µ2

m2
Z

)ǫ
τ ǫ(1 − τ)1−2ǫ

yǫ(1 − y)ǫ
|M|2 ∼

(

µ2

m2
Z

)ǫ |M|2
yǫ(1 − y)ǫ

. (21)

In the second step we only keep the factors we are interested in. The additional factory−ǫ regularizes the integral
at y → 0, as long asǫ < 0, which just slightly increases the suppression of the integrand in the IR regime. After
integrating the leading term1/y1+ǫ we have a pole1/(−ǫ). Obviously, this regularization procedure is symmetric
in y ↔ (1−y). What is important to notice is again the appearance of a scaleµ2ǫ with then-dimensional integral.
This scale arises from the IR regularization of the phase space integral and is referred to as factorization scaleµF .

From our argument we can safely guess that the same divergence which we encounter for the processqg → Zq
will also appear in the crossed processqq̄ → Zg, after cancelling additional soft IR divergences between virtual
and real gluon emission diagrams. We can write all these collinear divergences in a universal form, which is
independent of the hard process (like Drell–Yan production). In the collinear limit, the probabilities of radiating
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αs

αs

αs

1/pT

1/pT

1/pT

FIG. 2: Feynman diagrams for the repeated emission of a gluon from theincoming leg of a Drell–Yan process. The labels
indicate the appearance ofαs as well as the leading divergence of the phase space integration.

additional partons or splitting into additional partons isgiven by universal splitting functions, which govern the
collinear behavior of the parton-radiation cross section:

1

σtot
dσ ∼ αs

2π

dy

y
dx Pj(x) =

αs

2π

dp2
T

p2
T

dx Pj(x) (22)

The momentum fraction which the incoming parton transfers to the parton entering the hard process is given by
x. The rescaled angley is one way to integrate over the transverse-momentum space.The splitting kernels are
different for different partons involved:

Pq←q(x) = CF
1 + x2

1 − x
Pg←q(x) = CF

1 + (1 − x)2

x

Pq←g(x) = TR

(

x2 + (1 − x)2
)

Pg←g(x) = CA

(

x

1 − x
+

1 − x

x
+ x(1 − x)

)

(23)

The underlying QCD vertices in these four collinear splittings are theqqg andggg vertices. This means that a
gluon can split independently into a pair of quarks and a pairof gluons. A quark can only radiate a gluon, which
impliesPq←q(1−x) = Pg←q(x), depending on which of the two final state partons we are interested in. For these
formulas we have sneaked in the Casimir factors ofSU(N), which allow us to generalize our approach beyond
QCD. For practical purposes we can insert the SU(3) valuesCF = (N2

c − 1)/(2Nc) = 4/3, CA = Nc = 3
andTR = 1/2. Once more looking at the different splitting kernels we seethat in the soft-daughter limitx → 0
the daughter quarksPq←q andPq←g are well defined, while the gluon daughtersPg←q andPg←g are infrared
divergent.

What we need for our partonic subprocessqg → Zq is the splitting of a gluon into two quarks, one of which then
enters the hard Drell–Yan process. In the collinear limitthis splitting is described byPq←g. We explicitly see that
there is no additional soft singularity for vanishing quarkenergy, only the collinear singularity iny or pT . This is
good news, since in the absence of virtual corrections we would have no idea how to get rid of or cancel this soft
divergence.

If we for example consider repeated collinear gluon emission off an incoming quark leg, we naively get a correction
suppressed by powers ofαs, because of the strong coupling of the gluon. Such a chain of gluon emissions is
illustrated in Fig. 2. On the other hand, they integration over each new final state gluon combined with the1/y or
1/pT divergence in the matrix element squared leads to a possiblylarge logarithm which can be easiest written in
terms of the upper and lower boundary of thepT integration. This means, at higher orders we expect corrections
of the form

σtot ∼
∑

j

Cj

(

αs log
pmax

T

pmin
T

)j

(24)
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with some factorsCj . Because the splitting probability is universal, these fixed-order corrections can be re-
summed to all orders, just like the gluon self energy. You notice how successful perturbation theory becomes
every time we encounter a geometric series? And again, in complete analogy with the gluon self energy, this
universal factor can be absorbed into another quantity, which are the parton densities.

However, there are three important differences to the running coupling:
First, we are now absorbing IR divergences into running parton densities. We are not renormalizing them, because
renormalization is a well-defined procedure to absorb UV divergences into a redefined Lagrangian.
Secondly, the quarks and gluons split into each other, whichmeans that the parton densities will form a set of
coupled differential equations which describe their running instead of a simple differential equation with a beta
function.
And third, the splitting kernels are not just functions to multiply the parton densities, but they are integration
kernels, so we end up with a coupled set of integro-differential equations which describe the parton densities as a
function of the factorization scale. These equation are called the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi or
DGLAP equations

dfi(x, µF )

d log µ2
F

=
αs

2π

∑

j

∫ 1

x

dx′

x′
Pi←j

( x

x′

)

fj(x
′, µF ) . (25)

We can discuss this formula briefly: to compute the scale dependence of a parton densityfi we have to consider
all partonsj which can split intoi. For each splitting process, we have to integrate over all momentum fractions
x′ which can lead to a momentum fractionx after splitting, which means we have to integratez from x to 1. The
relative momentum fraction in the splitting is thenx/z < 1.
The DGLAP equation by construction resums collinear logarithms. There is another class of logarithms which
can potentially become large, namely soft logarithmslog x, corresponding to the soft divergence of the diagonal
splitting kernels. This reflects the fact that if you have forexample a charged particle propagating there are
two ways to radiate photons without any cost in probability,either collinear photons or soft photons. We know
from QED that both of these effects lead to finite survival probabilities once we sum up these collinear and soft
logarithms. Unfortunately, or fortunately, we have not seen any experimental evidence of these soft logarithms
dominating the parton densities yet, so we can for now stick to DGLAP.
Going back to our original problem, we can now write the hadronic cross section production for Drell–Yan pro-
duction or other LHC processes as:

σtot(µF , µR) =

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1, µF ) fj(x2, µF ) σ̂ij(x1x2S, µR) (26)

Since our particular Drell–Yan process at leading order only involves weak couplings, it does not includeαs at
leading order. We will only seeαs and with it a renormalization scaleµR appear at next-to-leading order, when
we include an additional final state parton.

After this derivation, we can attempt a physical interpretation of the factorization scale. The collinear divergence
we encounter for example in theqg → Zq process is absorbed into the parton densities using the universal
collinear splitting kernels. In other words, as long as thepT distribution of the matrix element follows eq.(20),
the radiation of any number of additional partons from the incoming partons is now included. These additional
partons or jets we obviously cannot veto without getting into perturbative hell with QCD. This is why we should
really writepp → Z + X when talking about factorization-scale dependent parton densities as defined in eq.(26).

If we look at thedσ/dpT distribution of additional partons we can divide the entirephase space into two regions.
The collinear region is defined by the leading1/pT behavior. At some point thepT distribution will then start
decreasing faster, for example because of phase space limitations. The transition scale should roughly be the
factorization scale. In the DGLAP evolution we approximateall parton radiation as being collinear with the
hadron,i.e. move them from the regionpT < µF onto the pointpT = 0. This kind ofpT spectrum can be nicely
studied using bottom parton densities. They have the advantage that there is no intrinsic bottom content in the
proton. Instead, all bottoms have to arise from gluon splitting, which we can compute using perturbative QCD.
If we actually compute the bottom parton densities, the factorization scale is not an unphysical free parameter,
but it should at least roughly come out of the calculation of the bottom parton densities. So we can for example
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compute the bottom-induced processbb̄ → H including resummed collinear logarithms using bottom densities or
derive it from the fixed-order processgg → bb̄H. When comparing thepT,b spectra it turns out that the bottom
factorization scale is indeed proportional to the Higgs mass (or hard scale), but including a relative factor of the
order1/4. If we naively useµF = mH we will create an inconsistency in the definition of the bottom parton
densities which leads to large higher-order corrections.
Going back to thepT spectrum of radiated partons or jets — when the transverse momentum of an additional
parton becomes large enough that the matrix element does notbehave like eq.(20) anymore, this parton is not
well described by the collinear parton densities. We shoulddefinitely chooseµF such that this high-pT range is
not governed by the DGLAP equation. We actually have to compute the hard and now finite matrix elements for
pp → Z+jets to predict the behavior of these jets. How to combine collinear jets as they are included in the parton
densities and hard partonic jets is what the rest of this lecture will be about.

C. Right or wrong scales

Looking back at the last two sections we introduce the factorization and renormalization scales completely in
parallel. First, computing perturbative higher-order contributions to scattering amplitudes we encounter diver-
gences. Both of them we regularize, for example using dimensional regularization (remember that we had to
choosen = 4−2ǫ < 4 for UV andn > 4 for IR divergences). After absorbing the divergences into are-definition
of the respective parameters, referred to as renormalization for example of the strong coupling in the case of an
UV divergence and as mass factorization absorbing IR divergences into the parton distributions we are left with a
scale artifact. In both cases, this redefinition was not perturbative at fixed order, but involved summing possibly
large logarithms. The evolution of these parameters from one renormalization/factorization scale to another is
described either by a simple beta function in the case of renormalization and by the DGLAP equation in the case
of mass factorization. There is one formal difference between these two otherwise very similar approaches. The
fact that we can actually absorb UV divergences into process-independent universal counter terms is called renor-
malizability and has been proven to all orders for the kind ofgauge theories we are dealing with. The universality
of IR splitting kernels has not (yet) in general been proven,but on the other hand we have never seen an example
where is failed. Actually, for a while we thought there mightbe a problem with factorization in supersymmetric
theories using the supersymmetric version of theMS scheme, but this has since been resolved. A comparison of
the two relevant scales for LHC physics is shown in Tab. I

The way I introduced factorization and renormalization scales clearly describes an artifact of perturbation theory
and the way we have to treat divergences. What actually happens if we include all orders in perturbation theory?
In that case for example the resummation of the self-energy bubbles is simply one class of diagrams which have to
be included, either order-by-order or rearranged into a resummation. For example the two jet production rate will
then not depend on arbitrarily chosen renormalization or factorization scalesµ. Within the expression for the cross
section, though, we know from the arguments above that we have to evaluate renormalized parameters at some
scale. This scale dependence will cancel once we put together all its implicit and explicit appearances contributing
to the total rate at all orders. In other words, whatever scale we evaluate the strong couplings at gets compensated

renormalization scaleµR factorization scaleµF

source ultraviolet divergence collinear (infrared) divergence

poles cancelledcounter terms parton densities
(renormalization) (mass factorization)

summation resum self energy bubblesresum collinear logarithms
parameter running couplingαs(µR) parton densityfj(x, µF )
evolution RGE forαs DGLAP equation

large scales typically decrease ofσtot typically increase ofσtot

theory renormalizability factorization
proven for gauge theoriesproven all order for DIS

proven order-by-order DY...

TABLE I: Comparison of renormalization and factorization scales appearing in LHC cross sections.
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by other scale logarithms in the complete expression. In theideal case, these logarithms are small and do not spoil
perturbation theory by inducing large logarithms. If we think of a process with one distinct external scale, like the
Z mass, we know that all these logarithms have the formlog µ/mZ . This logarithm is truly an artifact, because it
would not need to appear if we evaluated everything at the ‘correct’ external energy scale of the process, namely
mZ . In that sense we can even think of the running coupling as an running observable, which depends on the
external energy of the process. This energy scale is not a perturbative artifact, but the cross section even to all
orders really depends on the external energy scale. The onlyproblem is that most processes after analysis cuts
have more than one scale.

We can turn this argument around and estimate the minimum theory erroron a prediction of a cross section to
be given by the scale dependence in an interval around what wewould consider a reasonable scale. Notice that
this error estimate is not at all conservative; for example the renormalization scale dependence of the Drell–Yan
production rate is zero, becauseαs only enters are next-to-leading order. At the same time we know that the
next-to-leading order correction to the cross section at the LHC is of the order of 30%, which far exceeds the
factorization scale dependence.

Guessing the right scale choice for a process is also hard. For example in leading-order Drell–Yan production
there is one scale,mZ , so any scale logarithm (as described above) has to belog µ/mZ . If we setµ = mZ all
scale logarithms will vanish. In reality, any observable atthe LHC will include several different scales, which do
not allow us to just define just one ‘correct’ scale. On the other hand, there are definitely completely wrong scale
choices. For example, using1000 × mZ as a typical scale in the Drell–Yan process will if nothing else lead to
logarithms of the sizelog 1000 whenever a scale logarithm appears. These logarithms have to be cancelled to all
orders in perturbation theory, introducing unreasonably large higher-order corrections.
When describing jet radiation, people usually introduce a phase-space dependent renormalization scale, evaluating
αs(pT,j). This choice gives the best kinematic distributions for theadditional partons, but to compute a cross
section it is the one scale choice which is forbidden by QCD and factorization: scales can only depend on exclusive
observables,i.e. momenta which are given after integrating over the phase space. For the Drell–Yan process such
a scale could bemZ , or the mass of heavy new-physics states in their productionprocess. Otherwise we double-
count logarithms and spoil the collinear resummation. But as long as we are mostly concerned with distributions,
we even use the transverse-momentum scale very successfully. To summarize this brief mess: while there is no
such thing as the correct scale choice, there are more or lesssmart choices, and there are definitely very wrong
choices, which lead to an unstable perturbative behavior.

Of course, these sections on divergences and scales cannot do the topic justice. They fall short left and right,
hardly any of the factors are correct (they are not that important either), and I am omitting any formal derivation
of this resummation technique for the parton densities. On the other hand, we can derive some general message
from them: because we compute cross sections in perturbation theory, the absorption of ubiquitous UV and IR
divergences automatically lead to the appearance of scales. These scales are actually useful because running
parameters allow us to resum logarithms in perturbation theory, or in other words allow us to compute certain
dominant effects to all orders in perturbation theory, in spite of only computing the hard processes at a given loop
order. This means that any LHC observable we compute will depend on the factorization and renormalization
scales, and we have to learn how to either get rid of the scale dependence by having the Germans compute
higher and higher loop orders, or use the Californian/Italian approach to derive useful scale choices in a relaxed
atmosphere, to make use of the resummed precision of our calculation.

III. HARD VS COLLINEAR JETS

Jets are a major problem we are facing at the Tevatron and willbe the most dangerous problem at the LHC. Let’s
face it, the LHC is not built do study QCD effects. To the contrary, if we wanted to study QCD, the Tevatron with
its lower luminosity would be the better place to do so. Jets at the LHC by themselves are not interesting, they are
a nuisance and they are the most serious threat to the successof the LHC program.
The main difference between QCD at the Tevatron and QCD at theLHC is the energy scale of the jets we en-
counter. Collinear jetsor jets with a small transverse momentum, are well describedby partons in the collinear
approximation and simulated by a parton shower. This parton shower is the attempt to undo the approximation
pT → 0 we need to make when we absorb collinear radiation in parton distributions using the DGLAP equation.
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Strictly speaking, the parton shower can and should only fillthe phase space regionpT = 0...µF which is not
covered by explicit additional parton radiation. Such so-called hard jetsor jets with a large transverse momentum
are described by hard matrix elements which we can compute using the QCD Feynman rules. Because of the
logarithmic enhancement we have observed for collinear additional partons, there are much more collinear and
soft jets than hard jets.

The problem at the LHC is the range of ‘soft’ or ‘collinear’ and ‘hard’. As mentioned above, we can define these
terms by the validity of the collinear approximation in eq.(20). The maximumpT of a collinear jet is the region for
which the jet radiation cross section behaves like1/pT . We know that for harder and harder jets we will at some
point become limited by the partonic energy available at theLHC, which means thepT distribution of additional
jets will start dropping faster than1/pT . At this point the logarithmic enhancement will cease to exist, and jets
will be described by the regular matrix element squared without any resummation.
Quarks and gluons produced in association with gauge bosonsat the Tevatron behave like collinear jets forpT .
20 GeV, because the quarks at the Tevatron are limited in energy. At the LHC, jets produced in association with
tops behave like collinear jets topT ∼ 150 GeV, jets produced with 500 GeV gluinos behave like collinear jets
to pT scales larger than 300 GeV. This is not good news, because collinear jets means many jets, and many jets
produce combinatorical backgroundsor ruin the missing momentum resolution of the detector. Maybe I should
sketch the notion of combinatorical backgrounds: if you arelooking for example for two jets to reconstruct an
invariant mass you can simply plot all events as a function ofthis invariant mass and cut the background by
requiring all event to sit around a peak inmjj . However, if you have for example three jets in the event you have
to decide which of the three jet-jet combinations should go into this distribution. If this seems not possible, you
can alternatively consider two of the three combinations asuncorrelated ‘background’ events. In other words, you
make three histogram entries out of your signal or background event and consider all background events plus two
of the three signal combinations as background. This way thesignal-to-background ratio decreases fromNS/NB

to NS/(3NB + 2NS), i.e. by at least a factor of three. You can guess that picking two particles out of four
candidates with its six combinations has great potential tomake your analysis a candidate for this circular folder
under your desk. The most famous victim of such combinatorics might be the formerly promising Higgs discovery
channelpp → tt̄H with H → bb̄.

All this means for theorists that at the LHC we have to learn how to model collinear and hard jets reliably. This is
what the remainder of the QCD lectures will be about. Achieving this understanding I consider the most important
development in QCD since I started working on physics. Discussing the different approaches we will see why such
general–pT jets are hard to understand and even harder to properly simulate.

A. Sudakov factors

Before we discuss any physics it makes sense to introduce theso-called Sudakov factors which will appear in the
next sections. This technical term is used by QCD experts to ensure that other LHC physicists feel inferior and
do not get on their nerves. But, really, Sudakov factors are nothing but simple survival probabilities. Let us start
with an event which we would expect to occurp times, given its probability and given the number of shots. The
probability of observing itn times is given by the Poisson distribution

P(n; p) =
pn e−p

n!
. (27)

This distribution will develop a mean atp, which means most of the time we will indeed see about the expected
number of events. For large numbers it will become a Gaussian. In the opposite direction, using this distribution
we can compute the probability of observing zero events, which isP(0; p) = e−p. This formula comes in handy
when we want to know how likely it is that we do not see a parton splitting in a certain energy range.

According to the last section, the differential probability of a parton to split or emit another parton at a scaleµ
and with the daughter’s momentum fractionx is given by the splitting kernelPi←j(x) timesdp2

T /p2
T . This energy

measure is a little tricky because we compute the splitting kernels in the collinear approximation, sop2
T is the

most inconvenient observable to use. We can approximately replace the transverse momentum by the virtuality
Q, to get to the standard parameterization of parton splitting — I know I am just waving my hands at this stage,
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to understand the more fundamental role of the virtuality wewould have to look into deep inelastic scattering
and factorization. In terms of the virtuality, the splitting of one parton into two is given by the splitting kernel
integrated over the proper range in the momentum fractionx

dP(x) =
αs

2π

dq2

q2

∫

dx P (x)

P(Qmin, Qmax) =
αs

2π

∫ Qmax

Qmin

dq2

q2

∫ xmax

xmin

dx P (x) (28)

The splitting kernel we symbolically write asP (x), avoiding indices and the sum over partons appearing in the
DGLAP equation eq.(25). The boundariesxmin andxmax we can compute for example in terms of an over-all
minimum valueQ0 and the actual valuesq, so we drop them for now. Strictly speaking, the double integral over
x andq2 can lead to two overlapping IR divergences or logarithms, a soft logarithm arising from thex integration
(which we will not discuss further) and the collinear logarithm arising from the virtuality integral. This is the
logarithm we are interested in when talking about the partonshower.
In the expression above we compute the probability that a parton will split into another parton while moving from
a virtualityQmax down toQmin. This probability is given by QCD, as described earlier. Using it, we can ask what
the probability is that we will not see a parton splitting from a parton starting at fixedQmax to a variable scaleQ,
which is precisely the Sudakov factor

∆(Q,Qmax) = e−P(Q,Qmax)

= exp

[

−αs

2π

∫ Qmax

Q

dq2

q2

∫ xmax

xmin

dx P (x)

]

∼ e−αs log2 Qmax/Q (29)

The last line omits all kinds of factors, but correctly identifies the logarithms involved, namelyαn
s log2n Qmax/Q.

B. Jet algorithm

Before discussing methods to describe jets at the LHC we should introduce one way to define jets in a detector,
namely thekT jet algorithm. Imagine we observe a large number of energy depositions in the calorimeter in the
detector which we would like to combine into jets. We know that they come from a smaller number of partons
which originate in the hard QCD process and which since have undergone a sizeable number of splittings. Can we
try to reconstruct partons?
The answer is yes, in the sense that we can combine a large number of jets into smaller numbers, where unfortu-
nately nothing tells us what the final number of jets should be. This makes sense, because in QCD we can produce
an arbitrary number of hard jets in a hard matrix element and another arbitrary number via collinear radiation.
The main difference between a hard jet and a jet from parton splitting is that the latter will have a partner which
originated from the same soft or collinear splitting.

The basic idea of thekT algorithm is to ask if a given jet has a soft or collinear partner. For this we have to define
a collinearity measure, which will be something like the transverse momentum of one jet with respect to another
oneyij ∼ kT,ij . If one of the two jets is the beam direction, this measure simply becomesyiB ∼ kT,i. We define
two jets as collinear, ifyij < ycut whereycut we have to give to the algorithm. The jet algorithm is simple:

(1) for all final state jets find minimumymin = minij(yij , yiB)

(2a) if ymin = yij < ycut merge jetsi andj, go back to (1)

(2b) if ymin = yiB < ycut remove jeti, go back to (1)

(2c) if ymin > ycut keep all jets, done

The result of the algorithm will of course depend on the resolution ycut. Alternatively, we can just give the
algorithm the minimum number of jets and stop there. The onlyquestion is what ‘combine jets’ means in terms of
the 4-momentum of the new jet. The simplest thing would be to just combine the momentum vectorski+kj → ki,
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but we can still either combine the 3-momenta and give the newjet a zero invariant mass (which assumes it indeed
was one parton) or we can add the 4-momenta and get a jet mass (which means they can come from aZ, for
example). But these are details for most new-physics searches at the LHC. At this stage we run into a language
issue: what do we really call a jet? I am avoiding this issue bysaying that jet algorithms definitely start from
calorimeter towers and not jets and then move more and more towards jets, where likely the last iterations could
be described by combining jets into new jets.

From the QCD discussion above it is obvious why theorists prefer akT algorithm over for other algorithms which
define the distance between two jets in a more geometric manner: a jet algorithm combines the complicated energy
deposition in the hadronic calorimeter, and we know that theshowering probability or theoretically speaking the
collinear splitting probability is best described in termsof virtuality or transverse momentum. A transverse-
momentum distance between jets is from a theory point of viewbest suited to combine the right jets into the
original parton from the hard interaction. Moreover, thiskT measure is intrinsically infrared safe, which means
the radiation of an additional soft parton cannot affect theglobal structure of the reconstructed jets. For other
algorithms we have to ensure this property explicitly, and you can find examples for this in QCD lectures by Mike
Seymour.
One problem of thekT algorithm is that noise and the underlying event can easiestbe understood geometrically
in the4π detector. Basically, the low-energy jet activity is constant all over the detector, so the easiest thing to
do is just subtract it from each event. How much energy deposit we have to subtract from a reconstructed jet
depends on the actual area the jet covers in the detector. Therefore, it is a major step for thekT algorithm that it
can indeed compute an IR–safe geometric size of the jet. Evenmore, if this size is considerably smaller than the
usual geometric measures, thekT algorithm should at the end of the day turn out to be the best jet algorithm at the
LHC.

IV. JET MERGING

So how does a traditional Monte Carlo treat the radiation of jets into the final state? It needs to reverse the sum-
mation of collinear jets done by the DGLAP equation, becausejet radiation is not strictly collinear and does hit
the detector. In other words, it computes probabilities forradiating collinear jets from other jets and simulates this
radiation. Because it was the only thing we knew, Monte Carlos used to do this in the collinear approximation.
However, from the brief introduction we know that at the LHC we should generally not use the collinear approxi-
mation, which is one of the reason why at the LHC we will use all-new Monte Carlos. Two ways how they work
we will discuss here.

Apart from the collinear approximation for jet radiation, asecond problem with Monte Carlo simulation is that
they ‘only do shapes’. In other words, the normalization of the event sample will always be perturbatively poorly
defined. The simple reason is that collinear jet radiation starts from a hard process and its production cross section
and from then on works with splitting probabilities, but never touches the total cross section it started from.
Historically, people use higher-order cross sections to normalize the total cross section in the Monte Carlo. This
is what we call aK factor: K = σimproved/σMC = σimproved/σLO. It is crucial to remember that higher-order
cross sections integrate over unobserved additional jets in the final state. So when we normalize the Monte Carlo
we assume that we can first integrate over additional jets andobtainσimproved and then just normalize the Monte
Carlo which puts back these jets in the collinear approximation. Obviously, we should try to do better than that,
and there are two ways to improve this traditional Monte Carlo approach.

A. MC@NLO method

When we compute the next-to-leading order correction to a cross section, for example to Drell–Yan production,
we consider all contributions of the orderGF αs. There are three obvious sets of Feynman diagrams we have to
square and multiply, namely the Born contributionqq̄ → Z, the virtual gluon exchange for example between the
incoming quarks, and the real gluon emissionqq̄ → Zg. Another set of diagrams we should not forget are the
crossed channelsqg → Zq and q̄g → Zq̄. Only amplitudes with the same external particles can be squared, so
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we get the matrix-element-squared contributions

|MB |2 ∝ GF

2Re M∗

V MB ∝ GF αs |MZg|2∝ GF αs |MZq|2, |MZq̄|2 ∝ GF αs (30)

Strictly speaking, we should have included the counter terms, which are a modification of|MB |2, shifted by
counter terms of the orderαs(1/ǫ + C). These counter terms we add to the interference of Born and virtual gluon
diagrams to remove the UV divergences. Luckily, this is not the part of the contributions we want to discuss.
IR poles can have two sources, soft and collinear divergences. The first kind is cancelled between virtual gluon
exchange and real gluon emission. Again, we are not really interested in them.
What we are interested in are the collinear divergences. Theyarise from virtual gluon exchange as well as from
gluon emission and from gluon splitting in the crossed channels. The collinear limit is described by the splitting
kernels eq.(23), and the divergences are absorbed in the re-definition of the parton densities (like an IR pseudo-
renormalization).

To present the idea of MC@NLO Bryan Webber uses a nice toy model which I am going to follow in a shortened
version. It describes simplified particle radiation off a hard process: the energy of the system before radiation
is xs and the energy of the outgoing particle (call it photon or gluon) isx, sox < xs < 1. When we compute
next-to-leading order correctionsto a hard process, the different contributions (now neglecting crossed channels)
are

dσ

dx

∣

∣

∣

B
= B δ(x)

dσ
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∣

∣

∣

V
= αs

(

B

2ǫ
+ V

)

δ(x)
dσ
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∣

∣

∣

R
= αs

R(x)

x
. (31)

The constantB describes the Born process and the assumed factorizing poles in the virtual contribution. The
coupling constantαs should be extended by factors 2 andπ, or color factors. We immediately see that the integral
overx in the real emission rate is logarithmically divergent in the soft limit, similar to the collinear divergences
we now know and love. From factorization (i.e. implying universality of the splitting kernels) we know that in
the collinear and soft limits the real emission part has to behave like the Born matrix elementlimx→0 R(x) = B.

The logarithmic IR divergence we extract in dimensional regularization, as we already did for the virtual correc-
tions. The expectation value of any infrared safe observable over the entire phase space is then given by

〈O〉 = µ2ǫ
F

∫ 1

0

dx
O(x)

x2ǫ

[

dσ

dx

∣

∣

∣

B
+

dσ

dx

∣

∣

∣

V
+

dσ

dx

∣

∣

∣

R

]

. (32)

Dimensional regularization yields this additional factor1/x2ǫ, which is precisely the factor whose mass unit we
cancel introducing the factorization scaleµ2ǫ

F . This renormalization scale factor we will casually drop inthe
following.
When we compute a distribution of for example the energy of oneof the heavy particles in the process, we can
extract a histogram from of the integral for〈O〉 and obtain a normalized distribution. However, to compute such
a histogram we have to numerically integrate overx, and the individual parts of the integrand are not actually
integrable. To cure this problem, we can use the subtractionmethodto define integrable functions under thex
integral. From the real emission contribution we subtract and then add a smartly chosen term:

〈O〉R =

∫ 1

0

dx
O(x)

x2ǫ

dσ

dx

∣

∣

∣

R
=

∫ 1

0

dx
O(x)

x2ǫ

αsR(x)

x

=αs B O(0)

∫ 1

0
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1

x1+2ǫ
+

∫ 1

0
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(

αsR(x)O(x)

x1+2ǫ
− αsBO(0)

x1+2ǫ

)

=αs B O(0)

∫ 1

0

dx
1

x1+2ǫ
+ αs

∫ 1

0

dx
R(x)O(x) − BO(0)

x1+2ǫ

= − αs
B O(0)

2ǫ
+ αs

∫ 1

0

dx
R(x)O(x) − BO(0)

x
(33)

In the second integral we take the limitǫ → 0 because the asymptotic behavior ofR(x → 0) makes the numerator
vanish and hence regularizes this integral without any dimensional regularization required. The first term precisely
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cancels the (soft) divergence from the virtual correction.We end up with a perfectly finitex integral for all three
contributions

〈O〉 = B O(0) + αsV O(0) + αs

∫ 1

0

dx
R(x) O(x) − B O(0)

x

=

∫ 1

0

dx

[

O(0)

(

B + αsV − αs
B

x

)

+ O(x) αs
R(x)

x

]

(34)

This procedure is one of the standard methods to compute next-to-leading order corrections involving one-loop
virtual contributions and the emission of one additional parton. This formula is a little tricky: usually, the Born-
type kinematics would come with an explicit factorδ(x), which in this special case we can omit because of the
integration boundaries. We can re-write the same formula interms of a derivative

dσ

dO
=

∫ 1

0

dx

[

I(O)LO

(

B + αsV − αs
B

x

)

+ I(O)NLO αs
R(x)

x

]

(35)

The transfer functionI(O) is defined in a way that formally does precisely what we did before: at leading order
we evaluate it using the Born kinematicsx = 0 while allowing for a generalx = 0 · · · 1 for the real emission
kinematics.

In this calculation we have integrated over the entire phasespace of the additional parton. For a hard additional
parton or jet everything looks well defined and finite. On the other hand, we cancel an IR divergence in the virtual
corrections proportional to a Born-type momentum configuration δ(x) with another IR divergence which appears
after integrating over small but finite values ofx → 0. In a histogram inx, where we encounter the real-emission
divergence at smallx, this divergence is cancelled by a negative delta distribution right atx = 0. Obviously, this
will not give us a well-behaved distribution. What we would rather want is a way to smear out this pole such that
it coincides with the in that range justified collinear approximation and cancels the real emission over the entire
low-x range. At the same time it has to leave the hard emission intact and when integrated give the same result
as the next-to-leading oder rate. Such a modification will use the emission probability or Sudakov factors. We
can define an emission probability of a particle with an energy fractionz asdP = αsE(z)/z dz. Note that we
have avoided the complicated proper two–dimensional description in favor of this simpler picture just in terms of
particle energy fractions.

Let us consider a perfectly fine observable, the radiated photon spectrum as a function of the (external) energy
scalez. We know what this spectrum has to look like for the two kinematic configurations

dσ

dz

∣

∣

∣

LO
= αs

BE(z)

z

dσ

dz

∣

∣

∣

NLO
= αs

R(z)

z
(36)

The first term corresponds to parton shower radiation from the Born diagram (at orderαs), while the second term
is the real emission defined above. The transfer functions wewould have to include in eq.(35) to arrive at this
equation for the observable are

I(z, 1)
∣

∣

∣

LO
= αs

E(z)

z

I(z, xM )
∣

∣

∣

NLO
= δ(z − x) + αs

E(z)

z
Θ(xM (x) − z) (37)

The additional second term in the real-radiation transfer function arises from a parton shower acting on the real
emission process. It explicitly requires that enough energy has to be available to radiate a photon with an energy
z, wherexM is the energy available at the respective stage of showering, i.e. z < xM .
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These transfer functions we can include in eq.(35), which becomes

dσ

dz
=

∫ 1

0

dx

[

I(z, 1)

(

B + αsV − αs
B

x

)

+ I(z, xM ) αs
R(x)

x

]

=
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B
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)
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x

]

=
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0
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[

αs
BE(z)

z
+ αs

R(z)

z

]

+ O(α2
s)

= αs
BE(z) + R(z)

z
+ O(α2

s) (38)

All Born–type contributions proportional toδ(z) have vanished by definition. This means we should be able to in-
tegrate thez distribution to the total cross sectionσtot with azmin cutoff for consistency. However, the distribution
we obtained above has an additional term which spoils this agreement, so we are still missing something.

On the other hand, we also knew we would fall short, because what we described in words about a subtraction term
for finite x cancelling the real emission we have not yet included. This means, first we have to add a subtraction
term to the real emission which cancels the fixed-order contributions for smallx values. Because of factorization
we know how to write such a subtraction term using the splitting function, calledE in this example:

R(x)

x
−→ R(x) − BE(x)

x
(39)

To avoid double counting we have to add this parton shower to the Born-type contribution, now in the collinear
limit, which leads us to a modified version of eq.(35)

dσ

dO
=

∫ 1

0

dx

[

I(O, 1)

(

B + αsV − αsB

x
+

αsBE(x)

x

)

+I(O, xM ) αs
R(x) − BE(x)

x

]

(40)

When we again compute thez spectrum to orderαs there will be an additional contribution from the Born-type
kinematics

dσ

dz
=

∫ 1

0

dx αs
BE(z) + R(z)

z
+ O(α2

s)

−→
∫ 1

0

dx
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=
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0
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BE(z) + R(z) − BE(z)

z
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s)

= αs
R(z)

z
+ O(α2

s) (41)

which gives us the distribution we expected, without any double counting.

In other words, this scheme implemented in the MC@NLO Monte Carlo describes the hard emission just like a
next-to-leading order calculation, including the next-to-leading order normalization. On top of that, it simulates
additional collinear particle emissions using the Sudakovfactor. This is precisely what the parton shower does.
Most importantly, it avoids double counting between the first hard emission and the collinear jets, which means
it describes the entirepT range of jet emission for the first and hardestradiated jet consistently. Additional jets,
which do not appear in the next-to-leading order calculation are simply added by the parton shower,i.e. in the
collinear approximation. What looked to easy in our toy example is of course much harder in the mean QCD
reality, but the general idea is the same: to combine a fixed-order NLO calculation with a parton shower one
can think of the parton shower as a contribution which cancels a properly defined subtraction term which we can
include as part of the real emission contribution.
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B. CKKW method

The one weakness of the MC@NLO method is that it only describes one hard jet properly and relies on a parton
shower and its collinear approximation to simulate the remaining jets. Following the general rule that there is no
such thing as a free lunch we can improve on the number of correctly described jets, which unfortunately will cost
us the next-to-leading order normalization.

For simplicity, we will limit our discussion to final state radiation, for example in the inverse Drell–Yan process
e+e− → qq̄. We know already that this final state is likely to evolve intomore than two jets. First, we can radiate
a gluon off one of the quark legs, which gives us aqq̄g final state, provided ourkT algorithm findsyij > ycut.
Additional splittings can also give us any number of jets, and it is not clear how we can combine these different
channels.
Each of these processes can be described either using matrixelements or using a parton shower, where ‘describe’
means for example compute the relative probability of different phase space configurations. The parton shower
will do well for jets which are fairly collinear,yij < yini. In contrast, if for our closest jets we findyij > yini, we
know that collinear logarithms did not play a major role, so we can and should use the hard matrix element. How
do we combine these two approaches?
The CKKW scheme tackles this multi-jet problem. It first allows us to combine final states with a
different number of jets, and then ensures that we can add a parton shower without any double counting. The
only thing I will never understand is that they labelled the transition scale as ‘ini’.

Using Sudakov factors we can first construct the probabilities of generatingn–jet events from a hard two–jet
production process. These probabilities make no assumptions on how we compute the actual kinematics of the jet
radiation,i.e. if we model collinear jets with a parton shower or hard jets with a matrix element. This way we
will also get a rough idea how Sudakov factors work in practice. For the two–jet and three–jet final states, we will
see that we only have to consider the splitting probabilities for the different partons

Γq(Qout, Qin) ≡ Γq←q(Qout, Qin) =
2CF

π

αs(Qout)

Qout

(

log
Qin

Qout
− 3

4

)

Γg(Qout, Qin) ≡ Γg←q(Qout, Qin) =
2CA

π

αs(Qout)

Qout

(

log
Qin

Qout
− 11

12

)

(42)

The virtualitiesQin,out correspond to the incoming (mother) and outgoing (daughter) parton. Unfortunately, this
formula is somewhat understandable from the argument before and fromPq←q, but not quite. That has to do
with the fact that these splittings are not only collinearlydivergent, but also softly divergent, as we can see in the
limits x → 0 andx → 1 in eq.(23). These divergences we have to subtract first, so the formulas for the splitting
probabilitiesΓq,g look unfamiliar. In addition, we find finite terms arising from next-to-leading logarithms which
spoil the limitQout → Qin, where the probability of no splitting should go to unity. But at least we can see the
leading (collinear) logarithmlog Qin/Qout. Technically, we can deal with the finite terms in the Sudakovfactors
by requiring them to be positive semi-definite,i.e. by replacingΓ(Qout, Qin) < 0 by zero.
Given the splitting probabilities we can write down the Sudakov factor, which is the probability of not radiating
any hard and collinear gluon between the two virtualities:

∆q,g(Qout, Qin) = exp

[

−
∫ Qin

Qout

dq Γq,g(q,Qin)

]

(43)

This integral boundaries areQout < Qin. This description we can generalize for all splittingsPi←j we wrote
down before.

First, we can compute the probability that we see exactly twopartons, which means that none of the two quarks
radiate a resolved gluon between the virtualitiesQ2 andQ1, where we assume thatQ1 < Q2 gives the scale for
this resolution. It is simply[∆q(Q1, Q2)]

2, once for each quark, so that was easy.

Next, what is the probability that the two–jet final state evolves exactly into three partons? We know that it
contains a factor∆q(Q1, Q2) for one untouched quark. If we label the point of splitting inthe matrix elementQq
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for the quark, there has to be a probability for the second quark to get fromQ2 to Qq untouched, but we leave
this to later. After splitting with the probabilityΓq(Q2, Qq), this quark has to survive toQ1, so we have a factor
∆q(Q1, Qq). Let’s call the virtuality of the radiated gluon after splitting Qg, then we find the gluon’s survival
probability∆g(Q1, Qg). So what we have until now is

∆q(Q1, Q2) Γq(Q2, Qq) ∆q(Q1, Qq) ∆g(Q1, Qg) · · · (44)

That’s all there is, with the exception of the intermediate quark. Naively, we would guess its survival probability
betweenQ2 andQq to be∆q(Qq, Q2), but that is not correct. That would imply no splittings resolved atQq,
but what we really mean is no splitting resolved later atQ1 < Qq. Instead, we compute the probability of no
splitting betweenQ2 andQq from ∆q(Q1, Q2) under the additional condition that splittings fromQq down to
Q1 are now allowed. If no splitting occurs betweenQ1 andQq this simply gives us∆q(Q1, Q2) for the Sudakov
factor betweenQ2 andQq. If one splitting happens afterQq this is fine, but we need to add this combination to
the Sudakov betweenQ2 andQq. Allowing an arbitrary number of possible splittings betweenQq andQ1 gives
us

∆q(Q1, Q2)

[

1 +

∫ Q1

Qq

dq Γq(q,Q1) + · · ·
]

=

= ∆q(Q1, Q2) exp

[

∫ Q1

Qq

dq Γq(q,Q1)

]

=
∆q(Q1, Q2)

∆q(Q1, Qq)
. (45)

So once again: the probability of nothing happening betweenQ2 andQq we compute from the probability of
nothing happening betweenQ2 andQ1 times possible splittings betweenQq andQ1.

Collecting all these factors gives the combined probability that we find exactly three partons at a virtualityQ1

∆q(Q1, Q2) Γq(Q2, Qq) ∆q(Q1, Qq) ∆g(Q1, Qg)
∆q(Q1, Q2)

∆q(Q1, Qq)

= Γq(Q2, Qq) [∆q(Q1, Q2)]
2 ∆g(Q1, Qg) (46)

This result is pretty much what we would expected: both quarks go through untouched, just like in the two–
parton case. But in addition we need exactly one splitting producing a gluon, and this gluon cannot split further.
This example illustrates how it is fairly easy to compute these probabilities using Sudakov factors: adding a gluon
corresponds to adding a splitting probability times the survival probability for this gluon, everything else magically
drops out. At the end, we only integrate over the splitting point Qq.

The first part of the CKKW scheme we illustrate is how to combine differentn–parton channels in one framework.
Knowing some of the basics we can write down the (simplified) CKKW algorithm for final state radiation. As
a starting point, we compute all leading-order cross sections for n-jet production with a lower cutoff atyini.
This cutoff ensures that all jets are hard and that allσn,i are finite. The second indexi describes different non-
interfering parton configurations, likeqq̄gg andqq̄qq̄ for n = 4. The purpose of the algorithm is to assign a weight
(probability, matrix element squared,...) to a given phasespace point, statistically picking the correct process and
combining them properly.

(1) for each jet final state(n, i) compute the relative probabilityPn,i = σn,i/
∑

σk,j ; select a final state with
this probabilityPn,i

(2) distribute the jet momenta to match the external particles in the matrix element and compute|M|2

(3) use thekT algorithm to compute the virtualitiesQj for each splitting in this matrix element

(4) for each internal line going fromQj to Qk compute the Sudakov factor∆(Q1, Qj)/∆(Q1, Qk), whereQ1

is the final resolution of the evolution. For any final state line starting atQj apply∆(Q1, Qj). All these
factors combined give the combined survival probability described above.
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The matrix element weight times the survival probability can be used to compute distributions from weighted
events or to decide if to keep or discard an event when producing unweighted events. The line of Sudakov factors
ensures that the relative weight of the differentn–jet rates is identical to the probabilities we just computed. Their
kinematics, however, are hard–jet configuration without any collinear assumption. There is one remaining subtlety
in this procedure which I am skipping. This is the re-weighting of αs, because the hard matrix element will be
typically computed with a fixed hard renormalization scale,while the parton shower only works with a scale fixed
by the virtuality of the respective splitting. But those aredetails, and there will be many more details in which
different implementations of the CKKW scheme differ.

The second question is what we have to do to match the hard matrix element with the parton shower at a critical
resolution pointyini = Q2

1/Q2
2. FromQ1 to Q0 we will use the parton shower, but above this the matrix elements

will be the better description. For both regimes we already know how to combine differentn–jet processes. On
the other hand, we need to make sure that this last step does not lead to any double counting. From the discussion
above, we know that Sudakovs which describe the evolution between scales but use a lower virtuality as the
resolution point are going to be the problem. On the other hand, we also know how to describe this behavior using
the additional splitting factors we used for theQ2 · · ·Qq range. Carefully distinguishing the virtuality scale of the
actual splitting and the scale of jet resolution is the key, which we have to combine with the fact that in the CKKW
method starts each parton shower at the point where the parton first appears. It turns out that we can use this
argument to keep the resolution rangesy > yini andy < yini separate, without any double counting. There is a
simple way to check this, namely the question if theyini dependencedrops out of the final combined probabilities.
And the answer for final state radiation is yes, as proven in the original paper, including a hypothetical next-to-
leading logarithm parton shower.

One widely used variant of CKKW is Michelangelo Mangano’s MLM scheme, for example implemented in Alp-
gen or Madevent. Its main difference to the classical CKKW isthat it avoids computing the corresponding survival
properties using Sudakov form factors. Instead, it vetoes events which CKKW would have cut using the Sudakov
rescaling. This way it avoids problems with splitting probabilities beyond the leading logarithms, for example the
finite terms appearing in eq.(42) which can otherwise lead toa mismatch between the actual shower evolution and
the analytic expressions of the Sudakov factors. Its veto approach allows the MLM scheme to combine a set of
n–parton events after they have been generated using hard matrix elements. Its parton shower is then not needed
to compute a Sudakov reweighting. On the other hand, to combine a given sample of events the parton shower has
to start from an external scale, which should be chosen as thehard(est) scale of the process.
Once the parton shower has defined the complete event, we needto decide if this event needs to be removed to
avoid double counting due to an overlap of simulated collinear and hard radiation. After applying a jet algorithm
(which in the case of Alpgen is a cone algorithm and in case of Madevent is akT algorithm) we can simply compare
the hard event with the showered event by identifying each reconstructed showered jet with the partons we started
from. If all jet–parton combinations match and there are notadditional resolved jets apart from the highest-
multiplicity sample we know that the showering has not altered the hard-jet structure of the event, otherwise the
event has to go.
Unfortunately, the vetoing approach does not completely save the MLM scheme the backwards evolution of a
generated event, since we still need to know the energy or virtuality scales at which partons split to fix the scale
of the strong coupling. If we know the Feynman diagrams whichlead to each event, we can check that a certain
splitting is actually possible in its color structure.
In my non-expert user’s mind, all merging schemes are conceptually similar enough that we should expect them
to reproduce each others’ results, and they largely do. But the devil is in the details, and we have to watch out for
example for threshold kinks in jet distributions which should not be there.

MC@NLO (Herwig) CKKW (Sherpa)
hard jets first jet correct all jets correct
collinear jets all jets correct, tunedall jets correct, tuned
normalization correct to NLO correct to LO plus real emission
variants Powheg,... MLM–Alpgen, MadEvent,...

TABLE II: Comparison of the MC@NLO and CKKW schemes combining collinear and hard jets.
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FIG. 3: Number of additional jets with a transverse momentum of at least 30 or 100 GeV radiated from top pair production
and the production of heavy states at the LHC. As an example for such heavy states we use a pair of scalar gluons with a mass
of 300 or 600 GeV, pair-produced in gluon fusion. The figures are from a forthcoming paper with Tim Tait, produced with
MadEvent using it’s modified MLM algorithm — thanks to Johan Alwall.

To summarize, we can use the CKKW or MLM schemes to combinen-jet events with variablen and at the same
time combine matrix element and parton shower descriptionsof the jet kinematics. In other words, we can for
example simulateZ + n jets production at the LHC, where all we have to do is cut off the number of jets at some
point where we cannot compute the matrix element anymore. This combination will describe all jets correctly over
the entire collinear and hard phase space. In Fig.3 we show the number of jets produced in association with a pair
of top quarks and a pair of heavy new states at the LHC. The details of these heavy scalar gluons are secondary
for the basic features of these distributions, the only parameter which matters is their mass,i.e. the hard scale
of the process which sets the factorization scale and definesthe upper limit of collinearly enhanced initial-state
radiation. We see that heavy states tend to come with severaljets radiated with transverse momenta up to 30 GeV,
where most of these jets vanish once we require transverse momenta of at least 100 GeV. Looking at this figure
you can immediately see that a suggested analysis which for example asks for a reconstruction of twoW decay
jets better give you a very good argument why it should not we swamped by combinatorics.
Looking at the individual columns in Fig.3 there is one thingwe have to keep in mind: each of the merged matrix
elements combined into this sample is computed at leading order, the emission of real particles is included, while
virtual corrections are not (completely) there. In other words, in contrast to MC@NLO this procedure gives us
all jet distributions but leaves the normalization free, just like an old-fashioned Monte Carlo. The main features
and shortcomings of the two merging schemes are summarized in Tab.II. A careful study of the associated theory
errors for example forZ+jets production and the associated rates and shapes I have not yet come across, but watch
out for it.

As mentioned before — there is no such thing as a free lunch, and it is up to the competent user to pick the scheme
which suits their problem best. If there is a well-defined hard scale in the process, the old-fashioned Monte Carlo
with a tuned parton shower will be fine, and it is by far the fastest method. Sometimes we are only interested in one
hard jet, so we can use MC@NLO and benefit from the correct normalization. And in other cases we really need
a large number of jets correctly described, which means CKKWand some external normalization. This decision
is not based on chemistry, philosophy or sports, it is based on QCD. What we LHC phenomenologists have to do
is to get it right and know why we got it right.
On the other hand I am not getting tired of emphasizing that the conceptual progress in QCD describing jet
radiation for all transverse-momentum scales is absolutely crucial for LHC analyses. If I were a string theorist
I would definitely call this achievement a revolution or eventwo, like 1917 but with the trombones and cannons
of Tchaikovsky’s 1812. In contrast to a lot of progress in theoretical physics jet merging solves a very serious
problem which would have limited our ability to understand LHC data, no matter what kind of Higgs or new
physics we are looking for. And I am not sure if I got the message across — the QCD aspects behind it are not
trivial at all. If you feel like looking at a tough problem, try to prove that CKKW and MLM work for initial-state
and final-state radiation...

Before we move on, let me illustrate why in Higgs or exotics searches at the LHC we really care about this kind
of progress in QCD. One way to look for heavy particles decaying into jets, leptons and missing energy is the
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FIG. 4: Transverse momentum andHT distributions forZ+jets production at the LHC. The two curves correspond to the
Sherpa parton shower starting from Drell–Yan production and the fully merged sample including up to three hard jets. These
distributions describe typical backgrounds for searches for jets plus missing energy, which could originate in supersymmetric
squark and gluino production. Thank you to Steffen Schumann and Sherpa for providing these Figures.
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∑

j
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∑

ℓ

ET,ℓ

= /pT +
∑

j

pT,j +
∑

ℓ

pT,ℓ (for massless quarks, leptons) (47)

which for gluon-induced QCD processes should be as small as possible, while the signal’s scale will be determined
by the new particle masses. For the background processZ+jets, this distribution as well as the missing energy
distribution using CKKW as well as a parton shower (both fromSherpa) are shown in Fig. 4. The two curves
beautifully show that the naive parton shower is not a good description of QCD background processes to the
production of heavy particles. We can probably use a chemistry approach and tune the parton shower to correctly
describe the data even in this parameter region, but we wouldmost likely violate basic concepts like factorization.
How much you care about this violation is up to you, because weknow that there is a steep gradient in theory
standards from first-principle calculations of hard scattering all the way to hadronization string models...

V. SIMULATING LHC EVENTS

In the third main section I will try to cover a few topics of interest to LHC physicists, but which are not really
theory problems. Because they are crucial for our simulations of LHC signatures and can turn into sources of great
embarrassment when we get them wrong in public.

A. Missing energy

Some of the most interesting signatures at the LHC involve dark matter particles. Typically, we would produce
strongly interacting new particles which then decay to the weakly interacting dark matter agent. On the way, the
originally produced particles have to radiate quarks or gluons, to get rid of their color charge. If they also radiate
leptons, those can be very useful to trigger on the events andreduce QCD backgrounds.
At the end of the last section we talked about the proper simulation ofW+jets andZ+jets backgrounds to such sig-
nals. It turns out that jet merging predicts considerably larger missing transverse momentum from QCD sources,
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FIG. 5: Missing energy distribution from the early running phase of the DZero experiment at the Tevatron. This figure I got
from Beate Heinemann’s lectures web site.

so theoretically we are on fairly safe ground. However, thisis not the whole story of missing transverse momen-
tum. I should say that I skipped most of this section, becausePeter Wittich knows much more about it and covered
it really nicely. But it might nevertheless be useful to include it in this writeup.

Fig. 5 is a historic missing transverse energy distributionfrom DZero. It nicely illustrates that by just measur-
ing missing energy, Tevatron would have discovered supersymmetry with two beautiful peaks in the missing-
momentum distribution around 150 GeV and around 350 GeV. However, this distribution has nothing to do with
physics, it is purely a detector effect.
The problem of missing energy can be illustrated with a simple number: to identify and measure a lepton we need
around 500 out of 200000 calorimeter cells in an experiment like Atlas, while for missing energy we need all of
them. Therefore, we need to understand our detectors reallywell to even cut on a variable like missing transverse
momentum, and for this level of understanding we need time and luminosity. Unless something goes wrong with
the machine, I would not expect us to find anything reasonablein early-running LHC data including a missing
energy cut — really, we should not use the phrases ‘missing energy’ and ‘early running’ in the same sentences or
papers.

There are three sources of missing energy which our experimental colleagues have to understand before we get to
look at such distributions:
First, we have to subtract bad runs. This means that for a few hours parts of the detector might not have worked
properly. We can identify such bad runs by looking at Standard Model physics, like gauge bosons, and remove
them from the data sample.
Next, there is usually coherent noise in the calorimeter. Of200000 cells we know that some of them will indi-
vidually fail or produce noise. However, some sources of noise, like leaking voltage or other electronic noise can
be correlated geometrically,i.e. coherent. Such noise will lead to beautiful missing momentum signals. In the
same spirit, there might also be particles crossing our detector, but not coming from the interaction point. Such
particles can be cosmic rays or errand beam radiation, and they will lead to unbalanced energy deposition in the
calorimeter. The way to get rid of such noise is again lookingfor Standard Model candles and remove sets of
events where such problems occur.
The third class of fake missing energy is failing calorimeter cells, like continuously hot cells or dead cells, which
can be removed after we know the detector really well.

Once we understand all the source of fake missing momentum wecan focus on real missing momentum. This
missing transverse momentum is trivially computed from themomentum measurement of all tracks seen in the
detector. This means that any uncertainty on these measurements, like the jet or lepton energy scale will smear
the missing momentum. Moreover, we know that there is for example dead matter in the detector, so we have to
compensate for this. This compensation is obviously a global correction to individual events, which means it will
generally smear the missing energy distribution. So when wecompute a realistic missing transverse momentum
distribution at the LHC we have to smear all jet and lepton momenta, and in addition apply a Gaussian smearing
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of the order
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∼ 1
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√

∑

ET

GeV
& 20 (48)

While this sounds like a trivial piece of information I cannotcount the number of papers I get to referee where peo-
ple forgot this smearing and discovered great channels to look for Higgs bosons or new physics at the LHC which
completely fall apart when experimentalists take a carefullook. Here comes another great piece of phenomenol-
ogy wisdom: phenomenological studies are right or wrong based on the outcome if they can be reproduced by real
experimentalists and real detectors — at least once we make sure our experimentalist friends did not screw it up
again....

B. Phase space integration

At the very beginning of this lecture we discussed how to compute the total cross section for interesting processes.
What we skipped is how to numerically compute such cross sections. Obviously, since the parton densities are not
known in a closed analytical form, we will have to rely on numerical integration tools. Looking at a simple2 → 2
process we can write the total cross section as

σtot =

∫

dφ

∫

d cos θ

∫

dx1

∫

dx2 FPS |M|2 =

∫ 1

0

dy1 · · · dy4 JPS(~y) |M|2 (49)

The different factors are shown in eq.(21). In the second step we have rewritten the phase space integral as an
integral over the four–dimensional unit cube, with the appropriate Jacobian. Like any integral we can numerically
evaluate this phase space integral by binning the variable we integrate over:

∫ 1

0

dy f(y) −→
∑

j

(∆y)jf(yj) ∼ ∆y
∑

j

f(yj) (50)

Whenever we talk about numerical integration we can without any loss of generality assume that the integration
boundaries are 0...1. The integration variabley we can divide into a discrete set of pointsyj , for example defined
as equi-distant on they axis or by choosing some kind of random numberyjǫ[0, 1]. In the latter case we need
to keep track of the bin widths(∆y)j . In a minute, we will discuss how such a random number can be chosen
in more or less smart ways; but before we discuss how to best evaluate such an integral numerically, let us first
illustrate that this integral is much more useful than just providing the total cross section. If we are interested in
a distribution of an observable, like for example the distribution of the transverse momentum of a muon in the
Drell–Yan process, we need to computedσ(pT )/dpT . This distribution is given by:

σ =

∫

dy1 · · · dyN f(~y) =

∫

dy1
dσ

dy1

dσ

dy1

∣

∣

∣

∣

∣

y0

1

=

∫

dy2 · · · dyN f(y0
1) =

∫

dy1 · · · dyN f(~y) δ(y1 − y0
1) (51)

We can compute this distribution numerically in two ways. One way would be to numerically evaluate the
y2 · · · yN integrations and just leave out they1 integration. The result will be a function ofy1 which we can
evaluate at any pointy0

1 . This method is what I for example used for Prospino, when I was a graduate student.
The second and much smarter option corresponds to the last term in the equation above, with the delta distribu-
tion defined for discretizedy1. This is not hard to do: first, we define an array the size of the number of bins in
they1 integration. Then, for eachy1 value of the completey1 · · · yN integration we decide where it goes in this
array and addf(~y) to this array. And finally, we printf(y1) to see the distribution. This array is referred to as a
histogram and can be produced for example using the CernLib.This histogram approachdoes not look like much,
but imagine you want to compute a distributiondσ/dpT , wherepT (~y) is a complicated function of the integration
variables, so you want to compute:

dσ

dpT
=

∫

dy1 · · · dyN f(~y) δ
(

pT (~y) − p0
T

)

(52)
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Histograms mean that when we compute the total cross sectionentirely numerically we can trivially extract all
distributions in the same process.

The procedure outlined above has an interesting interpretation. Imagine we do the entire phase space integra-
tions numerically. Just like computing the interesting observables we can compute the momenta of all external
particles. These momenta are not all independent, because of energy–momentum conservation, but this can be
taken care of. The tool which translates the vector of integration variables~y into the external momenta is called a
phase space generator. Because the phase space is not uniquely defined in terms of the integration variables, the
phase space generator also has to return the JacobianJPS, the phase space weight. If we think of the integration as
an integration over the unit cube, this weight is combined with the matrix element squared|M|2. Once we com-
pute the unique phase space configuration(k1, k2, p1 · · · pM )j which corresponds to the vector~yj the combined
weightW = JPS |M|2 is simply the probability that this configuration will appear at the LHC. Which means,
we do not only integrate over the phase space, we really simulate events at the LHC. The only complication is
that the probability of a certain configuration is not only given my the frequency with which it appears, but also
by the additional explicit weight. So when we run our numerical integration through the phase space generator
and histogram all the distributions we are interested in we really generate weighted events. These events,i.e. the
momenta of all external particles and the weightW , we can for example store in a big file.

This simulation is not quite what experimentalists want — they want to represent the probability of a certain
configuration appearing only by its frequency. This means wehave to unweight the events and translate the
weight into frequency. To achieve this we normalize all our event weights to the maximum weightWmax, i.e.
compute the ratioWj/Wmaxǫ[0, 1], generate a flatly distributed random numberrǫ[0, 1], and keep the event if
Wj/Wmax > r. This guarantees that each eventj survives with a probabilityWj/Wmax, which is exactly what
we want — the higher the weight the more likely the event stays. The challenge in this translation is only that we
will lose events, which means that our distributions will ifanything become more ragged. So if it weren’t for the
experimentalists we would never use unweighted events. I should add that experimentalists have a good reason to
want such unweighted events, because they feed best throughtheir detector simulations.
The last comment is that if the phase space configuration(k1, k2, p1 · · · pM )j can be measured, its weightWj

better be positive. This is not trivial once we go beyond leading order. There, we need to add several contributions
to produce a physical event, like for example differentn–particle final states, and there is no need for all of them to
be positive. All we have to guarantee is that after adding up all contributions and after integrating over any kind of
unphysical degree of freedom we might have introduced, the probability of a physics configuration is positive. For
example, negative values for parton densities are not problematic, as long as we always have a positive hadronic
ratedσpp→X > 0.

The numerical phase space integration for many particles faces two problems. First, the partonic phase space for
M on-shell particles in the final state has3(M + 2) − 3 dimensions. If we divide each of these directions in 100
bins, the number of phase space points we need to evaluate fora 2 → 4 process is10015 = 1030, which is not
realistic.
To integrate over a large number of dimensions we use Monte Carlo integration. In this approach we define
a distributionpY (y) such that for a one-dimensional integral we can replace the binned discretized integral in
eq.(50) with a discretized version based on a set of random numbersYj over they integration space

〈g(Y )〉 =

∫ 1

0

dy pY (y) g(y) −→ 1

N

∑

j

g(Yj) (53)

All we have to make sure is that the probability of returningYj is given bypY (y) for y < Yj < y + dy. This form
has the advantage that we can naively generalize it to any number ofn dimensions, just by organizing the random
numbersYj in one large vector instead of ann-dimensional array.
Ourn-dimensional phase space integral listed above we can rewrite the same way:

∫ 1

0

dny f(y) =

∫ 1

0

dny
f(y)

pY (y)
pY (y) =

〈

f(Y )

pY (Y )

〉

−→ 1

N

∑

j

f(Yj)

pY (Yj)
(54)

In other words, we have written the phase space integral in a discretized way which naively does not involve the
number of dimensions any longer. All we have to do to compute the integral is average overN phase space values
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of f/pY . In the ideal case where we exactly know the form of the integrand and can map it into our random
numbers, the error of the numerical integration will be zero. So what we have to find is a way to encodef(Yj)
into pY (Yj). This task is called importance samplingand you will have to find some documentation for example
on Vegas to look at the details.
Technically, you will find that Vegas will call the function which computes the weightW = JPS|M|2 for a number
of phase space points and average over these points, but including another weight factorWMC representing the
importance sampling. If you want to extract distributions via histograms you have to therefore add the total weight
W = WMCJPS|M|2 to the columns.

The second numerical challenge is that the matrix elements for interesting processes are by no means flat, and we
would like to help our adaptive (importance sampling) MonteCarlo by defining the integration variables such that
the integrand is as flat as possible. Take for example the integration over the partonic momentum fraction, where
the integrand is usually falling off at least as1/x. So we can substitute

∫

δ

dx
C

x
=

∫

log δ

d log x

(

d log x

dx

)−1
C

x
=

∫

log δ

d log x C (55)

and improve our integration significantly. Moving on to a more relevant example: particularly painful are inter-
mediate particles with Breit–Wigner propagators squared,which we need to integrate over the momentums = p2

flowing through:

P (s,m) =
1

(s − m2)2 + m2Γ2
(56)

For example the Standard-Model Higgs boson with a mass of 120GeV has a width around0.005 GeV, which
means that the integration over the invariant mass of the Higgs decay products

√
s requires a relative resolution of

10−5. Since this is unlikely to be achievable, what we should really do is find a substitution which produces the
inverse Breit–Wigner as a Jacobian and leads to a flat integrand — et voiĺa

∫

ds
C

(s − m2)2 + m2Γ2
=

∫

dz

(

dz

ds

)−1
C

(s − m2)2 + m2Γ2

=

∫

dz
(s − m2)2 + m2Γ2

mΓ

C

(s − m2)2 + m2Γ2

=
1

mΓ

∫

dz C with tan z =
s − m2

mΓ
(57)

This is the coolest phase space mappingI have seen, and it is incredibly useful. Of course, an adaptive Monte
Carlo will eventually converge on such an integrand, but a well-chosen set of integration parameters will speed up
our simulations significantly.

C. Helicity amplitudes

When we compute a transition amplitude, what we usually do is write down all spinors, polarization vectors,
interaction vertices and propagators and square the amplitude analytically to get|M|2. Of course, nobody does
gamma–matrix traces by hand anymore, instead we use powerful tools like Form. But we can do even better. As
an example, let us consider the simple processuū → γ∗ → µ+µ−. The structure of the amplitude in the Dirac
indices involves one vector current on each side(ūfγµuf ). For eachµ = 0 · · · 3 this object gives a c-number,
even though the spinors have four components and each gamma matrix is a4× 4 matrix as well. The intermediate
photon propagator has the formgµν/s, which is a simple number as well and implies a sum overµ in both of the
currents forming the matrix element.
Instead of squaring this amplitude symbolically we can firstcompute it numerically, just inserting the correct nu-
merical values for each component of each spinor etc, without squaring it. MadGraph is a tool which automatically
produces a Fortran routine which calls the appropriate functions from the Helas library, to do precisely that. For
our toy process the MadGraph output looks roughly like:



28

REAL* 8 FUNCTION UUB_MUPMUM(P,NHEL)
C
C FUNCTION GENERATED BY MADGRAPH
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C FOR PROCESS : u u˜ -> mu+ mu-
C

INTEGER NGRAPHS, NEIGEN, NEXTERNAL
PARAMETER (NGRAPHS= 1,NEIGEN= 1,NEXTERNAL=4)
INTEGER NWAVEFUNCS , NCOLOR
PARAMETER (NWAVEFUNCS= 5, NCOLOR= 1)

REAL* 8 P(0:3,NEXTERNAL)
INTEGER NHEL(NEXTERNAL)

INCLUDE ’coupl.inc’

DATA Denom(1 )/ 1/
DATA (CF(i,1 ),i=1 ,1 ) / 3/

CALL IXXXXX(P(0,1 ),ZERO ,NHEL(1 ),+1,W(1,1 ))
CALL OXXXXX(P(0,2 ),ZERO ,NHEL(2 ),-1,W(1,2 ))
CALL IXXXXX(P(0,3 ),ZERO ,NHEL(3 ),-1,W(1,3 ))
CALL OXXXXX(P(0,4 ),ZERO ,NHEL(4 ),+1,W(1,4 ))
CALL JIOXXX(W(1,1 ),W(1,2 ),GAU ,ZERO ,ZERO ,W(1,5 ))
CALL IOVXXX(W(1,3 ),W(1,4 ),W(1,5 ),GAL ,AMP(1 ))
JAMP( 1) = +AMP( 1)

DO I = 1, NCOLOR
DO J = 1, NCOLOR

ZTEMP = ZTEMP + CF(J,I) * JAMP(J)
ENDDO
UUB_MUPMUM =UUB_MUPMUM+ZTEMP* DCONJG(JAMP(I))/DENOM(I)

ENDDO
END

The input to this function are the external momenta and the helicities of all fermions in the process. Remember
that helicity and chirality are identical only for masslessfermions. In general, chirality is defined as the eigenvalue
of the projectors(11±γ5)/2, while helicity is defined as the projection of the spin onto the momentum direction, or
as the left or right handedness. For each point in phase spaceand each helicity combination (±1 for each external
fermion) MadGraph computes the matrix element using Helas routines like for example:

· IXXXXX(p,m, nhel, nsf , F ) computes the wave function of a fermion with incoming fermion number, so
either an incoming fermion or an outgoing anti-fermion. As input it requires the 4-momentum, the mass
and the helicity of this fermion. Moreover, this particle with incoming fermion number can be a particle
or an anti-particle. This meansnfs = +1 for the incomingu andnsf = −1 for the outgoingµ+, because
the particles in MadGraph are defined asu andµ−. The fermion wave function output is a complex array
F (1 : 6).

Its first two entries are the left-chiral part of the fermionic spinor, i.e. F (1 : 2) = (11 − γ5)/2 u or
F (1 : 2) = (11−γ5)/2 v for nsf = ±1. The entriesF (3 : 4) are the right-chiral spinor. These four numbers
can be computed from the 4-momentum, if we know the helicity of the particles. Because for massless
particles helicity and chirality are identical, our massless quarks and leptons will for example have only
entriesF (1 : 2) for nhel = −1 andF (3 : 4) for nhel = +1.

The last two entries contain the 4-momentum in the directionof the fermion flow, namelyF (5) = nsf(p(0)+
ip(3)) andF (6) = nsf(p(1) + ip(2)). The first four entries in this spinor correspond to the size of eachγ
matrix, which is usually taken into account by computing thetrace of the chain of gamma matrices.

· OXXXXX(p,m, nhel, nsf , F ) does the same for a fermion with outgoing fermion flow,i.e. our incomingū
and our outgoingµ−. The left-chiral and right-chiral components now readF (1 : 2) = ū(11 − γ5)/2 and
F (3 : 4) = ū(11 + γ5)/2, and similarly for the spinor̄v. The last two entries areF (5) = nsf(p(0) + ip(3))
andF (6) = nsf(p(1) + ip(2)).

· JIOXXX(Fi, Fo, g,m,Γ, Jio) computes the (off-shell) current for the vector boson attached to the two ex-
ternal fermionsFi andFo. The couplingg(1 : 2) is a complex array with the interaction of the left-chiral
and right-chiral fermion in the upper and lower index. Obviously, we need to know the mass and the width
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of the intermediate vector boson. The output arrayJio again has six components:

Jio(µ + 1) = − i

q2
FT

o γµ

(

g(1)
11− γ5

2
+ g(2)

11 + γ5

2

)

Fi

Jio(5) = −Fi(5) + Fo(5) ∼ −pi(0) + po(0) + i (−pi(3) − po(3))

Jio(6) = −Fi(6) + Fo(6) ∼ −pi(1) + po(1) + i (−pi(2) + po(2))

⇒ qµ = (ReJio(5), ReJio(6), ImJio(6), ImJio(5)) (58)

The last line illustrates why we need the fifth and sixth arguments ofFio. The first four entries inJio

correspond to the indexµ in this vector current, while the indexj of the spinors has been contracted between
FT

o andFi.

· IOVXXX(Fi, Fo, J, g, V ) computes the amplitude of a fermion–fermion–vector coupling using the two ex-
ternal fermionic spinorsFi andFo and an incoming vector currentJ . Again, the couplingg(1 : 2) is a
complex array, so we numerically compute

FT
o /J

(

g(1)
11− γ5

2
+ g(2)

11 + γ5

2

)

Fi (59)

We see that all indicesj andµ of the three input arguments are contracted in the final result. Momentum
conservation is not explicitly enforced byIOVXXX, so we have to take care of it beforehand.

Given the list above it is easy to see how MadGraph computes the amplitude foruū → γ∗ → µ+µ−. First, it
always calls the wave functions for all external particles and puts them into the arrayW (1 : 6, 1 : 4). The vectors
W (∗, 1) andW (∗, 3) correspond toFi(u) andFi(µ

+), while W (∗, 2) andW (∗, 4) meanFo(ū) andFo(µ
−).

The first vertex we evaluate is thēuγu vertex, which givenFi = W (∗, 1) andFo = W (∗, 2) usesJIOXXX to
compute the vector current for the massless photon in thes channel. Not much would change if we instead chose
a massiveZ boson, except for the argumentsm andΓ in the JIOXXX call. TheJIOXXX output is the photon
currentJio ≡ W (∗, 5). The second step combines this current with the two outgoingmuons in theµ+γµ− vertex.
Since this number gives the final amplitude, it should returna c-number, no array. MadGraph callsIOVXXXwith
Fi = W (∗, 3) andFo = W (∗, 4), combined with the photon currentJ = W (∗, 5). The resultAMPis copied
into JAMPwithout an additional sign which could have come from the ordering of external fermions. The only
remaining sum left to compute before we squareJAMPis the color structure, which in our simple case means one
color structure with a color factorNc = 3.

Of course, to calculate the transition amplitude MadGraph requires all masses and couplings. They are transferred
through common blocks in the file coupl.inc and computed elsewhere. In general, MadGraph uses unitary gauge
for massive vector bosons, because in the helicity amplitude approach it is easy to accommodate complicated
tensors, in exchange for a large number of Feynman diagrams.

The functionUUBMUPMUMdescribed above is not yet the full story. Remember that whenwe squareM symbol-
ically we need to sum over the spins of the outgoing states to transform a spinor product of the kinduū into the
residue or numerator of a fermion propagator. To obtain the final result numerically we also need to sum over all
possible helicity combinations of the external fermions, in our case24 = 16 combinations.

SUBROUTINE SUUB_MUPMUM(P1,ANS)
C
C FUNCTION GENERATED BY MADGRAPH
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C AND HELICITIES FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL)
C
C FOR PROCESS : u u˜ -> mu+ mu-
C

INTEGER NEXTERNAL, NCOMB,
PARAMETER (NEXTERNAL=4, NCOMB= 16)
INTEGER THEL
PARAMETER (THEL=NCOMB* 1)

REAL* 8 P1(0:3,NEXTERNAL),ANS

INTEGER NHEL(NEXTERNAL,NCOMB),NTRY
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REAL* 8 T, UUB_MUPMUM
INTEGER IHEL,IDEN,IC(NEXTERNAL)
INTEGER IPROC,JC(NEXTERNAL)
LOGICAL GOODHEL(NCOMB)

DATA GOODHEL/THEL* .FALSE./
DATA NTRY/0/

DATA (NHEL(IHEL, 1),IHEL=1,4) / -1, -1, -1, -1/
DATA (NHEL(IHEL, 2),IHEL=1,4) / -1, -1, -1, 1/
DATA (NHEL(IHEL, 3),IHEL=1,4) / -1, -1, 1, -1/
DATA (NHEL(IHEL, 4),IHEL=1,4) / -1, -1, 1, 1/
DATA (NHEL(IHEL, 5),IHEL=1,4) / -1, 1, -1, -1/
DATA (NHEL(IHEL, 6),IHEL=1,4) / -1, 1, -1, 1/
DATA (NHEL(IHEL, 7),IHEL=1,4) / -1, 1, 1, -1/
DATA (NHEL(IHEL, 8),IHEL=1,4) / -1, 1, 1, 1/
DATA (NHEL(IHEL, 9),IHEL=1,4) / 1, -1, -1, -1/
DATA (NHEL(IHEL, 10),IHEL=1,4) / 1, -1, -1, 1/
DATA (NHEL(IHEL, 11),IHEL=1,4) / 1, -1, 1, -1/
DATA (NHEL(IHEL, 12),IHEL=1,4) / 1, -1, 1, 1/
DATA (NHEL(IHEL, 13),IHEL=1,4) / 1, 1, -1, -1/
DATA (NHEL(IHEL, 14),IHEL=1,4) / 1, 1, -1, 1/
DATA (NHEL(IHEL, 15),IHEL=1,4) / 1, 1, 1, -1/
DATA (NHEL(IHEL, 16),IHEL=1,4) / 1, 1, 1, 1/
DATA ( IC(IHEL, 1),IHEL=1,4) / 1, 2, 3, 4/
DATA (IDEN(IHEL),IHEL= 1, 1) / 36/

NTRY=NTRY+1

DO IHEL=1,NEXTERNAL
JC(IHEL) = +1

ENDDO

DO IHEL=1,NCOMB
IF (GOODHEL(IHEL,IPROC) .OR. NTRY .LT. 2) THEN

T = UUB_MUPMUM(P1,NHEL(1,IHEL),JC(1))
ANS = ANS + T
IF (T .GT. 0D0 .AND. .NOT. GOODHEL(IHEL,IPROC)) THEN

GOODHEL(IHEL,IPROC)=.TRUE.
ENDIF

ENDIF
ENDDO
ANS = ANS/DBLE(IDEN)

END

The important part of this subroutine is the list of possiblehelicity combinations stored in the arrayNHEL(1 :
4, 1 : 16). Adding all different helicity combinations (of which somemight well be zero) means a loop over
the second argument and a call ofUUBMUPMUMwith the respective helicity combination. The complete spin–
color averaging factor is included asIDEN and given by2 × 2 × N2

c = 36. So MadGraph indeed provides us
with a subroutineSUUBMUPMUMwhich numerically computes|M|2 for each phase space point,i.e. external
momentum configuration. MadGraph also produces a file with all Feynman diagrams contributing to the given
subprocess, in which the numbering of the external particles corresponds to the second argument ofW and the
argument ofAMPis the numbering of the Feynman diagrams. After looking intothe code very briefly we can also
easily identify different intermediate resultsW which will only be computed once, even if they appear several
times in the different Feynman diagrams.
The helicity method might not seem particularly appealing for a simple2 → 2 process, but it makes it easily
possible to compute processes with four and more particles in the final state and up to 10000 Feynman diagrams
which we could never square symbolically, no matter how manygraduate students’ lives we turn into hell.

D. Errors

As argued in the very beginning of the lecture, LHC physics always means extracting signals from often large
backgrounds. This means, a correct error estimate is crucial. For LHC calculations we are usually confronted with
three types of errors.

The first and easiest one are the statistical errors. For small numbers of events these experimental errors are
described by Poisson statistics, and for large numbers theyconverge to the Gaussian limit. And that is about the
only complication we encounter for them.
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The second set of errors are systematic errors, like for example the calibration of the jet and lepton energy scales,
the measurements of the luminosity, or the efficiencies to identify a muon as a muon. Some of you might remember
what happened last, when a bunch of theorists mistook a forward pion for an electron — that happened right
around my TASI, and people had not only discovered supersymmetry, but also identified its breaking mechanism.
Of course, our experimentalist CDF lecturer told us immediately that the whole thing was a joke. Naively, we
would not assume that systematic are Gaussian, but rememberthat we determine these numbers largely from
well-understood background processes. Such counting experiments in background channels likeZ → leptons,
however, do behave Gaussian. The only caveat is the shape of far-away tails, which can turn out to be bigger than
the exponentially suppressed Gaussian shape.

The last source of errors are theory errors, and they are hardest to model, because they are dominated byhigher-
order QCD effects, fixed order or enhanced by large logarithms. If we could compute all remaining higher-order
terms, we would do so, which means everything else is a wild guess. Moreover, higher-order effects are not any
more likely to give a relativeK factor of 1.0 than 0.9 or 1.1. In other words, theory errors cannot have a peak and
they are definitely not Gaussian. There is a good reason to choose the Gaussian short cut, because we know that
folding three Gaussian errors gives us another Gaussian error, which makes things so much easier. But this lazy
approach assumes the we know much more about QCD than we actually do, so please stop lying. On the other
hand, we also know that theory errors cannot be arbitrarily large. Unless there is a very good reason, aK factor
for a total LHC cross section should not be larger than something like 3. If that were the case, we would conclude
that perturbative QCD breaks down, and the proper description of error bars would be our smallest problem. In
other words, the centrally flat theory probability distribution for an LHC observable has to go to zero for very large
deviations from the currently best value.
A good solution to this problem is the so-called Rfit scheme, used for example by the CKMfitter or the SFitter
collaborations. It starts from the assumption that for verylarge deviations there will always be tails from the
experimental errors, so we can neglect the impact of the theory errors on this range. In the center of the distribution
we simply cut open the experimental Gaussian-type distribution and insert a flat theory piece. We could also
modify the transition region by changing for example the width of the experimental Gaussian error as an effect
of a falling-off theory error, but in the simplest model we just use a log-likelihoodχ2 = −2 logL given a set of
measurements~d and in the presence of a general correlation matrixC

χ2 = ~χT
d C−1 ~χd

χd,i =



























0 |di − d̄i| < σ(theo)
i

di − d̄i + σ(theo)
i

σ(exp)
i

di − d̄i < −σ(theo)
i

di − d̄i − σ(theo)
i

σ(exp)
i

di − d̄i > σ(theo)
i .

(60)

And that is it, all three sources of LHC errors can be described correctly, and nothing stops us from computing
likelihood maps to measure the top mass or identify new physics or just have some fun in life at the expense of the
Grid.

Further reading, acknowledgments, etc.

This is the point where the week in beautiful Boulder is over and I should thank K.T. and his Boulder team as well
as our two organizers for their kind invitation. I typed mostof these notes in Boulder’s many nice cafes and 11
years after I went here as a student TASI and Boulder still make the most enjoyable and most productive school in
our field. Whoever might ever think about moving it away from Boulder cannot possibly have the success of the
school in mind.
It has been great fun, even though QCD has a reputation of being a dry topic. I hope you enjoyed learning it as
much as I enjoyed learning it while teaching it. Just like most of you I am really only a QCD user, but for an LHC
phenomenologists there is no excuse for not knowing the relevant aspects of QCD. Have fun in the remaining
lectures, write some nice theses, and I hope I will see as manyof you as possible over the coming 20 years. LHC
physics need all the help we can get, and it is great fun, so please come and join us!
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Of course there are many people I need to thank for helping me write these notes: Fabio Maltoni, Johan Alwall
and Steffen Schumann for having endured a great number of critical questions and for convincing me that jet
merging is the future; Steffen Schumann, Ben Allanach and Tom DeGrand for their comments on this draft; Beate
Heinemann for providing me with one of the most interesting plots from the Tevatron and for answering many
stupid questions over the years — as did Dirk Zerwas and Kyle Cranmer.

You note that this writeup, just like the lectures, is more ofan informal chat about LHC physics than a proper
review paper. But if I had not cut as many corners we would never have made it to the fun topics. In the same
spirit, there is no point in giving you a list of proper original references, so I would rather list a few books and
review articles which might come in handy if you would like toknow more:

– I started learning high–energy theory including QCD from Otto Nachmann’s book. I still use his appendices
to look up Feynman rules, because I have rarely seen another book with as few (if not zero) typos [1].
Similar, but maybe a little more modern is the primer by CliffBurgess and Guy Moore [2]. At the end of it
you will find more literature tips.

– For a more specialized book on QCD have a look at the pink bookby Ellis, Stirling, Webber. It includes
everything you ever wanted to know about QCD [3]. Maybe a little more phenomenology you can find in
Günther Dissertori, Ian Knowles and Michael Schmelling’s book on QCD and phenomenology [4].

– If you would like to learn how to for example compute higher-order cross sections to Drell–Yan production,
Rick Field works it all out in his book [5].

– Unfortunately, there is comparably little literature on jet merging yet. The only review I know is by
Michelangelo Mangano and Tim Stelzer [6]. There is a very concise discussion included with the com-
parison of the different models [7]. If you want to know more,you will have to consider the original
literature or wait for the review article which Frank Kraussand Peter Richardson promised to write for
Journal of Physics G.

– Recently, I ran across George Sterman’s TASI lectures. They are comparably formal, but they are a great
read if you know something about QCD already [8].

– For MC@NLO there is nothing like the original papers. Have alook at Bryan Webber’s and Stefano Frix-
ione’s work and you cannot but understand what it is about [9]!

– For CKKW, look at the original paper. It beautifully explains the general idea on a few pages, at least for
final state radiation [10].

– If you are using Madgraph to compute helicity amplitudes there is the original bright green documentation
which describes every routine in detail. You might want to check the format of the arrays, if you use for
example the updated version inside MadEvent [11].
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