Searching for
Supersymmetric Higgs Bosons
at the LHC

Tilman Plehn
CERN

- Light neutral Higgs: no-lose-theorem
- Charged Higgs: bottom induced processes
- Heavy neutral Higgs: decay to two light Higgses
MSSM Higgs Sector

- Softly broken supersymmetric anomaly–free theory
- two doublets, coupling to up and down type fermions
 → five physical states h^0, H^0, A^0, H^\pm
 → mixing of scalars to mass eigenstates (mixing angle α)
 → more predictive than Standard Model (upper h^0 mass limit)
- conveniently expressed as function of m_A and $\tan \beta \equiv v_2/v_1$
- Yukawa couplings to H, A, H^\pm: $m_b \tan \beta, m_t/\tan \beta$ (large m_A)
- typically one light, many heavy scalars [Heinemeyer, Weiglein]

Find first Higgs boson

- complete coverage by WBF $h \rightarrow \tau \tau$ [TP, Rainwater, Zeppenfeld]
- problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko]
 $\Delta m_h/m_h \sim \sigma/\sqrt{N}$ ($\sigma \sim 1.5$ GeV for $\mu\mu, \gamma\gamma$ and $\sigma \sim 15$ GeV for $\tau\tau$)

Tell it is 2HDM (MSSM?) ⇒ look for heavy Higgs bosons

- $H^0, A^0 \rightarrow \tau\tau, \mu\mu$ inclusive $gg \rightarrow H$ and $gg \rightarrow b\bar{b}H$
- $H^\pm \rightarrow \nu\tau, tb$ in $pp \rightarrow tH^-, W^+H^-, H^+H^-$
 (n.b. SUSY loops) [Hollik et al, Kniehl et al]
- appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat]
- no other conclusive way but to find these particles
\[M_{\text{Higgs}} \text{ [GeV]} \]

\[M_A \text{ [GeV]} \]

\[m_h^{\text{max scen.}, \tan \beta = 5} \]

- \(h \)
- \(H \)
- \(A \)
- \(H^+ \)
MSSM Higgs Sector

- Softly broken supersymmetric anomaly–free theory
- two doublets, coupling to up and down type fermions
 \(\rightarrow \) five physical states \(h^0, H^0, A^0, H^\pm \)
- \(\rightarrow \) mixing of scalars to mass eigenstates (mixing angle \(\alpha \))
- \(\rightarrow \) more predictive than Standard Model (upper \(h^0 \) mass limit)
- conveniently expressed as function of \(m_A \) and \(\tan \beta \equiv v_2/v_1 \)
- Yukawa couplings to \(H, A, H^\pm \): \(m_b \tan \beta, m_t/\tan \beta \) (large \(m_A \))
- typically one light, many heavy scalars [Heinemeyer, Weiglein]

Find first Higgs boson

- complete coverage by WBF \(h \rightarrow \tau \tau \) [TP, Rainwater, Zeppenfeld]
- problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko]
 \[\Delta m_h/m_h \sim \sigma/\sqrt{N} \] (\(\sigma \sim 1.5 \) GeV for \(\mu \mu, \gamma\gamma \) and \(\sigma \sim 15 \) GeV for \(\tau\tau \))

Tell it is 2HDM (MSSM?) \(\Rightarrow \) look for heavy Higgs bosons

- \(H^0, A^0 \rightarrow \tau \tau, \mu \mu \) inclusive \(gg \rightarrow H \) and \(gg \rightarrow b\bar{b}H \)
- \(H^\pm \rightarrow \nu \tau, tb \) in \(pp \rightarrow tH^-, W^+H^-, H^+H^- \)
 (n.b. SUSY loops) [Hollik et al, Kniehl et al]
- appearance in SUSY cascades [Datta, Djouadi, Guclait, Moortgat]
- no other conclusive way but to find these particles
$m_A = 200 \ \text{GeV/c}^2$, $M_2 = 200 \ \text{GeV/c}^2$

$A_t = \sqrt{6} \ \text{TeV/c}^2$, $M_{\text{SUSY}} = 1 \ \text{TeV/c}^2$

Excluded by LEP
1. Light Neutral Higgs

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \to qqH$
 (tagging jet signature, central decay products, minijet veto)

- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]

- MSSM decoupling region:
 (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135$ GeV
 (b) production cross section: $g_{WWH} = \sin(\beta - \alpha) \sim 1$
 (c) branching fraction: $BR(h \to \tau\tau) > BR(H_{SM} \to \tau\tau)$

→ enhancement of rate: $pp \to qqh \to qq\tau\tau$

→ heavy Higgs production at low m_A

→ no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan\beta$: forbidden by LEP2

- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H

- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate

- CP phases in A_t: coverage solid [Carena, Ellis, Wagner,...]

- funny couplings of all kind: again solid [Schumacher]

- many multiplets: go for WBF WW channel [Alves, Eboli, TP, Rainwater]
$m_h[GeV]$

h^0

H^0

$\tan \beta$

m_A

$\sin^2(\beta-\alpha)$

$\cos^2(\beta-\alpha)$

$(\sigma.B)_{h}[fb]$

$(\sigma.B)_{H}[fb]$

$M_{SUSY}=1 \, \text{TeV}$, maximal mixing
1. Light Neutral Higgs

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \rightarrow qqH$
 (tagging jet signature, central decay products, minijet veto)

- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]

- MSSM decoupling region:
 (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135$ GeV
 (b) production cross section: $g_{WW h} = \sin(\beta - \alpha) \sim 1$
 (c) branching fraction: $BR(h \rightarrow \tau\tau) > BR(H_{SM} \rightarrow \tau\tau)$

\rightarrow enhancement of rate: $pp \rightarrow qqh \rightarrow qq\tau\tau$

\rightarrow heavy Higgs production at low m_A

\rightarrow no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan \beta$: forbidden by LEP2
- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H
- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate
- CP phases in A_t: coverage solid [Carena, Ellis, Wagner,...]
- funny couplings of all kind: again solid [Schumacher]
- many multiplets: go for WBF WW channel [Alves, Eboli, TP, Rainwater]
\[\tan \beta \]

LHC(40 fb^{-1}):

- \(VV \rightarrow H \rightarrow \tau \tau \)
- \(VV \rightarrow h \rightarrow \tau \tau \)

LEP2: \(e^+ e^- \rightarrow Zh \)
1. Light Neutral Higgs

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \rightarrow qqH$
 (tagging jet signature, central decay products, minijet veto)

- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]

- MSSM decoupling region:
 (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135$ GeV
 (b) production cross section: $g_{WW} = \sin(\beta - \alpha) \sim 1$
 (c) branching fraction: $BR(h \rightarrow \tau\tau) > BR(H_{SM} \rightarrow \tau\tau)$

→ enhancement of rate: $pp \rightarrow qqh \rightarrow qq\tau\tau$

→ heavy Higgs production at low m_A

→ no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan\beta$: forbidden by LEP2

- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H

- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate

- CP phases in A_t: coverage solid [Carena, Ellis, Wagner,...]

- funny couplings of all kind: again solid [Schumacher]

- many multiplets: go for WBF WW channel [Alves, Eboli, TP, Rainwater]
2. (Heavy) Charged Higgs

Most promising channel

- associated production $pp \rightarrow tH^- + X$ for large $\tan \beta$
- decay $H^\pm \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \rightarrow \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b
 → experiment: forward jets, $p_{T;b}$ peaked at m_b (factor 1/6 for each tagged b)
 → use bottom–inclusive cross section
 → check asymptotic cross section behavior $d\sigma/dp_{T;b} \propto p_{T;b}/m_{T,b}^2$
 → inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$
 → how large logarithms? resum?

Inclusive process $bg \rightarrow tH^-$

- resum large logarithms $\log(p_{T;b}/m_b)$ in exclusive process $gg \rightarrow \bar{b}tH^-$
 → equivalent to bottom parton density and inclusive process $bg \rightarrow tH^-
 → \mu_{F,b} \text{ ‘transverse momentum size’ of bottom parton}
 $(\mu_{F,b} \equiv p_{T,b}^{\text{max}} ; \text{usually hard scale } \mu_{F,b} = M)$
 → numerical improvement or overestimate?
 → (1) check bottom–inclusive total rate
 (2) check bottom–inclusive t, H distributions
\[\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dy_{b\bar{b}}} (gg \rightarrow b\bar{t}H^-) \]

- \(m_b = 4.6 \text{ GeV} \)
- \(m_b = 0.46 \text{ GeV} \)
- \(m_H = 1000 \text{ GeV} \)
- \(m_H = 500 \text{ GeV} \)
- \(m_H = 250 \text{ GeV} \)

\[\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dp_{T,b}} (gg \rightarrow b\bar{t}H^-) \]

- \(m_b = 4.6 \text{ GeV} \)
- \(m_H = 1000 \text{ GeV} \)
- \(m_H = 500 \text{ GeV} \)
- \(m_H = 250 \text{ GeV} \)
Most promising channel

- associated production $pp \rightarrow tH^- + X$ for large $\tan \beta$
- decay $H^\pm \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \rightarrow \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b

 \rightarrow experiment: forward jets, $p_{T;b}$ peaked at m_b (factor 1/6 for each tagged b)
 \rightarrow use bottom–inclusive cross section
 \rightarrow check asymptotic cross section behavior $d\sigma/dp_{T;b} \propto p_{T;b}/m_{T,b}^2$
 \rightarrow inclusive total rate $\sigma \propto \log(p_{T;b}^{\text{max}}/p_{T;b}^{\text{min}}) = \log(p_{T;b}^{\text{max}}/m_b)$
 \rightarrow how large logarithms? resum?

Inclusive process $bg \rightarrow tH^-$

- resum large logarithms $\log(p_{T;b}/m_b)$ in exclusive process $gg \rightarrow \bar{b}tH^-$
- equivalent to bottom parton density and inclusive process $bg \rightarrow tH^-$

 $\rightarrow \mu_{F,b}$ ‘transverse momentum size’ of bottom parton

 $(\mu_{F,b} \equiv p_{T,b}^{\text{max}}$, usually hard scale $\mu_{F,b} = M)$

 \rightarrow numerical improvement or overestimate?

 \rightarrow (1) check bottom–inclusive total rate

 (2) check bottom–inclusive t, H distributions
$p_{T,b} \frac{d\sigma}{dp_{T,b}} (gg \rightarrow btH^-)$

$m_H = 1000$ GeV

$m_H = 500$ GeV

$m_H = 250$ GeV

$m_b = 4.6$ GeV

$m_b = 0.46$ GeV

$p_{T,b}$ [GeV]
2. (Heavy) Charged Higgs

Most promising channel

- associated production $pp \rightarrow tH^- + X$ for large $\tan \beta$
- decay $H^\pm \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \rightarrow \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b

\rightarrow experiment: forward jets, $p_{T,b}$ peaked at m_b (factor 1/6 for each tagged b)

\rightarrow use bottom–inclusive cross section

\rightarrow check asymptotic cross section behavior $d\sigma/dp_{T,b} \propto p_{T,b}/m_{T,b}^2$

\rightarrow inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$

\rightarrow how large logarithms? resum?

Inclusive process $bg \rightarrow tH^-$

- resum large logarithms $\log(p_{T,b}/m_b)$ in exclusive process $gg \rightarrow \bar{b}tH^-$

- equivalent to bottom parton density and inclusive process $bg \rightarrow tH^-$

$\rightarrow \mu_{F,b}$ ‘transverse momentum size’ of bottom parton

$(\mu_{F,b} \equiv p_{T,b}^{\text{max}}$, usually hard scale $\mu_{F,b} = M)$

\rightarrow numerical improvement or overestimate?

\rightarrow (1) check bottom–inclusive total rate

(2) check bottom–inclusive t, H distributions
Perturbative bottom factorization scale from exclusive process [Boos, TP]

- two steps: first bottom virtuality Q_b^{max}
- general exclusive process: $gg \rightarrow \bar{b}X_M$
 approximate gluon density $\mathcal{L} = \mathcal{L}_0/x^2$
 asymptotic behavior $|\mathcal{M}|^2 = S^2\sigma_0/Q_b^2$

$$\sigma = \frac{2\sigma_0\mathcal{L}_0}{16\pi} \int_0^{S-M^2} \frac{dQ_b}{Q_b} F(Q_b)$$

→ $F(Q_b)$ known correction to asymptotic behavior $d\sigma/dQ_b \sim 1/Q_b$

→ define Q_b^{max} at turning point $d^2F(Q_b)/d(\log Q_b)^2 = 0$

→ $Q_b^{\text{max}} \sim M/2$ (hard scale argument $Q_b^{\text{max}} \propto M$, not more than that!)

Second step: transverse momentum $p_{T,b}^{\text{max}}$

- check explicitly: $Q_b \sim Q_b^{\text{max}}$ also yields $p_{T,b} \sim p_{T,b}^{\text{max}}$

→ translate Q_b into $p_{T,b}$ point by point

→ $p_{T,b}^{\text{max}}/Q_b^{\text{max}} \sim Q_b^{\text{max}}/M$ yields $p_{T,b}^{\text{max}} \sim Q_b^{\text{max}}/2 \sim M/4$
 (numerical study of $gg \rightarrow \bar{b}tH^-$: $\mu_{F,b} \sim M/5$)

So what did we learn from exclusive process?

- $\log(p_{T,b}/m_b)$ after integrating over bottom jet
 but ‘large’ logs at maximum $\log(M/(5m_b))$ [TP; Maltoni, Willenbrock]
- hard scale for inclusive process: $\mu_{F,b} \propto M$
- gg and bg processes: $\mu_{F,b} \sim M/5$ from partonic phase space

\Rightarrow Total cross section with bottom partons understood
LHC: $gg \rightarrow b\bar{t}H$

$$Q_b \frac{d\sigma}{dQ_b} = \frac{Q_b}{(m_t + m_H)}$$

$m_H = 250, 500, 1000$ GeV

$p_T,b \frac{d\sigma}{dp_{T,b}}$

$m_H = 250$ GeV

$m_H = 500$ GeV

$m_H = 1000$ GeV

LHC: $gg \rightarrow b\bar{t}H$ with $P_g (x) = 1$

$LHC: gg \rightarrow b\bar{t}H$ with $P_g (x) = x^2$
Perturbative bottom factorization scale from exclusive process \cite{Boos, TP}

- two steps: first bottom virtuality Q_b^{max}
- general exclusive process: $gg \rightarrow \bar{b}X_M$
 approximate gluon density $\mathcal{L} = \mathcal{L}_0/x^2$
 asymptotic behavior $|\mathcal{M}|^2 = S^2\sigma_0/Q_b^2$

$$\sigma = \frac{2\sigma_0\mathcal{L}_0}{16\pi} \int_0^{S-M^2} \frac{dQ_b}{Q_b} F(Q_b)$$

$\rightarrow F(Q_b)$ known correction to asymptotic behavior $d\sigma/dQ_b \sim 1/Q_b$

\rightarrow define Q_b^{max} at turning point $d^2F(Q_b)/d(log Q_b)^2 = 0$

$\rightarrow Q_b^{\text{max}} \sim M/2$ (hard scale argument $Q_b^{\text{max}} \propto M$, not more than that!)

Second step: transverse momentum $p_{T,b}^{\text{max}}$

- check explicitly: $Q_b \sim Q_b^{\text{max}}$ also yields $p_{T,b} \sim p_{T,b}^{\text{max}}$

\rightarrow translate Q_b into $p_{T,b}$ point by point

$\rightarrow p_{T,b}^{\text{max}}/Q_b^{\text{max}} \sim Q_b^{\text{max}}/M$ yields $p_{T,b}^{\text{max}} \sim Q_b^{\text{max}}/2 \sim M/4$
 (numerical study of $gg \rightarrow \bar{b}tH^-$: $\mu_{F,b} \sim M/5$)

So what did we learn from exclusive process?

- $\log(p_{T,b}/m_b)$ after integrating over bottom jet
 but ‘large’ logs at maximum $\log(M/(5m_b))$ \cite{TP; Maltoni, Willenbrock}

- hard scale for inclusive process: $\mu_{F,b} \propto M$

- gg and bg processes: $\mu_{F,b} \sim M/5$ from partonic phase space

\Rightarrow Total cross section with bottom partons understood
Next-to-leading Order QCD Calculation [TP]

- leading order uncertainty large for $bg \rightarrow tH^-$
- complete set of virtual and real SUSY corrections
- running Yukawa couplings, everything else misleading

\rightarrow NLO correction $+30\% \cdots 40\%$ perturbatively stable [Zhu]

Scale Dependence

- renormalization scale dependence numerically dominant
 $\mu_R \sim (m_t + m_H)/2$ natural choice [c.f. Higgs decays, Melnikov]
- factorization scale dependene critical only for small μ_F
 $\mu_F \sim (m_t + m_H)/5$ from exclusive process
- problem at small scales: bottom induced process not dominant

\rightarrow NLO scale dependence $\pm 20\%$

\rightarrow well defined limit $\mu_F \rightarrow m_b$ returns exclusive process $gg \rightarrow \bar{b}tH^-$

Matching at threshold

- $m_H < m_t - m_b$: top pair production and Breit–Wigner propagator
 $m_H > m_t - m_b$: resummed off-shell process
- double counting of $pp \rightarrow t\bar{t}^* \rightarrow t(\bar{b}H^-)$
- subtract on-shell top pairs from NLO $bg \rightarrow tH^-$ process
 (unique in small width approximation, see SUSY-pairs)

\rightarrow consistent matching by simply adding channels
\[\sigma_{\text{tot}} \ (pp \to tH^- + X) \ [\text{pb}] \]

\((m_b \text{ running mass}) \)

\[m_b \text{ pole mass} \]

- NLO: \(gb \to tH^- \)
- LO: \(gb \to tH^- \)
- LO: \(gg \to b tH^- \)

\[m_H \, [\text{GeV}] \]

\[\mu = 4m_{\text{av}} \]
\[\mu = m_{\text{av}} \]
\[\mu = m_{\text{av}} / 4 \]

\[\tan \beta = 30 \]

\[K \ (pp \to tH^- + X) \]

\[m_H \, [\text{GeV}] \]
Next-to-leading Order QCD Calculation [TP]

- leading order uncertainty large for $bg \to tH^-$
- complete set of virtual and real SUSY corrections
- running Yukawa couplings, everything else misleading

\rightarrow NLO correction $+30\% \cdots 40\%$ perturbatively stable [Zhu]

Scale Dependence

- renormalization scale dependence numerically dominant
 $\mu_R \sim (m_t + m_H)/2$ natural choice [c.f. Higgs decays, Melnikov]
- factorization scale dependence critical only for small μ_F
 $\mu_F \sim (m_t + m_H)/5$ from exclusive process
- problem at small scales: bottom induced process not dominant

\rightarrow NLO scale dependence $\pm 20\%$

\rightarrow well defined limit $\mu_F \to m_b$ returns exclusive process $gg \to \bar{b}tH^-$

Matching at threshold

- $m_H < m_t - m_b$: top pair production and Breit–Wigner propagator
 $m_H > m_t - m_b$: resummed off-shell process
- double counting of $pp \to t\bar{t}^* \to t(\bar{b}H^-)$
- subtract on-shell top pairs from NLO $bg \to tH^-$ process
 (unique in small width approximation, see SUSY-pairs)

\rightarrow consistent matching by simply adding channels
\[\sigma_{\text{tot}} (pp \rightarrow t\bar{H} + X) \text{ [pb]} \]

\[\tan \beta = 30 \]

\[m_t = m_H + m_b \pm 2 \Gamma_t \]
On to the distributions [Berger, Han, Jiang, TP]

- bottom parton description appropriate for total rate

→ Higgs and top distributions?

→ bottom partons established for exclusive cross sections?

(1) Test zero transverse momentum approximation

- bottom partons assuming small $p_{T,b} \ll p_{z,b}$

→ compare inclusive process and (massless) exclusive $(2 \rightarrow 3)$ process

(as it is part of NLO rate)

→ run bottom factorization scale $\mu_F \rightarrow m_b$

switch on/off incoming bottoms, left with $gg \rightarrow \bar{b}tH^-$

→ slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established

→ check with bottom mass dependent $pp \rightarrow \bar{b}tH^-$

→ perfect agreement with exclusive process for small m_b

very good agreement with physical bottom mass case

→ bottom parton picture altogether appropriate
\[
\frac{1}{\sigma} \frac{d\sigma}{dp_{T,H}} \quad m_H = 250 \text{GeV} \quad \tan\beta = 30
\]

\[
\frac{1}{\sigma} \frac{d\sigma}{dp_{T,t}} \quad m_H = 250 \text{GeV} \quad \tan\beta = 30
\]

\[
\frac{1}{\sigma} \frac{d\sigma}{dy_H} \quad m_H = 250 \text{GeV} \quad \tan\beta = 30
\]

\[
\frac{1}{\sigma} \frac{d\sigma}{dy_t} \quad m_H = 250 \text{GeV} \quad \tan\beta = 30
\]

\[
\frac{1}{\sigma} \frac{d\sigma}{dm_{tH}} \quad m_H = 250 \text{GeV} \quad \tan\beta = 30
\]

\[
\frac{1}{\sigma} \frac{d\sigma}{dm_{tH}} \quad \frac{p_{g}(\mu_{F})^2}{P_{g}((M/5)^2)} \quad x_{PDF} = m_{tH}/E_{coll}
\]

LO: \(\mu_F = M/5 \)
NLO: \(\mu_F = 10,20 \text{GeV} \)
On to the distributions [Berger, Han, Jiang, TP]

- bottom parton description appropriate for total rate

→ Higgs and top distributions?

→ bottom partons established for exclusive cross sections?

(1) Test zero transverse momentum approximation

- bottom partons assuming small $p_T,b \ll p_z,b$

→ compare inclusive process and (massless) exclusive $(2 \to 3)$ process
 (as it is part of NLO rate)

→ run bottom factorization scale $\mu_F \to m_b$

 switch on/off incoming bottoms, left with $gg \to \bar{b}tH^-$

→ slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established

→ check with bottom mass dependent $pp \to \bar{b}tH^-$

→ perfect agreement with exclusive process for small m_b

 very good agreement with physical bottom mass case

→ bottom parton picture altogether appropriate
$1/\sigma \, d\sigma/dp_{T,t}$

$m_{tH}=250\text{GeV}$
$tan\beta=30$

$\sigma_{incl,NLO}$

$\sigma_{excl,0.46}$

σ_{excl}

$\sigma_{excl,qq}$

$1/\sigma \, d\sigma/dm_{tH}$
Distributions for Inclusive Process

On to the distributions [Berger, Han, Jiang, TP]

- bottom parton description appropriate for total rate

→ Higgs and top distributions?

→ bottom partons established for exclusive cross sections?

(1) Test zero transverse momentum approximation

- bottom partons assuming small $p_{T,b} \ll p_{z,b}$

→ compare inclusive process and (massless) exclusive $(2 \to 3)$ process

 (as it is part of NLO rate)

→ run bottom factorization scale $\mu_F \to m_b$

 switch on/off incoming bottoms, left with $gg \to \bar{b}tH^-$

→ slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established

→ check with bottom mass dependent $pp \to \bar{b}tH^-$

→ perfect agreement with exclusive process for small m_b

 very good agreement with physical bottom mass case

→ bottom parton picture altogether appropriate
SUSY-QCD Corrections

SUSY-QCD Loop Contributions [TP; Berger, Han, Jiang, TP]

- infrared finite but ultraviolet divergent SUSY loop contributions

- (1) universal corrections $y_b/(1 + \Delta_b)$

[Carena, Garcia, Nierste, Wagner; Guasch, Häflinger, Spira]

(2) remaining explicit SUSY loop diagrams

<table>
<thead>
<tr>
<th></th>
<th>m_0</th>
<th>$m_{1/2}$</th>
<th>$\tan \beta$</th>
<th>μ</th>
<th>m_H</th>
<th>$(\Delta_b)_{\text{resum}}$</th>
<th>non-Δ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>100</td>
<td>250</td>
<td>10</td>
<td>420</td>
<td>477</td>
<td>-9.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>1b</td>
<td>200</td>
<td>400</td>
<td>30</td>
<td>511</td>
<td>535</td>
<td>-23.0%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>2</td>
<td>1450</td>
<td>300</td>
<td>10</td>
<td>425</td>
<td>1503</td>
<td>-3.0%</td>
<td>-1.0%</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>400</td>
<td>10</td>
<td>633</td>
<td>719</td>
<td>-8.8%</td>
<td>3.0%</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>300</td>
<td>50</td>
<td>389</td>
<td>357</td>
<td>-32.0%</td>
<td>-0.4%</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>300</td>
<td>5</td>
<td>637</td>
<td>697</td>
<td>-7.7%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>m_0</th>
<th>$m_{1/2}$</th>
<th>$\tan \beta$</th>
<th>μ</th>
<th>m_H</th>
<th>M_1</th>
<th>$M_{2,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>150</td>
<td>300</td>
<td>10</td>
<td>402</td>
<td>476</td>
<td>480</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Λ</th>
<th>M_{mes}</th>
<th>N_{mes}</th>
<th>$\tan \beta$</th>
<th>μ</th>
<th>m_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>40×10^3</td>
<td>80×10^3</td>
<td>3</td>
<td>15</td>
<td>316</td>
<td>476</td>
</tr>
<tr>
<td>8</td>
<td>100×10^3</td>
<td>200×10^3</td>
<td>1</td>
<td>15</td>
<td>421</td>
<td>538</td>
</tr>
</tbody>
</table>

$\rightarrow \Delta m_b$ corrections dominant for $\tan \beta \gtrsim 10$ (dependent on sign of μ)

\rightarrow explicit loop corrections negligible $\lesssim 10\%$ for generic mSUGRA
3. (Heavy) Neutral Higgs

Bottom induced production of neutral Higgses

- rate enhanced by \(\tan^2 \beta \)

- \(gg \rightarrow b\bar{b}H \) exclusive versus \(bg \rightarrow bH \) inclusive
- \(bg \rightarrow bh \) exclusive versus \(b\bar{b} \rightarrow H \) inclusive

- appropriate factorization scale \(\mu_{F,b} \sim M/5 = m_h/5 \)

- check: \(b\bar{b} \rightarrow H \) NNLO scale dependence
 [Harlander & Kilgore]
 \(\mu_{R,b} \) variation for fixed \(\mu_{F,b} \sim m_h/4 \) well under control
 \(\mu_{F,b} \) variation for fixed \(\mu_{R,b} \sim m_h \) almost fixed point

- check: exclusive vs. inclusive total rate
 [Dittmaier, Spira, Krämer]

<table>
<thead>
<tr>
<th>(M_H)</th>
<th>(\sigma(q\bar{q}, gg \rightarrow b\bar{b}H + X)) [fb]</th>
<th>(\sigma(b\bar{b} \rightarrow H + X)) [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>Tevatron</td>
<td>120</td>
<td>(3.9^{+3.5}_{-1.7}) 0.22 (+0.19^{--0.09})</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>(4.3^{+2.4}{-1.4}) ((5.3^{+2.7}{-1.7}) \times 10^2)</td>
</tr>
<tr>
<td>LHC</td>
<td>120</td>
<td>((5.3^{+2.7}{-1.7}) \times 10^2) ((7.3^{+2.0}{-1.6}) \times 10^2)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>(4.3^{+2.4}_{-1.4})</td>
</tr>
</tbody>
</table>

Side remark: single top production \(qg \rightarrow b\bar{t}q' \)
[Willenbrock et al]

- less steep quark densities, \(x_1 \neq x_2 \)

- production above threshold

\(Q_{b}^{\text{max}} \sim m_t \)

- generally \(p_{T,b}^{\text{max}} \sim Q_{b}^{\text{max}}/2 \)

\(\mu_{F,b} \sim m_t/2 \) covered by quoted theoretical uncertainty
$\sigma(pp \rightarrow (b\bar{b})H+X)$

LHC
$M_H=120$ GeV

$\mu_R=M_H$

μ_F/M_H

Harlander, Kilgore
HEAVY HIGGS DECAY TO LIGHT HIGGSES

SM Higgs pair production at the LHC [Baur, TP, Rainwater]

- $HH \rightarrow 4W$: believable detector simulation needed, not hopeless
 (use m_{vis} to determine λ_{HHH})
- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b$: several major miracles mandatory
 TESLA in better shape [Castanier, Gay,...; Lafaye, Mühlleitner,...]
- $HH \rightarrow b\bar{b}\mu\mu$: at least small miracle would be helpful
 (might come out of $\mu\mu$ mass resolution)
- $HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed

MSSM pair production $gg \rightarrow hh$ [Djouadi, Haber, Zerwas]

- only way to access $\tan\beta < 10$ beyond no-lose theorem
- factor 20 enhancement of cross section
- $HH \rightarrow b\bar{b}\gamma\gamma$ best shot
- backgrounds hard to compute but under control
- 5σ with 300 fb$^{-1}$ possible for $\tan\beta = 3$
$\Delta \lambda_{H} = (\lambda - \lambda_{SM}) / \lambda_{SM}$

$pp \rightarrow t^{+}t^{-} + 4j$

$\sqrt{s} = 14$ TeV

95% C.L. limits

m_{H} (GeV)
HEAVY HIGGS DECAY TO LIGHT HIGGSES

SM Higgs pair production at the LHC [Baur, TP, Rainwater]

- $HH \to 4W$: believable detector simulation needed, not hopeless
 (use m_{vis} to determine λ_{HHH})

- $HH \to b\bar{b}\tau\tau$: miracle required

- $HH \to 4b$: several major miracles mandatory
 TESLA in better shape [Castanier, Gay,... ; Lafaye, Mühlleitner,...]

- $HH \to b\bar{b}\mu\mu$: at least small miracle would be helpful
 (might come out of $\mu\mu$ mass resolution)

- $HH \to b\bar{b}\gamma\gamma$: some enhancement needed

MSSM pair production $gg \to hh$ [Djouadi, Haber, Zerwas]

- only way to access $\tan\beta < 10$ beyond no-lose theorem

- factor 20 enhancement of cross section

$\rightarrow HH \to b\bar{b}\gamma\gamma$ best shot

\rightarrow backgrounds hard to compute but under control

$\rightarrow 5\sigma$ with 300 fb$^{-1}$ possible for $\tan\beta = 3$
\[\tan \beta = 3 \]

\[m_h = 117.5 \text{ GeV} = m_H / 2 \]
Conclusions

1. One MSSM Higgs guaranteed to be seen stable to variations of MSSM
2. heavy Higgs bosons necessary to tell it might be the MSSM charged Higgs production with bottom jets understood

2'. NLO rate for charged Higgs production known:
 NLO₁: inclusive process well defined
 NLO₂: remaining scale uncertainty ≲ 20%
 NLO₃: Δm_b corrections dominant in MSSM for large $\tan\beta$
 NLO₄: non-factorizable corrections negligible in MSSM

3. neutral Higgs production with $b\bar{b} \rightarrow H$ understood

4. signal $H^* \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$ for small $\tan\beta$
$x^n P^{(p)}(x)$

$Q_F = 100$ GeV

$Q_F = 1000$ GeV
\[\sigma_{\text{tot}} (pp \to tH^- + X) \ [\text{pb}] \]

- \(m_H = 250 \text{ GeV} \)
- \(m_H = 500 \text{ GeV} \)

\[\mu_F/\mu_{F,0} = \mu_R/\mu_{R,0} \]
\[\mu_F = \mu_{F,0} \]
\[\mu_R = \mu_{R,0} \]

\[\mu_F/\mu_{F,0} = \mu_R/\mu_{R,0} \]
\[\mu_F = \mu_{F,0} \]
\[\mu_R = \mu_{R,0} \]

\[\mu_F/\mu_{F,0} = \mu_R/\mu_{R,0} \]
\[\mu_F = \mu_{F,0} \]
\[\mu_R = \mu_{R,0} \]
LHC: $gg \rightarrow bbH$

$m_H = 130, 250, 500, 1000$ GeV

$m_t = 175, 500, 1000$ GeV