
University of Heidelberg

Department of Physics and Astronomy

How to unweight with GANs

Bachelor Thesis in Physics

submitted by

Mathias Backes

born in Neunkirchen (Germany)

2020

This Bachelor Thesis has been carried out by Mathias Backes at the
Institute for Theoretical Physics in Heidelberg

under the supervision of
Prof. Dr. Tilman Plehn.

Abstract

Monte Carlo approaches for LHC event generation always pose the problem
of weighted events, which have to be converted into unweighted events. Con-
sequently, inefficient unweighting procedures cause a main bottleneck for this
kind of event generation. In this thesis we show an approach to implement
an unweighting procedure with the help of generative adversarial networks
(GANs). To show that GANs are able to unweight data, we demonstrate the
unweighting procedure with the well known Drell-Yan process.

Abstract (in deutscher Übersetzung)

Das Generieren von LHC Events mithilfe von Monte Carlo Methoden führt
zu dem Problem, dass man gewichtete Events erhält, welche in ungewichtete
Events konvertiert werden müssen. Infolgedessen verursachen ineffiziente Ent-
wichtungen ein großes Problem für diese Art von Eventgeneration. In dieser
Arbeit zeigen wir eine Möglichkeit, mittels Generative Adversarial Networks
(GANs) zu entwichten. Um zu zeigen, dass GANs Daten entwichten können,
demonstrieren wir das Entwichten anhand des allgemein bekannten Drell-Yan
Prozesses.

Contents
1. Introduction 1

2. Physical background 2
2.1. Cross sections for two particle scattering 2
2.2. The parton model . 3
2.3. Hadronic cross sections . 5
2.4. Scattering kinematics with partons . 5
2.5. Phase space integration and unweighting 7
2.6. Kinematic observables . 8
2.7. Drell-Yan scattering . 9

3. Neural networks 11
3.1. Structure of an artificial neuron . 11
3.2. Structure of a neural network . 11
3.3. Activation functions . 13
3.4. Training a neural network . 15

4. Generative adversarial networks 19
4.1. Structure of GANs . 19
4.2. Usual application of GANs . 21
4.3. Treating weighted data with GANs . 23
4.4. Testing the unweighting procedure . 23

5. Unweighting efficiency 26
5.1. Implementing an efficiency . 26
5.2. Testing the efficiency implementation . 28

6. Cross check with VEGAS 30
6.1. The VEGAS algorithm . 30
6.2. Unweighting with VEGAS . 31
6.3. Results for the camel function . 32
6.4. Weight distribution after unweighting . 33

7. Two dimensional toy model 34
7.1. Generating toy data . 34
7.2. Unweighting results . 34
7.3. Efficiency calculation . 35
7.4. VEGAS unweighting . 36
7.5. Weight distributions . 38

8. Drell-Yan process 39

9. Summary and outlook 41

1. Introduction
A main problem in LHC event generation are highly inefficient unweighting procedures,
which are necessary to compare theoretical simulations with the experiments themselves.
As an example we can consider a cross section of a simple partonic (2 → 2) process [1],

σtot =

∫
dφ
∫

d cos θ

∫
dx1

∫
dx2 FPS |M|2, (1.1)

where |M|2 is the transition amplitude and FPS is an appropriate function which will be
specified later. To solve such an integral it is common to apply advanced Monte Carlo
algorithms, which are based on importance sampling. These algorithms simulate events,
but with an additional weight for every single event. These weights can be interpreted as
a probability of the appearance of the event. Since in an experiment we can only distin-
guish between the appearance or absence of an event, we are not interested in weighted
events. Therefore, we must find an algorithm to "unweight" this data, which means we
want to gain a probability distribution depending only on our input configuration, not
an additional weight. Until now, this problem causes a main bottleneck in LHC event
generation, since most of the unweighting techniques are highly inefficient [1].

A really useful tool to handle LHC data are generative adversarial networks (GANs)
[2]. It was already shown that GANs can be used to generate events [3], subtract event
samples [4] or invert detector effects [5]. We want to build GANs that are able to un-
weight data. The difference to common unweighting methods is that we train on the
weighted data and generate completely new, unweighted data. This new approach on
how to unweight data might promise an improvement over other unweighting methods,
as is shown in the thesis.

After recapitulating the basics of phase space integration (section 2) and neural networks
(section 3), we introduce our theory on how to build GANs to unweight events and try
it for different low dimensional toy models (sections 4, 7). The toy models are one-
and two-dimensional and should be well reproduced to guarantee that we can expand
in higher dimensions. We make sure that our unweighting is working well by defining
an unweighting efficiency (section 5). To see the advantage of our unweighting method,
we also compare it to the unweighting procedure of the well known VEGAS algorithm
(section 6). In the last part of the thesis we show how our unweighting procedure deals
with an actual physical application, in our case the Drell-Yan process (section 8).

1

2. Physical background
2.1. Cross sections for two particle scattering
We consider a scattering process with two input particles (pA, pB) and n output particles
(p1, ..., pn) with the four-momentum vectors p = (E,p). Since we always have scattering
processes with high relativistic energies, we neglect all the masses (mA = mB = m1 =
... = mn = 0). For the total differential of the cross section we can calculate [6]

dσ =
1

2EA 2EB |vA − vB|
|M|2dΦ2→n. (2.1)

The first factor, which is also called Moller-flux-Factor, can be expressed as

4EAEB|vA − vB| = 2s, (2.2)

with s being the square of the center of mass energy. The second factor |M|2 is the
matrix element of the process squared, which we can extract from perturbative Feynman
diagrams. The last factor is the phase space element dΦ2→n, which in the relativistic
case can be expressed as

dΦ2→n = (2π)4δ(4)(pA + pB − p1 − ...− pn)

n∏
j=1

d3pj
(2π)3

1

2Ej

∣∣∣∣
Ej=

√
p2
j

. (2.3)

Two particle final states
Now we will calculate this cross section explicitly. As a restriction we choose only two
final state particles, following [6]. For this special case we can simplify the phase space
factor by evaluating the integrals in the center of mass frame of the initial particles. The
condition pA + pB = 0 for the input particles sets p1 = −p2 since

(2π)4δ(4)(pA + pB − p1 − p2) = (2π)4δ(EA + EB − E1 − E2)δ
3(p1 + p2). (2.4)

We evaluate the p2 integral and get

dΦ2→2 = (2π)δ(EA + EB − E1 − E2)
d3p1

(2π)3
1

2E12E2

∣∣∣∣
E1,2=

√
p2
1

. (2.5)

Now we can change the coordinate system to spherical coordinates

dΦ2→2 =
1

(4π)2

δ

(
EA + EB − 2

√
|p1|2

)
|p1|2

|p1|2d|p1|dΩ

=
1

(4π)2
δ

(
EA + EB − 2

√
|p1|2

)
d|p1|dΩ,

(2.6)

with dΩ = d cos θdφ. After executing the integration in |p1|-direction, we obtain

dΦ2→2 =
1

(4π)2
1

2
dΩ, (2.7)

2

2. Physical background

and therefore for the differential cross section

dσ
dΩ

=
1

64π2
|M|2
s

. (2.8)

2.2. The parton model
The parton model was Richard Feynman’s attempt to explain the Bjorken scaling at the
SLAC experiment in the 1960s [7]. In this experiment electrons and nucleons collide with
a beam energy of

√
s ≈ 20 GeV. The cross section of this deep inelastic scattering (DIS)

process can be expressed in terms of the structure functions Wi(Q
2, ν) [8]

σDIS ∼ σ0
(
W2 + 2W1 tan2(θ/2)

)
, (2.9)

with the Mott cross section σ0 of the scattering of a lepton on a point-like charged
particle. Q2 represents the negative of the squared four-momentum-transfer vector q of
the exchanged virtual photon. ν = E − E′ is the energy loss of the scattered electron,
θ is the scattering angle and M is the invariant mass. For this deep inelastic scattering
the structure functions Wi(Q

2, ν) exhibit a scaling in the asymptotic limit of Q2 and ν,
called Bjorken scaling

lim
Q2,ν→∞

W1(Q
2, ν) = F1(x),

lim
Q2,ν→∞

νW2(Q
2, ν) = MF2(x),

(2.10)

with ν/Q2 fixed. The form factors Fi(x) only depend on the Bjorken scaling variable

x =
Q2

2Mν
. (2.11)

Previous experiences contradicted these results since the nucleons have a finite size that
corresponds to the idea of rapidly falling form factors Fi(Q2) in case of increasing Q2.
The fact that the Bjorken scaling was experimentally proven led to the hypothesis of a
nucleon as a collection of point-like constituents for deep inelastic scattering.
Feynman named these point-like constituents partons and proposed the parton model.
In this model he considers the partons to be in an infinite momentum frame (masses
can be neglected), where the whole parton energy comes from the momentum in beam
direction. By assumption these partons are incapable of exchanging large momenta
among themselves through any kind of interaction. Every parton k carries a fraction xk
of the nucleons momentum p, i.e.

pk = xkp,
∑
k

xk = 1. (2.12)

For each species of parton there is a function fi(x) which quantifies the probability
that the nucleon contains a parton of this species. These functions are called parton

3

2. Physical background

distribution functions (PDF) and can be connected to the Bjorken scaling with

F2(x) =
∑
k

q2kfk(x). (2.13)

One way of estimating PDFs is by starting from a parametrisation of non-pertubative
PDFs at a low scale and fitting them to experimental data, using the DGLAP evolution
scheme [9]. The resulting PDFs depend on multiple parameters, for example the chosen
order of perturbation, the choice of the input data, the treatment of heavy quarks or the
correlation between αs and the PDFs [10].
As an example we take a look at the parton distribution functions of the proton, calcu-
lated with next-to-leading order perturbative expansion. It is not surprising that we find
u and d quarks to carry the majority of the proton’s momentum, while the other quarks
tend to have small longitudinal fractions.

Figure 2.1: NLO PDFs at Q2 = 10[GeV]2 and Q2 = 104[GeV]2. Associated to the PDFs
are 68% uncertainty bands. [source: [11]]

As one can see in figure 2.1, the desired independence of the PDFs concerning Q2 is
not given everywhere. The parton model cannot give us an explanation for these effects.
Today the theory of Quantum chromodynamics (QCD) is the best explanation for nucleon
configurations. The main difference between the two approaches is that in QCD the
quarks are allowed to exchange energy with gluons. The violation of the Bjorken scaling
can also be explained with higher order corrections in QCD [6].

4

2. Physical background

2.3. Hadronic cross sections
Now we want to calculate the hadronic cross section σk,l→C of two partons k, l scattering
to a final state C. The partonic cross section of this process,

σ̂k,l→C(ŝ), (2.14)

depends on the squared partonic center of mass energy ŝ, which we calculate according
to equation 2.12

ŝ = 2pkpl = xkxls. (2.15)

To calculate the hadronic cross section we simply weight the partonic cross sections with
the partonic distribution functions and sum over all momentum fractions xk,l, i.e. since
these are continuous in [0, 1] we integrate them [6] and have

σk,l→C =

∫ 1

0
dxk

∫ 1

0
dxlfk(xk)fl(xl)σ̂k,l→C(xkxls). (2.16)

If we want to consider the scattering of two hadrons which are constructed out of quarks,
we will need to sum over all possible scattering quark combinations

σk,l→C =
∑
k,l

∫ 1

0
dxk

∫ 1

0
dxlfk(xk)fl(xl)σ̂k,l→C(xkxls). (2.17)

2.4. Scattering kinematics with partons
One consequence of the PDFs is the difference between the partonic and the hadronic
center of mass system (CMS). If we want to transform between these systems, we need
to transform one system into the other with a Lorentz boost into the direction of the
beam axis.
For example we can take a look at two protons in the hadronic CMS with the momenta

pA =

√
s

2

1
0
0
1

 , pB =

√
s

2

1
0
0
−1

 . (2.18)

If we consider the partons of these protons in the hadronic CMS, we can describe them
with the four-momentum vector

pa = p0a

1
0
0
1

 = x1p
0
A

1
0
0
1

 , pb = p0b

1
0
0
−1

 = x2p
0
B

1
0
0
−1

 . (2.19)

x1,2 are momentum fractions. If we apply a Lorentz transformation

Λµν =

γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 , (2.20)

5

2. Physical background

we get the four-momentum vector in the partonical CMS

p̂a = x1p
0
A

γ + βγ

0
0

γ + βγ

 , p̂b = x2p
0
B

γ − βγ

0
0

−γ + βγ

 . (2.21)

In the partonic CMS we have p̂0a = p̂0b , so with p0A = p0B we can derive

β =
p0b − p0a
p0b + p0a

=
x2 − x1
x2 + x1

. (2.22)

Scattering calculations
We now want to calculate the momenta of two incoming partons through the momenta
of the outgoing particles of a 2 → 2 scattering. For the outgoing particles we have the
four-momentum vectors

p1 =

E1

0
0
p31

 , p2 =

E2

0
0
p32

 . (2.23)

We can also calculate the center of mass energy

ECMS =
√

(E1 + E2)2 − (p31 + p32)
2. (2.24)

We do not know the momentum fractions x1,2, but we can make an ansatz in analogy to
equation 2.19 and since we now know that in the partonic system equation 2.15 applies,
we specify

pa =
x1
2
ECMS

1
0
0
1

 , pb =
x2
2
ECMS

1
0
0
−1

 . (2.25)

Since we have momentum and energy conservation, we also have

E1 + E2 =
x1
2
ECMS +

x2
2
ECMS,

p31 + p32 =
x1
2
ECMS −

x2
2
ECMS,

(2.26)

which can be rearranged to

x1 =
(E1 + E2) + (p31 + p32)

ECMS
, x2 =

(E1 + E2)− (p31 + p32)

ECMS
, (2.27)

and leads to

pa =
(E1 + E2) + (p31 + p32)

2

1
0
0
1

 , pb =
(E1 + E2)− (p31 + p32)

2

1
0
0
−1

 . (2.28)

Finally, we are able to calculate the momenta of the incoming partons.

6

2. Physical background

2.5. Phase space integration and unweighting
Since we are interested in the cross section of a physical process, we now want to take
a look at the numerical phase space integration. If we consider scattering cross sections
with multiple particles involved, we will get high dimensional phase space integrals.
This multidimensionality makes it necessary to adopt advanced Monte Carlo integration
methods. In these methods we sample a chain of random points Yj with length NY

that can be organized in any number of dimensions. To sample this chain we can define
a smartly chosen, normalised function ρ(y) which gives us the probability of finding
Yj ∈ [y,y + dy]. Since this probability function is normalised, we can calculate a d
dimensional integral over the hypercube as∫ 1

0
ddyf(y) ≈ 1

NY

∑
j

f(Yj)

ρ(Yj)
. (2.29)

Compared to other numerical approaches, which rely on binning of d dimensions, the
Monte Carlo approach replaces these d dimensional arrays with one large chain, which is
more efficient. The accuracy of this approach depends on the way we choose the function
ρ(y). The more this function resembles the integrand, the better our estimate for the
integral will be. This task is called importance sampling. One way of solving this task
is with the VEGAS algorithm, which will be discussed in section 6.
Now we go back to the (2→ 2) scattering cross section. First, we have to remap the cross
section integration to the unit hypercube since it simplifies the integration and most of
the Monte Carlo integrators are built for such integrals [1]

σtot =

∫
dΩ

∫
dx1

∫
dx2 f1(x1)f2(x2)

1

64π2
|M|2
s

=

∫ 1

0
dy1...dy4 JPS(y) f1(x1(y))f2(x2(y))

1

64π2
|M(y)|2

s
.

(2.30)

We need a tool which translates the integration variables y = (y1, y2, y3, y4) into external
momenta. This tool is called a phase space generator. Since our phase space is not
defined in terms of these y, the phase space generator introduces the Jacobian JPS. We
also choose this transformation to be part of the Monte Carlo sampling process, so we
implicitly encode the density function ρ in the Jacobian JPS. According to the Monte
Carlo methods, we can now calculate this integral as

1

NY

∑
j

JPS(Yj) f1(x1(Yj))f2(x2(Yj))
1

64π2
|M(Yj)|2

s
. (2.31)

This procedure has an interesting interpretation. Once we compute the unique phase
space configuration xj = (pA, pB, p1, p2)j corresponding to the mapped vector yj , the
combined weight,

Wj = dσ = NJPS f1(x1(yj))f2(x2(yj)) |M(yj)|2 ddyj , (2.32)

7

2. Physical background

is the probability of the event xj , with the normalisation factor N . This means what we
do is not just a simple numerical integration; we in fact simulate events, more precisely
weighted events [1].
As already mentioned in the introduction, these weighted events are not what experi-
mentalists want since they want a probability distribution depending only on external
momenta and not an additional weight. This means we have to find a way to translate
this weighted event distribution into a distribution without or with a constant weight,
i.e. we need to unweight the events. There are multiple ways of doing this:

Distributive method
This method uses the minimal weight Wmin to express all other weights relative to Wmin.
Every event with weight Wj/Wmin is now replaced by Wj/Wmin events with unitary
weights. In consequence, there are now a number of events, all without a weight. This
method’s problem is the binned phase space. There is an additional number of events
for every bin, but no rule how to distribute the events in and around the bin. Therefore,
this unweighting method is not very precise [1].

Hit-or-miss method
The idea of this method is to translate all the weights into a probability to keep the event
or drop it. We divide every weight with the maximal weight Wj,rel = Wj/Wmax, generate
a random number R ∈ [0, 1] and keep the event only if it satisfies

Wj,rel > R. (2.33)

This is the most common method [1]. The problem with this unweighting method is
that we lose a lot of events. Nevertheless, we will come back to it later since we will use
elements of the hit-or-miss method to calculate an unweighting efficiency.

2.6. Kinematic observables
We want to introduce some kinematic observables for the (2 → 2) scattering which are
invariant or transform easily under a Lorentz transformation in beam direction since the
partonic and hadronic CMS are connected this way. There are some useful kinematic
observables:

• Transversal momentum
pT =

√
(p1)2 + (p2)2. (2.34)

• Invariant mass of the final particles

M3,4 =
√

(p3 + p4)2. (2.35)

8

2. Physical background

• Azimuthal angle φ of a final particle

φ = arctan

(
p2

p1

)
. (2.36)

• Rapidity

y =
1

2
ln

(
p0 + pL
p0 − pL

)
, (2.37)

with pL = p3 being the momentum in beam direction.

• Pseudorapidity

η =
1

2
ln

(|p|+ pL
|p| − pL

)
, (2.38)

which is in our case equal to the rapidity y since all masses are neglected.

Except the rapidities, all these values are Lorentz invariant. This is why we consider
them to be good observables. The rapidity y transforms under Lorentz transformation
as

yL =
1

2
ln

(
γp0 + γβpL
γp0 − γβpL

)
=

1

2
ln

(
p0 + pL
p0 − pL

)
+

1

2
ln

(
1 + β

1− β

)
=

1

2
ln

(
p0 + pL
p0 − pL

)
+

1

2
ln

(
x2
x1

)
,

(2.39)

with β following equation 2.22. We can also see that the rapidity difference between the
outgoing particles is a Lorentz invariant observable

y∗ =
|y3 − y4|

2
. (2.40)

The pseudorapidity η is very similar to the rapidity, but easier to measure. With a few
geometrical transformations one can derive the pseudorapidity as

η = − ln tan
θ

2
, (2.41)

where θ is the angle between the particle trajectory and the beam direction [12].

2.7. Drell-Yan scattering
Having figured out the essential theoretical basics, we now take a look at an explicit
scattering process, the Drell-Yan process [13],

Ha + Hb → l− + l+. (2.42)

9

2. Physical background

In general, two hadrons (Ha,b) collide to form a lepton-antilepton pair (l− + l+). It is
one of the best explored processes at hadron-hadron colliders [14] since one can make
precise theoretic predictions and the experimental signal consists of only two leptons.
The Drell-Yan process was also used to design experiments through which the W and Z
bosons [15] [16] were discovered, and was also important in the discovery of the top quark
at Fermilab [17]. Today, the Drell-Yan process is still an important tool to observe the
partonic stucture of hadrons since with the LHC beam energy of 14 TeV contributions
for heavier quark flavours can be resolved.

q

q̄

l−

l+

Z

γ

Figure 2.2: Feynman diagramm of a Drell-Yan process at leading order. The incoming
particles are quarks; the outgoing particles are leptons.

We can draw the Feynman diagram in leading order (figure 2.2). The exchange particle
can be a photon γ or a Z boson. For low energies, the only important term is the
pure photon transition amplitude, but since we want to simulate a LHC process at high
energies, we also have to resolve the contribution of the Z boson. We need to consider
this when calculating the total transition matrix

M =Mγ +MZ . (2.43)

The transition amplitude can be written as

|M|2 = |Mγ |2 + |MZ |2 + 2Re(MγM∗Z). (2.44)

Besides the pure photon or Z contribution we also got an interference term, which does
not have to be positive. Therefore, we cannot be sure that every weight we will simulate
is positive. We have to make sure that the neural network we build is able to deal with
negative event weights.
The data we will use later is the result of a proton scattering

p+ p→ µ− + µ+. (2.45)

10

3. Neural networks
Artificial neural networks are an approach of deep learning inspired by the human brain,
which is build of neurons. The biological neuron is constructed to release a chemical
transmitter once a certain action potential in form of an electrical impulse is reached
[18]. This release leads to another electrical impulse which is passed to other neurons
and so on. This idea of interacting neurons is the basis on which we construct an artificial
neural network.

3.1. Structure of an artificial neuron
The simplest possible neural network consists of one single artificial neuron which gets a
number of inputs xi (in figure 3.1 three of them) and produces one output y. The way
this output is produced is shown diagrammatically in figure 3.1 [18].

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.1: Structure of a neuron. The input is multiplied with weights wi, summed up
with an additional bias and a non-linear activation function is applied.

Mathematically, this can be expressed as

y = f

(n∑
i=1

wixi + b

)
. (3.1)

An artificial neuron can therefore be described by its weights, bias and the non linear
activation function. The output of a single neuron is always one dimensional. To get a
more dimensional output we have to arrange multiple neurons next to each other. This
structure is called a layer (even if it contains only a single neuron).

3.2. Structure of a neural network
A neural network consists of several neurons, which are typically organised in layers. We
differentiate between three kinds of layers: the input layer at the beginning, the output
layer at the end and the hidden layers in between [19] (figure 3.2).

11

3. Neural networks

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 3.2: Exemplary structure of a generic neural network. Each circle illustrates one
neuron. The green layer on the left side is called the input layer, the blue
layers in the center are called the hidden layers and the red layer on the right
is called the output layer.

The input layer just takes the input information and sends it to the first hidden layer.
For more advanced neural networks, the input data might already be preprocessed to
improve the neural network or to fit the neural network specifications.
At this point we need to specify the idea of the weights wi. One weight is not assigned
to a single neuron, but it expresses the "importance" of one connection between two
neurons of consecutive layers (in figure 3.2 shown as an arrow) [19]. Every single neuron
of one layer now takes this input and produces an output according to equation 3.1.
This procedure is repeated for every hidden layer. The hidden layers usually have more
neurons per layer than the input or output layer to guarantee that no input information
needs to be compressed in the neural network. Later we will refer to the number of
neurons in one hidden layer as units. The output layer needs to have the exact number
of neurons to fit the requested dimensionality of the output since every neuron itself has
one dimensional output.
We can compare the whole neural network to a Taylor series of an irrational function.
The idea of a Taylor series is to distribute an irrational function into a sum of rational
functions, for example for the sinus function we get

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
=
x

1!
− x3

3!
+
x5

5!
∓ (3.2)

In figure 3.3 we show how the Taylor series approximates the sinus function better with
every additional term. In analogy to this idea, we want all (or at least most of the) neu-
rons to get a small piece of information which, combined, should express the complicated
distribution we want to reproduce.

12

3. Neural networks

−2π −π π 2π

−3

−2

−1

1

2

3

sin(x)

x

x− 1
6
x3

x− 1
6
x3 + 1

120
x5

Figure 3.3: Taylor series expansion at zero of the sinus function up to the third order.
The series expansion approximates the irrational function better with every
order.

At this point, we also understand why we have to apply a non-linear activation function.
If we had no activation function at all or if we chose a linear activation function, equation
3.1 would become linear as it is a composition of linear functions. Following this thought,
if every neuron could be represented by a linear function, we would be able to replace all
the neurons with one single neuron because consecutive linear functions can be reduced
to one linear function. Since we do not want this to be the case, we need to have a
non-linear activation function [18].

3.3. Activation functions
There are several types of activation functions, an overview can be found in [20]. In the
following, we only describe the activation functions which are used in our network and
plot them (figure 3.4).

The ReLU activation function (Rectified Linear Unit) has been the most used acti-
vation function since its proposal in 2010 [20]. It is defined by

ReLU(x) = max{0, x} =

{
x x > 0

0 x ≤ 0
. (3.3)

13

3. Neural networks

−10 −5 0 5 10

x

0

2

4

6

8

10
f(

x
)

ReLU

−10 −5 0 5 10

x

−2

0

2

4

6

8

10

f(
x
)

LeakyReLU

−10 −5 0 5 10

x

0

2

4

6

8

10

f(
x
)

ELU

−10 −5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

Sigmoid

Figure 3.4: Plots of activation functions. On the upper left the ReLU activation function,
on the upper right the LeakyReLU activation function with α = 0.3, on the
lower left the ELU activation function with α = 1, and on the lower right the
sigmoid activation function.

This activation function, which is nearly linear, has the advantage that there is no need
to calculate exponentials or divisions for example. Therefore, the computation is much
faster compared to other activation functions. Problems with this activation function
can occur with "dying" neurons, which means that the output of a neuron is constantly
set to zero and therefore is basically ignored. To solve this problem one can use the
LeakyReLU function.

The LeakyReLU activation function has a similar shape as the ReLU activation func-
tion, it is just not constantly zero for negative inputs

LeakyReLU(x) =

{
x x > 0

αx x ≤ 0
. (3.4)

The LeakyReLU hyperparameter α is in our case set to 0.3.

14

3. Neural networks

The ELU activation function (Exponential Linear Unit) is also very similar to the
ReLU activation function, but for negative inputs there is an exponential shape

ELU(x) =

{
x x > 0

α(ex − 1) x ≤ 0
. (3.5)

As we will see later, the exponential shape of the ELU activation function will be useful
if we want to generate exponentially shaped data. The ELU hyperparameter α is usually
set to one [20].

The sigmoid activation function is another important activation function

Sigmoid(x) =
1

1 + e−x
. (3.6)

The non-zero centred output can cause the gradient updates to propagate in different di-
rections [20]. Nevertheless, we will be using the sigmoid activation in our neural network
to map values strictly to the interval [0, 1].

3.4. Training a neural network
If we now want to train the neural network, we need to adjust all the layer-connecting
weights and the biases to reproduce the data we trained on. To reach this goal, we first
have to discuss the loss function.
A loss function is designed to increase if the output predicted by the neural network
(y) and the actual output value (ŷ) become different, and to decrease if they get very
similar. One way of obtaining such a function is the mean squared error (here for an n
dimensional output) [18]

LMSE =
1

n

n∑
i=1

(yi − ŷi)2. (3.7)

The predicted output of the neural network only depends on the parameters w of the
neural network (with the biases implied) and the input. The input is fixed, so we can
interpret the loss as a function of the neural net parameters L = L(w). The best case
would be if the network performed perfectly, i.e. if the loss function would be as low
as possible, which means that the predicted and actual output are very similar. If the
parameters are all in perfect configuration w∞, the loss function will arrive at its global
minimum. Therefore, we want to find the parameters which minimize the loss function
[18]

w∞ = arg min
w

L(w). (3.8)

As long as we neglect boundary effects, a necessary condition at the global minimum of
the loss function is

∇wL(w) = 0. (3.9)

15

3. Neural networks

To achieve this numerically we use gradient descent. An exception from this idea of
finding the global minimum can occur if we regularise the weights in a bad way. If the
hyperspace of the weights is restricted to a certain area with the global minimum outside,
there is the possibility that the weight configuration which minimizes the loss lies at the
edges of the restricted hyperspace. In this case we cannot find the global minimum at
all, so we need to make sure to choose eventual weight restrictions wisely.

Stochastic gradient descent is a useful tool to obtain this configuration. The neural
network is first initialised with random parameters. For the first prediction we will
therefore have a completely arbitrary result. After every prediction, the parameters are
redefined [18]

wt+1 = wt − α∇wtL, (3.10)

with wt being the previous weight. The gradients of the loss function are calculated
with backpropagation; more information about this algorithm can be found in [21]. This
redefinition of the parameters after each iteration will change the weights towards the
minimizing weights. The factor to quantify the size of the step, α, is called the learning
rate. It is important to find a good value for α, because if it is to low, the neural network
might get stuck in a local minimum; if it is to high, the network will never converge to
the global minimum (figure 3.5) [18].

global minimum

local minimum

Loss function

α too small

α too big

Figure 3.5: Learning process of a neural network with different learning rates. If the
learning rate is too high, the network will never arrive in any minimum; if it
is too low, the network might get stuck in a local minimum.

As one can imagine, the gradient descent method is useful, but not the best solution.
Finding the global minimum of the loss function requires a tool to prevent overstepping
it, i.e. an optimizer for the size of the steps [22].
Since the loss function can have local minima, we need our algorithm to make sure we

16

3. Neural networks

find the global minimum. This feature is called exploration. After finding this minimum,
the neural network needs to approach it in well chosen steps. This feature is called
exploitation. There are a lot of optimizers to reach this goal [22].

ADAM is the optimizer of our choice. The first idea implemented in ADAM is a
momentum mt which is added to the gradient term of the stochastic gradient descent
method [23]

mt+1 = ρmt + α∇wtL,
wt+1 = wt −mt+1.

(3.11)

ρ is a factor in [0, 1] to add a fraction of the previous update to the next update. This
additional term smooths out the updates, helps to prevent getting stuck in a local min-
imum and is useful in areas where we have big differences between the gradients in
several directions. In such a case, neural networks without momentum tend to take a
lot of sidesteps instead of going straight to the minimum. This problem is solved if we
include the calculated momentum. A disadvantage is that it is easier to overshoot the
minimum. ADAM uses two different kinds of momenta and there are soma additional
other features; more informations about the optimizer can be found in [24].

The decay of the learning rate is another way to improve the learning process. If we
are on a good way to converge to a global minimum of the loss function after several
training epochs (with a number of iterations), we want to have a smaller learning rate to
obtain smaller steps and therefore more precision. There are several ways to implement
a decay. In this work we reduce the learning rate at the beginning (α0) after N epochs
to

α(N) =
α0

1 +N · γ , (3.12)

with γ being the decay parameter.

Overfitting is another problem that can occur. Since our training data is limited, we
will not be able to avoid several training iterations with the same data. This risks over-
specialisation or overfitting [25], meaning that the neural network learned details about
the training data which are specific to the training data (see figure 3.6). Therefore the
network is able to distinguish between points of the training data and other points, with-
out depending on whether they fit the underlying structure. The bigger the network,
the easier it can overfit. So for complex shaped data which requires a certain size of the
network one will need to reduce the possibility of overfitting without reducing the size of
the network.
One possibility to prevent overfitting is a dropout of neurons [26]. The idea is to omit
each hidden neuron in each presentation of each training case with a dropout probabil-
ity, for example 0.5. If we speak of a neuron dropping out, we mean that the activation
or other features of the neuron are set to zero. This procedure can be seen as "a very
efficient way of performing model averaging with neural networks" [26] since we have a

17

3. Neural networks

different combination of active neurons in every training iteration but all these "subnet-
works" share the same weights. The neurons cannot rely on other hidden units, so we
take away the ability of the network to focus on random properties of the training data.
The dropout probability must not be chosen too low. Otherwise, we would not gain the
desired effect. At the same time, it must not be too high because it might reduce the
ongoing training.
Another possibility to prevent overfitting is an early stopping of the learning process [27].
If there is a possibility of overfitting, the desired minimum of the loss function is no longer
the global minimum since then the network will have learned special properties of the
training data. The desired local minimum in which the network has learned the process
might be reached before the training is finished. At this point, we need the network to
stop its training and stay in the local minimum, i.e. perform an early stop. To check if
this minimum is reached, we can simply evaluate the loss of additional external testing
data. We quit once the loss of this testing data starts to rise as the network is overfitting.

Overfitting

Desired fitting

Training data

Figure 3.6: Overfitting of a neural network shown in a graphic example. The underlying
structure is a sinus function

18

4. Generative adversarial networks
4.1. Structure of GANs
A GAN [2] is built with two different neural networks which compete with each other.
On the one hand there is the generator G, which tries to mimic the input data, on the
other hand there is the discriminator network D, which tries to distinguish between the
real and the generated data [3]. The generator G is a multilayer neural network whose
output has the same dimensionality as the training data; the discriminator D outputs
a single scalar. These networks play against each other to improve the generator by
adjusting its parameters in regions, where the discriminator can distinguish easily. The
structure of the network is shown in figure 4.1.

Generator{r}, {m} {xG} {xT } MC Data

Discriminator

LG LD

Figure 4.1: Structure of generative adversarial networks. The generator tries to mimic
the data and the discriminator tries to distinguish between true and generated
data. During the training procedure the loss functions should be minimized.

The input for our neural network consists of random numbers {r}, the "true" data {xT }
we want to imitate and later the masses {m} of the final particles of a physical example.
The generator, whose weights are initialized with random numbers, maps the input {r}
to a distribution PG(x) that has the same dimensionality as the true data. In this
first step, the distribution PG(x) is like the input {r} completely arbitrary. Now the
discriminator can take samples {xT } and {xG} from the real distribution PT (x) and
the predicted distribution PG(x). These sets are provided in batches {xT,G} and are
now getting labelled by the discriminator. Therefore, we define the discriminator output
D(x) ∈ (0, 1). The perfect discriminator is trained to label true data with D = 1 and
generated data with D = 0. To make sure that the discriminator only produces values in
this interval, we use the sigmoid as activation function in the output layer. We now want
to find a loss function which has a global minimum if every point of the distributions is
labelled correctly. To get a better sensitivity for D → 0 we evaluate the logarithm of the
discriminator output and find the loss function [3]

LD = 〈− logD(x)〉x∼PT + 〈− log(1−D(x))〉x∼PG . (4.1)

19

4. Generative adversarial networks

In case of a perfect generator, the discriminator output will constantly be 0.5, which
means the loss function will become LD = −2 log(0.5) ≈ 1.4.
The generator also relies on the function D(x) during his training. In opposition to the
discriminator it tries to maximise LD by increasing its second term. Instead of increasing
the second term we can also minimize the generator loss

LG = 〈− logD(x)〉x∼PG . (4.2)

To train the network we need to alternate between updates of the discriminator and the
generator parameters. This training procedure is presented in Algorithm 1.

Algorithm 1 Training of the generator and discriminator
for number of training iterations do

for number of discriminator updates relative to generator updates do
Sample minibatch of m noise samples {r(1), ..., r(m)}.
Sample minibatch of m true data examples {x(1), ...,x(m)}.
Update the discriminator by ascending its stochastic gradient with learning rate
α:

wD → wD − α∇wDLD. (4.3)

end for
Sample minibatch of m noise samples {r(1), ..., r(m)}.
Update the generator by ascending its stochastic gradient with learning rate α:

wG → wG − α∇wGLG. (4.4)

end for

This algorithm was extracted from [2].
The training of the network has to be well balanced since the generator is only as good
as the discriminator is able to distinguish. On the other hand, if the discriminator is
nearly perfect, the loss function vanishes, which reduces the gradient and therefore slows
down the training significantly. This interplay of the two networks often leads to stability
issues in the training [3].
One way to stabilize this is by defining the monotonous logit function of the discriminator
variable D(x),

φ(x) = ln
D(x)

1−D(x)
, (4.5)

on which we can apply the gradient

∇φ =
1

D(x)

1

1−D(x)
∇D(x). (4.6)

This gradient is very sensitive in the regions D → 0 and D → 1. We want to implement
this gradient in the loss function of the discriminator LD in a way that it applies to
regions where the discriminator labels D ≈ 0 to true data and D ≈ 1 to generated data.

20

4. Generative adversarial networks

Therefore, we add it to the loss function with a prefactor λD and obtain the regularized
Jensen-Shannon loss [28]

LD → LD + λD〈(1−D(x))2|∇φ|2〉x∼PT + λD〈D(x)2|∇φ|2〉x∼PG . (4.7)

The combination of these regularisations leads to a more stable training. There are
other methods to stabilise the training of a GAN, for example the use of the Wasserstein
distance [29]. Since this thesis is based on the the work of [3], we choose the regularised
Jensen-Shannon GAN.

4.2. Usual application of GANs
We want to see if and how well the neural network can reproduce data without a weight.
First, we have to generate toy data. Thus, we sample points according to a given function,
in our case we choose a "camel-shaped" distribution (figure 4.2)

C(x) = 0.3G(x, µ = 0, σ = 0.5) + 0.7G(x, µ = 2, σ = 0.5),

G(x, µ, σ) =
1√
2πσ

e−
1

2σ2
(x−µ)2 .

(4.8)

−2 −1 0 1 2 3 4

x

0.0

0.1

0.2

0.3

0.4

0.5

w
ei

gh
ts

Figure 4.2: Plot of the camel function. This distribution will be the central toy example
for further applications.

After obtaining one million points distributed by this function, we can try to reproduce
them with our neural network.
First we have to choose the way we sample the noise {r}. The noise sampling for the
generator has an impact on our generated data. It is reasonable to sample gaussian dis-
tributed noise if we want to generate a gaussian-like distribution as well as it is reasonable

21

4. Generative adversarial networks

to sample uniformly distributed values as noise to generate a rectangle-like distribution,
i.e. we choose gaussian noise for the camel function.
As an activation function in the hidden layers of the generator we choose the ELU-
function. A major advantage of the ELU function is the already exponential shape. It
is again obvious that this fits our problem pretty well, since we want to obtain an expo-
nential shape (sum of two Gaussians). For the discriminator we choose the LeakyReLU
in the hidden layers and the sigmoid in the output layer as activation functions. As was
mentioned before, the sigmoid is necessary to make sure that the discriminator returns
only values in [0, 1].
Another important aspect is the training ratio between discriminator and generator. In
this low-dimensional example, the generator has the easier job to do, so the discriminator
can be tricked easily. To prevent this from happening, we train the discriminator more
often than the generator, which leads to better and more stable results. In our case we
choose a training ratio of 4 : 1, since we got good results with this setting.
We can now set up the networks by choosing different numbers of layers, units, learning
rates and learning decays. For a neural network with 128 units in four hidden layers we
get the reproduction shown in figure 4.3 after 800 training epochs.

0

5000

10000

15000

20000

n
u

m
b

er
of

ev
en

ts

True

GAN

−2 −1 0 1 2 3 4

x

0.8

1.0

1.2

T
ru

e
G

A
N

Figure 4.3: True and generated version of a camel distribution without weights. Their
similarity is shown by dividing the distributions bin-wise in the lower half of
the picture.

In the upper plot we see the "true distribution" and the distribution generated by our
neural network. In the lower plot the similarity between these distributions is shown by
dividing them. Since these values are close to one most of the time, we can say that

22

4. Generative adversarial networks

we get a good reproduction. The biggest problems of the ratio plot occur at the edges,
where only a few data points are in each bin. We will come back to this later when we
are going to calculate unweighting efficiencies.

4.3. Treating weighted data with GANs
To get unweighted data with our neural network, we change the loss function of the
generator and the discriminator. Assuming we have {xT } as input data with weights
{wT } (which must not be confused with the weights in the neural network). We want to
include these weights in our training procedure, to be precise, in the loss function. For
high weights we want to gain a high importance in the loss function; for low weights a
low importance. Therefore we define a relative weight for every datapoint, i.e.

wrel = wT /wT,max , (4.9)

with wT,max being the maximal weight in {wT }. With this weight we can redefine our
discriminator loss function, so the points with small relative weights have only little
impact

LD,uw := 〈−wrel log(D(x))〉x∼PT + 〈− log(1−D(x))〉x∼PG . (4.10)

We are assuming that the desired weight of the generated data is constantly equal to one.
If we wanted to generate a different weight distribution, we would also have to introduce
weights for the generated data wgen, modifying both loss functions to

LD,uw := 〈−wrel log(D(x))〉x∼PT + 〈−wgen log(1−D(x))〉x∼PG , (4.11)

LG,uw := 〈−wgen log(D(x))〉x∼PG . (4.12)

As an alternative to 4.10 it is also possible to use the weighted mean instead of the
ordinary mean value. In this case we have no changes in LG and for the discriminator
loss we define

LD,uw :=

∑
x∼PT

−wrel log(D(x))∑
x∼PT

wrel
+ 〈− log(1−D(x))〉x∼PG . (4.13)

4.4. Testing the unweighting procedure
To test the unweighting procedure for a one dimensional toy model, we need to generate
some toy data again. We sample uniformly distributed points in the interval [−3, 5] and
give them a weight. This weight is calculated with the "camel function" (equation 4.8).
We can now use this data as input data for our neural network. Again we need to get
a good combination of the hyperparameters, but we can just take the same as for the
classical application of the GAN since we are dealing with a similar problem. So, again
we get a good result for a neural network with 128 units in four layers. As we can see in
figure 4.4, our neural network is able to unweight data.

23

4. Generative adversarial networks

0

500

1000

1500

2000

2500

3000

3500

n
u

m
b

er
o
f

ev
en

ts

True

GAN

−2 −1 0 1 2 3 4

x

0.8

1.0

1.2

T
ru

e
G

A
N

Figure 4.4: True and unweighted camel distribution function. Again the biggest uncer-
tainties occur at the edges where only a few events are in each bin.

−2 −1 0 1 2 3 4

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

w
ei

gh
ts

0

500

1000

1500

2000

n
u

m
b

er
of

ev
en

ts

True

GAN

−2 −1 0 1 2 3 4

x

0.8

1.0

1.2

T
ru

e
G

A
N

Figure 4.5: The left plot shows the weight distribution of our input data with the reduced
camel function. The right plot shows the true and unweighted distribution
after sampling the x values of the true data according to a Gaussian. The
information is therefore encoded in both the distribution and the weights.

Realistic unweighting procedures
We have now shown that our neural network is able to reproduce a distribution indepen-
dent of whether the information is encoded in the distribution itself or in an additional
weight. We can now also test if the neural network is able to adapt information which is

24

4. Generative adversarial networks

encoded in both of it as this will be the case in later physical applications. Therefore, we
sample Gaussian distributed points (µ = 0, σ = 1) and weight it with a "reduced camel
function" to obtain a camel shape. With equation 4.8 we define this function as

Cred(x) =
C(x)

G(x, µ = 0, σ = 1)
. (4.14)

The reduced camel function is shown on the left of figure 4.5. If we now unweight
this distribution, we can see that the neural network has no preferences whether the
information is encoded in the weights or the distribution (figure 4.5, right).

Overfitting
If we consider this neural network, we do not usually have to worry about overfitting.
Overfitting in the discriminator is unlikely to happen since the input for the discriminator
is always new data out of the generator, so the discriminator can only overfit concerning
on the true data. Finally, the discriminator would not gain anything from this overfitting
because it has to compare the true data with the generated data afterwards.
Overfitting in the generator is also unlikely to happen since the generator only generates
unweighted data. This unweighted data can -in our setup of the loss function- not be
distributed as the input data because the information is also encoded in the weights.
Therefore, it is also for the generator highly unlikely to overfit.

Now that we have a properly working neural network for our unweighting procedure, we
need to find a way to tell how well our neural network is working to compare it to other
unweighting methods.

25

5. Unweighting efficiency
5.1. Implementing an efficiency
A standard unweighting technique is the hit-or-miss method, which was already men-
tioned in section 2.5. In detail this method consists of the following steps:

1. Generate data points {x} in a given Volume V ⊂ Rn with weights s(x).

2. Determine maximal weight smax.

3. Generate a random point xR in V and calculate the relative weight

srel =
s(xR)

smax
. (5.1)

4. Generate a random number R in [0, 1] and compare it to the relative weight srel:

• srel > R: "hit"

• srel < R: "miss"

5. Only keep the "hit" events.

After this unweighting procedure one can simply divide the number of hits by the total
number of points to get an unweighting efficiency. As one can imagine, this procedure is
highly inefficient, leading to a massive data loss.
In our case we want to introduce a concept of an efficiency based on the same idea as the
technique above. The whole neural network itself can be seen as one mapping function f
of the noise {r} to the unweighted distribution {x}. To calculate an efficiency as above,
we need to determine the distribution function of the generator. One useful tool to obtain
this is the following Lemma.

Lemma 1. Let A, B be n-dimensional sets linked by a mapping function f :A→ B and
gA(r) a probability density function on set A with r ∈ A. The probability density qB(x)
with x ∈ B resulting if r is sampled in A according to gA and mapped to B is given by

qB(f(r)) =
gA(r)

|∂f(r)/∂r| . (5.2)

Proof. We can see that the subspace [ri, ri+dri]n is mapped to the subspace [fi(r), fi(r)+
dxi]n by the function f . The volume of the first subspace is dVr = dr1dr2...drn, the
volume of the second subspace is dVx = dx1dx2...dxn. The total probability over the
first subspace in A must be equal to the total probability over the second subspace in B,
i.e.

Ptot = gA(r)dVr = qB(x)dVx. (5.3)

Now we can replace x with f(r) and solve the equation according to qB(f(r))

qB(f(r)) =
gA(r)

dVx/dVr
. (5.4)

26

5. Unweighting efficiency

The connection between the two sets A and B is per definition given by the coordinate
transformation which affects the infinitesimal shifts by multiplying the Jacobi determi-
nant |∂f(r)/∂r| of the transformation function f , i.e.

dx1dx2...dxn = |∂f(r)/∂r|dr1dr2...drn ⇔ dVx
dVr

= |∂f(r)/∂r|. (5.5)

Therefore, we can conclude

qB(f(r)) =
gA(r)

|∂f(r)/∂r| . (5.6)

This means that if we can get the Jacobian of our generator mapping function f , we can
calculate our generative distribution q(x) from the noise distribution g(r). In our case the
noise distribution g(r) is a Gaussian with the parameters µ = 0 and σ = 1. To obtain the
generator distribution q(x), we generate an unweighted camel distribution x = f(r) from
random numbers {r} with the generator. Using the Jacobian of the generator mapping,
we are now able to calculate the generative distribution according to Lemma 1 as

q(x(r)) =
g(r)

|∂f(r)/∂r| =
G(r, µ = 0, σ = 1)

|∂f(r)/∂r| . (5.7)

Now we can also calculate the desired unweighted distribution p(x), according to the
camel function (equation 4.8) as

p(x) = C(x) = 0.3G(x, µ = 0, σ = 0.5) + 0.7G(x, µ = 2, σ = 0.5). (5.8)

From these distributions we define an array of values by dividing them

s(x) = p(x)/q(x). (5.9)

The closer the two distributions are together, the better our neural network unweighting
algorithm works; in a perfect case s(x) would be equal to one. We divide p by q because
we want the generating distribution q never to undershoot the distribution p significantly
since it is easier to cut an overshooting than producing additional events. We can in-
terpret the array s as the resulting weight array after our unweighting procedure. In a
perfect case, all weights would be constantly one. In reality, we always have values very
close to one, so we consider the data to be unweighted. In the following we will refer to s
as "weight distribution after the unweighting procedure." Nevertheless, we still consider
the generated data as unweighted since s is just a tool to estimate the quality of our
unweighting procedure.
Now we want to apply the hit-or-miss method to this distribution: we determine the
maximum of the function s(x), sample a random vector xR from our given n dimen-
sional subspace and sample another random number R in the interval [0,1]. Now we
continue as described above with the hit-or-miss method and obtain an efficiency.
This method is only possible if the whole information is encoded in the weights. For
a "hybrid" as discussed in section 4.4, we need to modify p by multiplying with the
distribution of the x values with which we sampled our true data.

27

5. Unweighting efficiency

5.2. Testing the efficiency implementation
We can now calculate the unweighting efficiency for the camel function. Our expectation
is a high efficiency because we got good fitting distributions after the unweighting (see
figure 4.4).
However, we get an unweighting efficiency between 40% and 50% over several runs, which
is lower than expected. The reason for that is obvious if we take a look at the distributions
p and q in figure 5.1.

0.0

0.1

0.2

0.3

0.4

0.5

d
is

tr
ib

u
ti

on
s

True

GAN

−3 −2 −1 0 1 2 3 4 5

x

0

1

2

3

T
ru

e
G

A
N

Figure 5.1: Desired distribution function p (labelled as "True") and generated distribu-
tion function q (labelled as "GAN"). In the upper plot both distributions are
shown; in the lower plot the similarity between them is shown by dividing
them. The curves are smooth because p and q are functions, not distributions.

Although the distributions look very similar, there are problems at the edges. There, the
weight array s = p/q reaches values up to smax = 2.5. Since the efficiency calculation
with the hit-or-miss method is strongly connected with this maximum, we get a low
unweighting efficiency.
To solve this problem we need to cut off the edges by restricting the input noise {r}
of the neural network. Until now, we have sampled this noise according to a gaussian
distribution with the parameters µ = 0 and σ = 1. Now we will again sample according
to this gaussian distribution, but this time with the restriction that every value is in the
interval [µ − 3σ, µ + 3σ]. The mistake we make through this condition is very small,
because statistically speaking 99.73% of the points should be already in the interval
[µ − 3σ, µ + 3σ]. This small adjustment has a huge effect. We now get an unweighting
efficiency of 93%. In figure 5.2 we can see the cut-off at the edges.

28

5. Unweighting efficiency

0.0

0.1

0.2

0.3

0.4

0.5

d
is

tr
ib

u
ti

o
n

s

True

GAN

−3 −2 −1 0 1 2 3 4 5

x

0.8

1.0

1.2

T
ru

e
G

A
N

Figure 5.2: Desired distribution p and generated distribution q with a cut-off at the edges.
The unweighting efficiency has to be higher since the ratio plot is very close
to one.

This simple cut-off leads to a good unweighting efficiency. Nevertheless, we remark that
our unweighting efficiency is an unstable value. For now this problem is easily solved by
cutting of the edges, but later we will not be able to do so, for example if a distribution
has a tail in the center which we cannot cut off. We have to prevent getting a false
impression because of a misleading unweighting efficiency. Therefore, we will (after a
cross check with VEGAS) take a look at the shape of the distribution s itself.

29

6. Cross check with VEGAS
6.1. The VEGAS algorithm
In this section we want to compare our efficiency results to the efficiency when we use
the VEGAS [30] algorithm for unweighting. Therefore, we first take a brief look at the
VEGAS algorithm itself, whose actual purpose is to calculate integrals. For example if
we consider a one-dimensional integral

I =

∫ b

a
f(x) dx. (6.1)

The main idea of VEGAS is to put a uniformly distributed grid in the integration area;
in the one dimensional case we divide the integration interval [a, b] into n bins [31]

x0 = a,

x1 = a+ ∆x0,

...

xn−1 = b−∆xn−1,

xn = b.

(6.2)

At first, we choose the length of the sectors ∆xi = b−a
n to be the same. These sectors

form a grid with n lines (where each line separates two sectors). We can give each line a
value in the interval [0, 1] by dividing the section number with n to

ri = i/n . (6.3)

It is now possible to perform a discrete coordinate transformation [31]

xi → ri, xi = a+ (b− a)
i

n
. (6.4)

The connecting Jacobian is piecewise constant, so we can calculate the integral in our
new coordinate system as ∫ 1

0
f(x(r)) J(r) dr,

with J(r) = Ji = n∆xi,
i

n
< r <

i+ 1

n
.

(6.5)

A simple Monte Carlo estimate with M sampling points ri for the integral is given by

I =
1

M

M∑
i=1

f(x(ri))J(ri). (6.6)

30

6. Cross check with VEGAS

The variance of this integral estimation with M different points is defined [31] as

σ2I :=
1

M

(∫ 1

0
J2(r)f2(r)dr − I2

)
=

1

M

(∫ b

a
J(r(x))f2(x)dx− I2

)
=

1

M

(n∑
i=1

Ji

∫ xi+1

xi

dxf2(x)− I2
)
.

(6.7)

Trivially, this standard deviation is minimized when the following condition is fulfilled
for all i

Ji

∫ xi+1

xi

dxf2(x) = n∆xi

∫ xi+1

xi

dxf2(x) = constant. (6.8)

The VEGAS algorithm is programmed to adjust the grid via the increments ∆xi until
this condition is nearly fulfilled. In the case of a perfectly placed grid with an infinite
number of increments, the Monte Carlo estimate gives us the exact value of the integral.
We want to achieve a tight grid with many sectors where the function comes to a max-
imum and few sectors in regions where the function is close to zero. As an example we
show the binning for the camel function in figure 6.1.

−2 −1 0 1 2 3 4

x

0.0

0.1

0.2

0.3

0.4

0.5

w
ei

gh
ts

Figure 6.1: VEGAS binning for camel function. On the left the camel function is shown
once again to compare it with the plot on the right, the grid that the VEGAS
algorithm applies to the camel function.

6.2. Unweighting with VEGAS
Having set up a VEGAS integrator, we are now also able to unweight data by executing
the following steps [31]:

1. Take the distribution function f (in our case the camel function) as input.

2. Train a VEGAS grid to fit the function f properly and obtain the Jacobian J(r).

3. Generate uniformly distributed points {r} in the interval [0, 1].

31

6. Cross check with VEGAS

4. Obtain xuw from {r} with the grid-mapping.

With the VEGAS algorithm we now have an array of unweighted points which are dis-
tributed according to the input function f . In analogy to our GAN efficiency we calculate
an unweighting efficiency for VEGAS as well. According to Lemma 1, we calculate the
generative distribution q(x) with the Jacobian of the mapping. This leads to a weight
array s in analogy to equation 5.9, with which we can calculate an efficiency according
to the hit-or-miss method

s =
p(x)

q(x(r))
=

f(x)

q(x(r))
=
f(x)

1
J(r)

= f(x) J(r). (6.9)

6.3. Results for the camel function
Now we can apply this VEGAS unweighting algorithm to the camel function. After
some runs we can see that the efficiency gets better until it reaches 93%, but if we go on
training the integrator, the efficiency gets lower again until it stagnates at around 80%.
To understand this, we have to search for the connection between the training and the
improvement/deterioration of the efficiency. The VEGAS integrator is designed to get
a very tight grid in the highs, and a very wide grid in the tails. This means, the longer
we train, the more points are taken away from the tails, which is fine to evaluate the
integral, but bad if we want to get an unweighting efficiency close to one. The problem in
the tails can be seen properly if we plot the ratio of the true and generated data (figure
6.2).

0

1000

2000

3000

n
u

m
b

er
of

ev
en

ts

True

VEGAS

−2 −1 0 1 2 3 4

x

0.8
1.0
1.2

T
ru

e
V

E
G

A
S

Figure 6.2: Desired and unweighted distribution with the VEGAS algorithm. In the lower
plot again the ratio of the distributions.

The crucial point is the undershooting in the tails at the edges. Again, this leads to a
low unweighting efficiency if we apply the hit-or-miss method.

32

6. Cross check with VEGAS

Once more we can see that our defined unweighting efficiency does not necessarily tell
us something about the quality of the unweighting procedure. Instead of focussing on
getting every single weight close to one we should take a look at the weight distribution
in total to get an impression of the unweighting quality.

6.4. Weight distribution after unweighting
Since the unweighting efficiency is not a reliable quantity, we plot the weight distributions
s themselves for our neural network and for VEGAS (figure 6.3). In doing so, we can see
how close we are getting to a constant weight of one.

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100

weights

100

101

102

103

104

105

n
u

m
b

er
of

ev
en

ts

GAN

VEGAS

Figure 6.3: Weight distributions after the unweighting procedure with our neural network
and with VEGAS.

We can conclude that in the one dimensional case VEGAS leads to a much better result
since its weight distribution is tighter around one than the weight distribution of our
neural network.

33

7. Two dimensional toy model
In the last sections we kept referring to the one dimensional camel function. Now we
want to show that for higher dimensions our GAN can still perform a proper unweighting.
This time we also expect a better performance than VEGAS since we are not restricted
to the Cartesian coordinate system. Before getting into this in detail, we first construct
a two dimensional toy example.

7.1. Generating toy data
To produce two dimensional toy data we generate uniformly distributed tupels (x, y) ∈
[0, 1] × [0, 1] and give them a weight. We choose the weight in a way that the points,
which have a distance of r0 ≈ 0.25 to the point (x0, y0) = (0.5, 0.5), have the highest
weights, i.e we want to have a circular distribution of the generated data afterwards. We
get these weights with the function

w2D(x, y) = N2D e
− 1

2σ2
(
√

(x−x0)2+(y−y0)2−r0)2 . (7.1)

In this function σ is the standard deviation and N2D is a normalisation factor, which
we can determine via integration over the R2. For r0 = 0.25 and σ = 0.05 we get
N2D ≈ 5.079. We show the graph of the function in figure 7.1.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0

1

2

3

4

5

Figure 7.1: Surface plot (left) and two dimensional histogram (right) for the two dimen-
sional toy model.

7.2. Unweighting results
We can now try to unweight the two dimensional toy model. As we still have data
with gaussian peaks, we again choose gaussian distributed noise as input. The biggest
difference to the one dimensional case is the choice of the activation function in the hidden
layers of the generator. We choose the ReLU (equation 3.3) instead of the ELU (equation
3.5) function because we are now preparing some runs with thousands of epochs. In long
runs, the training with the ReLU function is more stable than the training with the ELU

34

7. Two dimensional toy model

function. For a network construction with 256 units in eight layers we got good results
for our unweighting procedure as we can see in figure 7.2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15 True

GAN

0

1

2

3

4

5

6

0

1

2

3

4

5

6

−0.5

0.0

0.5

Figure 7.2: Results for the unweighting procedure in the two dimensional case. On the
upper left and right the true and generated data are shown. On the lower
left one can see a ratio plot to see how similar the two distributions are. On
the lower right there is a slice at x = 0.5 to once again show similarities.

The ratio plot in the lower left was calculated as

Value =
GAN− True
GAN + True

. (7.2)

If there are only generated and no true points in one bin, we set the value automatically
to zero to prevent distractions far outside the ring.
In the lower right we plot a slice of the figure at x = 0.5. Here we can see how well the
true and generated data match. We thus get also in the two dimensional case a very
good result for our neural network too.

7.3. Efficiency calculation
The calculated efficiency (see section 5) is not as high as it was for the camel function
because we have a tail in the middle. This tail is slightly undershooted and cannot be cut
of with any σ condition for the input noise because the outer edges are not the problem.

35

7. Two dimensional toy model

Looking at the distribution of p and q in figure 7.3, we can see that our assumption about
the problems arising in the center is correct. Therefore, we have to be satisfied with an
unweighting efficiency of only 45%. Again we can see that our unweighting efficiency is
not the best value for estimating the quality of our unweighting procedure.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15 True

GAN

0

2

4

6

8

10

0

2

4

6

8

10

0.0

0.5

1.0

1.5

Figure 7.3: Desired distribution p of the true data and generated distribution q for the
two dimensional toy model. On the upper left and right the distributions p
and q are shown. On the lower left there is the fraction s = p/q where one
can see that the maximal values are reached in the center of the circle. On
the lower right there is a slice at x = 0.5 of p and q.

7.4. VEGAS unweighting
The VEGAS algorithm in the two dimensional case has some obvious difficulties, which
is why we expect VEGAS to perform a lot worse than our neural network. As we can
see in figure 7.4, getting an optimal grid to approximate the circle is nearly impossible as
we can only use the Cartesian coordinate axes to apply our grid. Therefore, the VEGAS
integration has a lot of areas where the grid is very tight although there is not much
information (for example at (x0, y0) = (0.5, 0.5)).
Now we apply the VEGAS unweighting algorithm. As we expected, the integrator is not
capable of detecting the right shape. We can see in the impact of the applied grid in the
final result in figure 7.5. Instead of the desired circle we get more of a quadratic plot.

36

7. Two dimensional toy model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.4: VEGAS binning for the two dimensional circle. On the left again the two
dimensional toy model; on the right the VEGAS grid where a proper binning
is not possible.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 7.5: Result for the unweighting procedure with VEGAS for the two dimensional
toy model.

Nevertheless, we have an unweighting efficiency of 15% for the VEGAS algorithm. This
shows once more that the efficiency is not a useful value to describe the quality of the
unweighting. We once again have to take a look at the weight distribution.

37

7. Two dimensional toy model

7.5. Weight distributions
Similar to the one dimensional case (section 6.4) we can plot the resulting weight array
s of our neural network and compare it to the weights we obtain with VEGAS (figure
7.6). As expected, we get a gaussian-like result for the neural network and a highly
irregular distribution for VEGAS, according to the unweighted distributions. A plot of
the evolution of the GAN weight distribution with increasing epochs can be found in
appendix A.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

weights

100

101

102

103

104

105

n
u

m
b

er
of

ev
en

ts

GAN

VEGAS

Figure 7.6: Weight distributions of the GAN compared to VEGAS in the two dimen-
sional case. The neural network outperforms VEGAS by far. The VEGAS
distribution was cut off; it would reach up to ten.

We can conclude that our neural network is clearly outperforming VEGAS in the two
dimensional toy model. For higher dimensions the unweighting procedure is still working
very well. An unweighting example of a three dimensional toy model can be found in
appendix A.2.

Finally, having considered a lot of theory and two different toy examples with cross checks
to the VEGAS algorithm, we can conclude that our neural network is in fact capable of
unweighting data and is ready to be applied to a physical process.

38

8. Drell-Yan process
As was already mentioned in the introduction, we want to unweight events generated for
the Drell-Yan process occurring during the scattering of

p+ p̄→ µ− + µ+. (8.1)

First we generate weighted events with SHERPA (Simulation of High Energy Reactions
of PArticles) [32]. We have to apply some cuts to the data because otherwise there
would be disturbances in low energetic regions, coming from photonic scattering. These
disturbances would cause our neural network to concentrate only on the shapes of low
energetic regions and ignore the interesting, high energetic regions. In our case we chose
the restrictions

pT,µ > 25GeV, |ηµ| < 2.5, (8.2)

with the transverse momentum pT,µ and the pseudorapidity ηµ of the outgoing muon.
Since the transverse momentum is cut we can conclude that the invariant mass Mµµ is
also bounded from below

Mµµ > 2 pT,µ,min. (8.3)

Since we are looking at a physical process, we want all outgoing particles to be on on-shell
and momentum conservation to be fulfilled. As on-shell condition in the high relativistic
case we get

Eµ± =
√

(p1
µ±)2 + (p2

µ±)+(p3
µ±)2. (8.4)

Because the incoming particles only carry a momentum in beam direction (p3), the
momentum conservation leads to

p1µ− = −p1µ+ , p2µ− = −p2µ+ . (8.5)

For the true data this is always guaranteed since it is implemented in SHERPA. To make
sure that the generated data also fulfills the conditions, we implement a layer in front
of the output layer, which sets the parameters p1µ+ , p

2
µ+ , Eµ+ and Eµ− according to the

conditions. We can now apply our unweighting procedure to this data and plot some
observables of the process.
The distribution of the transverse momentum pT,µ of the outgoing muons (figure 8.1,
upper left) looks very good, only in the area around the cut (25GeV) some problems
occur. This was to be expected since our neural network is not yet able to resolve such
hard cuts in a better way. The distribution of the invariant mass Mµµ (figure 8.1, upper
right) is slightly too low. In fact, this peak is hard to resolve for GANs in general. One
way to deal with this would be by introducing an MMD (maximum mean discrepancy)
loss [33], which has already been shown in [3]. Nevertheless, we can see the mass of the
Z boson

MZ = (91.1876± 0.0021)GeV [34]. (8.6)

Similar to the transverse momentum, the distribution of the pseudorapidity ηµ of an
outgoing muon (figure 8.1, lower left) looks very good in general. Only in the area of the

39

8. Drell-Yan process

cuts (η = ±2.5) the ratio plot deviates significantly from one.
Since the incoming particles only have a momentum in beam direction, the distribution
of the azimuthal angles φµ of the outgoing muons (figure 8.1, lower right) is nearly
constant. This property is also conserved after our unweighting procedure. In general,
the distributions look all pretty good and we conclude that our neural network can also
deal with a physical process and its restrictions.

0

5

10

15

20

25

30

35

d
σ

d
p T
,µ

[p
b

/G
eV

]

True

GAN

20 25 30 35 40 45 50 55 60

pT,µ [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

0

20

40

60

80

100

d
σ

d
M
µ
µ

[p
b

/G
eV

]

True

GAN

60 70 80 90 100 110 120

Mµµ [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

0

2

4

6

8

10

12

d
σ

d
η µ

[p
b

]

True

GAN

−3 −2 −1 0 1 2 3

ηµ

0.8

1.0

1.2

T
ru

e
G

A
N

0

2

4

6

8

10

d
σ

d
φ
µ

[p
b

]

True

GAN

−π −π2 0
π
2 π

φµ

0.8

1.0

1.2

T
ru

e
G

A
N

Figure 8.1: Plots of observable distributions. On the upper left the transverse momentum
pT,µ of the outgoing muon is shown, on the upper right the invariant mass
Mµµ of the muons. On the lower left there is the pseudorapidity ηµ, on the
lower right the azimuthal angle φµ of the outgoing muons.

40

9. Summary and outlook
The aim of this thesis was to build an unweighting procedure using generative adversar-
ial networks. The weight of the input data was used to change the loss function of the
discriminator to obtain a modified learning process. We were able to show that in low
dimensional toy models our unweighting procedure returned excellent results. In the next
step we compared our neural network with VEGAS, so we had to define an efficiency
first. As it turned out, the efficiency we defined is not the best value to characterize the
quality of the unweighted data, since it overrates problems in the tails of a distribution.
Nevertheless, having plotted the weight distribution, we saw that VEGAS outperforms
our neural network in the one dimensional case, but in higher dimensions our approach
works better. Finally, we showed that it is possible to unweight simulated data for the
Drell-Yan process.

Until now, the whole approach of using GANs to unweight data has been a success, but
there have also been some difficulties. The most obvious problem is the setting of the
hyperparameters since there are a lot of them. Of course, it is possible to have good
guesses and with some experience one can find a good setting quicker. Nevertheless, this
is the most time consuming step of this unweighting procedure.

After figuring out the unweighting process in the physical case, the next step would be
to obtain the weight distribution. The challenge here is to get the desired distribution
p of the unweighted data since we have to extract it from SHERPA. We are currently
working on that.
Another challenge arises if we reconsider the plots in the physical case. We can see that
the cuts in the transvers momentum and the pseudorapidity lead to bad results in these
areas. Solving this problem needs a lot more effort and is another project our group is
currently working on.

41

A. Appendix
A.1. Evolution of the weight distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

weights

100

101

102

103

104

105

n
u

m
b

er
of

ev
en

ts

200

400

1000

4000

8000

Figure A.1: Evolution of the weight distribution after different epochs for the two di-
mensional toy model. One can clearly see that the weight distribution ap-
proximates a gaussian distribution around one and gets thinner during the
training.

42

A. Appendix

A.2. Unweighting of a 3D toy model

0.0 0.2 0.4 0.6 0.8 1.0

r

0

π
4

π
2

3
4π

π

θ

True

0.0 0.2 0.4 0.6 0.8 1.0

r

0

π
4

π
2

3
4π

π

θ

GAN

0.0 0.2 0.4 0.6 0.8 1.0

r

0

π
4

π
2

3
4π

π

θ

True/GAN

0.0 0.2 0.4 0.6 0.8 1.0

r

−π

−π2

0

π
2

π

φ

True

0.0 0.2 0.4 0.6 0.8 1.0

r

−π

−π2

0

π
2

π

φ

GAN

0.0 0.2 0.4 0.6 0.8 1.0

r

−π

−π2

0

π
2

π

φ

True/GAN

0
π
4

π
2

3
4π π

θ

−π

−π2

0

π
2

π

φ

True

0
π
4

π
2

3
4π π

θ

−π

−π2

0

π
2

π

φ

GAN

0
π
4

π
2

3
4π π

θ

−π

−π2

0

π
2

π

φ

True/GAN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.5

1.0

1.5

2.0

2.5

Figure A.2: True and generated distribution for a three dimensional toy model, illus-
trated as distributions of spherical coordinates (with the center shifted to
(0.5, 0.5, 0.5)). Again the unweighting procedure is working well.

The three dimensional toy data is generated from the function

w3D(x, y, z) = N3D e
− 1

2σ2
(
√

(x−x0)2+(y−y0)2+(z−z0)2−r0)2 , (A.1)

with (x0, y0, z0) = (0.5, 0.5, 0.5), r0 = 0.25, σ = 0.05 and the normalisation factor N3D ≈
9.768.

43

A. Appendix

A.3. Additional plots for the Drell-Yan process

10−3

10−2

10−1

100

101

d
σ

d
p T
,µ

[p
b

/G
eV

]

True

GAN

20 25 30 35 40 45 50 55 60

pT,µ [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

100

101

102

d
σ

d
M
µ
µ

[p
b

/G
eV

]

True

GAN

60 70 80 90 100 110 120

Mµµ [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

0

5

10

15

20

25

d
σ

d
E
µ
−

[p
b

/G
eV

]

True

GAN

0 20 40 60 80 100 120

Eµ− [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

0

5

10

15

20

25

d
σ

d
E
µ

+
[p

b
/G

eV
]

True

GAN

0 20 40 60 80 100 120

Eµ+ [GeV]

0.8

1.0

1.2

T
ru

e
G

A
N

Figure A.3: Plots of observable distributions. On the upper left and right again the
distributions of the transverse momentum pT,µ and the invariant mass Mµµ

are shown, but with a logarithmic scale. On the lower left there is the energy
Eµ− of the outgoing muons, on the lower right the energy Eµ− of the outgoing
antimuons.

44

References
[1] Plehn, T. (2015). Lectures on LHC Physics.

Springer. 2nd edition.

[2] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014) Generative Adversarial Networks.
Retrieved from https://arxiv.org/abs/1406.2661

[3] Butter, A., Plehn, T., & Winterhalder, R. (2019). How to GAN LHC Events.
SciPost Physics, 7(6). https://doi.org/10.21468/SciPostPhys.7.6.075

[4] Butter, A., Plehn, T., & Winterhalder, R. (2019). How to GAN Event Subtraction.
Retrieved from https://arxiv.org/abs/1912.08824

[5] Bellagente, M., Butter, A., Kasieczka, G., Plehn, T., & Winterhalder, R. (2019).
How to GAN away Detector Effects.
Retrieved from http://arxiv.org/abs/1912.00477

[6] Peskin, M.E., Schroeder, D.V. (1995). An Introduction to Quantum Field Theory.
Avalon Publishing

[7] Drell, S., Yan, T.-M. (2014). The Parton Model and its Applications.
Retrieved from https://arxiv.org/abs/1409.0051

[8] Wu-Ki, T. (2009). Bjorken scaling.
Scholarpedia, 4(3):7412

[9] Dokshitzer, Y.L. (1977). Calculation of the Structure Functions for Deep Inelastic
Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromody-
namics.
Sov.Phys.JETP, 46:641–653

[10] Placakyte, R. (2011). Parton Distribution Functions.
Retrieved from https://arxiv.org/abs/1111.5452

[11] Harland-Lang, L.A., Martin, A.D., Motylinski, P., Thorne, R.S. (2011). Parton
distributions in the LHC era: MMHT 2014 PDFs.
Retrieved from https://arxiv.org/abs/1412.3989

[12] Sahoo, H. (2016). Relativistic Kinematics.
Retrieved from https://arxiv.org/abs/1604.02651

[13] Drell, S., Yan, T.-M. (1970). Massive Lepton Pair Production in Hadron-Hadron
Collisions at High-Energies.
Retrieved from https://inspirehep.net/literature/60911

[14] Ledwig, O. (2017). Next-to-leading order QCD corrections to the Drell-Yan process.
Master thesis, WWU Münster

45

References

[15] UA1 Collaboration, CERN, Arnison, G. et al (1983). Experimental observation of
isolated large transverse energy electrons with associated missing energy at

√
s = 540

GeV.
Phys. Lett. B122, 103

[16] UA2 collaboration, Banner, G. et al (1983). Observation of single isolated electrons
of high transverse momentum in events with missing transverse energy at the CERN
p̄p collider.
Phys. Lett. B122 476

[17] CDF Collaboration, Abe, F. et al. (1995). Observation of Top Quark Production in
p̄p Collisions with the Collider Detector at Fermilab
Phys. Rev. Lett. 74, 2626

[18] Purkait, N. (2019). Hands-On Neural Networks with Keras.
Packt Publishing.

[19] Loy, J. (2019). Neural Network Projects with Python.
Packt Publishing.

[20] Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning.
Retrieved from http://arxiv.org/abs/1811.03378

[21] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.
MIT Press

[22] Choi, D., Shallue, C.J., Nado, Z., Lee, J., Maddison, C.J., & Dahl, G.E. (2019). On
Empirical Comparisons of Optimizers for Deep Learning.
Retrieved from http://arxiv.org/abs/1910.05446

[23] Qian, N. (1999). On the momentum term in gradient descent learning algorithms.
Retrieved from https://doi.org/10.1016/S0893-6080(98)00116-6

[24] Kingma, D.P., & Ba, J.L. (2014). Adam: A method for stochastic optimization.
Retrieved from https://arxiv.org/abs/1412.6980

[25] Lawrence, S., & Giles, C.L. (2000). Overfitting and Neural Networks: Conjugate
Gradient and Backpropagation.
Retrieved from https://ieeexplore.ieee.org/abstract/document/857823

[26] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
Retrieved from http://arxiv.org/abs/1207.0580

[27] Song, H., Kim, M., Park, D., & Lee, J.-G. (2019). How Does Early Stopping Help
Generalization against Label Noise?
Retrieved from http://arxiv.org/abs/1911.08059

46

References

[28] Roth, K., Lucchi, A., Nowozin, S., Hofmann, T. (2017). Stabilizing Training of
Generative Adversarial Networks through Regularization.
Retrieved from https://arxiv.org/abs/1705.09367

[29] Arjovsky, M., Chintala, S., Bottou, L. (2017). Wasserstein GAN.
Retrieved from https://arxiv.org/abs/1701.07875

[30] Lepage, G.P. (1980). VEGAS-An adaptive multi-dimensional integration program.
Retrieved from https://cds.cern.ch/record/123074/files/clns-447.pdf

[31] Lepage, G.P. (2020). vegas Documentation for Python.
Retrieved from https://vegas.readthedocs.io/en/latest/index.html

[32] Freeman, P., Doe, S., Siemiginowska, A. (2001). Sherpa: a mission-independent data
analysis application.
Proc. SPIE 4477, Astronomical Data Analysis.

[33] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., & Smola, A.J. (2008). A
Kernel Method for the Two-Sample Problem.
Retrieved from https://arxiv.org/abs/0805.2368

[34] Tanabashi, M. et al. (2018). Review of Particle Physics.
Physical Review D. 98 (3): 030001.

47

Danksagung

Abschließend möchte ich mich bei allen bedanken, die mich während dieser Bachelorar-
beit unterstützt haben.
Zunächst gilt mein Dank Tilman Plehn und Anja Butter, für die Möglichkeit in dieser
Gruppe meine Bachelorarbeit zu schreiben, obwohl ich wegen der Coronapandemie ledig-
lich online betreut werden konnte. Danke auch für das sehr interessante Thema und die
vielen hilfreichen Gespräche, wenn es darum ging, was der nächste sinnvolle Schritt ist.
Ebenso bedanken möchte ich mich bei Ramon Winterhalder, der immer für alle meine
Fragen und Probleme ein offenes Ohr hatte und mich wirklich tatkräftig unterstützt hat.
Es hat großen Spaß gemacht an dem Projekt zusammen zu arbeiten!
Des Weiteren gilt mein Dank Timo Janssen, der uns bezüglich VEGAS und SHERPA
geholfen hat.
Schlussendlich will ich mich noch bei all meinen Freunden bedanken, die Korrektur ge-
lesen haben, sowie bei meiner Familie für die stetige Unterstützung während meines
gesamten Studiums.

48

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 21.06.2020,

Mathias Backes

49

