
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Jona Ackerschott

born in Lüdenscheid

2023

Shifting Perspective: Accurate Unfolding Flows for
tth̄-Production through Phase-Space

Parameterizations

This Master thesis has been carried out by Jona Ackerschott

at the

Institute for Theoretical Physics

under the supervision of

Prof. Dr. rer. nat. Tilman Plehn

and

apl. Prof. Dr. Monica Dunford

Kirchhoff-Institute for Physics

Perspektivwechsel: Präzise Unfolding Flows für tth̄-Produktion mithilfe
von Phasenraum-Parametrisierungen

Es wurde untersucht, wie Normalizing-Flow-Unfolding die derzeitige Sen-
sitivität für 𝐶𝑃-Verletzung in semi-leptonischer 𝑡 ̄𝑡ℎ-Produktion mit ℎ → 𝛾𝛾
am HL-LHC potentiell verbessern kann. Wir werden sehen, dass geeignete
Parton-Level Phasenraum-Parametrisierungen, ergänzt durch neuartige Spline
Coupling-Blöcke, attraktive Werkzeuge zur Rekonstruktion von Massenpeaks
und anderer generativer Schwächen sind. Ich stelle ein Flow-Netzwerk vor, das
deutlich zwischen Signal-Daten mit einer absoluten 𝐶𝑃-Phase von 𝜋/4 und
dem SM unterscheiden kann, anhand jeder von vielen präzise rekonstruierten
𝐶𝑃-sensitiven Parton-Level Observablen. Das Netzwerk liefert außerdem eine
deutliche Sensitivität für den kleineren Wert 𝛼 = 𝜋/8 und dem vor kurzem
demonstrierten HL-LHC-Limit, 𝛼 = 13°. Gleichzeitig konnte keine Sensitivität
für das Vorzeichen der 𝐶𝑃-Phase erreicht werden. Es gibt allerdings, wie ich
demonstrieren werde, starke Indizien dafür, dass verwertbare Informationen
über das Vorzeichen bereits in den Detektordaten fehlen, wenn ISR berück-
sichtigt wird.

Shifting Perspective: Accurate Unfolding Flows for tth̄-Production
through Phase-Space Parameterizations

I explored how normalizing flow unfolding can potentially improve the current
sensitivity for 𝐶𝑃-violation in semi-leptonic 𝑡 ̄𝑡ℎ-production with ℎ → 𝛾𝛾 at the
HL-LHC. We will see that appropriate parton-level phase-space parameteri-
zations, supplemented with novel spline coupling blocks, are attractive tools
to reconstruct narrow mass peaks and other generative weaknesses associ-
ated with this task. I propose a flow network that can differentiate distinctly
between signal-only data, with an absolute 𝐶𝑃-phase of 𝜋/4, and the SM,
based on each of many precisely reconstructed parton-level 𝐶𝑃-sensitive ob-
servables. The network further provides evident sensitivity to the lower value
𝛼 = 𝜋/8 and the recently projected HL-LHC bound for background-inclusive
data, 𝛼 = 13°. At the same time, no sensitivity for the sign of the 𝐶𝑃-phase
could be achieved. There are, however, as I will demonstrate, strong indica-
tions that practically usable sign information is already absent in detector-level
data if ISR is taken into account.

Contents

1. Introduction 7

2. Normalizing Flows 9
2.1. Finite Composition Architectures 11

2.1.1. Linear Flows . 12
2.1.2. Autoregressive Flows 13
2.1.3. Residual Flows . 18

2.2. Continuous Architectures . 19
2.3. Conditional Flows . 21
2.4. Flows on Riemannian Manifolds 21
2.5. Bayesian Flows . 23

3. Unfolding 28
3.1. Unfolding as an Inverse Problem 29
3.2. Classical Unfolding . 31

3.2.1. Iterative Bayesian Unfolding 32
3.3. Omnifold . 33
3.4. Unfolding with Conditional Normalizing Flows 36

4. CP-Violation in tth̄-Production 39
4.1. Constructing Direct CP-Observables 41
4.2. Direct CP-Observables in tt̄h-Production 47
4.3. CP-Sensitive Observables in tt̄h-Production 49

5

5. A Normalizing Flow Network for Unfolding tth̄-Production 52
5.1. Training Datasets . 53
5.2. Phase-Space Parameterization 55
5.3. Periodic Splines . 59
5.4. Architecture . 63
5.5. Results . 65

6. Conclusion 86

A. Phase Space Parameterization Details 88

6

1. Introduction

The analysis strategy of large hadron collider (LHC) data has shifted over the
last decade. After the discovery of the Higgs boson [1, 2] the era of testing
specific postulated models ended [3]. With the abundance of beyond Standard
Model (BSM) theories today, modern analysis strategies try to be as model
agnostic as possible, often through the use of effective field theorys (EFTs) [4].
At the same time, the planned high luminosity large hadron collider (HL-LHC)
is projected to collect 25 times the amount of data from the first two LHC runs,
bringing existing analysis methods to their limit [3]. With the simultaneous
rise of machine learning, a natural tool has emerged to deal with these new
challenges [3, 5–7].

The numerical simulation chain of analytically inaccessible parton shower,
hadronization and detector effects, tainting the information of the hard scat-
tering process, is central to LHC analyses. Generative Networks, including
generative adversarial networks (GANs) [8–24], variational auto-encoders
(VAEs) [19–22, 25, 26], normalizing flows [24, 26–29] and, more recently, dif-
fusion models [30–33] and transformers [32–34] have shown great potential
for improvement here [35]. Among these architectures, (conditional) normal-
izing flows have proven to be especially useful for inverting simulations [36],
most importantly in the context of unfolding [37, 38]. Classical techniques
for unfolding are limited to the analysis of single observable distributions with
a pre-defined binning and require the manual reconstruction of interesting ob-
servables on detector-level [39]. This restriction can be lifted through machine
learning [37, 40].

7

In this thesis, a normalizing flow is employed to unfold the phase-space of
top-pair associated Higgs production, with a particular focus on 𝐶𝑃-sensitive ob-
servables. The objective is to improve the detection sensitivity of 𝐶𝑃-violation
in the Higgs sector. We know that many observables can be important here,
most of them difficult to reconstruct from detector data [41]. Normalizing flow
unfolding can take care of this reconstruction, not only for a few observables,
but for all phase-space dimensions simultaneously [37]. This technique further
unfolds single detector events statistically, allowing for valid unfolding with
even a low number of events. As we will see, this feature also allows us to
analyze the information loss at detector-level in the context of specific observ-
ables. On the other hand, the unfolding accuracy is not equally distributed
across observables with this method. Intermediate particle mass distributions
are a well-known weakness in particular [37], while being abundant in 𝑡 ̄𝑡ℎ. I
will demonstrate that specific choices of phase-space parameterizations greatly
improve the accuracy of intermediate mass distributions, while also allowing
us to shift the focus of our network to those observables that are of interest
to us. I will further show that information loss induced model dependence
becomes an issue when unfolding a complex process like 𝑡 ̄𝑡ℎ.

We will see that normalizing flow unfolding gives us excellent accuracy when
unfolding many 𝐶𝑃-sensitive observables of 𝑡 ̄𝑡ℎ, while specifically struggling
with observables that would allow us to test 𝐶𝑃-symmetry directly. In particular,
we will discuss some indications that there might be no practical information
at all about these observables in 𝑡 ̄𝑡ℎ detector data.

The layout of this thesis is as follows. In Chapter 2 we will start with the
fundamentals of normalizing flows. An introduction to unfolding will be given
in Chapter 3. We will also discuss and compare classical unfolding techniques
as well as Omnifold and normalizing flow unfolding. For Chapter 4 we will
cover the basics of 𝐶𝑃-sensitive observables in the context of 𝐶𝑃-violation in
the Higgs sector and specifically review 𝐶𝑃-sensitive 𝑡 ̄𝑡ℎ observables. Finally a
flow-based unfolding model for 𝑡 ̄𝑡ℎ, with a focus on 𝐶𝑃-sensitive observables,
will be presented in Chapter 5. Conclusions will be summarized in Chapter 6.

8

2. Normalizing Flows

In the bigger part of this chapter, we will closely follow refs. [42, 43]. Normal-
izing flows are diffeomorphisms, often constructed with a neural network, that
model complex probability distributions by transforming (normalizing) them
into a simple base distribution [44, 45]. Inverting this diffeomorphism then
allows for efficient sampling and density estimation of the target distribution.

More formally, suppose we have a probability density 𝑞 ∶ ℝ𝑛 → ℝ. When
we apply a diffeomorphism 𝒈 ∶ ℝ𝑛 → ℝ𝑛 to 𝑞, we can compute the resulting
density 𝑝(𝒙) with the Jacobian determinant of 𝒇 = 𝒈−1 as1

𝑝(𝒙) = 𝑞(𝒇(𝒙)) |det(D 𝒇(𝒙))| . (2.1)

In the following, we will refer to 𝑞 as the base distribution, its domain as the
base domain, to 𝑝 as the target distribution and to its domain as the target
domain. Furthermore, we will call the components 𝑧𝑖, 𝑥𝑖 of elements from
either the base or target domain channels.

Note that we can construct any distribution 𝑝 this way; as long as reasonable
assumptions on 𝑝 and 𝑞 are satisfied, it is always possible to find a fitting
diffeomorphism [43, 46]. Naturally, this diffeomorphism can be arbitrarily
complex, so the question arises of how we can construct 𝑔 in general. There are
two ways: finite composition and continuous-time flows, both usually involving
neural networks [43]. We will introduce both of these approaches in the
following sections.

1More technically, we apply 𝒈 by computing the pushforward of the underlying probability
measure of 𝑞.

9

In addition to being able to model flexible diffeomorphisms, we need a method
of fitting such a transformation to a target distribution. Suppose we have a
base distribution 𝑞(𝒛) and a diffeomorphism 𝒈𝝓. The goal is to find an optimal
set of parameters 𝝓 for which 𝒈𝝓 models a certain target distribution 𝑝(𝒙) as
closely as possible. For this we can optimize 𝝓 with respect to some objective
L(𝝓). One of the most popular choice here is the Kullback-Leibler (KL) di-
vergence [47], which measures the discrepancy of two arbitrary distributions
𝑝(𝒙) and 𝑞(𝒙) as the expectation of their logarithmic difference, i.e.

KL(𝑝(𝒙) ‖ 𝑞(𝒙)) ∶= 𝐸𝑥∼𝑝(𝒙) ⎡
⎣
log(

𝑝(𝒙)
𝑞(𝒙)

)⎤
⎦
. (2.2)

Hence, we can use the KL-divergence as an objective to minimize this discrep-
ancy, giving us two good choices for L(𝝓). The first of these is the forward KL
divergence, defined as

L(𝝓) = KL(𝑝(𝒙) ‖ 𝑝(𝒙|𝝓)), (2.3)

where 𝑝(𝒙|𝝓) is the distribution that our model generates from the base
distribution, given parameters 𝝓. When writing this out, using the change
of variables formula from Eq. (2.1) and ignoring terms constant in 𝝓, we
obtain

L(𝝓) = −𝐸𝒙∼𝑝(𝒙) [log(𝑝(𝒙|𝝓))] . (2.4)

Conversely, if we swap the two arguments in Eq. (2.3) we get the reverse KL
divergence

L(𝝓) = KL(𝑝(𝒙|𝝓) ‖ 𝑝(𝒙))

= 𝐸𝑥∼𝑝(𝒙|𝝓) ⎡
⎣
log(

𝑝(𝒙|𝝓)
𝑝(𝒙)

)⎤
⎦
,

(2.5)

10

This one yields

L(𝝓) = 𝐸𝑥∼𝑝(𝒙|𝝓) [log(𝑝(𝒙|𝝓)) − log(𝑝(𝒙))]

= −𝐸𝒛∼𝑞(𝒛) [log(𝑝(𝒈𝝓(𝒛))) + log|det(D𝒈𝝓(𝒛))|] .
(2.6)

Again we have ignored constant terms.

The decision of which objective to use typically boils down to the question if
evaluating the target density 𝑝(𝑥) or sampling from it is cheaper. In the first
case, computing the expression for the reverse KL divergence is preferable,
while the forward divergence is a better choice in the second case. Additionally
the forward KL-divergence, as a pure log-likelihood loss when written out,
is the only option if we want to built a Bayesian model. We will discuss this
further in Section 2.5. Note that we need to approximate the expectation value
in Eq. (2.4) and Eq. (2.6) in practice, typically by Monte Carlo methods.

2.1. Finite Composition Architectures

Finite composition flows are built by dividing 𝒈 into a finite number of simpler
diffeomorphisms 𝒈1,… , 𝒈𝑚, i.e.

𝒈 = 𝒈𝑚 ∘… ∘ 𝒈1. (2.7)

This allows us to focus on a single 𝒈𝑖 without having to worry about global
issues, since we can construct the inverse and Jacobian from the components.
In particular if 𝒇1 ∘… ∘ 𝒇𝑚 are the respective inverses of the 𝒈𝑖’s, we get

𝒇 = 𝒇1 ∘… ∘ 𝒇𝑚, (2.8)

while the determinant of the Jacobian can be computed as

det(D 𝒇(𝒙)) =
𝑚
∏
𝑖=1

det(D 𝒇𝑖(𝒙)). (2.9)

11

2.1.1. Linear Flows

A reasonable starting point is considering linear components, i.e.

𝒈𝑖(𝒛) = 𝐴𝒛, (2.10)

with an invertible matrix 𝐴 ∈ ℝ𝑛×𝑛. For the determinant we get

det(D𝒈𝑖(𝒛)) = det(𝐴) (2.11)

In practical implementations, we have to restrict the form of 𝐴 in some way
for three reasons: 𝐴 must be invertible, the parameterization of 𝐴 has to
be continuous and the inversion of 𝐴 needs to be efficient. Particularly a
continuous parameterization is not possible for general invertible matrices due
to the discontinuous jump of corresponding determinants at zero. Concerning
the last point, we specifically want to invert 𝐴 faster than the O(𝑛3) time
complexity required for arbitrary non-singular matrices. Factorizing 𝐴 using a
PLU or QR-decomposition as well as restricting 𝐴 to be orthogonal are possible
solutions to these problems [43].

It should be obvious that linear flows on their own are insufficient to model
flexible diffeomorphisms. For instance, we cannot model non-exponential
distributions with an exponential base distribution using just linear trans-
formations. However linear flows are an important component to use in
conjunction with autoregressive architectures [42, 43]. Particularly raw per-
mutation matrices in Eq. (2.10) are often used in practice. There also is the
slightly more general approach of using ‘soft’ permutation matrices 𝐴 ∈ SU(𝑛),
which, however, scale poorly with 𝑛 [48].

12

2.1.2. Autoregressive Flows

Autoregressive flow architectures construct 𝒈𝑖 as

(𝒈𝑖(𝒛))𝑗 = 𝜏(𝑧𝑗, c𝑗(𝑧1,… , 𝑧𝑗−1)) (2.12)

with an invertible function 𝜏, called the transformer,2 and functions 𝒄𝑗, called
the conditioners. The conditioners do not have particular constraints and
their dimensionality can be chosen arbitrarily to fit the respective transformer
implementation. The definition Eq. (2.12) is invertible, as it should be, with
the inverse

(𝒇𝑖(𝒙))𝑗 = 𝝉−1(𝑥𝑗, 𝒄𝑗(𝑧1,… , 𝑧𝑗−1)). (2.13)

Here 𝑧1,… , 𝑧𝑗−1 = (𝒇𝑖(𝒙))1,… , (𝒇𝑖(𝒙))𝑗−1. Furthermore, the Jacobian of an
autoregressive 𝒈𝑖 is triangular. Because of this, we can simply compute the
Jacobian determinant by multiplying the diagonal elements. This reduces the
time complexity of this operation from O(𝑛3) to O(𝑛).

Let me emphasize that this construction of normalizing flows is still universal,
i.e. autoregressive flows, in theory, can still transform any base into any target
distribution [43]. In practice we will lose this universality and autoregressive
architectures can depend on the order of their inputs. For this reason, they
can benefit from using multiple sub-flows 𝒈𝑖 and interleaving them with linear
flows—usually permutations—to mix up the channel order [43]. There are
quite a few options for the transformer and the conditioner now.

Conditioner Architectures

A straightforward way to implement the conditioner is to model it directly as
a neural network, for example, using a simple fully connected architecture.
One can do this by taking a network that depends on the full input 𝒛 and then

2Not to be confused with transformer models [49], which we will not mention again here.
This terminology is adopted from Ref. [43] and will be used consistently in this thesis,
due to lack of a better term.

13

removing connections between the 𝑖-th input and the first to 𝑖-th output. This
is typically done by multiplying the weights with binary masking matrices.

Another option is to use a recurrent neural network (RNN) for 𝒄. Here we
start with an initial state 𝒔1 ∈ ℝ𝑗−1 which we iteratively update with an RNN
𝑅 according to

𝒔𝑘 = 𝑅(𝑧𝑘−1, 𝒔𝑘−1). (2.14)

After we have obtained 𝒔𝑗 we evaluate the conditioner as

𝒄𝑗(𝑧1,… , 𝑧𝑗−1) = 𝒄𝑗(𝒔𝑗). (2.15)

The initial state can either be chosen manually or added to the RNN as a
parameter to be learned.

Both of these conditioner implementations are quite inefficient. RNN con-
ditioners have to be evaluated sequentially such that evaluation has a time
complexity of O(𝑛). Masked conditioners are fast when evaluating the flow
in the forward direction, but the efficiency of the inverse direction also grows
with 𝑛 [43]. On the other hand, masked autoregressive flows do not intro-
duce additional restrictions on the conditioner and therefore do not sacrifice
the universal approximation properties of autoregressive flows, provided the
underlying network architecture is universal.

That being said if we want to evaluate both the forward and backward direction
of the flow efficiently, coupling blocks are a good choice [50, 51]. Here, we
choose some integer 𝑘 ∈ {1,… , 𝑛}, often as 𝑘 = 𝑛/2 rounded to an integer,
and implement the conditioner as

𝒄𝑗(𝑧1,… , 𝑧𝑗−1) =
⎧

⎨
⎩

const. if 𝑗 ≤ 𝑘

𝑭(𝑧1,… , 𝑧𝑘) if 𝑗 > 𝑘
, (2.16)

where 𝑭 is an arbitrary function. In practice we would split the input 𝒛 into two
parts 𝒛𝐴 = (𝑧1,… , 𝑧𝑘) and 𝒛𝐵 = (𝑧𝑘+1,… , 𝑧𝑛), which are then transformed
pointwise—𝒛𝐴 independently and 𝒛𝐵 in dependence of 𝒛𝐴. One typically

14

alters the transformer architecture here and uses the identity for arguments
𝒄𝑗(𝑧1,… , 𝑧𝑗−1) with 𝑗 ≤ 𝑘.

Inversion is trivial: Since the transformation of 𝒛𝐴 is done independently from
𝒛𝐵 we can undo it in parallel and use the result to invert the transformation of
𝒛𝐵—also in parallel. This makes evaluation in both directions equally fast, as
promised.

The downside of this efficiency is losing the approximative power of autore-
gressive flows. When composing multiple coupling blocks, while permuting
the channels in between, it was shown that we regain quite universal net-
works, both empirically [52–54] and theoretically. On the theoretical side,
however, the proof involves concatenating 𝐷 coupling blocks to recreate a fully
autoregressive flow, obviously defeating the purpose of being faster than other
methods [43].

In reality, implementing coupling blocks as compositions with permutations in
between them—or, more generally, linear transformations—is of course both
helpful and necessary. Otherwise, there would always be channels which are
never transformed by anything other than the identity.

Transformer Architectures

Let us start with a linear (affine) implementation:

𝜏(𝑧𝑗, 𝛼𝑗, 𝛽𝑗) = 𝛼𝑗𝑧𝑗 + 𝛽𝑗. (2.17)

To ensure invertibility we can let the conditioner compute a parameter �̃�𝑗

instead and choose 𝛼𝑗 = exp(�̃�𝑗) ≠ 0. The Jacobian determinant becomes

log|det(D 𝜏(𝒛))| =
𝑛
∑
𝑖=1

log|𝛼𝑖|. (2.18)

This transformer form is very efficient and analytically invertible but lacks
expressive power. Nonetheless, affine transformers can still produce flexible

15

networks, provided we use a sufficient number of 𝒈𝑖’s in our flow composi-
tion.

More flexible transformers can be constructed by using a conical sum or
composition of 𝐾 simple functions 𝜏𝑘, i.e.

𝜏(𝒛, 𝛼𝑘) =
𝐾
∑
𝑘=1

𝛼𝑘𝜏𝑘(𝒛) or

𝜏(𝒛) = 𝜏𝐾 ∘… ∘ 𝜏1(𝒛).
(2.19)

The idea is that if the 𝜏𝑘’s are strictly monotonic, then 𝜏 will also be strictly
monotonic and hence invertible. If we use monotonically increasing activation
functions we can for example construct a fully connected neural network using
this method, retaining universality through their flexibility. In this case, we
can obtain the Jacobian determinant through backpropagation. In general of
course these types of transformers might not be analytically invertible.

We can also define a transformer by integrating a positive function ℎ, making
the result monotonically increasing (i.e. invertible). In particular

𝜏(𝑧𝑗, 𝜶𝑗, 𝛽𝑖) = ∫
𝑧𝑗

0
ℎ(𝜁 , 𝜶𝑗)d𝜁 + 𝛽𝑖. (2.20)

With such an approach we can approximate any possible transformer 𝜏. How-
ever, if we do not want to use numerical methods to invert 𝜏, we have to
constrain the form of ℎ. For instance, we can make ℎ a positive polynomial
of degree 2𝐾, which can be written as the sum of the squares of 2 or more
polynomials with degree 𝐾 (proposition 1.1.2 in Ref. [55]). If we choose 𝐾
large enough, this choice of ℎ can approximate any monotonically increasing
function arbitrarily well [56]. At the same time, a so-constructed transformer
is only analytically invertible for 𝐾 < 2, since we can only solve polynomials
up to degree four analytically. Note that the integral increases the degree of
the polynomial by one, so that 𝐾 = 2, gives us a polynomial of degree five.

Last but not least there are spline transformers. These provide an analytically

16

𝑧

𝜏(𝑧)

−𝐵 𝐵

−𝐵

𝐵

(𝑧(0), 𝑥(0))

(𝑧(1), 𝑥(1))

(𝑧(2), 𝑥(2))

(𝑧(3), 𝑥(3))

(𝑧(4), 𝑥(4))

Figure 2.1.: Example of a spline transformation with 𝐾 = 4. Here, also the
derivatives at each point must be specified.

invertible alternative to previous transformers, which also have a high expressiv-
ity. Here we assume we want to construct a transformer 𝜏 ∶ [−𝐵, 𝐵] → [−𝐵, 𝐵],
where 𝐵 specifies the domain boundaries. For simplicity, we look at how 𝜏 acts
on a single channel 𝑧, keeping in mind that all parameters of 𝜏 can be different
across 𝑧𝑖’s. We divide [−𝐵, 𝐵] into 𝐾 intervals with edge points 𝑧(𝑘) and con-
struct 𝜏 piecewise by𝐾 simple transformations (cf. Fig. 2.1). In particular we de-
fine 𝐾+1 points 𝑥(𝑘) and 𝐾 transformations 𝜏𝑘 ∶ [𝑧(𝑘), 𝑧(𝑘+1)] → [𝑥(𝑘), 𝑥(𝑘+1)],

17

such that
𝜏(𝑧) = 𝜏𝜅(𝑧), (2.21)

with 𝜅 chosen to satisfy 𝑧(𝜅) ≤ 𝑧 < 𝑧(𝜅+1). As an example, we could choose 𝜏𝑘
to be linear, such that 𝜏 would become a piecewise linear function. For more
complex 𝜏𝑘 (e.g. rational quadratics) we need further constraints and can for
instance add the derivatives at each point 𝑧(𝑘) as parameters to 𝜏. Note that
defining 𝜏 only on [−𝐵, 𝐵] is slightly restrictive. Realistically we would define
𝐵 to be large enough to handle most cases and extend 𝜏 to be the identity for
points outside of [−𝐵, 𝐵].

The forward and inverse directions of these transformations can be evaluated
equally fast, while the flexibility of splines grows with 𝐾. Additionally, in-
creasing flexibility is not too expensive; the evaluation time only grows with
O(log(𝐾)), when we obtain 𝜅 using binary search. Examples of spline imple-
mentations include linear and quadratic [57], linear-rational [58], cubic [59]
and rational quadratic splines [54].

2.1.3. Residual Flows

Residual Flows implement 𝑔𝑖 as the identity plus an arbitrary translation, i.e.

𝒈𝑖(𝒛) = 𝒛 + 𝜟(𝒛), (2.22)

which is not invertible in general, so one has to restrict the form of 𝜟(𝒛)
somehow.

One way to do this is to make 𝜟(𝒛) contractive with respect to some metric 𝛿,
such that

𝛿(𝜟(𝒛1), 𝜟(𝒛2)) ≤ 𝐿 𝛿(𝒛1, 𝒛2), (2.23)

with 𝐿 < 1 [60, 61]. The invertibility of 𝒈𝑖(𝒛) is then easy to show using
the Banach fixed-point theorem, which also suggests an iterative algorithm
to compute the inverse [43]. Such contractive flows do not suffer from the

18

sparse Jacobians that are required for autoregressive architectures, which
makes them very flexible. However, these more complex Jacobians are also
expensive to compute which, together with the necessity of iterative sampling,
often makes this architecture undesirable in practice.

There also exist other approaches to residual flows, known as planar, Sylvester
and radial flows [44, 45, 62]. However, all of these methods suffer from
inverses that are not analytically tractable and involve quite simple transfor-
mations, limiting their expressiveness.

2.2. Continuous Architectures

Continuous-time flows (CTFs) are a second way of constructing normalizing
flows, which we will discuss briefly for completeness. Instead of transforming
our input 𝑧with a finite number𝑚 of transformations 𝒈𝑖, we want to transform
𝑧 continuously, giving us a function 𝒖(𝑡). Now, our original input to the flow is
𝒛 = 𝒖(𝑡0), while the output becomes 𝒖(𝑡1), for some numbers 𝑡0 and 𝑡1 > 𝑡0.
The new transformation is controlled by giving an expression for the derivative
of 𝒖(𝑡), yielding an ordinary differential equation (ODE)

d𝒖
d𝑡

(𝑡) = 𝒉(𝑡, 𝒖(𝑡)). (2.24)

If 𝒉 is uniformly Lipschitz continuous in its second argument and continuous
in 𝑡, it follows from the Picard-Lindelöf theorem that there exists a unique
solution of Eq. (2.24). This also implies that 𝒖(𝑡1) is uniquely determined for
each initial condition 𝒖(𝑡0), proving invertibility of CTFs. These continuity
conditions can be implemented into many neural network architectures [63],
while there are no other restrictions on 𝒉—as opposed to finite composition
flows.

19

Computing the actual flow transformation boils down to

𝒈(𝒛) = 𝒛 +∫
𝑡1

𝑡0
𝒉(𝑡, 𝒖(𝑡))d𝑡, (2.25)

where 𝒖(𝑡) is the solution of Eq. (2.24) with initial condition 𝒖(𝑡0) = 𝒛. The
inverse is given as

𝒈−1(𝒙) = 𝒙 −∫
𝑡1

𝑡0
𝒉(𝑡, 𝒖(𝑡))d𝑡. (2.26)

Note that evaluation and inversion are completely equivalent in terms of
computational cost, which is not always true for autoregressive flows.

Instead of the Jacobian of 𝒈 we can compute the change in the logarithm of
the base density. One can show that this is equal to the negative trace of the
derivative of 𝒉 [64]:

d log(𝑞(𝒛(𝑡)))
d𝑡

= −Tr(D𝒖 𝒉(𝑡, 𝒖(𝑡))) . (2.27)

If we integrate this, we obtain the density transformation under the flow:

log(𝑝(𝒙)) = log(𝑞(𝒛)) −∫
𝑡1

𝑡0
Tr(D𝒖 𝒉(𝑡, 𝒖(𝑡)))d𝑡. (2.28)

Evaluating the Jacobian like this is computationally expensive however and
requires O(𝐷) passes of backpropagation. There are ways to remedy this,
by either approximating the trace in Eq. (2.28) [65] or by constraining the
architecture of 𝒉 [66].

It should be clear that the integrals in Eq. (2.25) and Eq. (2.28) are in gen-
eral not analytically feasible. We therefore need to use a numerical ODE
solving method—either directly or in conjunction with the so-called adjoint
method [64].

20

2.3. Conditional Flows

A conditional normalizing flows is a simple and worthwhile extension to
standard flows. These allow us to learn conditional densities and are based on
the observation that in

L(𝝓) = KL(𝑝(𝒙) ‖ 𝑝(𝒙|𝝓)), (2.29)

nothing prevents us from replacing the target density 𝑝(𝒙) by a density 𝑝(𝒙|𝒄),
yielding.3

L(𝝓) = KL(𝑝(𝒙|𝒄) ‖ 𝑝(𝒙|𝒄,𝝓))

= −𝐸𝒙,𝒄∼𝑝(𝒙|𝒄) [log(𝑞(𝒇𝝓(𝒙, 𝒄))) + log|det(D 𝒇𝝓(𝒙, 𝒄))|] .
(2.30)

Here we now compute the expectation value over the conditional distribution.
In reality, we would compute a Monte Carlo approximation of the expectation
value by sampling matching values 𝒙, 𝒄 from 𝑝(𝒙|𝒄). The change of variable
formula we use is

𝑝(𝒙|𝒄) = 𝑞(𝒇(𝒙, 𝒄)) |det(D 𝒇𝝓(𝒙, 𝒄))|. (2.31)

Ultimately conditional flows boil down to allowing for an additional argument
𝒄 in 𝒈𝝓, such that 𝒈𝝓(𝒙, 𝒄) is a diffeomorphism if we fix 𝒄 [67]. For e.g.
autoregressive flows we would implement this by appending 𝒄 to the arguments
of the conditioner.

2.4. Flows on Riemannian Manifolds

In some instances our probability distribution 𝑝(𝒙) might not live in Euclidean
space, for example if we parameterize 𝒙 in terms of spherical coordinates. In

3In principle we could also allow for the base distribution to be conditioned on 𝒄

21

these cases, applying the usual normalizing flow constructions defined on ℝ𝑛

can lead to problems, as we will see in Section 5.3.

Instead we would like to define our flow as 𝒈 ∶ X → Y , where X and Y are two
𝑛-dimensional manifolds. It is clear that X and Y must be homeomorphic—
since 𝒈 is per definition a homeomorphism—, i.e. topologically equivalent. In
the case that X and Y are also homeomorphic to ℝ𝑛 we can just define two
maps 𝝓 ∶ ℝ𝑛 → X and 𝝍 ∶ ℝ𝑛 → Y and define 𝑔 with the help of a standard
euclidean flow 𝒉:

𝒈(𝒛) = 𝝍 ∘ 𝒉 ∘ 𝝓−1(𝒛). (2.32)

If we just look at 𝝍 for now, we can compute the metric induced from the
euclidean metric under 𝝍 as

𝐺𝝍(𝒖) = (D𝝍(𝒖))⊤ (D𝝍(𝒖)) . (2.33)

This metric then gives us the volume change under 𝝍. In particular, if we
apply 𝝍, any probability density 𝑟(𝒖) on ℝ𝑛 gets transformed according to

𝑝(𝒙) = 𝑟(𝝍−1(𝒙)) det(𝐺𝝍(𝝍
−1(𝒙)))

−1/2
. (2.34)

Naturally we can derive an analogous expressions for 𝝓, which enables us to
compute the full density transformation under the flow 𝒈(𝒛).

Unfortunately, the above approach is only well-defined for manifolds X and Y
that are topologically equivalent to Euclidean space. We can quickly encounter
manifolds like spheres, tori or circles, for which this is no longer true. If we
e.g. define a similar map as above for a sphere, we will encounter at least one
coordinate singularity—usually at a pole. In this case 𝐺𝝍 would vanish at the
singularity and create a point of infinite density according to Eq. (2.34). This
can lead to numerical instabilities in practice [43].

Overall, to the best of my knowledge, there currently exists—at least for finite
composition normalizing flows—no established way of defining a normalizing
flow on general Riemannian manifolds [42, 43].

22

2.5. Bayesian Flows

Bayesian neural networks (BNNs) allow the quantification of uncertainty in
the predictions of a neural network. This is an important quality for net-
works in any discipline, but especially in a physics setting—where no major
discovery can be claimed without knowledge about the uncertainty of our
data—uncertainty quantification is essential.

The underlying idea of Bayesian networks is quite simple. During training,
instead of learning a single set of model parameters 𝝓, that are most likely to
produce our output data, we learn a distribution 𝑝(𝝓) of model parameters.
This distribution then assigns a probability to each parameter set, indicating
how probable it is that the corresponding model reproduces our data. In
particular, it captures the uncertainty in our model parameters due to the
limited statistics of the training data [68], also called epistemic uncertainty.
We can use 𝑝(𝝓) for inference and ultimately obtain a probability for each
model prediction.

To formalize this, keeping in mind that we want to apply the theory of BNNs
to normalizing flows, we will focus on (Bayesian) regression. Note that the
rest of this section will be mostly based on [68]. Suppose we have a model
𝒇𝝓 with parameters 𝝓 as well as two datasets 𝑿 = {𝒙1,… , 𝒙𝑛} (input) and
𝒀 = {𝒚1,… , 𝒚𝑛} (output) where 𝒙𝑖 and 𝒚𝑖 are connected by some functional
relation 𝒇. We now want to find parameters𝝓 such that 𝒇𝝓 is likely to resemble
𝒇, i.e. to have generated our data.

The Bayesian idea is postulating some prior distribution 𝑝(𝝓) of our parameters
and update it according to Bayes’ theorem. We start from the likelihood
𝑝(𝒚|𝒙,𝝓) of some 𝒙 to generate 𝒚 for model parameters 𝝓. This gives us the
posterior

𝑝(𝝓|𝑿,𝒀) =
𝑝(𝒀|𝑿,𝝓)𝑝(𝝓)

𝑝(𝒀|𝑿)
, (2.35)

23

where the denominator is the model evidence

𝑝(𝒀|𝑿) = ∫𝑝(𝒀|𝑿,𝝓)𝑝(𝝓)d𝝓. (2.36)

If we have access to the posterior, we can infer the probability density of an
output data point 𝒚 to correspond to any input data point 𝒙, as

𝑝(𝒚|𝒙,𝑿, 𝒀) = ∫𝑝(𝒚|𝒙,𝝓)𝑝(𝝓|𝑿,𝒀)d𝝓, (2.37)

given the observed datasets 𝑿 and 𝒀. This is called inference and gives us our
desired probabilistic prediction.

In principle, we would be done here, however, the evidence (cf. Eq. (2.36))
needed for inference is typically intractable for most interesting models. So
we need to approximate the true posterior by an easy-to-evaluate distribution
𝑞𝜽(𝝓) with parameters 𝜽. This technique is known as variational inference
(VI). The quality of this approximation can be optimized by minimizing the
KL divergence [47] with respect to 𝜽:

KL(𝑞𝜽(𝝓) ‖ 𝑝(𝝓|𝑿,𝒀)) = ∫𝑞𝜽(𝝓)
𝑞𝜽(𝝓)

𝑝(𝝓|𝑿,𝒀)
d𝝓. (2.38)

We can rewrite Eq. (2.38) by applying Eq. (2.35) and assuming 𝒒𝜽(𝝓) is
normalized. In this case, we get

KL(𝑞𝜽(𝝓) ‖ 𝑝(𝝓|𝑿,𝒀))

= KL(𝑞𝜽(𝝓) ‖ 𝑝(𝝓)) −∫𝑞𝜽(𝝓) log(𝑝(𝒀|𝝓,𝑿)) + log(𝑝(𝒀|𝑿)).
(2.39)

Since the evidence does not depend on 𝜽, we can, fortunately, ignore it during
optimization. Instead, we optimize only the first two terms, also known as
the evidence lower bound (ELBO). This gives us the following optimization

24

objective to maximize:

L(𝜽) = ∫𝑞𝜽(𝝓) log(𝑝(𝒀|𝝓,𝑿))d𝝓 − KL(𝑞𝜽(𝝓) ‖ 𝑝(𝝓)). (2.40)

Intuitively the first term optimizes 𝜽 such that 𝒇𝝓 with 𝝓 ∼ 𝑞𝜽(𝝓) is on
average close to 𝒇, while the last term punishes distributions 𝑞𝜽(𝝓) that differ
too much from the prior. The latter is typically true for relatively complex
distributions, i.e. the second term acts as a regularization for the model. This
built-in regularization is a nice additional benefit of Bayesian networks and
one can even show that popular stochastic regularization techniques—for
example dropout—can be derived from Bayesian networks [68]. Note that,
since 𝑝(𝒀|𝝓,𝑿) = Π𝑁

𝑖=1𝑝(𝒚𝑖|𝝓, 𝒙𝑖), the log-likelihood term grows with more
training data, while the second term in Eq. (2.40) does not. In other words,
the prior becomes less and less important for more and more training data.
This is exactly what we would expect since 𝑝(𝝓|𝑿,𝒀), and thus 𝑞𝜽(𝝓) for
optimal training, becomes sharply peaked when the amount of training data
grows large.

If we find an optimum 𝑞𝜽(𝝓) of Eq. (2.40) we can compute our prediction
according to Eq. (2.37) using Monte-Carlo (MC) integration

𝑝(𝒚|𝒙,𝑿, 𝒀) ≈ ∫𝑝(𝒚|𝒙,𝝓)𝑞𝜽(𝝓) d𝝓

= 𝐸𝑞𝜽(𝝓) [𝑝(𝒚|𝒙,𝝓)]
(2.41)

While the KL-divergence term in Eq. (2.40) can be computed directly, we
again face a tractability problem with the first log-likelihood term. Writing
𝑝(𝒀|𝝓,𝑿) = ∏𝑁

𝑖=1 𝑝(𝒚𝑖|𝝓, 𝒙𝑖), we obtain

𝑛
∑
𝑖=1

∫𝑞𝜽(𝝓) log(𝑝(𝒚𝑖|𝝓, 𝒙𝑖))d𝝓. (2.42)

First, we observe that the sum runs over the entire dataset, which is not prac-
tical. This can be fixed by using data sub-sampling (mini-batch optimization

25

in the machine learning context). In particular we generate a random set of
indices 𝐵 ⊂ {1,… , 𝑛} with |𝐵| = 𝑚 and approximate Eq. (2.42) as

−
𝑛
𝑚

∑
𝑖∈𝐵

∫𝑞𝜽(𝝓) log(𝑝(𝒚𝑖|𝝓, 𝒙𝑖))d𝝓 (2.43)

Since we recover Eq. (2.42) as the expectation value of Eq. (2.43), optimization
of the latter leads to values of 𝜽 that are also optima of the former [69].

Second, the integral in Eq. (2.42) and Eq. (2.43) cannot be computed ana-
lytically. MC estimation is not straightforward either, since 𝑞𝜽 depends on 𝜽
with respect to which we need to differentiate when performing optimization.
Luckily, there are techniques to remedy this. In particular, there are three
main stochastic estimators for the gradient of this integral: the score func-
tion estimator [70–73], the pathwise derivative estimator (also known as the
re-parameterization trick) [74–77], and the estimator proposed in Ref. [78]
(called characterstic function estimator in Ref. [68]).

Empirically the score function estimator seems to have a higher variance than
the pathwise derivative estimator while the variance of the characteristic func-
tion estimator is (empirically) the lowest. In practice high gradient variance
leads to poor performance when optimizing an objective with stochastic gra-
dient descent, such that estimators with lower gradients are preferable. On
the other hand, while the characteristic function estimator seems to have
low gradient variances, it does not generalize to non-Gaussian parameter
distributions 𝑞𝜽(𝝓). Therefore we will follow Ref. [68] in considering only
the re-parameterization trick to estimate the integral in Eq. (2.43).

The idea is to re-parameterize 𝑞𝜽(𝝓) as 𝑞(𝜺) in such a way that 𝝓 = 𝒈(𝜽, 𝜺),
where 𝒈 is differentiable and deterministic. For instance, we could re-parame-
terize a one-dimensional Gaussian distribution by writing 𝜙 = 𝜇 + 𝜎𝜀, where
we sample 𝜀 from a standard Gaussian. Since now 𝑞(𝜺) does not depend on

26

the parameters 𝜽, we can write the gradient of our integral as

d
d𝜽

∫𝑞𝜽(𝝓) log(𝑝(𝒚𝑖|𝝓, 𝒙𝑖))d𝝓

=
d
d𝜽

∫𝑞(𝜺) log(𝑝(𝒚𝑖|𝒈(𝜽, 𝜺), 𝒙𝑖))d𝜺

= 𝐸𝑞(𝜺) [
d
d𝝓

log(𝑝(𝒚𝑖|𝝓, 𝒙𝑖))
d
d𝜽

𝒈(𝜽, 𝜺)] .

(2.44)

Realistically we compute this gradient by backpropagation.

We can further improve this method, by not sampling 𝜺 directly, which is quite
inefficient. Instead we can sample the intermediate variables through which 𝜺
enters the likelihood in Eq. (2.44). This idea is introduced in Ref. [79] and
called local re-parameterization trick. It greatly reduces the number of samples
one has to generate, while also reducing the gradient variance.

The concept of BNNs can be directly applied to normalizing flows. For this we
notice that the log-likelihood in the first term of the ELBO (cf. Eq. (2.40)) is
simply given as the logarithm of the flows target distribution. Note that the
resulting loss is essentially a modified forward KL-divergence (cf. Eq. (2.4)).
In terms of rendering the actual model architecture Bayesian, for e.g. auto-
regressive flows this boils down to replacing the conditioner with a Bayesian
model.

27

3. Unfolding

Comparing data from particle collision experiments to theory predictions is not
straightforward. During measurement, limited acceptance, finite resolution
and other detector effects introduce errors that not only distort the produced
data but may also lead to loss of information. At the LHC we face additional
challenges. QCD effects involved in jet formation can no longer be computed
analytically and have to be described with numerical methods, while error-
prone jet reconstruction introduces more uncertainties into our data, further
complicated by initial and final state radiation.

Fortunately, we have powerful MC-based simulations for these various dis-
tortions, such that we can make precise predictions based on a theory La-
grangian [80]. We refer to the application of any connected subset of such
effects, happening at some point after the hard scattering, as folding. Although
folding simulated data and comparing it to raw experimental data is a simple
process and allows us to test any theory in principle, there are clear draw-
backs to working in this manner. First of all, such data is detector-dependent,
making comparisons between different experiments not easily possible [81,
82]. To compare experiment to theory when both is folded, one also needs to
know the specifics of the detector, making long-time data preservation and
analysis of old data more difficult. Second, detector simulations are slow
compared to simulations of parton-level data, i.e. events after the hard scat-
tering process [82]. If one could find the parton-level data corresponding to
a measurement once, it would make subsequent analyses significantly faster
and would also allow for analysis methods that use analytic expressions only
available on parton-level. Third, our analysis might rely on specific observ-

28

ables that are not easily reconstructable after hadronization. In this case, we
would have no other choice but to somehow reconstruct these observables on
parton-level. Hence, developing methods and tools to unfold experimental
data, i.e. to undo the folding, can be beneficial to many analyses.

3.1. Unfolding as an Inverse Problem

Folding and Unfolding are transformations between parton- and detector-
level event distributions of a scattering process, where these levels are usually
defined very loosely. Generally speaking, parton- and detector-level are stages
involving any number of effects that occur—in sequence—after the hard
scattering process and before the measurement at the detector. For instance,
detector-level usually includes hadronization and detector effects, either with
already reconstructed jets (a.k.a. reco-level) or with jet components. Parton-
level, on the other hand, is typically defined either before parton-showers
and hadronization or after but before detector effects (a.k.a. particle-level).
If we let 𝑝part(𝒙) and 𝑝det(𝒚) denote our parton- and detector-level event
distributions, defined on respective phase-spaces Ωpart and Ωdet, then folding
can be described by a Fredholm integral equation of the first kind [83],

𝑝det(𝒚) = ∫
Ωpart

𝑅(𝒚, 𝒙)𝑝part(𝒙)d𝒙. (3.1)

Note that we typically assume that the response function 𝑅(𝒚, 𝒙), which is
nothing but the conditional probability 𝑝det(𝒚|𝒙), is independent of the model
underlying 𝑝part(𝒙). Unfolding now refers to finding a parton-level distribution
𝑝part(𝒙) that results in a given detector-level density 𝑝det(𝒚) when folded.

This is an ill-posed problem in the sense of Hadamard, i.e. there does not
exist a unique solution 𝑝part(𝒙) due to possible lack of information on detector-
level [84]. In practice, however, we use unfolding procedures that give us a
single result. This ignorance results in a dependence on the physics model,

29

which we can see easily by considering a response function that leads to a
complete loss of information at detector-level. In this case, standard unfolding
methods will always reconstruct the parton-level distribution that was used
for fitting the unfolding model. This theoretical problem is inherent to all
standard unfolding methods. In the following, we will argue this explicitly for
each technique.

If we want to do ‘full’ unfolding to address this issue, we can e.g. enlarge
our solution space and unfold to equivalence classes of parton-level densities.
Suppose we have a continuous space of model hypotheses given by parameters
𝛼 we want to test. In this case, we can condition our unfolding model on
𝛼 and fit it to matching distributions 𝑝(𝛼)

det (𝒚) and 𝑝(𝛼)
part(𝒙) corresponding to

each model. If we now unfold some detector distribution 𝑝det(𝒚), we do
this for each value of 𝛼. This gives us a family of parton-level distributions
from which we can quantify the uncertainty that arises through the ill-posed
nature of unfolding. To reiterate, even though it seems like the unfolding
model is now dependent on 𝛼, it is not. This is because we do not technically
have a well-defined unfolding model for a fixed value of 𝛼; only the complete
conditioned model is well-defined. What is dependent on 𝛼 though are the
solutions 𝑝(𝛼)

part(𝒙) we allow for any fixed 𝛼. In doing this, of course, we still
do not account for parton-level densities that do not correspond to any of the
considered models.

This approach can be impractical and defeats the purpose of unfolding when
you want to forget about your detector-level data and just store detector-
independent unfolded data. Unfolding for a fixed model still works if one
assumes that the response function is approximately invertible or if one is just
interested in rejecting the Standard Model (SM) hypothesis. However, if we
cannot ignore missing information on detector-level and want to place bounds
on some alternative BSM hypothesis, we have to do ‘full’ unfolding.

There is an additional problem. While any unfolding method relies on a
good detector simulation [40], we can introduce additional errors through
approximative simulations of the hard scattering process, which are used to

30

fit the unfolding model. With discrepancies in the simulation of parton-level
data, we would still learn the proper response matrix, but only if 𝑅 is exactly
invertible. However, if this is not the case, the response matrix we learn might
be biased towards our wrongMC-simulation and introduce errors when applied
to real data. This problem is inherently equivalent to model dependence, so
all the following statements we will make about it also apply to systematic
simulation errors.

3.2. Classical Unfolding

The easiest way to invert the folding process from Eq. (3.1) is to limit ourselves
to a few interesting observable distributions and discretize them by introducing
a binning [40, 83]. This requires in particular, that we reconstruct detector-
level proxies for interesting parton-level observables to unfold. We assume
that Eq. (3.1) is still approximately valid, with 𝑥, 𝑦 now only consisting of a
few observables/proxies instead of all phase-space dimensions.

Suppose we describe 𝑝part(𝒙) and 𝑝det(𝒚) as histograms with 𝑛 and 𝑚 bins
respectively, in which 𝒉det and 𝒉part are the bin heights, then Eq. (3.1) becomes
a linear equation

𝒉det = 𝑅𝒉part. (3.2)

This replaces 𝑅(𝒚, 𝒙) with the 𝑚× 𝑛 response matrix 𝑅. Other discretization
methods approximate both probability densities with slightly more elaborate
functions in each bin, or with fourier decomposition [83]. We will not discuss
these further.

To unfold, we can now invert the response matrix 𝑅, by either taking the
inverse directly in the case 𝑚 = 𝑛 or by taking the Moore-Penrose generalized
inverse [83]. The latter gives us the matrix 𝐴† that leads to a solution 𝒉part =
𝐴†𝒉det which minimizes the squared difference

(𝐴𝒉part − 𝒉det)𝑉
−1
𝒉det

(𝐴𝒉part − 𝒉det), (3.3)

31

where the inclusion of the covariance matrix 𝑉𝒉det
of 𝒉det takes detector-level

uncertainties into account. This method is usually preferred, since 𝑅 is not
invertible for 𝑚 = 𝑛 in most cases [83]. Here we get a model dependence
through 𝒉part, which we use to minimize Eq. (3.3).

This naive approach has the following issues. These are shared with iterative
Bayesian unfolding, which will be introduced below. First, discretization is
required, such that we have to decide beforehand on the number of bins and a
set of observables that are of interest to us. Especially when talking about using
unfolding to store data independent of detector specifics, this is a significant
downside. Second, limiting our phase-space to only a few observables might
lead to erroneous and biased results [40]. Third, classical unfolding only
works properly when 𝒉det approaches a continuous distribution, i.e. only for
a sufficient number of event samples. And fourth, due to missing energy, jet
combinatorics or initial state radiation (ISR), the phase-space on detector-level
can differ, meaning that parton-level observables are not easily accessible. If
we still want to apply a discretized unfolding method, we have to manually
reconstruct interesting observables before the unfolding. It should be clear
that classical methods give us quite some room for improvement.

3.2.1. Iterative Bayesian Unfolding

One widely used alternative to the matrix inversion approach above is iterative
Bayesian unfolding (IBU) [85]. The idea is to use Bayes’ theorem in writing

𝑝part(𝒙) = ∫
Ωdet

𝑝part(𝒙|𝒚)𝑝det(𝒚)d𝒚

= ∫
Ωdet

𝑝det(𝒚|𝒙)𝑝part(𝒙)

∫Ωpart
𝑝det(𝒚|𝒙′)𝑝part(𝒙′)d𝒙′ 𝑝det(𝒚)d𝒚,

(3.4)

where 𝑝det(𝒚|𝒙) = 𝑅(𝒙, 𝒚). We can solve this equation by postulating a
prior 𝑝(0)

part(𝒙) and computing iterative improvements 𝑝(𝑛)
part(𝒙) to this prior by

32

repeated application of Eq. (3.4), i.e.

𝑝(𝑛)
part(𝒙) = ∫

Ωdet

𝑅(𝒙, 𝒚)𝑝(𝑛−1)
part (𝒙)

∫Ωpart
𝑅(𝒙′, 𝒚)𝑝(𝑛−1)

part (𝒙′)d𝒙′
𝑝det(𝒚)d𝒙, (3.5)

Typically one discretizes, i.e. introduces binned distributions ℎpart,𝑖 and ℎdet,𝑖

of single observables, to apply this unfolding technique [81]:

ℎ(𝑛)
part,𝑗 = ∑

𝑖

𝑅𝑖𝑗ℎ
(𝑛−1)
part,𝑗

∑𝑘 𝑅𝑖𝑘ℎ
(𝑛−1)
part,𝑘

ℎdet,𝑖. (3.6)

Here 𝑅𝑖𝑗 is the discretized response matrix.

In IBU, the model dependence enters through the prior. Although the prior
changes every iteration, it should be clear that some dependence will typically
remain, even in the limit 𝑛 → ∞. For instance, if we have a response function
with maximal information loss, the update rule of IBU would always recover
the initial prior.

3.3. Omnifold

One notable unfolding model that avoids the discretization problems discussed
above is Omnifold [40, 86]. This method uses classification neural networks to
apply IBU to unbinned distributions. Suppose we have matching samples from
simulated parton-level and detector-level distributions 𝑝sim

part(𝒙) and 𝑝sim
det (𝒚)

and try to determine the true underlying parton-level distribution 𝑝part(𝒙)
from measured detector-level data 𝑝det(𝒚). For this, let us write the true
parton-level distribution as a reweighted version of the simulation:

𝑝part(𝒙) = 𝜈(𝒙)𝑝sim
part(𝒙). (3.7)

33

What happens now, in terms of these weights, if we apply IBU?. First, we
define 𝜈0(𝒙) = 1 and set our prior to 𝜈0(𝒙)𝑝

sim
part(𝒙), i.e. to the simulated

parton-level distribution. For the 𝑛-th iteration, we start by calculating the
evidence. Here, we apply our response function to the (𝑛 − 1)-th parton
level distribution, which yields the simulated detector-level distribution with
appropriately chosen weights 𝜈push𝑛−1 (𝒚):

𝜈push𝑛−1 (𝒚)𝑝
sim
det (𝒚) = ∫

Ωpart

𝑅(𝒙, 𝒚)𝜈𝑛−1(𝒙)𝑝
sim
part(𝒙)d𝒙. (3.8)

Then we use Bayes’ theorem to compute an update to the parton level dis-
tribution. In our case, this just gives us new weights 𝜈𝑛, defined through (cf.
Eq. (3.5))

𝜈𝑛(𝒙)𝑝
sim
part(𝒙) = ∫

𝑅(𝒙, 𝒚)𝜈𝑛−1(𝒙)𝑝
sim
part(𝒙)

𝜈push𝑛−1 (𝒚)𝑝
sim
det (𝒚)

𝑝det(𝒚)d𝒚. (3.9)

The central idea of Omnifold is that, for each iteration, we can compute the
weights 𝜈push𝑛−1 (𝒚) and 𝜈𝑛(𝒙) through classifier re-weighting. In particular, a
classification network can approximate the ratio 𝑝(𝒙)/𝑞(𝒙), when trained to
distinguish two (unbinned) probability distributions 𝑝(𝒙) and 𝑞(𝒙).

The Omnifold algorithm works as follows. First, we take the weights 𝜈𝑛−1(𝒙)
of the simulated parton-level samples and ‘push’ it through our detector simu-
lation by assigning each parton-level weight to the matching detector-level
sample. This is illustrated as the first step in Fig. 3.1. Unfortunately, the pushed
weights 𝜈push𝑛−1 (𝒚) are not a well-defined function, since multiple parton-level
events might correspond to—and therefore assign multiple weights—to the
same detector-level event. In practice, however, we can ignore this, because
the next step does not need a proper function.

Second, we re-weight 𝜈push𝑛−1 (𝒚)𝑝
sim
det (𝒚) to 𝑝(𝒚), giving us new weights 𝜔𝑛(𝒚)

for 𝑝sim
det (𝒚) (cf. Fig. 3.1, step two). The purpose of this step is twofold. To

start, we convert the detector-level weights we obtained in the last step to a

34

𝜈push𝑛−1 (𝒚)𝑝
sim
det (𝒚)

𝜈𝑛−1(𝒙)𝑝
sim
part(𝒙) 𝜔pull

𝑛 (𝒙)𝑝sim
part(𝒙)

𝜔𝑛(𝒚)𝑝
sim
det (𝒚) 𝑝det(𝒚)

𝑝part(𝒙)

3. pull1. push

2. re-weight

4. re-weight

Figure 3.1.: The Omnifold algorithm visualized.

proper weighting function 𝜔𝑛(𝒚) on detector-level. In the classifier training
we can just use the weight samples as is, without any definition problems.
Then, although 𝜔𝑛(𝒚)𝑝

sim
det (𝒚) is just exactly 𝑝(𝒚) for a perfect classifier, the

𝑝(𝒚) samples do not have matching parton-level samples. By re-weighting,
we first and foremost get weights that we can subsequently ‘pull down’ to
parton-level.

Third, we do exactly that, i.e. pull the obtained weights down to parton-level
(cf. Fig. 3.1, step three). This sounds simple, but what actually happens when
we combine the last two steps is Eq. (3.9). This does nothing but inverting
the detector simulation for 𝑝det(𝒚) by computing an inverse with Bayes’ the-
orem. In particular, we compute the inverse that connects 𝜈push𝑛−1 (𝒚)𝑝

sim
det (𝒚)

to 𝜈𝑛−1(𝒙)𝑝
sim
part(𝒙). This is exactly the one we use to ‘pull down’ the weights

𝜔𝑛(𝒚). As already discussed, 𝑅(𝒙, 𝒚) is typically not invertible, so any ‘inverse’

35

is prior dependent and gives us only one possible parton-level distribution.

Fourth, since we, again, do not have a proper function by just pulling down the
weights, we have to do a final re-weighting (cf. Fig. 3.1, step four). Specifically,
we re-weight 𝜈𝑛−1(𝒙)𝑝

sim
part(𝒙) to 𝜔pull

𝑛 (𝒙)𝑝sim
part(𝒙), where 𝜔pull

𝑛 (𝒙) is defined
similarly to 𝜈𝑛(𝒙) by

𝜔pull
𝑛 (𝒙)𝑝sim

part(𝒙) = ∫
𝑅(𝒙, 𝒚)𝜈𝑛−1(𝒙)𝑝

sim
part(𝒙)

𝜈push𝑛−1 (𝒚)𝑝
sim
det (𝒚)

𝜔𝑛(𝒚)𝑝
sim
det (𝒚)d𝒚. (3.10)

This re-weighting just gives us back 𝜔pull
𝑛 (𝒙). But remember that we do not

have this function—as a function—when we re-weight and that we can do the
re-weighting without it.

Omnifold addresses the discretization problems of classical unfolding: We
do not get the disadvantages of binning and we can unfold all phase-space
dimensions simultaneously without having to focus on a few specific observ-
ables. This also means that the reconstruction of unaccessible parton-level
observables is built into Omnifold and does not need to be done manually.
Since Omnifold is based on IBU, it naturally retains the model dependence of
this method through the choice of prior.

3.4. Unfolding with Conditional Normalizing Flows

Another unfolding method without discretization can be realized with normal-
izing flows [37]. Here, instead of trying to determine 𝑝part(𝒙) from 𝑝det(𝒚),
we go one step further and determine 𝑝part(𝒙|𝒚). This gives us an unfolded
distribution for each detector event 𝒚, making unfolding feasible for a low
number of samples [37]. Suppose, using the notation of the previous section,
we have matching parton- and detector-level samples from respective distri-
butions 𝑝sim

part(𝒙) and 𝑝sim
det (𝒚). In this case, we can directly use a conditional

flow to normalize 𝑝sim
part(𝒙|𝒚) to a base distribution 𝑞(𝒛). This in turn allows

36

𝑝(𝑛−1)
det (𝒚)

𝑝(𝑛−1)
part (𝒙) ̃𝑝(𝑛)

part(𝒙)

𝑝det(𝒚)

𝑝part(𝒙)

2. unfold
1. train

3. re-weight

4. push
flow

Figure 3.2.: Iterative normalizing flow unfolding visualized.

us to obtain 𝑝sim
part(𝒙|𝒚) by un-normalizing the base distribution under a fixed

and previously unseen condition 𝒚. In other words, we give the network
information about 𝑝sim

part(𝒙) and the transfer function 𝑅(𝒚, 𝒙) = 𝑝det(𝒚|𝒙) to
obtain 𝑝sim

part(𝒙|𝒚). This is a direct application of Bayes theorem [37]

𝑝sim
part(𝒙|𝒚) =

𝑅(𝒚, 𝒙)𝑝sim
part(𝒙)

𝑝sim
det (𝒚)

. (3.11)

Note that we recover (3.4) when we multiply by 𝑝det(𝒚) and integrate. Hence,
normalizing flow unfolding is essentially equivalent to the first step of IBU.
This approach again suffers from model dependence, however, we also get an
additional prior dependence since we omit further steps of IBU.

We can avoid this by using the iterative approach introduced in Ref. [38],

37

which is similar to Omnifold. For the 𝑛-th step, suppose we have previously
trained a flow on distributions 𝑝(𝑛−1)

part (𝒙) and 𝑝(𝑛−1)
det (𝒚), giving us a conditional

distribution 𝑝(𝑛)
part(𝒙|𝒚). The distributions we train on shall be the simulated

parton- and detector-level distributions for the first step, which is visualized
in Fig. 3.2. We can use this flow to unfold a measured distribution 𝑝det(𝒚) (cf.
Fig. 3.2, step two), obtaining

̃𝑝(𝑛)
part(𝒙) = ∫

Ωdet

𝑝(𝑛)
part(𝒙|𝒚)𝑝det(𝒚)d𝒚. (3.12)

We then reweight 𝑝(𝑛−1)
part (𝒙) to ̃𝑝(𝑛)

part(𝒙) and populate the weights to the match-
ing detector-level samples (cf. Fig. 3.2, step three and four). This gives us two
new distributions 𝑝(𝑛)

part(𝒙) and 𝑝(𝑛)
det (𝒚) which we can use for the next iteration.

Note that this is exactly IBU; in every step, we use Bayes’ theorem to obtain a
new prior and new evidence from the posterior.

This approach shares the advantages of Omnifold: it is also unbinned, allows
us to unfold all phase-space dimensions instead of just a few observables and
does not require manual reconstruction of parton-level observables. On top of
this, the normalizing flow approach allows us to unfold single events and does
not require a high number of event samples for the unfolding procedure to be
valid. Without the iterative approach from Ref. [38] however, we always get
additional prior depedence compared to IBU and, equivalently, Omnifold.

38

4. CP-Violation in tth̄-Production

The violation of the combined charge and parity (𝐶𝑃) symmetry is a well-
known condition to explain the matter-antimatter symmetry in our universe,
first formulated by Sakharov [87]. Although there are terms in the Standard
Model Lagrangian that lead to 𝐶𝑃-violation, namely the complex phases of the
CKM and PMNS matrices, these do not suffice to explain the observed ratio of
matter to antimatter [88–90]. This naturally makes additional 𝐶𝑃-violating
interactions a clear target for experimental searches for physics beyond the
SM. Such effects could potentially be realized by an extension of the Standard
Model Higgs interactions, as i.e. the two-Higgs-doublet model [91].

Usually, we want to describe modifications of the SM Lagrangian without
making too much assumptions about the new physics model. The standard
approach to model-agnostically describe BSM physics are EFTs [92, 93]. These
theories canmodel the effects of BSM particles at a given energy scale 𝐸without
having to describe any details at the usually much larger scale Λ, where these
new particles live.1 The fundamental assumption here is that the scale 𝐸,
where we use the EFT, is well separated from Λ. Under this condition, EFTs
work by expanding a complex, potentially unknown, underlying Lagrangian
as a perturbative series in 𝐸/Λ. The higher-dimensional operators in this
expansion then must be consistent with the non-accidental symmetries of this
Lagrangian. The operator couplings become new parameters of the theory
that depend on the underlying BSM physics and can be fitted to data. What
makes EFTs so useful is that they are still valid quantum field theorys (QFTs)
1This ‘bottom-up’ approach is of course not the only way to define an EFT, but it is the only
one relevant here.

39

that are renormalizable order by order in the operator expansion.

However, the Higgs-fermion Yukawa couplings could include 𝐶𝑃-violating
effects already at tree level, through dimension four operators [94]. These
effects would naturally manifest themselves around the electroweak symmetry
breaking (EWSB) scale, the same scale at which we test the theory. Hence,
we cannot describe the Higgs-fermion couplings with an EFT, since the fun-
damental assumption behind every effective field theory—the separation of
scales—would no longer be valid. Nonetheless, we can describe other interac-
tions, arising through dimension six operators, with an EFT, for instance the
Higgs couplings to vector bosons [94–96]. However, dimension six operators
become suppressed by the new physics scale and are thus harder to test.

Based on these considerations we will describe possible 𝐶𝑃-violation in the
Higgs-sector with the Higgs characterization model [94], a mixture of direct
SM Lagrangian modifications and an EFT. Here we consider a generalization
of the Higgs at the EWSB scale with various possibilities for its spin and parity.
Furthermore, we assume that any additional new particles are located at a
much larger scale Λ and describe these with an effective field theory. This
approach is largely model-independent, as long as we look at a model that
only modifies the EWSB scale within the given possibilities.

As already mentioned, the Higgs-fermion Yukawa coupling can contain 𝐶𝑃-
violating effects already at tree level, while specifically the Higgs-top inter-
action has the largest coupling strength, making it the most direct pathway
to test 𝐶𝑃-violation [97]. In the spin-zero case of the Higgs characterization
model, we obtain the following expression for this coupling [94]

ℒ ⊃ −
𝑚𝑡

𝑣
𝜅𝑡 ̄𝑡(cos(𝛼) + 𝑖𝛾5 sin(𝛼))𝑡ℎ. (4.1)

Here 𝜅𝑡 modifies the coupling strength while 𝛼, which we call CP-phase,
describes the mixing between the 𝐶𝑃-even and 𝐶𝑃-odd interaction terms.
The SM, only including the 𝐶𝑃-even term, is given by 𝜅𝑡 = 1 and 𝛼 = 0,
while the value 𝛼 = 𝜋/2 leads to a pure 𝐶𝑃-odd interaction. We can relate

40

the Lagrangian in Eq. (4.1) with its 𝐶𝑃-transformed version by replacing
𝛼 → −𝛼. Note that we set 𝜅𝐻𝑡 ̄𝑡 = 𝜅𝐴𝑡 ̄𝑡 = 𝜅𝑡 to obtain the above expression
from Ref. [94].2

Since ℎ → 𝑡 ̄𝑡 is not allowed, we cannot test the Higgs-top interaction through
a decay, making associated production the most direct probe of 𝐶𝑃-violation
in the Higgs sector [97], i.e.

𝑝𝑝 → 𝑡 ̄𝑡ℎ (4.2)

and the conjugated process. Among the Higgs decay modes, ℎ → 𝛾𝛾 is the most
promising. Despite limited statistics, this mode gives us the best sensitivity
due to the di-photon mass being an excellent discrimination measure for
backgrounds [41].

In general, there are two ways to test the 𝐶𝑃-properties of a theory. One
approach is to find a theory parameter that is associated with a 𝐶𝑃-violating
term in the Lagrangian and fit this parameter to experimental data. In our
case, we could do this with 𝛼. Since the theory would link the parameter
to 𝐶𝑃 violation, this test would constitute an indirect check of 𝐶𝑃-violation.
Another way is to test this symmetry directly, either by finding a process that is
forbidden by 𝐶𝑃-invariance or by comparing a process with its 𝐶𝑃-conjugated
version [98]. In the latter case, we can construct dedicated observables for
which there are separate predictions with and without 𝐶𝑃-violation. We will
discuss general considerations about constructing observables like this below.

4.1. Constructing Direct CP-Observables

Two discrete space-time symmetries are contained in the Lorentz group and as
such could be realized in nature: parity (𝑃) and time-reversal (𝑇). Among the

2This is without loss of generality as noted in [94]. Including both parameters only makes
sense for practical reasons

41

symmetries concerning quantum numbers, charge conjugation (𝐶) is deeply
connected to 𝑃 and 𝑇 through the 𝐶𝑃𝑇-theorem [99]. These three symme-
tries are hence of particular importance in studying particle interactions. In
the language of QFT, 𝐶 and 𝑃 act as linear operators, while the operator
corresponding to 𝑇 is anti-linear. If we let |𝜓𝑝,𝑠,𝑛⟩ be a free single-particle
momentum eigenstate with 4-momentum 𝑝, spin 𝑠 and quantum numbers
(particle species) 𝑛, then these operators act as

𝐶|𝜓𝑝,𝑠,𝑛⟩ = 𝜂(𝐶)𝑛 |𝜓𝑝,𝑠,�̄�⟩

𝑃 |𝜓𝑝,𝑠,𝑛⟩ = 𝜂(𝑃)𝑛 |𝜓𝑝∗,𝑠,𝑛⟩

𝑇 |𝜓𝑝,𝑠,𝑛⟩ = 𝜂(𝑇)𝑛 (−1)𝑗+𝑠 ⟨𝜓𝑝∗,−𝑠,𝑛| .

(4.3)

Here 𝑝∗ is defined as 𝑝∗ = (𝐸, �⃗�)∗ = (𝐸,−�⃗�), 𝑗 is the orbital quantum number
of |𝜓𝑝,𝑠,𝑛⟩ and �̄� are the quantum numbers of the anti-particle corresponding to
𝑛. The intrinsic phases 𝜂(𝐶)𝑛 , 𝜂(𝑃)𝑛 and 𝜂(𝑇)𝑛 are species dependent and in general
not directly measurable [100]. For parity one usually fixes the intrinsic phase
for the proton, neutron and electron to be +1, which determines the intrinsic
phases of other particles. The intrinsic phase for 𝐶 is directly measurable
for neutral particles, otherwise, we can choose it arbitrarily. Regarding 𝑇,
anti-linearity implies that the phase 𝜂(𝑇)𝑛 is entirely unphysical and can be
simply set to one [100].

The anti-linearity of time reversal has further consequences. A transformation
under 𝑇 reverses in- and out-states, which makes it effectively impossible to
test 𝑇-symmetry directly [101]. In particular, one would have to prepare an
initial state equivalent to the superposed final state of some respective process.
It will help us to define a ‘naive’ time-reversal operator �̂�, which acts in the
same way as 𝑇, but does not exchange in- and out-states, i.e.

�̂� |𝜓𝑝,𝑠,𝑛⟩ = 𝜂(𝑇)𝑛 (−1)𝑗+𝑠 |𝜓𝑝∗,−𝑠,𝑛⟩ . (4.4)

Note that the actions of 𝐶, 𝑃 and 𝑇 given in Eq. (4.3) differ for massless

42

particles [100]. However in the following, we will only need the transformation
behavior of 𝑝, 𝑠 and 𝑛, which does not change in this case.

Imagine we want to test 𝐶𝑃-violation of a theory with Lagrangian L, by
comparing a specific scattering process with its 𝐶𝑃-conjugated version. As
stated above, we can construct observables with specific predictions with and
without 𝐶𝑃-violation to do this. Formally, following Ref. [102], consider a
general symmetry transformation 𝑈, which shall be an arbitrary combination
of 𝐶, 𝑃 and �̂�. Any Observable 𝑂(𝑖, 𝑓), generally depending on the initial state
𝑖 and final state 𝑓 of the respective process, can now be decomposed into two
parts that are respectively even and odd under process conjugation by 𝑈:

Oeven(𝑖, 𝑓) =
1
2
(O(𝑖, 𝑓) +O(𝑖𝑈, 𝑓𝑈))

Oodd(𝑖, 𝑓) =
1
2
(O(𝑖, 𝑓) −O(𝑖𝑈, 𝑓𝑈)) ,

(4.5)

where 𝑖𝑈 and 𝑓𝑈 denote the 𝑈-conjugated initial and final states. Therefore, we
can consider purely 𝑈-even and 𝑈-odd observables without loss of generality.

𝑈-odd observables are particularly useful because their expectation value
vanishes—i.e. has a clear prediction—under the assumption of a 𝐶𝑃-invariant
theory. To see this, consider an initial state that is statistically invariant under
𝑈, i.e. where the distribution 𝑝(𝑖) of initial states is 𝑈-symmetric. We can
write the expectation value of a 𝑈-odd observable O with the matrix element
M(𝑖, 𝑓,L) of the process as

⟨O⟩L = ∫dΠ𝑖 ∫dΠ𝑓 |M(𝑖, 𝑓,L)|2 O(𝑖, 𝑓) 𝑝(𝑖). (4.6)

If we rewrite the phase space integration variables as their 𝑈-conjugated
versions and use the invariance of the matrix element and 𝑝(𝑖) under 𝑈, we
obtain

⟨O⟩L = ∫dΠ𝑖𝑈 ∫dΠ𝑓𝑈 |M(𝑖, 𝑓,L)|2 O(𝑖𝑈, 𝑓𝑈) 𝑝(𝑖). (4.7)

Under the additional assumption that the initial and final phase space is 𝑈-

43

symmetric we can use thatO is 𝑈-odd to recover the original expectation value
with a flipped sign; so ⟨O⟩L indeed vanishes.

This motivates us to define genuine 𝑈-odd observables O of a theory with
Lagrangian L as satisfiying

⟨𝑂⟩L = 0 if 𝑈L𝑈−1 = L. (4.8)

Note that this definition also implicitly includes observables that for example
compare the probabilities between two 𝑈-conjugated processes, an expression
that is often used to test for 𝐶𝑃-violation [98, 101, 102]. Explicitly, we could
do this by dividing our phase space Ω into two disjoint and 𝑈-conjugate parts
Ω1 and Ω2 as well as defining O to be +1 on Ω1 and −1 on Ω2. In this sense
the definition of genuine 𝑈-odd observables from Ref. [102] is quite general.

In the case of 𝐶𝑃-violation, we can classify 𝐶𝑃-odd observables into two
categories according to their transformation behaviour under �̂�. To see why
this classification is sensible, consider the optical theorem

M(𝑖, 𝑓) −M∗(𝑓, 𝑖)

= 𝑖∑
𝑋

∫dΠ𝑋 (2𝜋)4𝛿(𝑝𝑖 − 𝑝𝑋)M(𝑖, 𝑋)M(𝑓, 𝑋).
(4.9)

Here the sum on the right-hand side goes over a complete set of on-shell
intermediate states 𝑋. Interactions with such real intermediate states are
called final state interactions (FSIs) or re-scattering. In the absence of FSIs we
can use Eq. (4.9) and the 𝐶𝑃𝑇 theorem to show

M∗(𝑖�̂�, 𝑓�̂�) = M(𝑓�̂�, 𝑖�̂�) = M(𝑖𝐶𝑃, 𝑓𝐶𝑃). (4.10)

In particular |M(𝑖�̂�, 𝑓�̂�)|2 = |M(𝑖𝐶𝑃, 𝑓𝐶𝑃)|2. This has two important impli-
cations. First, Eq. (4.10) tells us that the expectation of a �̂�-odd observable
always vanishes in a 𝐶𝑃-invariant theory as well. In other words, in the absence
of FSIs, any �̂�-odd observable is also genuine 𝐶𝑃-odd and can be used to test for

44

𝐶𝑃-violation without having to check its 𝐶𝑃-transformation behaviour [102].
Note, however, that in the presence of re-scattering, 𝐶𝑃-even and �̂�-odd ob-
servables can also have a non-vanishing expectation value in a 𝐶𝑃-violating
theory [98, 101, 103]. This means, these observables can ‘fake’ 𝐶𝑃-violation
if we do not check for their transformation properties under 𝐶𝑃.

Second, we can show that there is a crucial difference between 𝐶𝑃-odd �̂�-even
and 𝐶𝑃-odd �̂�-odd observables. For the first class of observables, we can show
that an expectation value will always vanish in the absence of FSIs [102, 104],
rendering them useless for detecting 𝐶𝑃-violation. To see this, we will look at
such an observable O under the assumption that 𝑝(𝑖) is 𝐶𝑃- and �̂�-invariant
and consider

⟨𝑂⟩L =
1
2
∫dΠ𝑖 ∫dΠ𝑓 (|M(𝑖, 𝑓,L)|2 − |M(𝑖𝐶𝑃, 𝑓𝐶𝑃,L)|2)

×O(𝑖, 𝑓)𝑝(𝑖).
(4.11)

Naturally, this expectation value vanishes in a 𝐶𝑃-invariant theory. In a 𝐶𝑃-
violating theory we can again use Eq. (4.10), to rewrite the second squared
matrix element as |M(𝑖𝐶𝑃, 𝑓𝐶𝑃,L)|2 = |M(𝑖�̂�, 𝑓�̂�,L)|2. Since O is �̂�-even,
we can again redefine our integration variables by conjugating them under �̂�
such that the difference of the two matrix elements vanishes. This proofs that
FSIs are required to detect 𝐶𝑃-violation with 𝐶𝑃-odd and �̂�-even observables.
For 𝐶𝑃-odd and �̂�-odd observables, no similar restriction exists.

To understand all of this a little bit deeper, let us look at the squared matrix
element difference in Eq. (4.11) again. These matrix elements generally have
the following form [101]

M(𝑖, 𝑓) = ∑
𝑖
𝐴𝑖𝑒

𝛿𝑖+𝜙𝑖

M(𝑖𝐶𝑃, 𝑓𝐶𝑃) = ∑
𝑖
𝐴𝑖𝑒

𝛿𝑖−𝜙𝑖+𝜃.
(4.12)

In these expressions the 𝛿𝑖 ’s are called 𝐶𝑃-conserving phases (or strong phases)

45

since they do not change sign under the conjugation, while the 𝜙𝑖 ’s are called
𝐶𝑃-violating phases (or weak phases). The global phase 𝜃 is purely conventional.
Our first observation is that we need two or more amplitudes 𝐴𝑖 to contribute
to the process in question to have any chance at a non-vanishing expectation
value. Second, looking at only two interfering amplitudes for simplicity, we
obtain the following difference in matrix elements

|M(𝑖, 𝑓)|2 − |M(𝑖𝑈, 𝑓𝑈)|2 = −4𝐴1𝐴2 sin(𝛿2 − 𝛿1) sin(𝜙2 − 𝜙1). (4.13)

Clearly 𝛿1 ≠ 𝛿2 and 𝜙1 ≠ 𝜙2 is required to obtain a non-vanishing expectation
value ⟨𝑂⟩L.

In particular, we need at least one non-zero 𝐶𝑃-conserving and 𝐶𝑃-violating
phase [98, 101, 103]. For the latter, we do not have a problem since 𝐶𝑃-
violating phases occur naturally in a 𝐶𝑃-violating theory (i.e. 𝛼 in Eq. (4.1)),
typically from complex couplings in the Lagrangian [101]. 𝐶𝑃-conserving
phases, however, do not necessarily exist in the process and can come from two
sources [101]. The first one is a trace of an even number of 𝛾matrices together
with 𝛾5 occurring in the squared matrix element of the process in question.
Such a trace gives a complex contribution to the matrix element and must
come from some Lorentz invariant Levi-Civita product like 𝜀𝛼𝛽𝛾𝛿𝑘

𝛼𝑝𝛽
1𝑝

𝛾
2𝑝

𝛿
3 . In

the rest frame defined by 𝑘𝜇 such a term becomes a triple product �⃗�1 ⋅(�⃗�2×�⃗�3).
The second one are FSIs. In particular, if we have a loop interaction 𝐴 → 𝐴
concerning some state 𝐴, the optical theorem (cf. Eq. (4.9)) implies that FSIs
generate an imaginary part of the amplitude, giving us a 𝐶𝑃-conserving phase.
With these two origins of 𝐶𝑃-conserving phases in mind, we can see why the
expectation value of 𝐶𝑃-odd and �̂�-odd observables can be non-vanishing in a
𝐶𝑃-violating theory—even without re-scattering [98].

Note that Levi-Civita products that appear in the matrix element are themselves
𝐶𝑃-odd. They have to be, otherwise, they could not give rise to a 𝐶𝑃-violating
phase. Moreover, they are also �̂�-odd, which makes them natural observable
candidates for 𝐶𝑃-violation detection, albeit not the only ones.

46

4.2. Direct CP-Observables in tth̄-Production

Let us apply the above discussion to di-leptonic 𝑡 ̄𝑡ℎ-production, following
Ref. [105]. Using the Higgs-top coupling introduced in Eq. (4.1), we can write
down the leading order matrix element of either the (dominant) gluon or the
quark-antiquark induced channel as

|M(𝑋𝑋 → 𝑡 ̄𝑡ℎ)|2 = 𝜅2
𝑡 cos(𝛼)

2 𝑓1(𝑝𝑖 ⋅ 𝑝𝑗)

+ 𝜅2
𝑡 sin(𝛼)

2 𝑓2(𝑝𝑖 ⋅ 𝑝𝑗)

+ 𝜅2
𝑡 cos(𝛼) sin(𝛼)

15
∑
𝑘=1

𝑔𝑘(𝑝𝑖 ⋅ 𝑝𝑗)𝑃𝑘,

(4.14)

where 𝑋𝑋 denotes either 𝑔𝑔 or 𝑞 ̄𝑞. If we let 𝑞1 and 𝑞2 denote the gluon/quark
momenta, this expression depends on six four-vectors 𝑝𝑖: The top spin four-
vectors 𝑠𝑡, 𝑠 ̄𝑡 as well as 𝑝𝑡, 𝑝 ̄𝑡, 𝑞 = (𝑞1 − 𝑞2)/2 and 𝑄 = (𝑞1 + 𝑞2)/2. The
functions 𝑓1, 𝑓2 and 𝑔𝑘 only depend on the scalar products of these six four
vectors, while 𝑃𝑘 denotes the fifteen expressions of the form 𝜀𝛼𝛽𝛾𝛿𝑝

𝛼
𝑎𝑝

𝛽
𝑏𝑝

𝛾
𝑐𝑝𝛿

𝑑 =∶
𝜀(𝑝𝑎, 𝑝𝑏, 𝑝𝑐, 𝑝𝑑) that can be constructed from them.

Here we see precisely how the presence of the 𝑃𝑘’s is necessary to generate a
𝐶𝑃-odd matrix element term (i.e. odd under 𝛼 → −𝛼). In particular the 𝑃𝑘’s
are observables that are odd under 𝐶𝑃 and �̂� transformations. Together with
the 𝐶𝑃-invariant initial state—invariant in the 𝑡 ̄𝑡 rest frame that is—and the
𝐶𝑃-invariant phase space of 𝑡 ̄𝑡ℎ production, we can conclude that these are
also genuine 𝐶𝑃-odd. Furthermore, due to the appearance of the 𝑃𝑘-induced
𝐶𝑃-odd term in the matrix element, we can also expect that the expectation
value of these Levi-Civita products will not vanish in a 𝐶𝑃-violating theory.

Let us consider the 𝑃𝑘’s closer. Among these fifteen observables, there are
only five that we can hope to observe. This is because we cannot measure
𝑞, due to insufficient knowledge about the initial state at the LHC. One can
further show that, for the two 𝑃𝑘’s which contain only a single spin vector,
expectation values (asymmetries) vanish [106]. This leaves us with only the

47

three observables
𝑃1 = 𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑠𝑡, 𝑠 ̄𝑡)

𝑃2 = 𝜀(𝑄, 𝑝𝑡, 𝑠𝑡, 𝑠 ̄𝑡)

𝑃3 = 𝜀(𝑄, 𝑝 ̄𝑡, 𝑠𝑡, 𝑠 ̄𝑡).

(4.15)

The discussion so far ignored the top decays, which contribute to the overall
process. These can be included by using the narrow width approximation (i.e.
assuming on-shell top quarks) [105]. In this case, we can factorize the full
matrix element into contributions from both decays and pure 𝑡 ̄𝑡ℎ production.
This allows us to relate the top spins to the decay product momenta [107]

𝑠𝑡 = −
𝑝𝑡

𝑚𝑡
+

𝑚𝑡

(𝑝𝑡 ⋅ 𝑝ℓ+)
𝑝ℓ+

𝑠 ̄𝑡 = −
𝑝 ̄𝑡

𝑚𝑡
−

𝑚𝑡

(𝑝 ̄𝑡 ⋅ 𝑝ℓ−)
𝑝ℓ− .

(4.16)

More generally, we can always expect top spin correlations to be sensitive to
the kinematics of top decay products. The relation goes according to [108,
109]

1
Γ𝑡

dΓ
d𝜉𝑋

=
1
2
(1 + 𝛽𝑋𝑃𝑡 cos(𝜉𝑋)) , (4.17)

where Γ (Γ𝑡) is the (total) top decay rate, 𝜉𝑋 is the angle between top decay
product 𝑋 and the top spin and 𝑃𝑡 is the polarization of the top. The factor
𝛽𝑋 is a unique number corresponding to a certain decay product and is called
spin analyzing power. Note that this situation is special to the top quark. Due
to its short lifetime, it can pass spin information to its decay products before
hadronization or spin decorrelation effects take place [41].

Using Eq. (4.16) we can express (4.15) as:

𝑃1 =
𝑚2

𝑡

(𝑝𝑡 ⋅ 𝑝ℓ+)(𝑝 ̄𝑡 ⋅ 𝑝ℓ−)
𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+)

𝑃2 =
𝑚2

𝑡

(𝑝𝑡 ⋅ 𝑝ℓ+)(𝑝 ̄𝑡 ⋅ 𝑝ℓ−)
(𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+) + 𝜀(𝑝ℎ, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+)

48

+
𝑝𝑡 ⋅ 𝑝ℓ+

𝑚2
𝑡

𝜀(𝑝ℎ, 𝑝 ̄𝑡, 𝑝𝑡, 𝑝ℓ−))

𝑃3 =
𝑚2

𝑡

(𝑝𝑡 ⋅ 𝑝ℓ+)(𝑝 ̄𝑡 ⋅ 𝑝ℓ−)
(−𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+) + 𝜀(𝑝ℎ, 𝑝𝑡, 𝑝ℓ− , 𝑝ℓ+)

+
𝑝 ̄𝑡 ⋅ 𝑝ℓ−

𝑚2
𝑡

𝜀(𝑝ℎ, 𝑝 ̄𝑡, 𝑝𝑡, 𝑝ℓ+)) . (4.18)

This gives us five new 𝐶𝑃-odd Levi-Civita products; the advantage here be-
ing that we can construct them without needing direct access to the top
spins. The sensitivity of the two observables containing only one lepton mo-
menta is negligible. Among the remaining three products, the most sensitive
is 𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+) [105]. There are more options to construct 𝐶𝑃-odd ob-
servables for 𝑡 ̄𝑡ℎ, for example by combining the observables that we have
already discussed, or by defining similar expressions from only final state
momenta [105].

Levi-Civita products can be expressed as triple products which are in turn
related to azimuthal angle differences. For instance, in the 𝑡 ̄𝑡 rest frame with
�⃗�𝑡 parallel to the 𝑧-axis, 𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+) becomes

𝜀(𝑝𝑡, 𝑝 ̄𝑡, 𝑝ℓ− , 𝑝ℓ+) = 𝑚𝑡 ̄𝑡 �⃗�𝑡 ⋅ (�⃗�ℓ− × �⃗�ℓ+)

= 𝑚𝑡 ̄𝑡 |�⃗�𝑡| 𝑝T,ℓ− 𝑝T,ℓ+ sin(Δ𝜙ℓ−ℓ+),
(4.19)

where the prefactor in front of the sine is 𝐶𝑃-even and �̂�-even, making Δ𝜙ℓ−ℓ+

𝐶𝑃-odd and �̂�-odd. Hence, we can also use such azimuthal angle differences
to look for 𝐶𝑃-violation instead of the full Levi-Civita products.

4.3. CP-Sensitive Observables in tth̄-Production

The 𝐶𝑃-odd observables defined above naturally carry sensitivity to the 𝐶𝑃-
phase. In particular, they must be sensitive to the sign of the 𝐶𝑃-phase by
definition, since 𝐶𝑃-conjugation of the Lagrangian is equivalent to a sign

49

change in 𝛼. As already mentioned we can also probe for 𝐶𝑃-violation indi-
rectly, without the use of genuine 𝐶𝑃-odd observables, by fitting the value of
𝛼 to observations.

Specifically, several observables were studied in the literature, which are es-
pecially sensitive to the absolute value of 𝛼, without being genuine 𝐶𝑃-odd
observables. A collection of prominent indirectly 𝐶𝑃-sensitive observables
was analyzed in Ref. [41] for all possible decay channels of the top quarks.
These include the masses 𝑚ℎ, 𝑚𝑡ℎ, 𝑚 ̄𝑡ℎ and 𝑚𝑡 ̄𝑡ℎ, the azimuthal angle and
pseudorapidity differences Δ𝜙𝑡 ̄𝑡, Δ𝜂𝑡 ̄𝑡 between both tops, the transverse mo-
mentum 𝑝T,ℎ of the Higgs as well as the 𝑡 ̄𝑡 momentum projection product
𝑏4 = 𝑝𝑧,𝑡𝑝𝑧, ̄𝑡/𝑝𝑡𝑝 ̄𝑡 [110] and the Collins-Soper (CS) angle 𝜃CS [111, 112]. The
CS angle is defined as the polar angle of the top quark in the Collins-Soper
frame, the 𝑡 ̄𝑡 rest frame in which the 𝑧-axis forms equal angles with the two
beam directions. Ref. [41] discussed respective observables O in terms of
Fisher information of the distribution 𝑝(O|𝛼2) at the SM point 𝛼 = 0 (and
𝜅𝑡 = 1). The squared value of 𝛼 was considered here, due to these observables
being 𝐶𝑃-even. Overall the pseudorapidity difference Δ𝜂𝑡 ̄𝑡 and the CS angle
were identified as the non-direct 𝐶𝑃 observables, which are most sensitive to
𝛼.

Furthermore, Ref. [41] investigated the sensitivity of genuine 𝐶𝑃-odd az-
imuthal angle differences Δ𝜙𝑡 ̄𝑡

𝐴𝐵 in the 𝑡 ̄𝑡 rest frame. These are defined between
two decay products 𝐴 and 𝐵 from the top and the anti-top respectively. Here
the distribution 𝑝(O|𝛼) was considered due to their dependence on the sign
of 𝛼. For all top and antitop decay modes—fully hadronic, semi-leptonic and
di-leptonic—it was concluded that respectively Δ𝜙𝑡 ̄𝑡

𝑗soft𝑗soft
, Δ𝜙𝑡 ̄𝑡

ℓ𝑗soft
and Δ𝜙𝑡 ̄𝑡

ℓℓ is
the observable most sensitive to 𝛼. Here 𝑗soft is a proxy for the 𝑑 quark and is
defined as the jet with the lowest transverse momentum in the rest frame of
the respective top.

Note that many of these observables are quite difficult to construct at reco-level.
We need to reconstruct the top momenta for all of them, except for𝑚ℎ and 𝑝𝑇,ℎ,
while the genuine 𝐶𝑃-odd observables additionally require us to use inefficient

50

proxies for the true jet associated with a quark. The reconstruction of the
top momenta is made difficult due to missing momenta from the neutrinos
as well as the combinatorial issues associated with jets. Due to these reasons,
unfolding—in the sense of at least reversing parton-shower and hadronization
effects to some degree—is an essential requirement for the analysis of 𝐶𝑃-
sensitive observables associated with 𝑡 ̄𝑡ℎ production.

In the following chapter we will develop an unfolding technique for 𝑡 ̄𝑡ℎ which
makes use of the entire information on reco-level, allows for the reconstruction
of the full parton level phase space and makes the statistical unfolding of single
reco-level events possible. We will use the above considerations to guide our
construction.

51

5. A Normalizing Flow Network for
Unfolding tth̄-Production

In this chapter, I will present an unfolding model for 𝑡 ̄𝑡ℎ production, which
is intended for the reconstruction of 𝐶𝑃-sensitive observables on parton-level
with high accuracy. The foundation of this model is a conditional normalizing
flow, constructed with neural networks.

There are two main challenges with this task. First, while the clear advantage
of modern unfolding methods like Omnifold and normalizing flow based
techniques is the inclusion of the whole phase-space, in practice our accuracy
is limited; how exactly we build our model can have a significant impact on
the reconstruction efficiency of specific observables. Therefore, this model
takes particular care to achieve optimal unfolding accuracy for 𝐶𝑃-sensitive
observables relevant to 𝑡 ̄𝑡ℎ. At the same time, it was built such that it retains
good performance for the remaining phase space. In particular, we will focus on
the two direct and non-direct 𝐶𝑃-sensitive observables that Ref. [41] identified
as most promosing to detect 𝐶𝑃-violation. These are the azimuthal angle
difference Δ𝜙𝑡 ̄𝑡

ℓ𝑑 between the charged lepton and the down quark in the 𝑡 ̄𝑡 rest
frame and the Collins-Soper angle 𝜃CS.

Second, the reconstruction of intermediate particle mass distributions is ex-
ceptionally poor when using naive flow architectures [37]. We will see in
Section 5.2, after we discussed the training dataset in 5.1, how we can address
this issue. The presented solution will also allow us to improve the recon-
struction of our two 𝐶𝑃-observables, while posing another problem which we

52

will fix in Section 5.3. Finally, we will discuss the architectural details of our
unfolding model in Section 5.4 and its performance in Section 5.5.

5.1. Training Datasets

The goal is to unfold the final state of semi-leptonic 𝑡 ̄𝑡ℎ production, with the
Higgs decaying to two photons, i.e.

𝑝𝑝 → 𝑡 ̄𝑡ℎ → (𝑏𝑢 ̄𝑑)(̄𝑏ℓ− ̄𝜈)(𝛾𝛾)

𝑝𝑝 → 𝑡 ̄𝑡ℎ → (𝑏ℓ+𝜈)(̄𝑏 ̄𝑢𝑑)(𝛾𝛾)

𝑝𝑝 → ̄𝑡𝑡ℎ → (̄𝑏 ̄𝑢𝑑)(𝑏ℓ+𝜈)(𝛾𝛾)

𝑝𝑝 → ̄𝑡𝑡ℎ → (̄𝑏ℓ− ̄𝜈)(𝑏𝑢 ̄𝑑)(𝛾𝛾).

(5.1)

Note that we are interested in 𝑝𝑝 → 𝑡 ̄𝑡ℎ and the conjugated process, which
are not equivalent in a scenario with 𝐶𝑃-violation. However, it does not
matter which top decays leptonically and which one decays hadronically. For
this reason, without loss of generality, we can assume that 𝑡 always decays
leptonically and ̄𝑡 always decays hadronically. This also fixes the particles in
the final state; in particular, the lepton will always have positive charge.

For this thesis, four datasets were used to investigate the unfolding performance
of a normalizing flow model. Three contain events from 𝑡 ̄𝑡ℎ production,
including ISR, as described by the Higgs characterization model Lagrangian
(cf. (4.1)), with 𝜅𝑡 = 1 and either 𝛼 = −𝜋/4, 𝛼 = 0 (SM) or 𝛼 = 𝜋/4 [94].
The fourth dataset only describes SM 𝑡 ̄𝑡ℎ production without ISR.

We look at these specific values since they approximately describe the current
experimental bounds. In particular, there are two recent experimental 𝑡 ̄𝑡ℎ
studies by the ATLAS and CMS collaborations [113, 114], which exclude a
𝐶𝑃-phase above 43° and 55° respectively. The performance of our model on
these datasets should thus provide an appropriate benchmark.

The parton- and detector-level event samples for each dataset were simu-

53

lated at leading order and center-of-mass energy √𝑠 = 14 TeV. Note that
we, more specifically, unfold from reco-level, i.e. we have jets on detector-
level that are already reconstructed. To simulate ℎ → 𝛾𝛾, an effective vertex
was used, utilizing a modified Higgs effective field theory (HEFT) based on
Ref. [115]. The simulation was done with MadGraph5_aMC@NLO [80] using the
NNPDF2.3QED parton distribution function [116]. For the detector-level distri-
bution parton showering, hadronization and detector effects were applied with
Pythia8 [117], and Delphes3 [118] using the default ATLAS HL-LHC card.
No generation cuts were applied. Event selection was performed according
to the following criteria. Each event must contain exactly two photons, two
𝑏-tagged jets, one lepton and at least two light jets. Additionally, each event
must satisfy the following acceptance cuts

𝑝T,𝑏 > 25 GeV 𝑝T,𝑗 > 25 GeV 𝑝T,ℓ > 15 GeV 𝑝T,𝛾 > 15 GeV
|𝜂𝑏| < 4 |𝜂𝑗| < 5 |𝜂ℓ| < 4 |𝜂𝛾| < 4.

For ISR datasets, we will restrict the maximal number of jets to be six, while
events with less than six jets get zero-padded.

For our purposes, we define our parton-level phase space as containing the
momenta

(𝑝ℎ, 𝑝𝑏, 𝑝ℓ, 𝑝𝜈, 𝑝 ̄𝑏, 𝑝𝑢, 𝑝𝑑) , (5.2)

where we leave the Higgs intact. On detector-level we have

(𝑝𝛾1
, 𝑝𝛾2

, 𝑝𝑏1
, 𝑝ℓ, 𝑝𝜈, 𝑝𝑏2

, 𝑝𝑗1
,… , 𝑝𝑗𝑛

) . (5.3)

Here the photons, bottom quark and light-jet momenta are 𝑝T-sorted respec-
tively. Without ISR, the number of light jets is 𝑛 = 2.1

In a realistic setting, we additionally have to consider background processes,
e.g. continuum 𝑡 ̄𝑡𝛾𝛾-production as the dominant 𝑡 ̄𝑡ℎ background. However,
with the unfolded results of a normalizing flow model, we can only compute
the conditional distribution 𝑝(𝒙|𝒚, 𝑆) of possible 𝑡 ̄𝑡ℎ parton-level events 𝒙 for
1Note that we do not consider final state radiation here.

54

a detector-level signal event 𝒚. Our goal is now to compute the probability
for a specific parton-level event 𝒙 given an event 𝒚 that is either signal or
background. We can write

𝑝(𝒙|𝒚) = ∑
𝑇∈{𝑆,𝐵}

𝑝(𝒙|𝒚, 𝑇)𝑝(𝑇|𝒚)

= 𝑝(𝒙|𝒚, 𝑆)𝑝(𝑆|𝒚) + 𝑝(𝒙)(1 − 𝑝(𝑆|𝒚))
(5.4)

Here 𝑝(𝑆|𝒚) and 𝑝(𝐵|𝒚) are the probabilities that some event 𝒚 is signal or
background respectively, and can be obtained by e.g. training a classification
network on simulated signal and background data. 𝑝(𝒙|𝒚, 𝑆) and 𝑝(𝒙) denote
the probabilities of certain 𝑡 ̄𝑡ℎ parton-level events 𝒙, when observing an event
𝒚 that is assumed to be either signal or background respectively. Note that the
second probability does not depend on 𝒚 since background events cannot give
us information on 𝑥 beyond prior knowledge. Again, an unfolding model gives
us the first probability, while 𝑝(𝒙) is constrained through the finite (compact)
phase-space of 𝑡 ̄𝑡ℎ at a finite center-of-mass energy and through our model
assumptions. In particular

𝑝(𝒙) = ∫𝑝(𝒙|𝜽)𝑝(𝜽)d𝜽 = ∫|M(𝒙, 𝜽)|2 𝑝(𝜽)d𝜽 (5.5)

where M(𝒙, 𝜽) is the 𝑡 ̄𝑡ℎ matrix element and 𝑝(𝜽) describe our prior assump-
tions about any model parameters 𝜽. For instance, in our case, the background
does not contain a Higgs and thus cannot give us information about 𝛼 or 𝜅𝑡
(cf. (4.1)). This shows that it is reasonable for us to not consider background
when constructing our unfolding model.

5.2. Phase-Space Parameterization

If we want to encode the parton-level final state of a scattering process, the di-
rect approach is to use a list of cartesian four-momenta components. Naturally,
due to the on-shell conditions, this method creates a parameterization with

55

redundancies and allows the network to generate unphysical events. But also
the obvious solution—simply removing the energies—leads to problems.

Empirically we know that intermediate particle mass distributions are difficult
to reconstruct when using a naive parameterization. For this reason, previous
studies added the maximum mean discrepancy (MMD) between the unfolded
and true mass distribution to the forward KL divergence in the network loss [37,
119].

The MMD is a measure for the discrepancy between two probability densities
𝑝(𝑥) and 𝑞(𝑦) that is defined for a particular function class F as

MMD[𝑝, 𝑞,F] = sup
𝑓∈F

(𝐸𝑝(𝑥)[𝑓(𝑥)] − 𝐸𝑝(𝑦)[𝑓(𝑦)]) . (5.6)

In particular MMD[𝑝, 𝑞,F] = 0 ⇔ 𝑝 = 𝑞 [120]. By choosing our function
class to be a reproducing kernel Hilbert space with kernel 𝑘(𝑥, 𝑦), we can
relate the above definition to the approximation [120]

MMD[F , 𝑿, 𝒀]

= ⎡
⎣

1
𝑚2

𝑚
∑
𝑖,𝑗=1

𝑘(𝑥𝑖, 𝑥𝑗) −
2
𝑚𝑛

𝑚,𝑛
∑
𝑖,𝑗=1

𝑘(𝑥𝑖, 𝑦𝑗) +
1
𝑛2

𝑛
∑
𝑖,𝑗=1

𝑘(𝑦𝑖, 𝑦𝑗)⎤
⎦

1/2

.
(5.7)

Typical kernel choices are, for instance, Gaussian or Cauchy functions. While
this expression scales quadratically with the sample size (i.e. batch size in
practice), it is reasonably efficient to compute and defined in terms of two
sets 𝑿 = {𝑥1,… , 𝑥𝑚} and 𝒀 = {𝑦1,… , 𝑦𝑛} of samples from 𝑝(𝑥) and 𝑞(𝑦).
In situations where both distributions are only accessible through samples,
these features can make the MMD a useful tool in machine learning.

Using the MMD for unfolding can solve the problem of mass distributions,
however, it has several drawbacks. First, we need phase space samples for the
evaluation of the MMD, while the forward KL divergence requires samples
from the base distribution of our flow. This means that we have to evaluate
our model twice for each training step, effectively doubling the training time.

56

We typically need more epochs until our network has fully converged as well.
Second, we have quite a few hyperparameters associated with an MMD loss,
like the relative weight we give the loss term or the particular choice of kernel.
In practice, the number of parameters can be even higher, since scheduling of
the relative loss weight or a combination of different kernels can be required to
obtain a good accuracy with decent performance. We also have to tune these
parameters for each intermediate particle. Especially in our case, with two
top quarks and 𝑊-bosons, this leads to a hyperparameter number which can
get quickly out of hand. Third, we would have to undo our preprocessing—if
we do more than just rescaling—for each training step. This is conceptually
undesirable. For example, we might suffer additional performance losses if
our preprocessing is slow by nature. The alternative is to make compromises
when preprocessing our data. This can help performance but might lead to
worse network accuracy. To conclude, an MMD loss is a slow and inelegant
solution that does not scale well. Therefore, let us discuss the alternative.

Empirically unfolding models investigated in this thesis showed a significant
improvement when troublesome masses were included in the parameterization
of our parton-level phase space (cf. (5.2)); we might try to understand this in
the following way. The main feature that distinguishes typical Breit-Wigner
mass distributions from other phase space variables is their narrow width of
usually only a few GeV. Such a narrow width is hard to learn for a generative
network since it has to fine-tune the relation between its features very carefully.
However, if the mass itself is a part of the phase-space parameterization, we
typically rescale this particular phase space direction during preprocessing
and avoid narrow distributions altogether. This, of course, is only a hypothesis.
To properly understand this, one would likely have to carefully investigate a
toy model.

Writing down a parameterization for 𝑡 ̄𝑡ℎ that features top and 𝑊 masses di-
rectly is not entirely straightforward. We still have to apply the final state
on-shell conditions, while not having the full final state momenta available any-
more. A natural solution is to store respective parameters from the top, 𝑊 and

57

one of their decay products, while simplifying the on-shell conditions through
smart selection of the frame. This idea gives us the following parameterization
for each top decay:

(𝑚𝑡, 𝑝T,𝑡, 𝜂𝑡, 𝜙𝑡,𝑚𝑊, 𝜂𝑡𝑊, 𝜙𝑡
𝑊, 𝜂𝑊ℓ/𝑢, 𝜙

𝑊
ℓ/𝑢) , (5.8)

where we used jet coordinates to parameterize the four-momenta and the su-
perscript indicates the (rest-)frame in which the parameters are defined. Note
that this parameterization also separates, and thus simplifies, the kinematics
of each decay. It works well in practice and yields excellent accuracy for the
reconstruction of the top and 𝑊 masses, while also improving the accuracy
of our unfolding in the remaining phase space. The price we pay for this is
worse performance when reconstructing the transverse light and bottom quark
momenta; likely, due to them now only being available as a correlation of
several other features.

It should be mentioned that this organization of the phase space is generaliz-
able, to a certain degree, to other particle decays. For example, we can—and
will—also parameterize the Higgs decay of 𝑡 ̄𝑡ℎ production in this fashion:

(𝑚𝐻, 𝑝T,𝐻, 𝜂𝐻, 𝜙𝐻, 𝜂
𝐻
𝛾1
, 𝜙𝐻

𝛾1
) . (5.9)

This does improve the reconstruction of the Higgs momenta, leading to an
improvement in the 𝐶𝑃-sensitive invariant mass distributions discussed in
Ref. [41].

We can push this idea further by utilizing a parameterization that directly
includes our 𝐶𝑃-sensitive observables Δ𝜙𝑡 ̄𝑡

ℓ𝑑 and 𝜃CS. We start by storing �⃗�𝑡 ̄𝑡,
which we then use to boost into the Collin-Soper frame. There, we store the
four-momentum of the leptonic top in spherical coordinates—which includes
the Collin-Soper angle—and the mass of the hadronic top. Staying in the top
frame, but rotating it such that 𝒑𝑡 points in positive 𝑧 direction, we further store
the mass of the 𝑊 as well as the four momenta of the 𝑊 decay products—also
in spherical coordinates. For the latter, we eliminate redundancies using the

58

on-shell conditions and the 𝑊 mass, while we store Δ𝜙𝑡 ̄𝑡
ℓ𝑑 = 𝜙𝑡 ̄𝑡

𝑑 − 𝜙𝑡 ̄𝑡
ℓ instead

of 𝜙𝑡 ̄𝑡
𝑑 . Overall, this leaves us with

(�⃗�𝑡 ̄𝑡,𝑚𝑡, |�⃗�
CS
𝑡 |, 𝜃CS

𝑡 , 𝜙CS
𝑡 ,𝑚 ̄𝑡,

sign(Δ𝜙𝑡 ̄𝑡
ℓ𝜈)𝑚𝑊ℓ

, |�⃗�𝑡 ̄𝑡
ℓ |, 𝜃

𝑡 ̄𝑡
ℓ , 𝜙

𝑡 ̄𝑡
ℓ , |�⃗�

𝑡 ̄𝑡
𝜈 |,

sign(Δ𝜙𝑡 ̄𝑡
𝑑𝑢)𝑚𝑊ℎ

, |�⃗�𝑡 ̄𝑡
𝑑 |, 𝜃

𝑡 ̄𝑡
𝑑 , Δ𝜙

𝑡 ̄𝑡
ℓ𝑑, |�⃗�

𝑡 ̄𝑡
𝑢 |) .

(5.10)

The sign factors in front of 𝑚𝑊ℓ
and 𝑚𝑊ℎ

are unfortunately needed to en-
sure invertibility of (5.10), since we cannot infer the sign of Δ𝜙𝑡 ̄𝑡

ℓ𝜈 and Δ𝜙𝑡 ̄𝑡
𝑑𝑢

otherwise. If we still want to include the 𝑊 masses that is.

As one would expect, the sign factors reduce the reconstruction accuracy of
the 𝑊 masses. On the other hand, this parameterization proved to slightly
enhance the unfolding accuracy of 𝜃CS and Δ𝜙𝑡 ̄𝑡

ℓ𝑑, while still leading to ex-
cellent precision when reconstructing the top masses and some significant
improvements in the rest of the phase space. The exceptions here are the light
quark momenta, for which we still get suboptimal accuracy.

Overall, both parameterization approaches greatly outperformed any unfolding
model that relied on an MMD loss, while not suffering the drawbacks. The
details of the parameterization in Eq. (5.10) are discussed in appendix A.

5.3. Periodic Splines

We argued in the previous section that non-trivial parameterizations are a great
way of of constructing an accurate unfolding model for a complex process
like 𝑡 ̄𝑡ℎ. However, both of these parameterizations heavily rely on either
spherical or jet coordinates, both of which feature azimuthal angles. This gives
the manifold on which those parameterizations are defined a non-euclidean
topology and as we discussed in Section 2.4, there is no established way of
defining a finite composition flow on such a manifold. We can ignore this
in practice, but this proved to result in very low unfolding accuracy in the

59

𝜏

map map

𝑓

𝑝(𝒛)

𝑝(𝒙)

Figure 5.1.: For a classical spline transformer 𝜏 a simple shift 𝑓 on 𝑆1, of some
distribution 𝑞(𝒛) to 𝑝(𝒙), involves reconstructing a single peak
from a bimodal distribution with hard cuts on both modes.

boundary regions of azimuthal angle distributions.

To illustrate why this happens, consider e.g. a normalizing flow which only
consists of a single coupling layer. For an azimuthal angle, such a flow effec-
tively transforms distributions between two maps of the circle 𝑆1. Suppose
we now transform a Gaussian peak near the boundary region of the first map.
As shown in Fig. 5.1, an euclidean flow cannot easily replicate even a simple
shift of such a peak, leading to the aforementioned boundary problems.

I propose periodic spline transformers to remedy this. In particular, periodic
spline transformers can properly handle the two types of topologies—open
or closed—that a one-dimensional feature can have. This idea is inspired by
the circular spline architecture introduced by Ref. [121]. We will discuss later

60

why this construction is insufficient for our use-case.

Let us start with classic spline transformers. As discussed in Section 2.1.2,
again only looking at one channel 𝑧, we construct spline transformers 𝜏 ∶
[−𝐵, 𝐵] → [−𝐵, 𝐵] as a combination of 𝐾 simple piecewise transformations
𝜏𝑘 ∶ [𝑧(𝑘), 𝑧(𝑘+1)] → [𝑥(𝑘), 𝑥(𝑘+1)], where 𝑧(𝑘) and 𝑥(𝑘) are ordered points
from [−𝐵, 𝐵]. This construction, in particular, requires the boundary points
to be fixed, i.e. 𝑧(0) = −𝐵, 𝑧(𝐾) = 𝐵 as well as 𝑥(0) = 𝜏1(𝑧

(0)) = −𝐵 and
𝑥(𝐾) = 𝜏𝐾(𝑧

(𝐾)) = 𝐵. For complicated 𝜏𝑘, e.g. rational quadratic splines, we
also need to specify derivatives 𝛿(𝑘) at each point 𝑧(𝑘).

Now, let us set 𝐵 = 𝜋 and interpret 𝜏 as a transformation between two maps
of the circle 𝑆1. We immediately notice that 𝑧(0) and 𝑧(𝐾) now correspond to
the same point on the circle, such that the derivatives at these points should
match, i.e. 𝛿(0) = 𝛿(𝐾). Moreover, we note that fixed boundary points are no
longer a sensible restriction, as this would effectively fix the map in which the
flow operates, limiting its expressivity. This is because, as we discussed above,
it is easy to construct a diffeomorphism on 𝑆1 that can hardly be replicated by
a classical spline transformer (cf. Fig. 5.1).

To ‘unfix’ the boundary points we can introduce a shift 𝑠 of 𝜏’s target domain.
We define

�̃�𝑘(𝑧) = 𝜏𝑘(𝑧) + 𝑠 + 2𝜋𝑚. (5.11)

For the last term we choose 𝑚 such that �̃�𝑘(𝑧) ∈ [−𝜋,𝜋]. This ensures
matching domains between components of our composition flow. The shift
becomes a new parameter that needs to be generated by the conditioner. At
the same time, we have one less parameter due to the earlier restriction on the
endpoint derivatives, leaving us with the same parameter number as classical
spline blocks.2 This makes it easy to generalize the discussion to a transformer

2In Ref. [54] the authors argue for setting 𝛿(0) = 𝛿(𝐾) = 1 to match the linear nature of 𝜏
outside of [−𝐵, 𝐵]. However, this limits the flexibility of the flow in the boundaries to
avoid kinks at the edges. These kinks can only lead to problems for points beyond the
boundary, which, ideally, should be avoided anyway and only occur seldom in practice.
For this reason, I avoided fixed derivatives.

61

𝑧(1)
𝑧(2)

𝑧(3)
𝑧(4)𝑧(5)

𝑧(0)

𝑥(4) 𝑥(3)

𝑥(2)

𝑥(5)

𝑥(0) 𝑥(1)

Figure 5.2.: Visualization of a periodic spline transformer. The method pre-
sented above is equivalent to choosing 𝐾 + 1 points 𝑥(𝑘) and 𝑦(𝑘)

freely on 𝑆1, mapping them to each other while preventing cross-
ings and interpolating the mapping between two adjacent points
e.g. with a rational quadratic.

with mixed periodic and non-periodic channels. In this case, we can still use
the same conditioner when we just reinterpret one of the derivative parameters
as 𝑠 for each periodic channel. In practical applications of this transformer, one
has to keep track of which inputs are periodic—and thus need to be treated
with the new method—and which are not. One can do this, for instance, by
introducing a boolean vector, indicating for each channel if it is periodic. This
one can then be used for masking out either channel type and transforming
the remaining inputs in bulk. For coupling blocks, we can simply permute this
vector with the inputs, to have access to the channel types at every block.

What do we have accomplished now? By introducing the shift 𝑠 to the trans-
former, the network is now able to learn the optimal map to represent the
transformed density on, sidestepping the problem presented in Fig. 5.1. We
can visualize the new architecture as shown in Fig. 5.2. This intuitive picture
should make it clear that requiring 𝑥(0) and 𝑦(0) to be the same point is an

62

artificial restriction that should be avoided on 𝑆1. Specifically, it is apparent
that we cannot avoid the problem shown in Fig. 5.1 with the circular splines
proposed by Ref. [121], since this architecture has no such shift associated to
it.

5.4. Architecture

Now that we have gathered all the major building blocks, let us discuss the
complete picture of how to build an unfolding model for 𝑡 ̄𝑡ℎ. The basis here is a
conditional and Bayesian normalizing flow, implemented in PyTorch [122] and
FrEIA [48], utilizing the local re-parameterization trick (cf. Section 2.5) [79].
As discussed in Section 2.5, Bayesian networks can capture statistical uncer-
tainties in the training data. Moreover, the learned distribution of parameters
can account for some dependence of the network output on the initialization,
making the training results more stable and, most importantly, reproducible.

Next, the model makes use of a composite coupling block architecture with a
periodic rational quadratic spline transformer. The conditioner is built as a
simple fully connected neural network. Between coupling blocks I use fixed
permutation layers—i.e. random permutations were generated once with a
specific seed and are then used for every training. Note that this is an important
detail: the permutations are an initial condition we cannot account for with a
Bayesian architecture, and thus can lead to unstable results. The model was
trained for 100 epochs using an ELBO-loss (cf. Eq. (2.40)), as described at the
end of Section 2.5, and the Adam optimization algorithm [123]. For the base
distribution we use, ignoring constant factors,

𝑞(𝑧) ∼ ∏
𝑖∈𝐼¬𝜙

𝑒𝑧
2
𝑖 /2. (5.12)

Here 𝐼¬𝜙 denotes the channel indices of all non-periodic channels. For the
periodic channels, we use uniform distributions defined on [−𝜋,𝜋], which

63

transformer type periodic spline
spline type rational quadratic
spline bin count 10
spline non-periodic domains [−5.0, 5.0] → [−5.0, 5.0]

coupling block count 16
conditioner layer count 5
conditioner layer dimension 256
VI prior type gaussian
VI prior log(𝜎2) 1.0

number of epochs 100
batch size 1024
learning rate 2.0 × 10−4

optimization algorithm Adam

signal dataset size ∼1.2M events
training/testing split 80%/20%

Table 5.1.: Hyperparameters as well as architecture and dataset details of the
presented unfolding model

only give a constant factor to (5.12), i.e. they only contribute through the
Jacobian. More details about the model architecture are shown in table 5.1.

In terms of the dataset, the parameterization presented in (5.10) is used on
parton-level, containing both 𝜃CS and Δ𝜙𝑡 ̄𝑡

ℓ𝑑 as well as the top and 𝑊 masses.
Additionally, the parameterization of the Higgs sector shown in (5.9) is applied
on parton and detector level. Using the same parameterization on both levels
slightly helps the network, since it does not have to learn the parameterization
itself. Note that one can only do this for the Higgs sector, where there are no
jets or missing energy we have to consider. On top of this, the one-dimensional
distribution of each parameter in the parameterization gets normalized to a
standard Gaussian (for periodic parameters) or a uniform distribution (for
non-periodic parameters), using the standard scikit-learn [124] quantile
transformation. Note that this transformation gets fitted to the training data.

64

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

165 170 175 180
mt [GeV]

0.9
1.1ge

n
tr

ut
h

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth
detector

165 170 175 180
m t̄ [GeV]

0.9
1.1ge

n
tr

ut
h

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth

150 300 450
pT,t [GeV]

0.9
1.1ge

n
tr

ut
h

1.5

3.0

4.5

6.0

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth
detector

80 160 240 320
pT, t̄ [GeV]

0.9
1.1ge

n
tr

ut
h

Figure 5.3.: Unfolded mass and transverse momentum distributions of the top
quarks, compared to the parton level truth.

5.5. Results

Finally, let us discuss what a network can do, that was constructed according
to the previous section. We start by considering the overall unfolding precision
for the SM. While the unfolded distribution of the network will be dependent
on the choice of physics model, due to the prior dependence in (3.11), the
overall accuracy does hardly depend on this choice. For most of the results
below, this is also true for the inclusion of ISR effects; exceptions will be
specifically mentioned. So in the following, ISR will always be present unless
stated otherwise.

To get a general sense for the performance of our model, let us start by

65

0.5

1.0

1.5

2.0
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

−2 0 2
ηt

0.9
1.1ge

n
tr

ut
h

0.5

1.0

1.5

2.0

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth
detector

−2 0 2
η t̄

0.9
1.1ge

n
tr

ut
h

0.4

0.8

1.2

1.6

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

−3.0 −1.5 0.0 1.5 3.0
φt

0.9
1.1ge

n
tr

ut
h

0.4

0.8

1.2

1.6

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth
detector

−3.0 −1.5 0.0 1.5 3.0
φ t̄

0.9
1.1ge

n
tr

ut
h

Figure 5.4.: Unfolded pseudorapidity and azimuthal angle distributions of the
top quarks, compared to the parton level truth.

considering the reconstruction of the two top quarks in figs. 5.3 and 5.4.
What I show here and in the following are the model-generated unfolded
distributions of respective observables, compared to the parton truth. The
uncertainties, shown at 1𝜎, of the generated densities come from the Bayesian
architecture and are due to the limited statistics of the training data. In practice,
these uncertainties are computed by sampling from the network parameter
distribution multiple times, generating all distributions for each parameter
set and taking the mean and standard deviation of the bin heights. If there
are easily accessible proxies for a particle on detector-level, a detector-level
distribution is shown as well. For the 𝑢 and 𝑑 quarks, we use respectively the
hardest or second-to-hardest lab-frame light jets as a proxy. For the leptonic

66

0.8

1.6

2.4

3.2
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

75 80 85 90
mW− [GeV]

0.9
1.1ge

n
tr

ut
h

0.8

1.6

2.4

3.2

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth
detector

75 80 85 90
mW+ [GeV]

0.9
1.1ge

n
tr

ut
h

0.4

0.8

1.2

1.6

no
rm

al
ize

d
de

ns
ity

×102

gen
truth
detector

−0.005 0.000 0.005
mH [GeV]+1.25× 102

0.9
1.1ge

n
tr

ut
h

Figure 5.5.: Unfolded mass distributions of the top quarks, 𝑊 bosons and
Higgs, compared to the parton level truth.

and hadronic bottom quarks, this is done analogously with the 𝑏-tagged jets.

We can see that the distributions of both tops get reconstructed with only a
few percent discrepancy between the unfolded distributions and the truth. In
the tails, this deviation is necessarily a bit larger, due to low data statistics.
In particular, we see how powerful our parameterization is at reconstruct-
ing the narrow top mass densities, without any additional treatment like an
MMD loss. If we look at the remaining mass distributions in Fig. 5.5, we
see that a dedicated parameterization is even able to reconstruct the—in our
dataset—extremely narrow Higgs mass peak faithfully, which proved to be
near impossible with an MMD loss. We also observe quite low precision in the
𝑊 mass densities, due to the sign factor in (5.10). Note, however, that this

67

0.4

0.8

1.2

1.6

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

−3.0 −1.5 0.0 1.5 3.0

φ t t̄
t

0.9
1.1ge

n
tr

ut
h

Figure 5.6.: Unfolded azimuthal angle distribution of the leptonic top quark
in the 𝑡 ̄𝑡 rest frame, compared to the parton level truth.

reconstruction is still more accurate, than if we would omit the 𝑊 mass from
the parameterization.

Another question we should address is if the periodic spline architecture is fully
able to fix the non-euclidean parameter topology that (5.10) introduces. We
see that the azimuthal angle distributions of both tops get unfolded properly,
however, these are not featured in the parameterization. To directly see
potential problems here, it is better to look at, for example, the azimuthal
angle of the leptonic top in the 𝑡 ̄𝑡-frame in Fig. 5.6. With an euclidean flow,
we would see strong deviations from the truth in the boundary regions, which,
as we can see, is not the case here due to the use of periodic splines.

Besides the 𝑊 mass distributions our model is somewhat imprecise when
unfolding the transverse momentum distributions of quark final states (cf.
Fig. 5.7). This particular weakness seems to be related to our choice of
parameterization. On the other hand, jet combinatorics are likely a factor
here, since we do not see any deviations in the transverse momenta of the
lepton and the neutrino. Note that these effects persist even without the
inclusion of ISR effects.

Now that we got a broad idea of general model performance, let us check the
unfolding accuracy of 𝐶𝑃-sensitive observables for 𝑡 ̄𝑡ℎ. The choice of observ-

68

0.25

0.50

0.75

1.00

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth
detector

50 100 150 200
pT,b [GeV]

0.9
1.1ge

n
tr

ut
h

0.6

1.2

1.8

2.4

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth
detector

50 100 150 200
pT, b̄ [GeV]

0.9
1.1ge

n
tr

ut
h

0.25

0.50

0.75

1.00

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth
detector

40 80 120 160
pT,u [GeV]

0.9
1.1ge

n
tr

ut
h

0.6

1.2

1.8

2.4

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth
detector

40 80 120 160
pT,d [GeV]

0.9
1.1ge

n
tr

ut
h

0.4

0.8

1.2

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth
detector

50 100 150 200
pT,` [GeV]

0.9
1.1ge

n
tr

ut
h

0.3

0.6

0.9

1.2

no
rm

al
ize

d
de

ns
ity

×10−2

gen
truth

50 100 150 200
pT,ν [GeV]

0.9
1.1ge

n
tr

ut
h

Figure 5.7.: Unfolded transverse momentum distributions of the 𝑏-, 𝑢- and
𝑑-quarks, as well as the lepton and neutrino.

69

1.5

3.0

4.5

6.0
no

rm
al

ize
d

de
ns

ity
×10−3

gen
truth

80 160 240 320
pT,H [GeV]

0.9
1.1ge

n
tr

ut
h

1.5

3.0

4.5

6.0

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth

300 400 500 600
mH t [GeV]

0.9
1.1ge

n
tr

ut
h

1.5

3.0

4.5

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth
detector

300 400 500 600
mH t̄ [GeV]

0.9
1.1ge

n
tr

ut
h

0.0

0.6

1.2

1.8

2.4

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth

500 750 1000 1250
mH t t̄ [GeV]

0.9
1.1ge

n
tr

ut
h

Figure 5.8.: Unfolded distributions of the 𝐶𝑃-sensitive transverse Higgs mo-
mentum and various invariant masses among the top quarks and
the Higgs.

ables is based on Ref. [41] as discussed in Section 4.3. For the (non-direct)
𝐶𝑃-sensitive observables shown in figs. 5.8 and 5.9, we obtain a comparable
performance to previous results regarding the top quarks. For the genuine
𝐶𝑃-odd azimuthal angle differences, the accuracy is more limited, as shown
in figs. 5.10 and 5.11.

The overall precise reconstruction of global distributions is a good starting
point. However, ultimately we want the model to faithfully capture discrep-
ancies induced by new physics in measured data. So reproducing global
distributions is not enough and could in principle also be accomplished by a
purely generative network without any detector-level input. To obtain indica-

70

0.6

1.2

1.8

2.4
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

−5.0 −2.5 0.0 2.5 5.0
∆ηt t̄

0.9
1.1ge

n
tr

ut
h

1.5

3.0

4.5

6.0

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

−3.0 −1.5 0.0 1.5 3.0
∆φt t̄

0.9
1.1ge

n
tr

ut
h

0.4

0.8

1.2

no
rm

al
ize

d
de

ns
ity gen

truth

−0.8 −0.4 0.0 0.4 0.8
b4

0.9
1.1ge

n
tr

ut
h

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

0.8 1.6 2.4
θCS

0.9
1.1ge

n
tr

ut
h

Figure 5.9.: Unfolded distributions of the 𝐶𝑃-sensitive observables Δ𝜂𝑡 ̄𝑡, Δ𝜙𝑡 ̄𝑡,
𝑏4 and 𝜃CS.

tions of how much the network actually respects the detector condition we
can look at unfolded distributions 𝑝(𝒙|𝒚), where we fix the detector event
𝒚. In Fig. 5.12 we show two examples of the conditional Collins-Soper angle
distribution for two randomly selected detector events. We can see that we
obtain a quite narrow distribution for the first event, compared to the width
of the global 𝜃CS distribution. This indicates that the model can extract a good
amount of information from this particular event. For the second event, the
extracted amount of information is visibly reduced; we have two peaks which
are both broader than the peak of the first event.

Obviously, we do not get very far by looking at single events. A better option
is to quantify the amount of information in distributions like this with a single

71

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
`d

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
`b̄

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00
no

rm
al

ize
d

de
ns

ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
bd

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
`W+

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
W−d

0.9
1.1ge

n
tr

ut
h

Figure 5.10.: Unfolded distributions of genuine 𝐶𝑃-sensitive azimuthal angle
differences including the lepton and the 𝑑-quark.

72

1.25

1.50

1.75

2.00
no

rm
al

ize
d

de
ns

ity
×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
bW+

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
W− b̄

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
b b̄

0.9
1.1ge

n
tr

ut
h

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
W−W+

0.9
1.1ge

n
tr

ut
h

Figure 5.11.: Unfolded distributions of genuine 𝐶𝑃-sensitive azimuthal angle
differences including only the 𝑊 bosons and the 𝑏-quarks.

number. We could then plot this number for a representative number of event
samples. If we have a distribution 𝑝(O|𝒚), for some observable O = O(𝒙),
the Shannon entropy [125]

𝐻 = −∫
O𝑏

O𝑎

𝑝(O|𝒚) log(𝑝(O|𝒚)) dO, (5.13)

is a suitable approach for this.

Realistically we have to choose some interval [O𝑎,O𝑏] over which to compute

73

0 1 2 3
θCS

0

1

2

3
no

rm
al

ize
d

de
ns

ity
exp(H) = 0.604± 0.025

0 1 2 3
θCS

0.0

0.5

1.0

no
rm

al
ize

d
de

ns
ity

exp(H) = 1.611± 0.064

Figure 5.12.: Unfolded distributions of the Collins-Soper angle, conditioned
on two randomly selected detector events. The corresponding
parton truth to these events is shown by the dashed gray lines.
We also show the exponential of the Shannon entropy for both
distributions.

𝐻 and approximate it by introducing a binning:3

𝐻 ≈ −
O𝑏 −O𝑎

𝑛

𝑛
∑
𝑘=1

ℎ𝑘 log(ℎ𝑘). (5.14)

Here ℎ𝑘 corresponds to the 𝑘-th bin height. In the following we will compute
any entropies using 1000 samples and 80 bins, while [O𝑎,O𝑏] will always cor-
respond to the interval in which we previously showed the global distribution.
Moreover, we also compute uncertainties for the entropy, coming from the
variations in the (Bayesian) network parameters.4

To make 𝐻more interpretable, we note that the maximal and minimal values 𝐻
can take are 𝐻 = log(O𝑏 −O𝑎) and negative infinity, such that 0 ≤ exp(𝐻) ≤
O𝑏 −O𝑎.

5 In the former case, we have a uniform distribution with no informa-

3In principle we could get a better estimate for this entropy by letting our network estimate
the density 𝑝(𝒙|𝒚) and use it to compute 𝑝(O|𝒚). In this case, however, we would have
to compute the Jacobian for every observable, which does not scale well without some
form of automatic differentiation.

4In practice, this is done by sampling multiple parameter sets, computing the entropy for
each and then taking the mean and standard deviation.

5This is of course not entirely true since the network has a prior. The entropy will thus

74

0 1 2 3

exp
�
HθCS

�
0

20

40

60
no

rm
al

ize
d

de
ns

ity

0 2 4 6

exp
�
H∆φ t t̄

`d

�
0

100

200

300

no
rm

al
ize

d
de

ns
ity

Figure 5.13.: Entropy distribution for the conditional probability densities of
𝜃CS and Δ𝜙𝑡 ̄𝑡

ℓ𝑑 for 1000 randomly selected detector events.

tion, in the latter case we have delta distribution with maximal information.
This suggests to interpret exp(𝐻) as some form of ‘generalized distribution
width’—for instance we see that exp(𝐻) ∼ 𝜎 for a gaussian—, that still has
a proper definition for e.g. multimodal distributions. The exponential of the
entropy for both distributions is shown in Fig. 5.12. We can see that these
values indeed correspond to values one would intuitively associate with the
‘width’ of these distributions.

Now that we have a proper understanding of what the entropy tells us, let us
consider entropy distributions for a sufficiently large sample of detector events.
This should give us a quantitative statement about the amount of information
the network is able to extract from any given detector event.

Such distributions are shown for 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑 in Fig. 5.13. For 𝜃CS the distri-

bution clearly leans towards zero, i.e. the most probable conditional densities
are more or less similar to the first density in Fig. 5.12. They should thus
contain a large amount of information about the value of 𝜃CS. For Δ𝜙

𝑡 ̄𝑡
ℓ𝑑 the

situation is reversed. The distribution leans very strongly to the right and
most detector events contain close to no information about the underlying

also be limited by the entropy of the prior, i.e. the global distribution for the respective
observable. However, in our case, a simplified picture will suffice.

75

0 1 2 3

exp
�
HθCS

�
0

50

100

150
no

rm
al

ize
d

de
ns

ity

0 2 4 6

exp
�
H∆φ t t̄

`d

�
0

25

50

75

no
rm

al
ize

d
de

ns
ity

Figure 5.14.: Entropy distribution for the conditional probability densities
of 𝜃CS and Δ𝜙𝑡 ̄𝑡

ℓ𝑑 for 1000 randomly selected detector events.
These distributions were obtained by training our network on
and unfolding a dataset without ISR.

value of Δ𝜙𝑡 ̄𝑡
ℓ𝑑 on parton-level. This picture persists across other 𝐶𝑃-sensitive

observables. For non-direct 𝐶𝑃-sensitive observables we can extract a signifi-
cant amount of information, comparable to 𝜃CS, while the opposite is true for
genuine 𝐶𝑃-odd observables. For the latter, the network essentially ignores
the detector condition. This also means that the network will always generate
the SM prior distributions (figs. 5.10 and 5.11), no matter what the input
on detector-level is. Hence, we are not sensitive to new physics for these
observables.

This poses the question if this is due to bad network performance or if there
is simply no information in the dataset. For starters, we see in Fig. 5.14 that
we get significantly more information on Δ𝜙𝑡 ̄𝑡

ℓ𝑑—and overall for that matter—,
if we do not include ISR effects in our dataset. So in principle, the network
can extract some information on Δ𝜙𝑡 ̄𝑡

ℓ𝑑, but the additional ISR jets make it
particularly difficult to resolve the combinatorics and reconstruct the 𝑡 ̄𝑡 frame
as well as the 𝑑 quark.

I further tried to simplify the network architecture to a bare minimum, by
using Δ𝜙𝑡 ̄𝑡

ℓ𝑑 as the only channel of the flow. In this case, the network does two
things. First, it computes spline parameters by processing respective detector

76

events with a fully connected conditioner network. Second, it uses these spline
parameters to transform a one-dimensional uniform distribution into Δ𝜙𝑡 ̄𝑡

ℓ𝑑.
Since even a single spline transformation is able to learn arbitrary distributions,
given enough bins, the second step does not realistically limit the network. So
the only question we are asking here, is if a fully connected neural network can
extract any significant information on Δ𝜙𝑡 ̄𝑡

ℓ𝑑 from a detector level event. And
in fact, the network did not prove to be able to extract any more information
on Δ𝜙𝑡 ̄𝑡

ℓ𝑑 than if we do a full parton-level phase space reconstruction. This
gives us at least a good indication that, realistically, ISR-inclusive 𝑡 ̄𝑡ℎ detector
data might not have any information about Δ𝜙𝑡 ̄𝑡

ℓ𝑑—and likely other genuine
𝐶𝑃-odd observables—associated with it. For this reason, we will mainly focus
on the non-direct 𝐶𝑃-sensitive observables for the rest of this section.

Now, let us finally address unfolding in the context of BSM data. In particular
we want to consider two BSM scenarios with 𝛼 = 𝜋/4 and 𝛼 = −𝜋/4. For
these, we want to know how accurately we can differentiate between each
scenario and SM data, based on non-direct 𝐶𝑃-sensitive observable distribu-
tions. As discussed in Section 3.1, we can reject any physics model hypothesis,
just using a network that is trained on data from this model. In this case, we
can unfold our measured data and look for any discrepancies between the
unfolded data and the parton truth of our hypothesis. However, if we want
to accept a hypothesis, we need to do this by rejecting alternatives, since our
unfolded distribution will always have some form of prior dependence. Hence,
we need to train a model for each hypothesis we are interested in. Alterna-
tively, we could also train a model that is conditioned on the relevant model
parameter(s). If we then unfold our detector data once under every hypothesis
and compare the result with the respective truth, we can identify the most
likely model for which the unfolded data is closest to the truth distribution.
Furthermore, we can reject hypotheses with significant deviations from this
truth.

Let me demonstrate this concept with concrete examples. In Fig. 5.15 the
results of unfolding an SM detector level distribution under different model

77

1.5

3.0

4.5

6.0
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

−3.0 −1.5 0.0 1.5 3.0
∆φt t̄

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1.5

3.0

4.5

6.0

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth

80 160 240 320
pT,H [GeV]

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

0.8 1.6 2.4
θCS

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ t t̄
`d

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

Figure 5.15.: Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

SM detector data with our model, if trained on either of the hy-
potheses 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The ratios in the bottom
panels are computed between the model and truth distributions
corresponding to the same hypothesis.

hypotheses are shown. We can see that we get some deviations between the
three generated distributions due to the prior dependence. These deviations
can be interpreted as an additional systematic uncertainty of the unfolding
procedure. While the network strongly deviates from the prior for 𝜃CS, Δ𝜂𝑡 ̄𝑡 and
𝑏4, in the case of Δ𝜙𝑡 ̄𝑡

ℓ𝑑 the prior gets closely reconstructed for each hypothesis.
For the non-direct 𝐶𝑃-sensitive observables, it is thus quite clear that we can
reject 𝛼 = 𝜋/4 as well as 𝛼 = −𝜋/4 and can accept the SM. For Δ𝜙𝑡 ̄𝑡

ℓ𝑑 on the
other hand, we cannot visually accept or reject any hypothesis without further
information.

78

1.5

3.0

4.5

6.0
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

−3.0 −1.5 0.0 1.5 3.0
∆φt` th

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1.5

3.0

4.5

6.0

no
rm

al
ize

d
de

ns
ity

×10−3

gen
truth

80 160 240 320
pT,H [GeV]

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

0.8 1.6 2.4
θCS

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

1.25

1.50

1.75

2.00

no
rm

al
ize

d
de

ns
ity

×10−1

gen truth

−3.0 −1.5 0.0 1.5 3.0

∆φ
t` th

`d

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/4

Figure 5.16.: Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

detector data corresponding to 𝛼 = 𝜋/4 with our model, trained
on either of the hypotheses 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The
ratios in the bottom panels are computed between the model
and truth distributions corresponding to the same hypothesis.

In Fig. 5.16 analogous unfolded distributions are shown for detector data
corresponding to 𝛼 = 𝜋/4. Here, we can make similar conclusions. We
again see some shaping, this time of the unfolded distribution under the SM
hypothesis towards the SM prior for 𝜃CS.

The model also has sensitivity to smaller (absolute) values of 𝛼, as illustrated
in Fig. 5.17. Note that we consider 𝛼 = 13° here since Ref. [41] projected
this bound on 𝛼 for the HL-LHC with classical kinematic reconstruction meth-
ods. We cannot make a direct comparison, however, since background is not
included in the present analysis. While the prior induced variations of the

79

1

2

3

4
no

rm
al

ize
d

de
ns

ity
×10−1

gen
truth

0.8 1.6 2.4
θCS

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/8

π
/4

1

2

3

4

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

0.8 1.6 2.4
θCS

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
13
◦
π
/4

0.8

1.6

2.4

3.2

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

−5.0 −2.5 0.0 2.5 5.0
∆ηt t̄

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/8

π
/4

0.8

1.6

2.4

3.2

no
rm

al
ize

d
de

ns
ity

×10−1

gen
truth

−5.0 −2.5 0.0 2.5 5.0
∆ηt t̄

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
13
◦
π
/4

0.5

1.0

1.5

2.0

no
rm

al
ize

d
de

ns
ity gen

truth

−0.8 −0.4 0.0 0.4 0.8
b4

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
π
/8

π
/4

0.5

1.0

1.5

2.0

no
rm

al
ize

d
de

ns
ity gen

truth

−0.8 −0.4 0.0 0.4 0.8
b4

0.9
1.1ge

n
tr

ut
h

−π
/4

SM
13
◦

π
/4

Figure 5.17.: Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

SM detector data with our model, trained on either of the hy-
pothesis 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The truth for 𝛼 = 𝜋/8
and 𝛼 = 13° is also shown. The ratios in the bottom panels
are computed between the model and truth distributions corre-
sponding to the same hypothesis.

80

generated distributions in Fig. 5.17 are not sufficiently small to hope for sensi-
tivity from 𝜃CS, we obtain better results for Δ𝜂𝑡 ̄𝑡 and 𝑏4. For Δ𝜂𝑡 ̄𝑡 we obtain
a clear discrepancy between the generated distributions and the truths for
both 𝛼 = 𝜋/8 and 𝛼 = 13°. For 𝑏4, on the other hand, it is not clear if we
have sensitivity since the deviations here are quite small. Note that no model
was trained under the hypotheses corresponding to these 𝛼 values, but we
assume that the variations in the generated distributions for the 𝛼 = 𝜋/4 and
𝛼 = −𝜋/4 hypotheses are reasonably representative of similar distributions
for 𝜋/8 and 13°. I also did not unfold detector data correponding to 𝜋/8 and
13°, however, it is reasonable to expect similar variations in the generated
distributions. Under this assumption, we can expect to accurately discern
between SM data and data corresponding to 𝛼 = 𝜋/8 and 𝛼 = 13°.

These examples illustrate why a single SM-trained network is never able to
accept BSM hypotheses. If we would compare this distribution to parton-level
truths for different values of 𝛼, we would obtain a match for some 𝛼 whose
absolute value is slightly smaller than 𝜋/4. In a realistic setting, we could only
hope that deviations are small enough for our use-case. Otherwise, we have
to rely on a conditioned or multiple networks, as we do here.

How can we quantify the rejection or acceptance of a model hypothesis? A
naive route, which we will take here, is to compare binned generated and
expected distributions with a 𝜒2-test [126]. In particular, for our three model
hypotheses 𝛼 = −𝜋/4, SM and 𝛼 = 𝜋/4, we want to unfold detector data,
simulated using that particular model, to obtain a binned distribution 𝑁𝑖,exp.
We then compare this unfolded data to the distributions 𝑁𝑖,gen, which we
actually get when we unfold test data with all three models. In reality, this
test data would be measured data. For 𝑛 bins we obtain

𝜒2
red =

1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑁𝑖,gen − 𝑁𝑖,exp)
2

𝑁𝑖,gen + 𝑁𝑖,exp
. (5.15)

Here we use the Poisson errors √𝑁𝑖,gen and √𝑁𝑖,exp of the bin heights in the

81

denominator, while 𝑛−1 are the degrees of freedom of our binned distribution,
if we know the total number of events.

We can further use 𝜒2 = (𝑛−1)𝜒2
red to compute the 𝑝-value of our data, given

some model hypothesis. In tables 5.2 and 5.3 the 𝜒2
red and 𝑝-values are listed

for unfolded data corresponding to the SM and 𝛼 = 𝜋/4 respectively, under
different model hypotheses. With very high levels of certainty, we correctly
accept the SM and reject both BSM hypotheses in table 5.2 for all non-direct
𝐶𝑃-sensitive observables; the only exception is 𝑚𝐻. The results for Δ𝜙𝑡 ̄𝑡

ℓ𝑑 are
also shown and as expected, here we cannot differentiate between the three
hypotheses with significance. For illustration purposes, results for the two
and three-dimensional correlations 𝜃CS, Δ𝜂𝑡 ̄𝑡 and 𝜃CS, Δ𝜂𝑡 ̄𝑡, 𝑏4 are also shown
respectively. In table 5.3 we get similar numbers and correctly accept the
𝛼 = 𝜋/4 case, while rejecting the SM. Again, 𝑚𝐻 is the exception among the
non-direct 𝐶𝑃-sensitive observables. For Δ𝜙𝑡 ̄𝑡

ℓ𝑑 we see a slight but insignificant
preference for the SM in Table 5.2, while, interestingly, Δ𝜙ℓ𝑑 alone is enough
to rule out the SM, as we can see from the 𝑝-value in 5.3. This indicates that
the small amount of information contained in Δ𝜙𝑡 ̄𝑡

ℓ𝑑 (cf. Fig. 5.13) is enough to
make a difference here. However, it does not suffice to differentiate 𝜋/4 from
−𝜋/4. The 𝛼 = −𝜋/4 case is not shown but leads to comparable results as
𝛼 = 𝜋/4. Note that we cannot differentiate between 𝛼 = 𝜋/4 and 𝛼 = −𝜋/4,
since, again, we cannot appropriately reconstruct observables that are sensitive
to the sign of 𝛼.

Note that our current approach is equivalent to one iteration of IBU, as ex-
plained in Section 3.4. Hence, we would expect that we can further reduce
the prior dependence on the non-direct 𝐶𝑃-sensitive observables, by including
more iterations. In particular, we can apply the method from Ref. [38] to do
this. In practice and for the non-direct 𝐶𝑃-observables, this could suffice to
eliminate the need for multiple networks trained on different theory parame-
ters, if we want to accept BSM hypotheses. However, we already discussed in
Section 3.2.1 that IBU (and any approach based on it) can generally not remove
the full prior dependence. And we have to expect that the genuine 𝐶𝑃-odd

82

𝜒2
red (−

𝜋
4) 𝜒2

red(SM) 𝜒2
red (

𝜋
4)

𝑝𝑇,𝐻 58.41 ± 0.51 1.03 ± 0.20 59.94 ± 0.65
𝑚𝐻 1.03 ± 0.14 0.86 ± 0.16 0.97 ± 0.19
𝑚𝐻𝑡 36.99 ± 0.91 1.01 ± 0.17 37.24 ± 0.77
𝑚𝐻 ̄𝑡 31.49 ± 0.84 1.00 ± 0.21 32.79 ± 0.73
𝑚𝐻𝑡 ̄𝑡 48.44 ± 0.90 0.93 ± 0.16 49.4 ± 1.0
Δ𝜂𝑡 ̄𝑡 90.5 ± 1.5 1.00 ± 0.19 88.6 ± 1.8
Δ𝜙𝑡 ̄𝑡 76.5 ± 1.7 0.94 ± 0.17 75.8 ± 2.2
𝑏4 69.7 ± 1.5 1.01 ± 0.20 66.7 ± 1.6
𝜃CS 101.1 ± 1.6 0.97 ± 0.15 98.4 ± 2.0
Δ𝜙𝑡 ̄𝑡

ℓ𝑑 1.18 ± 0.20 0.99 ± 0.15 1.25 ± 0.22
𝜃CS, Δ𝜂𝑡 ̄𝑡 156.7 ± 2.5 0.92 ± 0.19 152.3 ± 3.0
𝜃CS, Δ𝜂𝑡 ̄𝑡, 𝑏4 182.5 ± 3.3 0.88 ± 0.20 176.1 ± 3.8

𝑝(−𝜋
4) 𝑝(SM) 𝑝 (𝜋

4)

𝑝𝑇,𝐻 0 ± 0 0.47 ± 0.31 0 ± 0
𝑚𝐻 0.45 ± 0.26 0.72 ± 0.25 0.54 ± 0.31
𝑚𝐻𝑡 0 ± 0 0.46 ± 0.27 0 ± 0
𝑚𝐻 ̄𝑡 0 ± 0 0.51 ± 0.31 0 ± 0
𝑚𝐻𝑡 ̄𝑡 0 ± 0 0.61 ± 0.25 0 ± 0
Δ𝜂𝑡 ̄𝑡 0 ± 0 0.53 ± 0.29 0 ± 0
Δ𝜙𝑡 ̄𝑡 0 ± 0 0.60 ± 0.29 0 ± 0
𝑏4 0 ± 0 0.49 ± 0.30 0 ± 0
𝜃CS 0 ± 0 0.53 ± 0.26 0 ± 0
Δ𝜙𝑡 ̄𝑡

ℓ𝑑 0.26 ± 0.23 0.51 ± 0.26 0.19 ± 0.21
𝜃CS, 𝑚𝐻𝑡 ̄𝑡 0 ± 0 0.60 ± 0.26 0 ± 0
𝜃CS, Δ𝜂𝑡 ̄𝑡, 𝑏4 0 ± 0 0.63 ± 0.26 0 ± 0

Table 5.2.: Reduced 𝜒2 and 𝑝-values obtained by unfolding SM data and com-
paring it to the distribution the model would generate if different
model hypotheses were true. The test dataset consisted of 240000
events, while 64 total bins were used per observable combination
to bin the distributions.

83

𝜒2
red (−

𝜋
4) 𝜒2

red(SM) 𝜒2
red (

𝜋
4)

𝑝𝑇,𝐻 0.97 ± 0.14 57.4 ± 7.6 0.97 ± 0.20
𝑚𝐻 0.93 ± 0.15 7.7 ± 3.8 0.93 ± 0.15
𝑚𝐻𝑡 0.96 ± 0.18 36.2 ± 3.8 0.96 ± 0.20
𝑚𝐻 ̄𝑡 1.02 ± 0.22 29.9 ± 4.5 0.99 ± 0.17
𝑚𝐻𝑡 ̄𝑡 1.01 ± 0.14 42.4 ± 8.5 1.01 ± 0.18
Δ𝜂𝑡 ̄𝑡 0.99 ± 0.16 76 ± 14 0.99 ± 0.18
Δ𝜙𝑡 ̄𝑡 1.00 ± 0.22 63 ± 14 0.98 ± 0.16
𝑏4 0.98 ± 0.18 58 ± 11 0.97 ± 0.18
𝜃CS 1.07 ± 0.17 83 ± 18 0.97 ± 0.18
Δ𝜙𝑡 ̄𝑡

ℓ𝑑 1.02 ± 0.19 4.2 ± 1.1 0.99 ± 0.14
𝜃CS, Δ𝜂𝑡 ̄𝑡 1.01 ± 0.22 135 ± 26 0.99 ± 0.19
𝜃CS, Δ𝜂𝑡 ̄𝑡, 𝑏4 0.95 ± 0.26 157 ± 28 0.97 ± 0.23

𝑝(−𝜋
4) 𝑝(SM) 𝑝 (𝜋

4)

𝑝𝑇,𝐻 0.55 ± 0.26 0 ± 0 0.56 ± 0.32
𝑚𝐻 0.63 ± 0.26 0 ± 0 0.61 ± 0.25
𝑚𝐻𝑡 0.56 ± 0.28 0 ± 0 0.58 ± 0.32
𝑚𝐻 ̄𝑡 0.50 ± 0.32 0 ± 0 0.52 ± 0.29
𝑚𝐻𝑡 ̄𝑡 0.46 ± 0.24 0 ± 0 0.48 ± 0.29
Δ𝜂𝑡 ̄𝑡 0.51 ± 0.28 0 ± 0 0.53 ± 0.30
Δ𝜙𝑡 ̄𝑡 0.52 ± 0.31 0 ± 0 0.53 ± 0.25
𝑏4 0.54 ± 0.28 0 ± 0 0.55 ± 0.30
𝜃CS 0.37 ± 0.27 0 ± 0 0.56 ± 0.30
Δ𝜙𝑡 ̄𝑡

ℓ𝑑 0.47 ± 0.29 0 ± 0 0.50 ± 0.24
𝜃CS, Δ𝜂𝑡 ̄𝑡 0.47 ± 0.29 0 ± 0 0.50 ± 0.26
𝜃CS, Δ𝜂𝑡 ̄𝑡, 𝑏4 0.55 ± 0.29 0 ± 0 0.52 ± 0.27

Table 5.3.: Reduced 𝜒2 and 𝑝-values obtained by unfolding data, simulated
with 𝛼 = 𝜋/4, and comparing it to the distribution the model
would generate if different model hypotheses were true. The test
dataset consisted of 240000 events, while 64 total bins were used
per observable combination to bin the distributions.

84

observables of 𝑡 ̄𝑡ℎ are an example for this. To remove the prior dependence
from these observables with IBU (or equivalently, iterative normalizing flow
unfolding) we would have to obtain, at some iteration point, a detector-level
distribution (evidence) with a significant amount of information about the
𝐶𝑃-odd observables. Since we already established that the detector simulation
likely removes any significant information from the Δ𝜙’s (cf. Fig. 5.13), at
least in theory, this cannot happen. In practice, the network might be able
to use the little amounts of information that it can extract and remove some
of the prior dependence. However, this will probably take large numbers of
iterations.

85

6. Conclusion

The standard methodology has serious shortcomings when trying to unfold a
process like 𝑡 ̄𝑡ℎ. Missing energy and the combinatorial ambiguities associated
with jets, especially in the presence of ISR, leads to a loss of information that
is difficult to properly account for. Classical unfolding techniques rely here on
the manual reconstruction of parton-level quantities as well as pre-selection
of observables and binning [41, 83]. More modern approaches can avoid
these issues through the use of machine learning [37, 40]. Normalizing flow
unfolding is additionally able to unfold single events, lifting the requirement
of sufficient statistics for unfolding to be valid.

In this thesis, we saw that conditional normalizing flows are an excellent
tool to unfold 𝑡 ̄𝑡ℎ-production. There are some difficulties associated with
this process, in particular, the high number of intermediate particle mass
peaks, jet combinatorics and missing neutrino energy. While normalizing
flows can naturally capture the information loss associated with the latter two,
generating any mass peak is difficult for a flow. I demonstrated how carefully
chosen phase-space parameterizations can be excellent tools to deal with this
particular and other generative weaknesses. I also showed that performance
under parameterizations can suffer due to periodic parameters and introduced
periodic spline transformers to solve this issue.

For signal-only detector-level data, the introduced model can very distinctly
discern an absolute 𝛼 value of 𝜋/4 and the SM, using many different non-direct
𝐶𝑃-sensitive observables individually, while also having a clear sensitivity to
the lower values 𝛼 = 𝜋/8 and 𝛼 = 13°. For direct 𝐶𝑃-sensitive observables,

86

on the other hand, the model is hardly able to extract any information due
to ISR effects, not giving us sensitivity to the sign of 𝛼. A model that purely
reconstructs Δ𝜙𝑡 ̄𝑡

ℓ𝑑 cannot improve this situation, strongly indicating that in-
formation is already missing in the data. However, even the small amount
of information we have is enough to distinctly rule out the SM for 𝛼 = 𝜋/4
detector data, based on the genuine 𝐶𝑃-odd observable Δ𝜙𝑡 ̄𝑡

ℓ𝑑 alone.

We discussed that information loss, specifically with genuine 𝐶𝑃-odd observ-
ables, and associated model dependence can play a significant role in the
complex final state of 𝑡 ̄𝑡ℎ; especially with the additional combinatorial prob-
lems that ISR introduces. I demonstrated that, in contrast to other unfolding
techniques, normalizing flows allow us to analyze information loss directly
through the full conditional distribution. But, as discussed in Section 3, all
classical as well as contemporary unfolding techniques, including (iterative)
normalizing flows, do not properly capture the uncertainties associated with
these issues. Therefore, it becomes necessary to condition the unfolding on
model parameters, drastically reducing practicality. These problems likely
persist across similar processes and should be addressed.

Unfolding, be it in the form of just reversing detector effects or fully recon-
structing parton-level observables, is a technique that is essential to many
LHC studies. Normalizing flows allow us to mostly abstract away the many
associated complexities and focus on the underlying physics. This method
cannot limit analyses through artificial artifacts like badly chosen observables
and binning, nor is it limited by low statistics. As many modern machine learn-
ing based techniques, flow unfolding can significantly boost our new physics
sensitivity and simplify analyses, enabling us to fully exploit our potential for
finding new physics at the HL-LHC. While highlighting some of the challenges,
this thesis has shown how normalizing flows can be further improved towards
this goal in the context of complex processes like 𝑡 ̄𝑡ℎ.

87

A. Phase Space Parameterization
Details

Let us discuss in detail how to apply and invert the phase space parameteriza-
tion given in Eq. (5.10), i.e.

(�⃗�𝑡 ̄𝑡,𝑚𝑡, |�⃗�
CS
𝑡 |, 𝜃CS

𝑡 , 𝜙CS
𝑡 ,𝑚 ̄𝑡,

sign(Δ𝜙𝑡 ̄𝑡
ℓ𝜈)𝑚𝑊ℓ

, |�⃗�𝑡 ̄𝑡
ℓ |, 𝜃

𝑡 ̄𝑡
ℓ , 𝜙

𝑡 ̄𝑡
ℓ , |�⃗�

𝑡 ̄𝑡
𝜈 |,

sign(Δ𝜙𝑡 ̄𝑡
𝑑𝑢)𝑚𝑊ℎ

, |�⃗�𝑡 ̄𝑡
𝑑 |, 𝜃

𝑡 ̄𝑡
𝑑 , Δ𝜙

𝑡 ̄𝑡
ℓ𝑑, |�⃗�

𝑡 ̄𝑡
𝑢 |) .

(A.1)

First we use �⃗�𝑡 ̄𝑡 to boost into the Collins-Soper frame and store this momentum
to be able to undo this boost. Recall that the Collins-Soper frame was defined
as the 𝑡 ̄𝑡 rest frame whose 𝑧-axis forms equal angles with the beam axes. More
precisely, the frame whose 𝑧-axis forms equal angles with one beam axis and
themirrored version of the other one. Usually, we go into this frame by boosting
into some 𝑡 ̄𝑡 rest frame and then rotating the frame appropriately. However,
we can also go to the Collins-Soper frame with two consecutive boosts—one
longitudinal boost parallel to the beam axis and another transverse to it [127].
The longitudinal boost is then chosen such that �⃗�𝑧,𝑡 ̄𝑡 = 0 afterward, where
we assume that the beam axis coincides with the 𝑧-axis in the lab frame.
Moreover, we choose the transverse boost such that �⃗�T,𝑡 ̄𝑡 = 0 afterwards.
Overall, this ensures that �⃗�𝑡 ̄𝑡 = 0 after both boosts and that the 𝑧-axis is
directed appropriately with respect to the beam axes.

In the Collins-Soper frame we further store𝑚𝑡 and𝑚 ̄𝑡 as well as �⃗�𝑡 in spherical
coordinates. Note that the polar angle of �⃗�𝑡 is precisely the Collins-Soper

88

angle. We can use �⃗� ̄𝑡 = −�⃗�𝑡 here to recover the momentum of the anti-top.
Overall we now have stored eight parameters. Since we have six final states
with four-momentum components each, minus one on-shell condition per final
state, we need eighteen parameters overall.

Next, we want to rotate the frame so that �⃗�𝑡 points in the 𝑧-direction. This
simplifies the following calculations. We now start with the leptonic top
decay, i.e. the decay of the regular top, and store |�⃗�ℓ|, �⃗�ℓ, 𝜙ℓ and |�⃗�𝜈| as
well as sign(Δ𝜙ℓ𝜈)𝑚𝑊ℓ

. The last parameter is used as a proxy for Δ𝜙ℓ𝜈 and
ensures that the 𝑊-mass is directly part of the parameterization. If we do this
analogously for the hadronic top decay, i.e. the decay of the anti-top, while
relating ℓ ↔ 𝑑 and 𝜈 ↔ 𝑢, we obtain ten parameters more such that we have
all eighteen needed parameters. Note that we store our 𝐶𝑃-odd observable
Δ𝜙ℓ𝑑 for the hadronic top decay instead of 𝜙𝑑.

But how do we undo the last part? First of all, the on-shell conditions of
the lepton, neutrino and light quarks just give us the respective masses. The
on-shell conditions of the 𝑏-quarks on the other hand are more complicated.
Looking just at the leptonic 𝑏-quark we have

𝑚2
𝑏 = (𝑝𝑡 − 𝑝𝑊+)2

= 𝑚2
𝑡 +𝑚2

𝑊+ − 2𝑝𝑡 ⋅ (𝑝ℓ + 𝑝𝜈).
(A.2)

If we write out the last term and bring all masses to the same side we obtain

𝐸𝑡(|�⃗�ℓ| + |�⃗�𝜈|) − |�⃗�𝑡||�⃗�ℓ| cos(𝜃ℓ) − |�⃗�𝑡||�⃗�𝜈| cos(𝜃𝜈)

=
1
2
(𝑚2

𝑡 +𝑚2
𝑊+ −𝑚2

𝑏).
(A.3)

We can use this equation to determine 𝜃𝜈, since we can infer all other quantities
from the parameters we have. To determine the last missing piece, i.e. 𝜙𝜈, we
notice that

𝑚2
𝑊+ = 2𝑝ℓ ⋅ 𝑝𝜈 = 2|�⃗�ℓ||�⃗�𝜈|(1 − cos(𝜃ℓ𝜈)), (A.4)

where we neglected all lepton, neutrino and light quark masses. The cosine of

89

the angle between ℓ and 𝜈 can be written as

cos(𝜃ℓ𝜈) = sin(𝜃ℓ) sin(𝜃𝜈) cos(Δ𝜙ℓ𝜈) + cos(𝜃ℓ) cos(𝜃𝜈). (A.5)

One can check this by writing out the scalar product �⃗�ℓ ⋅ �⃗�𝜈 in spherical
coordinates and using the cosine addition theorem. Eqs. (A.4) and (A.5) can
be used together to determine |Δ𝜙ℓ𝜈| from 𝑚𝑊+ , since the cosine in (A.5) is
insensitive to the sign of Δ𝜙ℓ𝜈. But since we have stored sign(Δ𝜙ℓ𝜈) instead of
𝑚𝑊+ , this is not a problem and we can recover 𝜙𝜈. The parameterization of
the hadronic top decay can be undone analogously.

90

List of Figures

2.1. Example of a spline transformation with 𝐾 = 4. Here, also the
derivatives at each point must be specified. 17

3.1. The Omnifold algorithm visualized. 35
3.2. Iterative normalizing flow unfolding visualized. 37

5.1. For a classical spline transformer 𝜏 a simple shift 𝑓 on 𝑆1, of
some distribution 𝑞(𝒛) to 𝑝(𝒙), involves reconstructing a single
peak from a bimodal distribution with hard cuts on both modes. 60

5.2. Visualization of a periodic spline transformer. The method
presented above is equivalent to choosing 𝐾 +1 points 𝑥(𝑘) and
𝑦(𝑘) freely on 𝑆1, mapping them to each other while preventing
crossings and interpolating the mapping between two adjacent
points e.g. with a rational quadratic. 62

5.3. Unfolded mass and transverse momentum distributions of the
top quarks, compared to the parton level truth. 65

5.4. Unfolded pseudorapidity and azimuthal angle distributions of
the top quarks, compared to the parton level truth. 66

5.5. Unfolded mass distributions of the top quarks, 𝑊 bosons and
Higgs, compared to the parton level truth. 67

5.6. Unfolded azimuthal angle distribution of the leptonic top quark
in the 𝑡 ̄𝑡 rest frame, compared to the parton level truth. 68

5.7. Unfolded transverse momentum distributions of the 𝑏-, 𝑢- and
𝑑-quarks, as well as the lepton and neutrino. 69

91

5.8. Unfolded distributions of the 𝐶𝑃-sensitive transverse Higgs mo-
mentum and various invariant masses among the top quarks
and the Higgs. 70

5.9. Unfolded distributions of the 𝐶𝑃-sensitive observables Δ𝜂𝑡 ̄𝑡,
Δ𝜙𝑡 ̄𝑡, 𝑏4 and 𝜃CS. 71

5.10.Unfolded distributions of genuine 𝐶𝑃-sensitive azimuthal angle
differences including the lepton and the 𝑑-quark. 72

5.11.Unfolded distributions of genuine 𝐶𝑃-sensitive azimuthal angle
differences including only the 𝑊 bosons and the 𝑏-quarks. . . 73

5.12.Unfolded distributions of the Collins-Soper angle, conditioned
on two randomly selected detector events. The corresponding
parton truth to these events is shown by the dashed gray lines.
We also show the exponential of the Shannon entropy for both
distributions. 74

5.13.Entropy distribution for the conditional probability densities of
𝜃CS and Δ𝜙𝑡 ̄𝑡

ℓ𝑑 for 1000 randomly selected detector events. . . 75
5.14.Entropy distribution for the conditional probability densities

of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑 for 1000 randomly selected detector events.

These distributions were obtained by training our network on
and unfolding a dataset without ISR. 76

5.15.Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

SM detector data with our model, if trained on either of the
hypotheses 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The ratios in the
bottom panels are computed between the model and truth
distributions corresponding to the same hypothesis. 78

5.16.Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

detector data corresponding to𝛼 = 𝜋/4with ourmodel, trained
on either of the hypotheses 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The
ratios in the bottom panels are computed between the model
and truth distributions corresponding to the same hypothesis. 79

92

5.17.Unfolded distributions of 𝜃CS and Δ𝜙𝑡 ̄𝑡
ℓ𝑑, obtained by unfolding

SM detector data with our model, trained on either of the
hypothesis 𝛼 = −𝜋/4, 𝛼 = 0 or 𝛼 = 𝜋/4. The truth for
𝛼 = 𝜋/8 and 𝛼 = 13° is also shown. The ratios in the bottom
panels are computed between the model and truth distributions
corresponding to the same hypothesis. 80

93

List of Tables

5.1. Hyperparameters as well as architecture and dataset details of
the presented unfolding model 64

5.2. Reduced 𝜒2 and 𝑝-values obtained by unfolding SM data and
comparing it to the distribution the model would generate if dif-
ferent model hypotheses were true. The test dataset consisted
of 240000 events, while 64 total bins were used per observable
combination to bin the distributions. 83

5.3. Reduced 𝜒2 and 𝑝-values obtained by unfolding data, simulated
with 𝛼 = 𝜋/4, and comparing it to the distribution the model
would generate if different model hypotheses were true. The
test dataset consisted of 240000 events, while 64 total bins
were used per observable combination to bin the distributions. 84

94

Acronyms

BNN Bayesian neural network. 23, 27

BSM beyond Standard Model. 7, 30, 39, 77, 81, 82

CS Collins-Soper. 50

CTF continuous-time flow. 19

EFT effective field theory. 7, 39, 40

ELBO evidence lower bound. 24, 27, 63

EWSB electroweak symmetry breaking. 40

FSI final state interaction. 44–46

GAN generative adversarial network. 7

HEFT Higgs effective field theory. 54

HL-LHC high luminosity large hadron collider. 3, 4, 7, 54, 79, 87

IBU iterative Bayesian unfolding. 32–34, 36–38, 82, 85

ISR initial state radiation. 3, 4, 32, 53, 54, 65, 68, 76, 77, 86, 87, 92

KL Kullback-Leibler. 10, 11, 24, 25, 27, 56

LHC large hadron collider. 7, 47

MC Monte-Carlo. 25, 26, 28, 31

MMD maximum mean discrepancy. 56, 57, 59, 67

ODE ordinary differential equation. 19, 20

QFT quantum field theory. 39, 42

95

RNN recurrent neural network. 14

SM Standard Model. 3, 4, 30, 39, 40, 53, 65, 76–83, 86, 87, 92–94

VAE variational auto-encoder. 7

VI variational inference. 24, 64

96

Bibliography

[1] A. Collaboration, Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC, Physics
Letters B 716, 1 (2012), arXiv:1207.7214.

[2] C. Collaboration, Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC, Physics Letters B 716, 30 (2012),
arXiv:1207.7235.

[3] T. Plehn, A. Butter, B. Dillon and C. Krause, Modern Machine Learning
for LHC Physicists (2022), arXiv:2211.01421.

[4] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory,
Phys. Rept. 793, 1 (2019), arXiv:1706.08945.

[5] M. Feickert and B. Nachman, A Living Review of Machine Learning for
Particle Physics (2021), arXiv:2102.02770.

[6] M. D. Schwartz,Modern Machine Learning and Particle Physics, Harvard
Data Science Review (2021).

[7] P. Shanahan, K. Terao and D. Whiteson, Snowmass 2021 Computational
Frontier CompF03 Topical Group Report: Machine Learning (2022),
arXiv:2209.07559.

[8] B. Hashemi et al., LHC analysis-specific datasets with Generative Adver-
sarial Networks (2019), arXiv:1901.05282.

[9] R. D. Sipio, M. F. Giannelli, S. K. Haghighat and S. Palazzo, DijetGAN:
a Generative-Adversarial Network approach for the simulation of QCD
dijet events at the LHC, Journal of High Energy Physics 2019 (2019).

97

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://arxiv.org/abs/2211.01421
https://doi.org/10.1016/j.physrep.2018.11.002
https://arxiv.org/abs/1706.08945
https://arxiv.org/abs/2102.02770
https://doi.org/10.1162/99608f92.beeb1183
https://doi.org/10.1162/99608f92.beeb1183
https://arxiv.org/abs/2209.07559
https://arxiv.org/abs/1901.05282
https://doi.org/10.1007/jhep08(2019)110

[10] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC events, SciPost
Physics 7 (2019).

[11] Y. Alanazi et al., Simulation of Electron-Proton Scattering Events by a
Feature-Augmented and Transformed Generative Adversarial Network
(FAT-GAN), in Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence (2021).

[12] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics
by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis, Computing and Software for Big Science 1 (2017).

[13] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with
Generative Adversarial Networks: An Application to 3D Particle Showers
in Multilayer Calorimeters, Physical Review Letters 120 (2018).

[14] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D
high energy particle showers in multilayer electromagnetic calorimeters
with generative adversarial networks, Physical Review D 97 (2018).

[15] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle De-
tectors Using Generative Adversarial Networks, Computing and Software
for Big Science 2 (2018).

[16] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and
refining particle detector simulations using the Wasserstein distance in
adversarial networks (2018), arXiv:1802.03325.

[17] M. Erdmann, J. Glombitza and T. Quast, Precise Simulation of Electro-
magnetic Calorimeter Showers Using aWasserstein Generative Adversarial
Network, Computing and Software for Big Science 3 (2019).

[18] D. Belayneh et al., Calorimetry with deep learning: particle simulation
and reconstruction for collider physics, The European Physical Journal
C 80 (2020).

98

https://doi.org/10.21468/scipostphys.7.6.075
https://doi.org/10.21468/scipostphys.7.6.075
https://doi.org/10.24963/ijcai.2021/293
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/physrevlett.120.042003
https://doi.org/10.1103/physrevd.97.014021
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0015-y
https://arxiv.org/abs/1802.03325
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1140/epjc/s10052-020-8251-9

[19] E. Buhmann et al., Getting High: High Fidelity Simulation of High
Granularity Calorimeters with High Speed, Computing and Software
for Big Science 5 (2021).

[20] E. Buhmann et al., Decoding Photons: Physics in the Latent Space of a
BIB-AE Generative Network, EPJ Web of Conferences 251, edited by
C. Biscarat et al., 03003 (2021).

[21] S. Otten et al., Event Generation and Statistical Sampling for Physics
with Deep Generative Models and a Density Information Buffer (2021),
arXiv:1901.00875.

[22] S. Diefenbacher et al.,New Angles on Fast Calorimeter Shower Simulation
(2023), arXiv:2303.18150.

[23] E. Buhmann, G. Kasieczka and J. Thaler, EPiC-GAN: Equivariant Point
Cloud Generation for Particle Jets (2023), arXiv:2301.08128.

[24] A. Butter et al., Generative networks for precision enthusiasts, SciPost
Physics 14 (2023).

[25] K. Dohi, Variational Autoencoders for Jet Simulation (2020), arXiv:200
9.04842.

[26] J. C. Cresswell et al., CaloMan: Fast generation of calorimeter showers
with density estimation on learned manifolds (2022), arXiv:2211.15380.

[27] C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of
Calorimeter Showers with Normalizing Flows (2023), arXiv:2106.0
5285.

[28] S. Diefenbacher et al., L2LFlows: Generating High-Fidelity 3D Calorime-
ter Images (2023), arXiv:2302.11594.

[29] A. Xu, S. Han, X. Ju and H. Wang, Generative Machine Learning for
Detector Response Modeling with a Conditional Normalizing Flow (2023),
arXiv:2303.10148.

[30] V. Mikuni and B. Nachman, Score-based generative models for calorime-
ter shower simulation, Physical Review D 106 (2022).

99

https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1051/epjconf/202125103003
https://arxiv.org/abs/1901.00875
https://arxiv.org/abs/2303.18150
https://arxiv.org/abs/2301.08128
https://doi.org/10.21468/scipostphys.14.4.078
https://doi.org/10.21468/scipostphys.14.4.078
https://arxiv.org/abs/2009.04842
https://arxiv.org/abs/2009.04842
https://arxiv.org/abs/2211.15380
https://arxiv.org/abs/2106.05285
https://arxiv.org/abs/2106.05285
https://arxiv.org/abs/2302.11594
https://arxiv.org/abs/2303.10148
https://doi.org/10.1103/physrevd.106.092009

[31] V. Mikuni, B. Nachman and M. Pettee, Fast Point Cloud Generation with
Diffusion Models in High Energy Physics (2023), arXiv:2304.01266.

[32] M. Leigh et al., PC-JeDi: Diffusion for Particle Cloud Generation in High
Energy Physics (2023), arXiv:2303.05376.

[33] A. Butter et al., Jet Diffusion versus JetGPT – Modern Networks for the
LHC (2023), arXiv:2305.10475.

[34] T. Finke, M. Krämer, A. Mück and J. Tönshoff, Learning the language
of QCD jets with transformers (2023), arXiv:2303.07364.

[35] A. Butter et al., Machine learning and LHC event generation, SciPost
Physics 14 (2023), arXiv:2203.07460.

[36] L. Ardizzone et al., Analyzing Inverse Problems with Invertible Neural
Networks (2019), arXiv:1808.04730.

[37] M. Bellagente et al., Invertible networks or partons to detector and back
again, SciPost Physics 9 (2020), arXiv:2006.06685.

[38] M. Backes, A. Butter, M. Dunford and B. Malaescu, An unfolding method
based on conditional Invertible Neural Networks (cINN) using iterative
training (2023), arXiv:2212.08674.

[39] V. Blobel, Unfolding Methods in Particle Physics, in PHYSTAT (2011),
pages 240–251.

[40] A. Andreassen et al., OmniFold: A Method to Simultaneously Unfold All
Observables, Physical Review Letters 124 (2020).

[41] R. K. Barman, D. Gonçalves and F. Kling, Machine learning the Higgs
boson-top quark CP phase, Physical Review D 105 (2022).

[42] I. Kobyzev, S. J. Prince and M. A. Brubaker, Normalizing Flows: An
Introduction and Review of Current Methods, IEEE Transactions on
Pattern Analysis and Machine Intelligence 43, 3964 (2021).

[43] G. Papamakarios et al., Normalizing Flows for Probabilistic Modeling
and Inference (2021), arXiv:1912.02762.

100

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2305.10475
https://arxiv.org/abs/2303.07364
https://doi.org/10.21468/scipostphys.14.4.079
https://doi.org/10.21468/scipostphys.14.4.079
https://arxiv.org/abs/2203.07460
https://arxiv.org/abs/1808.04730
https://doi.org/10.21468/scipostphys.9.5.074
https://arxiv.org/abs/2006.06685
https://arxiv.org/abs/2212.08674
https://doi.org/10.5170/CERN-2011-006.240
https://doi.org/10.1103/physrevlett.124.182001
https://doi.org/10.1103/physrevd.105.035023
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934
https://arxiv.org/abs/1912.02762

[44] E. G. Tabak and C. V. Turner, A Family of Nonparametric Density Estima-
tion Algorithms, Communications on Pure and Applied Mathematics
66, 145 (2013).

[45] D. J. Rezende and S. Mohamed, Variational Inference with Normalizing
Flows (2016), arXiv:1505.05770.

[46] V. I. Bogachev, A. V. Kolesnikov and K. V. Medvedev, Triangular trans-
formations of measures, Sbornik: Mathematics 196, 309 (2005).

[47] S. Kullback and R. A. Leibler, On Information and Sufficiency, Annals
of Mathematical Statistics 22, 79 (1951).

[48] L. Ardizzone et al., Framework for Easily Invertible Architectures (FrEIA)
(2022).

[49] A. Vaswani et al., Attention Is All You Need (2017), arXiv:1706.03762.

[50] L. Dinh, D. Krueger and Y. Bengio, NICE: Non-linear Independent Com-
ponents Estimation (2015), arXiv:1410.8516.

[51] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using Real
NVP (2017), arXiv:1605.08803.

[52] D. P. Kingma and P. Dhariwal, Glow: Generative Flow with Invertible
1x1 Convolutions (2018), arXiv:1807.03039.

[53] R. Prenger, R. Valle and B. Catanzaro, WaveGlow: A Flow-based Genera-
tive Network for Speech Synthesis (2018), arXiv:1811.00002.

[54] C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, Neural Spline
Flows (2019), arXiv:1906.04032.

[55] M. A. Marshall, Positive polynomials and sums of squares, in (2008).

[56] P. Jaini, K. A. Selby and Y. Yu, Sum-of-Squares Polynomial Flow (2019),
arXiv:1905.02325.

[57] T. Müller et al., Neural Importance Sampling (2019), arXiv:1808.03856.

[58] H. M. Dolatabadi, S. Erfani and C. Leckie, Invertible Generative Modeling
using Linear Rational Splines (2020), arXiv:2001.05168.

101

https://doi.org/https://doi.org/10.1002/cpa.21423
https://doi.org/https://doi.org/10.1002/cpa.21423
https://arxiv.org/abs/1505.05770
https://doi.org/10.1070/SM2005v196n03ABEH000882
https://github.com/vislearn/FrEIA
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1811.00002
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/1905.02325
https://arxiv.org/abs/1808.03856
https://arxiv.org/abs/2001.05168

[59] C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, Cubic-Spline
Flows (2019), arXiv:1906.02145.

[60] J. Behrmann et al., Invertible Residual Networks (2019), arXiv:1811.00
995.

[61] R. T. Q. Chen, J. Behrmann, D. Duvenaud and J.-H. Jacobsen, Residual
Flows for Invertible Generative Modeling (2020), arXiv:1906.02735.

[62] R. van den Berg, L. Hasenclever, J. M. Tomczak and M. Welling,
Sylvester Normalizing Flows for Variational Inference (2019), arXiv:180
3.05649.

[63] H. Gouk, E. Frank, B. Pfahringer andM. J. Cree, Regularisation of Neural
Networks by Enforcing Lipschitz Continuity (2020), arXiv:1804.04368.

[64] R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud, Neural
Ordinary Differential Equations (2019), arXiv:1806.07366.

[65] W. Grathwohl et al., FFJORD: Free-form Continuous Dynamics for Scal-
able Reversible Generative Models (2018), arXiv:1810.01367.

[66] R. T. Q. Chen and D. Duvenaud, Neural Networks with Cheap Differential
Operators (2019), arXiv:1912.03579.

[67] C. Winkler, D. Worrall, E. Hoogeboom and M. Welling, Learning Likeli-
hoods with Conditional Normalizing Flows (2019), arXiv:1912.00042.

[68] Y. Gal, Uncertainty in Deep Learning, in (2016).

[69] H. Robbins and S. Monro, A Stochastic Approximation Method, The
Annals of Mathematical Statistics 22, 400 (1951).

[70] M. C. Fu, Gradient Estimation, in Simulation, Vol. 13, edited by S. G.
Henderson and B. L. Nelson, Handbooks in Operations Research and
Management Science, Elsevier (2006), Chapter 19, pages 575–616.

[71] P. W. Glynn, Likelihood Ratio Gradient Estimation for Stochastic Systems,
Commun. ACM 33, 75 (1990).

[72] J. Paisley, D. Blei and M. Jordan, Variational Bayesian Inference with
Stochastic Search (2012), arXiv:1206.6430.

102

https://arxiv.org/abs/1906.02145
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1906.02735
https://arxiv.org/abs/1803.05649
https://arxiv.org/abs/1803.05649
https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1912.03579
https://arxiv.org/abs/1912.00042
https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/https://doi.org/10.1016/S0927-0507(06)13019-4
https://doi.org/10.1145/84537.84552
https://arxiv.org/abs/1206.6430

[73] R. J. Williams, Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning, Mach. Learn. 8, 229 (1992).

[74] P. Glasserman, Monte Carlo Methods in Financial Engineering, 1st edi-
tion, Stochastic Modelling and Applied Probability №53, Springer
(2003).

[75] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes (2022),
arXiv:1312.6114.

[76] D. J. Rezende, S. Mohamed and D. Wierstra, Stochastic Backpropagation
and Approximate Inference in Deep Generative Models (2014), arXiv:14
01.4082.

[77] M. K. Titsias and M. Lázaro-Gredilla, Spike and Slab Variational In-
ference for Multi-Task and Multiple Kernel Learning, in Proceedings of
the 24th International Conference on Neural Information Processing
Systems, NIPS’11 (2011), pages 2339–2347.

[78] M. Opper and C. Archambeau, The Variational Gaussian Approximation
Revisited, Neural Computation 21, 786 (2009).

[79] D. P. Kingma, T. Salimans and M. Welling, Variational Dropout and the
Local Reparameterization Trick (2015), arXiv:1506.02557.

[80] J. Alwall et al., The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations, Journal of High Energy Physics 2014 (2014).

[81] G. Cowan, A Survey Of Unfolding Methods For Particle Physics, Psych-
nology Journal (2002).

[82] H. B. Prosper and L. Lyons, editors, Proceedings, PHYSTAT 2011 Work-
shop on Statistical Issues Related to Discovery Claims in Search Experi-
ments and Unfolding, CERN,Geneva, Switzerland 17-20 January 2011,
CERN Yellow Reports: Conference Proceedings, Geneva: CERN (2011).

[83] V. Blobel, “Unfolding”, in Data Analysis in High Energy Physics, John
Wiley & Sons, Ltd (2013), Chapter 6, pages 187–225.

103

https://doi.org/10.1007/BF00992696
libgen.li/file.php?md5=4207b17deca24df3b6d13f08e4b110a4
libgen.li/file.php?md5=4207b17deca24df3b6d13f08e4b110a4
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1401.4082
https://doi.org/10.1162/neco.2008.08-07-592
https://arxiv.org/abs/1506.02557
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.5170/CERN-2011-006
https://doi.org/https://doi.org/10.1002/9783527653416.ch6
https://doi.org/https://doi.org/10.1002/9783527653416.ch6

[84] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Prob-
lems, eng, Third edition, Springer eBook Collection, Cham: Springer
(2021), 1 Online–Ressource (XVII, 400 Seiten).

[85] G. D’Agostini, A multidimensional unfolding method based on Bayes’
theorem, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment
362, 487 (1995).

[86] P. Baroň, Comparison of Machine Learning Approach to Other Commonly
Used Unfolding Methods, Acta Physica Polonica B 52, 863 (2021).

[87] A. D. Sakharov, Violation of CP invariance, C asymmetry, and baryon
asymmetry of the universe, Soviet Physics Uspekhi 34, 392 (1991).

[88] P. Huet and E. Sather, Electroweak Baryogenesis and Standard Model
CP Violation, Physical Review D 51, 379 (1995).

[89] M. Gavela, P. Hernández, J. Orloff and O. Pène, Standard Model CP-
Violation and Baryon Asymmetry, Modern Physics Letters A 09, 795
(1994).

[90] M. Gavela et al., Standard model CP-Violation and Baryon Asymmetry
(II). Finite temperature, Nuclear Physics B 430, 382 (1994).

[91] P. Basler, M. Mühlleitner and J. Müller, Electroweak Baryogenesis in the
CP-Violating Two-Higgs Doublet Model (2021), arXiv:2108.03580.

[92] C. P. Burgess, Introduction to Effective Field Theory: Thinking Effectively
about Hierarchies of Scale, Cambridge University Press (2020).

[93] E. Geoffray, Build from the SMEFT up, SMEFT global analyses as a
bottom-up approach to constrain BSM physics, eng, Heidelberg, (2023),
1 Online–Ressource (124 Seiten).

[94] P. Artoisenet et al., A framework for Higgs characterisation, Journal of
High Energy Physics 2013 (2013).

[95] W. Buchmüller and D. Wyler, Effective lagrangian analysis of new inter-
actions and flavour conservation, Nuclear Physics B 268, 621 (1986).

104

https://doi.org/10.1007/978-3-030-63343-1
https://doi.org/10.1007/978-3-030-63343-1
https://doi.org/https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.5506/aphyspolb.52.863
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1103/physrevd.51.379
https://doi.org/10.1142/s0217732394000629
https://doi.org/10.1142/s0217732394000629
https://doi.org/10.1016/0550-3213(94)00410-2
https://arxiv.org/abs/2108.03580
https://doi.org/10.1017/9781139048040
https://doi.org/10.11588/heidok.00032920
https://doi.org/10.1007/jhep11(2013)043
https://doi.org/10.1007/jhep11(2013)043
https://doi.org/https://doi.org/10.1016/0550-3213(86)90262-2

[96] B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek, Dimension-
six terms in the Standard Model Lagrangian, Journal of High Energy
Physics 2010 (2010).

[97] F. Boudjema, D. Guadagnoli, R. M. Godbole and K. A. Mohan, Lab-
oratory-frame observables for probing the top-Higgs boson interaction,
Physical Review D 92 (2015).

[98] J. F. Donoghue, CP Violation and the Limits of the Standard Model, in
CP Violation and the Limits of the Standard Model (1995).

[99] A. Blum and A. Velasco, The genesis of the CPT theorem, The European
Physical Journal H 47 (2022).

[100] S. Weinberg, The Quantum Theory of Fields, Vol. 1, Cambridge Univer-
sity Press (1995).

[101] G. C. Branco, L. Lavoura and J. P. Silva, CP violation, eng, International
series of monographs on physics ARRAY(0x55a451674c60), Includes
bibliographical references and index, Oxford [u.a.]: Clarendon Press
(1999), XXI, 511 S.

[102] J. Brehmer, F. Kling, T. Plehn and T. M. P. Tait, Better Higgs-𝐶𝑃 tests
through information geometry, Phys. Rev. D 97, 095017 (2018).

[103] T. Han and Y. Li, Genuine CP-odd observables at the LHC, Physics Letters
B 683, 278 (2010).

[104] D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, CP violation in top
physics, Physics Reports 347, 1 (2001).

[105] N. Mileo et al., Pseudoscalar top-Higgs coupling: exploration of CP-odd
observables to resolve the sign ambiguity, Journal of High Energy Physics
2016 (2016).

[106] J. Ellis, D. S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-
top couplings in associated production, Journal of High Energy Physics
2014 (2014).

105

https://doi.org/10.1007/jhep10(2010)085
https://doi.org/10.1007/jhep10(2010)085
https://doi.org/10.1103/physrevd.92.015019
https://doi.org/10.1142/9789814532662
https://doi.org/10.1140/epjh/s13129-022-00037-w
https://doi.org/10.1140/epjh/s13129-022-00037-w
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1103/PhysRevD.97.095017
https://doi.org/10.1016/j.physletb.2009.12.047
https://doi.org/10.1016/j.physletb.2009.12.047
https://doi.org/10.1016/s0370-1573(00)00112-5
https://doi.org/10.1007/jhep07(2016)056
https://doi.org/10.1007/jhep07(2016)056
https://doi.org/10.1007/jhep04(2014)004
https://doi.org/10.1007/jhep04(2014)004

[107] T. Arens and L. M. Sehgal, Energy correlation and asymmetry of sec-
ondary leptons in 𝑒+𝑒− → 𝑡 ̄𝑡, Phys. Rev. D 50, 4372 (1994).

[108] W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark pair
production and decay at hadron colliders, Nuclear Physics B 690, 81
(2004).

[109] M. Jeżabek, Top quark physics, Nuclear Physics B - Proceedings Sup-
plements 37, 197 (1994).

[110] J. F. Gunion and X.-G. He, Determining the CP Nature of a Neutral Higgs
Boson at the CERN Large Hadron Collider, Physical Review Letters 76,
4468 (1996).

[111] J. C. Collins and D. E. Soper, Angular distribution of dileptons in high-
energy hadron collisions, Phys. Rev. D 16, 2219 (1977).

[112] D. Gonçalves, J. H. Kim and K. Kong, Probing the Top-Higgs Yukawa CP
Structure in dileptonic 𝑡 ̄𝑡ℎ with 𝑀2-Assisted Reconstruction, Journal of
High Energy Physics 2018 (2018).

[113] A. Collaboration, 𝐶𝑃 Properties of Higgs Boson Interactions with Top
Quarks in the 𝑡 ̄𝑡𝐻 and 𝑡𝐻 Processes Using 𝐻 → 𝛾𝛾 with the ATLAS
Detector, Physical Review Letters 125 (2020).

[114] C. Collaboration, Measurements of 𝑡 ̄𝑡𝐻 Production and the 𝐶𝑃 Structure
of the Yukawa Interaction between the Higgs Boson and Top Quark in
the Diphoton Decay Channel, Physical Review Letters 125 (2020).

[115] J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs
couplings to the third generation, Journal of High Energy Physics 2013
(2013).

[116] R. D. Ball et al., Parton distributions with QED corrections, Nuclear
Physics B 877, 290 (2013).

[117] T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA
8.1, Computer Physics Communications 178, 852 (2008).

106

https://doi.org/10.1103/PhysRevD.50.4372
https://doi.org/10.1016/j.nuclphysb.2004.04.019
https://doi.org/10.1016/j.nuclphysb.2004.04.019
https://doi.org/10.1016/0920-5632(94)90677-7
https://doi.org/10.1016/0920-5632(94)90677-7
https://doi.org/10.1103/physrevlett.76.4468
https://doi.org/10.1103/physrevlett.76.4468
https://doi.org/10.1103/PhysRevD.16.2219
https://doi.org/10.1007/jhep06(2018)079
https://doi.org/10.1007/jhep06(2018)079
https://doi.org/10.1103/physrevlett.125.061802
https://doi.org/10.1103/physrevlett.125.061801
https://doi.org/10.1007/jhep11(2013)180
https://doi.org/10.1007/jhep11(2013)180
https://doi.org/10.1016/j.nuclphysb.2013.10.010
https://doi.org/10.1016/j.nuclphysb.2013.10.010
https://doi.org/10.1016/j.cpc.2008.01.036

[118] J. de Favereau et al., DELPHES 3: a modular framework for fast simu-
lation of a generic collider experiment, Journal of High Energy Physics
2014 (2014).

[119] M. Bellagente et al., How to GAN away detector effects, SciPost Physics
8 (2020).

[120] A. Gretton et al., A Kernel Two-Sample Test, J. Mach. Learn. Res. 13,
723 (2012).

[121] D. J. Rezende et al., normalizing flows on tori and spheres (2020),
arXiv:2002.02428.

[122] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library (2019), arXiv:1912.01703.

[123] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization
(2017), arXiv:1412.6980.

[124] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research 12, 2825 (2011).

[125] C. E. Shannon, A mathematical theory of communication., ACM SIGMO-
BILE Mob. Comput. Commun. Rev. 5, 3 (2001).

[126] K. Pearson, On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 50, 157 (1900).

[127] J. Alcaraz Maestre, Details on the Collins-Soper reference frame and
lepton angular distributions in electroweak vector boson production at
hadron colliders (2020).

107

https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.21468/scipostphys.8.4.070
https://doi.org/10.21468/scipostphys.8.4.070
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980
http://dblp.uni-trier.de/db/journals/sigmobile/sigmobile5.html#Shannon01
http://dblp.uni-trier.de/db/journals/sigmobile/sigmobile5.html#Shannon01
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://www.ciemat.es/portal.do?TR=A&IDR=1&identificador=813

	Introduction
	Normalizing Flows
	Finite Composition Architectures
	Linear Flows
	Autoregressive Flows
	Residual Flows

	Continuous Architectures
	Conditional Flows
	Flows on Riemannian Manifolds
	Bayesian Flows

	Unfolding
	Unfolding as an Inverse Problem
	Classical Unfolding
	Iterative Bayesian Unfolding

	Omnifold
	Unfolding with Conditional Normalizing Flows

	CP-Violation in tth-Production
	Constructing Direct CP-Observables
	Direct CP-Observables in tth-Production
	CP-Sensitive Observables in tth-Production

	A Normalizing Flow Network for Unfolding tth-Production
	Training Datasets
	Phase-Space Parameterization
	Periodic Splines
	Architecture
	Results

	Conclusion
	Phase Space Parameterization Details

