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Mono-X-Signale aus Endzuständen:

Mono-X-Prozesse bieten vielversprechende Signale für Suchen nach dunkler Ma-
terie am LHC. In dieser Arbeit untersuchen wir systematisch Mono-X-Signale aus
Zerfällen in Endzuständen. Zu diesem Zweck betrachten wir das MSSM und das
NMSSM als Modelle für erweiterte Dunkle-Materie-Sektoren. Wir untersuchen
Mono-Z-, Mono-W - und Mono-Higgs-Signale mit Fokus darauf, wie die zu er-
wartenden LHC-Raten durch Produktion und Zerfall schwererer Zustände im dun-
klen Sektor gesteigert werden können. Im MSSM schränkt die Kombination aus
Relic-Density und Limits aus direkter Detektion unsere Erwartungen für Mono-
Z-, Mono-W - und Mono-Higgs-Signale am LHC stark ein. Diese Limits werden
jedoch größtenteils irrelevant, sobald wir zusätzliche, leichte NMSSM-Mediatoren
miteinbeziehen. Darüber hinaus motivieren die Limits aus direkter Detektion
Suchen nach Mono-W -Paaren und Mono-Higgs-Paaren, um deren gewöhnliche
Mono-X-Gegenstücke zu komplementieren.

Mono-X Signals from Final States:

Mono-X processes provide promising signals for dark matter searches at the LHC.
In this thesis, we systematically study mono-X signals from final state decays.
To this end, we use the MSSM and NMSSM as models for extended dark matter
sectors. We study mono-Z, mono-W , and mono-Higgs signals, focusing on how
expected LHC rates are enhanced by the production and decay of heavier states in
the dark sector. In the MSSM, the combination of relic density and direct detec-
tion constraints strongly limits our LHC expectations for mono-Z, mono-W , and
mono-Higgs signals. However, these constraints become largely irrelevant once we
include additional, light NMSSM mediators. Furthermore, direct detection limits
motivate searches for mono-W pairs and mono-Higgs pairs to complement their
usual mono-X counterparts.
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1 Introduction

The search for dark matter is one of the central challenges in fundamental physics
today. Since Fritz Zwicky’s observations of the Coma Cluster in the 1930s [1], evi-
dence has been accumulating that luminous matter can only account for a small part
of the gravitation holding galaxies and galaxy clusters together [2]. The evidence
today favors particle dark matter as the solution to this problem [3]. Furthermore,
no particle in the Standard Model has the required properties [4]. Hence, dark mat-
ter is considered observational evidence for particle physics beyond the Standard
Model. However, the exact nature of these particles and the new physics they are
embedded in remain elusive. Therefore, the field is driven by a broad program of
complementary experiments, covering direct, indirect, and collider searches. At the
center of the latter is the LHC, where dark matter could manifest itself as missing
transverse energy.
A promising class of dark matter searches at the LHC study mono-X signals [5].

These result from the production of dark matter together with visible particles,
which can be jets [6–9], photons [10, 11], W [12–14], Z [15–21], or Higgs bosons [22–
25]. These signals are usually motivated by effective field theory arguments. Al-
ternatively, one can classify mono-X processes by topology and, thus, divide them
into initial state radiation and final state decays. In the former, dark matter recoils
against a visible X that is radiated from initial state quarks or gluons. In the latter,
the mono-X signal stems from the decay of heavier states that are produced on-shell.
In this thesis, we study mono-X signals from final state decays using the MSSM

and NMSSM as frameworks for WIMP dark matter [26–30]. Supersymmetry is still
one of the best-motivated directions for physics beyond the Standard Model and
provides a good dark matter candidate in the form of the lightest neutralino [31, 32].
Moreover, the electroweakino sector of the (N)MSSM encompasses singlets, doublets,
and triplets under SU(2)L. The mixing between these different representations gives
rise to a rich dark matter phenomenology, embedded in a UV-complete model.
This thesis is structured as follows. In Chapter 2, we briefly review the evidence for

dark matter, the thermal freeze-out of WIMPs, and the different types of searches
for WIMP dark matter. Chapter 3 introduces the MSSM and NMSSM as dark
matter frameworks. In Chapter 4, we study mono-Z, mono-W , and mono-Higgs
processes from the decay of neutralinos and charginos. We examine how the combi-
nation of relic density and direct detection constraints cut into our expectations for
these processes at the LHC. Moreover, these limits lead us to consider mono-W -pair
and mono-Higgs-pair processes, which rely on the production of pairs of heavier
neutralino and chargino states. In Chapter 5, we reconsider mono-Z and mono-
Higgs pairs in the NMSSM, making use of the additional scalar and pseudoscalar
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mediators, which allow us to largely decouple LHC expectations from relic density
and direct detection constraints. Finally, in Chapter 6, we present a summary and
conclusions.
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2 Dark matter

In this chapter, we will begin by briefly summarizing the evidence for dark matter.
We will then focus on weakly interacting massive particles (WIMPs) and their freeze-
out in the early universe. Finally, we will present an overview of the different ways
of searching for WIMP dark matter.

2.1 Evidence for dark matter

Since the first observations pointing towards the existence of dark matter in the
1930s, a great amount of evidence has accumulated across a large range of scales.
The aim of the following list is not completeness, but to highlight some of the most
important pieces of evidence. A comprehensive overview can be found in Ref. [3, 33].

Rotation curves

Stars in spiral galaxies rotate around the galactic center in approximately circular
orbits, where the gravitational attraction is balanced against the centrifugal force,
i.e.

v2

r
=
GM(r)

r2
⇔ v =

√
GM(r)

r
, (2.1)

whereM(r) is the total mass within radius r, assuming a spherical system. v denotes
the circular velocity. Taking only the luminous matter composed of gas and stars
into account, one would therefore expect the velocity to decrease as v ∼ 1/

√
r in the

outer region of the galaxy. However, Doppler shift measurements using the 21-cm
line of hydrogen instead show rotation velocities that are approximately constant
with respect to r far away from the galactic core [34]. This observation can be
explained by the existence of a large spherical halo of dark matter around the disk
of luminous matter [4].

Galaxy clusters and virial theorem

Similarly, it is possible to infer the existence of dark matter from the dynamics of
galaxies within a cluster. In such a system of gravitationally interacting objects the
virial theorem takes the form [33]

〈T 〉 = −〈U〉
2

(2.2)
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with 〈T 〉 denoting the average kinetic energy and 〈U〉 the average potential energy.
Using the above relation, it is possible to deduce the mass of a galaxy cluster by
measuring the radial velocities of the constituent galaxies. The first measurement
of this kind, which was, historically, the first valid measurement pointing towards
dark matter, was carried out by Fritz Zwicky in 1933 [1]. By applying the virial
theorem to the Coma Cluster he found the total mass to be 160 times larger than
what could be accounted for by luminous matter. This value has been revised later,
but his conclusion that the majority of the mass in galaxy clusters is provided by
non-luminous matter remains valid [35–37].

Merging galaxy clusters

Figure 2.1: Image of the “bullet” cluster 1E0657-558. The colored map is an X-ray
image of the merging galaxy clusters. The green contours indicate the
mass distribution reconstructed from weak lensing data. Figure from
Ref. [38].

Further evidence for dark matter stems from observations of collisions of par-
ticular galaxy clusters, with the cluster merger 1E0657-558 involving the so-called
bullet cluster as the most prominent example [38]. A central tool that is needed
for these and other dark matter related observations is gravitational lensing [39].
Since light moves along geodesics of spacetime, its path is bent by massive objects
acting as lenses between source and observer. Hence, it is possible to study the
distribution of matter through lensing effects, which are commonly divided into
three categories: Microlensing changes only the apparent brightness of an observed
object. Weak lensing deflects light by a small angle and, like microlensing, relies
on statistical analyses [40]. Finally, strong lensing [41] involves large deflections,
which can also lead to multiple images if there is more than one geodesic connecting
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source and observer. Weak lensing studies in particular have become an important
tool to map non-luminous matter [40, 42]. For the bullet cluster, comparing X-ray
mappings to gravitational lensing data, as illustrated in Fig. 2.1, shows that the
centers of total mass are displaced with respect to the luminous matter distribu-
tion. This observation is readily explained assuming dark matter with relatively
weak self-interaction [43]. While the gas, which provides most of the luminous
matter, is decelerated through electromagnetic interactions, the dark matter moves
ballistically. The resulting separation between luminous matter and the centers of
gravitation is particularly difficult to reconcile with alternatives to dark matter, like
modified-gravity theories [44].

Cosmic microwave background

The cosmic microwave background (CMB) [45, 46] consists of photons emitted at the
end of recombination at T ≈ 0.1 eV, when almost all free electrons had combined
with nuclei, making the universe transparent to light. Red-shifted by the expan-
sion of the universe, the CMB photons today form an almost perfect black body
spectrum of temperature T = 2.7 K, with small anisotropies of order δT

T
∼ 10−5,

which have been measured by COBE [47], WMAP [48] and PLANCK [49]. Before
recombination, overdensities of dark matter formed gravitational wells pulling in the
tightly coupled baryon-photon fluid. The radiation pressure acted against the gravi-
tational pull, causing the baryon-photon fluid to oscillate in the wells. The resulting
tower of acoustic oscillation modes appears as peaks in the CMB power spectrum.
Dark matter and baryon density affect both the height and the position of these
peaks [49]. Fitting the parameters of the ΛCDM model to the power spectrum, one
can obtain a measurement of the dark matter relic density. The currently best result
is Ωχh

2 = 0.1186± 0.002 [49], where Ωχ denotes the ratio of the DM density to the
critical density [50], and h = H0/(100 km s−1 Mpc−1), with the Hubble parameter
H0.

Structure formation

Collaborations like the Virgo Consortium simulate the formation of structures within
the ΛCDM model of cosmology [51]. The large-scale structures predicted by such
simulations assuming cold dark matter agree well with observations. In contrast, the
observed structures could not have formed in a medium of purely baryonic matter.
In particular, density perturbations could only grow in the matter-dominated epoch,
which sets on earlier in the presence of dark matter [52]. Hence, the existence of old
galaxies provides evidence for dark matter [4].

2.2 Candidates

The observations summarized above provide strong evidence for the existence of dark
matter. An alternative consists in modifying the theory of gravity. A classic exam-
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ple for such an approach is Modified Newtonian Dynamics (MOND) [53]. However,
it is difficult to embed MOND in a complete, relativistic theory [53]. Furthermore,
while modified-gravity explanations can accommodate parts of the evidence for DM,
in particular rotation curves, they so far fail to explain the whole range of evidence
including, for example, the CMB and structure formation, without introducing any
dark matter [54]. Hence, the set of observations as a whole points towards the
existence of particle dark matter. Such dark matter particles are required to be
electrically neutral, or at least to interact only very weakly with photons. Further-
more, they need to be stable on cosmological time scales. The only Standard Model
particles fulfilling these requirements are neutrinos. However, studies of structure
formation indicate that most of the dark matter is “cold”, i.e. non-relativistic by the
time of galaxy formation. The upper bound on the contribution of neutrinos to the
relic dark matter abundance is given by [55]

Ωνh
2 ≤ 0.0062 95% CL. (2.3)

Therefore, physics beyond the Standard Model (BSM) is necessary to provide a
candidate for particle dark matter. An attractive type of candidate are weakly
interacting massive particles (WIMPs). Such particles with masses not too far above
the weak scale naturally arise e.g. in supersymmetric theories if they attempt to solve
the hierarchy problem. We will focus on WIMP dark matter throughout this work.
Alternative DM candidates are, among others, axions [56], which were originally
proposed to solve the strong CP problem of QCD [57, 58], sterile neutrinos [59],
and primordial black holes that formed before nucleosynthesis [60]. However, among
these candidates, WIMPs are particularly attractive because they can naturally give
rise to the correct dark matter abundance without fine-tuning. This so called “WIMP
miracle” will be the subject of the next section.

2.3 Thermal freeze-out

The central measurement with respect to dark matter is its relic abundance Ωχh
2

in the universe today, cf. Sec. 2.1. According to the usual freeze-out paradigm
for WIMP dark matter, the value of the relic abundance is determined by DM
annihilations in the early universe that freeze out at a certain point in the thermal
evolution of the universe.

2.3.1 WIMP miracle

One of the most compelling arguments for WIMP dark matter is the theoretical
observation that thermal freeze-out of WIMPs predicts a relic abundance of dark
matter close to the observed value. This fact is commonly referred to as the “WIMP
miracle”. The aim of this section is to highlight the main steps of the WIMP
freeze-out calculation and the physics underlying it. Further details can be found in
Ref. [52, 61, 50]. The derivation presented here follows Ref. [61, 50].
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At early time and high temperature T � mχ, the WIMP is in close contact with
the thermal plasma and thus in thermal equilibrium. In the following we assume
that equilibrium is maintained through a 2-to-2 process

χχ̄↔ ff̄ (2.4)

through which dark matter can annihilate into a pair of SM particles ff̄ or be cre-
ated from them. These SM states are assumed to remain in thermal equilibrium
throughout the DM freeze-out. Furthermore, we assume no initial asymmetry be-
tween χ and χ̄, i.e. nχ = nχ̄. Note that χ and χ̄ may also be the same particle, as
is the case for neutralinos, cf. Sec. 3.2. Hence, we will in the following refer to the
annihilating DM pair as χχ rather than χχ̄.
As the temperature decreases to T ∼ mχ, DM production becomes suppressed,

while DM annihilation is reducing the DM number density, which, thus, becomes
exponentially Boltzmann-suppressed. Finally, at temperature Tf the reaction rate
Γ for the process Eq. (2.4) drops below the Hubble scale, i.e.

Γ = σχχvnχ . H, (2.5)

and the dark matter freezes out. Here, σχχ denotes the cross section for the annihi-
lation process, Eq. (2.4), and v the DM velocity.
The non-equilibrium evolution of the number density follows the Boltzmann equa-

tion

1

a(t)3

d

dt

(
n(t)a(t)3

)
= −〈σχχ v〉

(
n(t)2 − neq(t)2

)
, (2.6)

where neq denotes the equilibrium number density, which for non-relativistic parti-
cles reads

neq = g

(
mT

2π

)3/2

e−m/T , (2.7)

with g denoting the number of degrees of freedom (d.o.f.) per particle, e.g. g = 2
for Majorana fermions. Note that a3n is proportional to the number of particles in
a comoving volume. The interaction term on the r.h.s. of the Boltzmann equation
features the thermally averaged cross section

〈σχχ→ff v〉 :=

∫
d3pχ,1d

3pχ,2 e
−(Eχ,1+Eχ,2)/T σχχ→ff v∫

d3pχ,1d3pχ,2 e−(Eχ,1+Eχ,2)/T
. (2.8)

In the following we need to use the thermodynamic result that

geff(T )T 3a3 = const., (2.9)

which follows from the conservation of entropy in equilibrium. The effective number
of degrees of freedom geff(T ) is equal to 106.75 if all SM states contribute, and
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decreases as the heavier SM particles decouple. For the following we will assume that
geff(Tf ) ≈ 100 and remains constant during DM freeze-out. According to Eq. (2.9)
we then have a ∼ T−1, which we can use in the Boltzmann equation, Eq. (2.6), to
obtain

T 3 d

dt

(
n(t)

T 3

)
= −〈σχχ v〉

(
n(t)2 − neq(t)2

)
. (2.10)

Defining Y ≡ n/T 3, this takes the form

dY

dt
= −〈σχχ v〉 T 3

(
Y (t)2 − Yeq(t)2

)
. (2.11)

It will be convenient to switch variables to x = mχ/T , with

dx

dt
= − 1

T

dT

dt
x = Hx, (2.12)

using again aT = const. from Eq. (2.9). Furthermore, in the radiation dominated
era,

H2 =
ρr

3M2
Pl

=

(
π
√
geff√
90

T 2

MPl

)2

. (2.13)

In particular, this means that H ∼ x−2, and hence

H(x) =
H(x = 1)

x2
. (2.14)

Plugging the above expression into Eq. (2.12) yields

dx

dt
=
H(x = 1)

x
. (2.15)

Combining Eq. (2.15) and Eq. (2.11) gives

dY

dx
= − λ

x2

(
Y (x)2 − Yeq(x)2

)
, (2.16)

with the parameter

λ :=
m3
χ〈σv〉(x)

H(x = 1)
=

√
90MPlmχ

π
√
geff

〈σv〉(x). (2.17)

Here, we will focus on s-wave annihilation, for which the leading term contributing
to 〈σv〉(x) is independent of v, i.e.

〈σv〉(x) ≈ 〈σv〉0 . (2.18)
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In this case we can treat λ as constant during the freeze-out process as long as geff
does not change much.
Still, the Boltzmann equation as given in Eq. (2.16) is not analytically solvable.

However, we can use the fact that Yeq(x) ∼ e−x and, therefore, Yeq(x) � Y (x)
during the freeze-out process, where x � 1. Then Eq. (2.16) can be approximated
as

dY

dx
= − λ

x2
Y (x)2. (2.19)

Now, Eq. (2.19 can be solved analytically as long as λ can be treated as constant.
To this end, we assume that one can find a reference point x∞ > xf , where DM
has already decoupled, but the number of d.o.f. is still approximately the same, i.e.
geff(x∞) = geff(xf ). Then, integration from xf to x∞ yields

Y∞∫
Yf

dY
1

Y 2
=

x∞∫
xf

dx

(
− λ

x2

)
, (2.20)

resulting in the condition

1

Yf
− 1

Y∞
= − λ

xf
+

λ

x∞
. (2.21)

Since Y drops quickly during the non-equilibrium evolution, typically Yf � Y∞.
Further, using x∞ � xf , we find

Y∞ ≈
λ

xf
, (2.22)

which expresses the asymptotic value Y∞ through λ and the yet undetermined freeze-
out temperature parameter xf .
The value of xf can be estimated using the freeze-out condition given in Eq. (2.5).

Inserting n from Eq. (2.7), H from Eq. (2.13), and v ≈
√

2T/mχ yields

e−xf ≈ π
5
2

3
√

10

√
geff(Tf )

mχMPlσχχ
. (2.23)

For a weak-scale cross section σχχ one finds

e−xf ≈ 10−12, (2.24)

which translates to

xf ≈ 28. (2.25)
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Figure 2.2: Evolution of the comoving DM number density nχ/s, which is pro-
portional to Y defined in the main text. The onset of freeze-out at
xf = mχ/Tf is indicated by the starting points of the colored curves for
different annihilation cross sections 〈σv〉. The asymptotic value of the
comoving DM number density is proportional to 〈σv〉−1. Figure from
Ref. [62].

The dependence of xf on the annihilation cross section is illustrated in Fig. 2.2.
After freeze-out, the number of WIMPS is conserved. Therefore, the DM number
density nχ(T0) in the universe today is given by

nχ(T0) =
a3
∞

a(T0)3
nχ(T∞) =

geff(T0)

geff(Tf )

T 3
0

T 3
∞
n(T∞) =

geff(T0)

geff(Tf )
T 3

0

xf
λ
, (2.26)

where we used Eq. (2.9) in the second step, as well as the assumption that geff stays
constant during freeze-out. In the last step, we plugged in Y∞ from Eq. (2.22). The
effective number of degrees of freedom today is geff(T0) = 3.91.
Now, we can translate nχ(T0) into the relic abundance Ωχh

2 = ρχ(T0)/ρc(T0) h2.
Here, ρc(T0) = 3M2

PlH
2
0 denotes the critical density. Further, ρχ(T0) = mχnχ(T0),

and h = H0/(100 km s−1 Mpc−1).

Finally, the result for the DM relic abundance reads [3, 61, 50]

Ωχh
2 =

ρχ(T0)

3M2
PlH

2
0

h2 =
mχ

3M2
PlH

2
0

geff(T0)

geff(Tf )
T 3

0 xf
π
√
geff(Tf )√

90MPlmχ

1

〈σv〉 h
2

≈ 0.12
xf
28

10√
geff(Tf )

2 · 10−26cm3/s

〈σv〉 . (2.27)
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This means that a WIMP annihilating with a typical weak-interaction cross sec-
tion can reproduce the observed DM relic abundance as given in Sec. 2.1. Note
that the resulting relic abundance as given in Eq. (2.27) depends on the DM mass
only indirectly through the freeze-out parameter xf and thus only logarithmically.
Therefore, the main parameter determining the relic abundance is the annihilation
cross section. Hence, we find to good approximation Ωχh

2 ∝ 〈σv〉−1, as illustrated
in Fig. 2.2. Further, note that for the inverse dependence of the DM abundance on√
geff it is crucial that geff is roughly constant during freeze-out. This is not necessar-

ily the case if additional degrees of freedom contributing to geff are co-annihilating
with dark matter, as described in Sec. 2.3.2.

In the derivation above, we assumed the annihilation cross section to be indepen-
dent of the DM velocity v, cf. Eq. (2.18). More generally, 〈σχχv〉 can be expanded
in powers of v as

〈σχχv〉 = 〈s0 + s1v
2 +O(v4)〉 . (2.28)

Using terminology from partial wave analysis, so-called s-wave annihilation con-
tributes to both s0 and s1. For p-wave annihilation, s0 vanishes. Hence, in this
case, the leading term in σv is velocity suppressed by v2. Since v2 ∼ T ∼ x−1, the
parameter λ, defined in Eq. (2.17), thus gains an additional dependence on x if DM
annihilates through a p-wave. In this case, one can define λ0 = λx, which is again
constant. Then, Eq. (2.19) can be written as

dY

dx
= − λ0

x2+1
Y (x)2 , (2.29)

which may be solved analogously to the derivation for s-wave processes shown above.
Furthermore, whether DM in a particular model annihilates through s-wave or p-
wave processes depends on the type of DM particle and mediator. A general overview
is given in Tab. 2.1. Since the average DM velocity depends on temperature, a pos-
sible velocity suppression is particularly relevant when comparing DM annihilation
at different times in the history of the universe.

s-channel mediator t-channel mediator
f̄f f̄γ5f f̄γµf f̄γµγ5f f̄f f̄γ5f f̄γµf f̄γµγ5f

Dirac fermion v2 v0 v0 v0 v0 v0 v0 v0

Majorana fermion v2 v0 0 v0 v0 v0 v0 v0

real/complex scalar v0 v0 0/v2 0/v2

Table 2.1: Velocity suppression of the leading term in σv for different types of DM
and couplings to the mediator. Table from Ref. [61].
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2.3.2 Co-annihilation

Furthermore, the simple picture with a single annihilation process, as shown in
Eq. (2.4) can be modified in models with an extended dark sector containing more
than one particle. For example, if, in addition to χ1, a heavier state χ2 exists,
annihilation can proceed through the processes

χ1χ1 → ff̄ , χ1χ2 → ff̄ , χ2χ2 → ff̄ . (2.30)

The prerequisite for co-annihilation is that χ2 is not too much heavier than χ1.
Following Eq. (2.7), the ratio of equilibrium number densities reads

n2,eq

n1,eq

=
g2

g1

(
1 +

∆mχ

mχ1

)3/2

e−∆m/T (2.31)

Hence, for co-annihilation to be relevant, ∆mχ = m2−m1 should not be larger than
m1 by more than about 10% [61]. Otherwise, the state χ2 is already too rare by the
time χ1 freezes out. If the first two processes in Eq. (2.30) dominate, the Boltzmann
equation for n1 takes the form [61]

ṅ1(t) + 3H(t)n1(t) =− 〈σχ1χ1v〉
(
n1(t)2 − n1,eq(t)

2
)

− 〈σχ1χ2v〉 (n1(t)n2(t)− n1,eq(t)n2,eq(t))

≈− 〈σχ1χ1v〉
(
n1(t)2 − n1,eq(t)

2
)

− 〈σχ1χ2v〉
(
n2

1(t)− n1,eq(t)
2
) n2,eq

n1,eq

(2.32)

Inserting Eq. (2.31), this reads

ṅ1(t) + 3H(t)n1(t)

= −
[
〈σχ1χ1v〉+ 〈σχ1χ2v〉

g2

g1

(
1 +

∆mχ

mχ1

)3/2

e−∆mχ/T

] (
n1(t)2 − n1,eq(t)

2
)
.

(2.33)

Thus, the solution to Eq. (2.33) can be related to the results from Sec. (2.3.1) by
the substitution

〈σχχ v〉 → 〈σχ1χ1v〉+ 〈σχ1χ2v〉
g2

g1

(
1 +

∆mχ

mχ1

)3/2

e−∆mχ/T . (2.34)

Finally, it should be noted that many alternative mechanisms that can lead to
the observed DM abundance have been proposed. Scenarios of this kind are, for
example, freeze-in [63] and asymmetric dark matter [64]. However, we will consider
WIMPs with standard freeze-out throughout.
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2.4 Dark matter searches

While we can infer the existence of dark matter from its gravitational effects, as
of now, we have not observed dark matter in a detector or seen it interact non-
gravitationally in the universe today. However, among others, the freeze-out mech-
anism presented in the last section motivates the assumption that dark matter also
interacts non-gravitationally with Standard Model particles. If such interactions
between WIMP DM and SM particles exist, they can be exploited in three different
ways for the three main types of WIMP dark matter searches: direct detection,
indirect detection, and collider searches. In this section, we will summarize the
principles of these searches, focusing on direct detection and LHC searches.

2.4.1 Direct detection

DM direct detection (DD) experiments aim to directly measure the interaction of
DM with ordinary matter, typically in the form of elastic scattering of DM on
nuclei [65]. WIMP masses of mχ ≈ 10 GeV to 10 TeV thereby result in typical
nuclear recoil energies of E ≈ 1 keV to 100 keV [66]. The recoil energy is maximal if
the mass of the nucleusmA approximately matches the DM mass [61]. The following
overview of the physics of direct detection mostly follows Ref. [66].
The interaction rate for DM-nucleus scattering is determined by the DM flux and

the scattering cross section. The differential recoil spectrum reads [67]

dR

dE
(E, t) =

ρ0

mχmA

∫
v f(v, t)

dσ

dE
(E, v) d3v, (2.35)

where ρ0 ≈ 0.3 GeV/cm3 denotes the local DM density, dσ
dE

the differential scattering
cross section, and f(v, t) the DM velocity distribution shifted from the galactic rest
frame to the Earth’s rest frame. In the galactic rest frame, f(v) can be described
by an isotropic Maxwell distribution, i.e. [66]

f(v) =
1√
2πσ

exp

(
−|v|

2

2σ2
v

)
, (2.36)

which is cut off at the galactic escape velocity vesc ≈ 544 km/s [66]. The standard
deviation is given by σv =

√
3/2vc, with vc ≈ 220km/s denoting the local circular

velocity. Hence, DM moves through our galaxy with velocities similar to the rota-
tional velocities of stars. The Earth’s revolution around the sun is responsible for
the time-dependence of the shifted distribution f(v, t). Thus, a possible DM signal
is expected to show an annual modulation of the form [66]

dR

dE
(E, t) ≈ S0(E) + Sm(E) cos

(
2π (t− t0)

T

)
(2.37)

where T is the rotation period of the Earth around the sun and t0 ≈ 150 d the time
at which the WIMP velocity with respect to the Earth’s rest frame is maximal. This
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expected modulation is one feature that distinguishes a potential DM signal from
background.
For DM-nucleon scattering one commonly distinguishes between spin-independent

and spin-dependent interactions, the latter of which are sensitive to the nuclear spin
content. The differential cross section in Eq. (2.35) can be written as the sum [66]

dσ

dE
=

mA

2µ2
Av

2

(
σSI

0 F 2
SI(E) + σSD

0 F 2
SD(E)

)
, (2.38)

with the reduced mass µA of the DM-nucleus system. Here, σSI
0 and σSD

0 are the
spin-independent and the spin-dependent cross sections at zero momentum trans-
fer. These are both weighted by a nuclear form factor, denoted by FSI and FSD,
respectively.
Since spin-independent interactions add up coherently over all protons and neu-

trons in the nucleus, the spin-independent cross section for a nucleus with mass
number A and atomic number Z reads [66]

σSI
0 = σp

µ2
A

µ2
p

[Z fp + (A− Z) fn]2 , (2.39)

where µp stands for the reduced WIMP-nucleon mass, and fp and fn denote the
coupling strengths to the proton and neutron, respectively. If isospin is conserved,
i.e. fp = fn, Eq. (2.39) takes the form

σSI
0 = σp

µ2
A

µ2
p

A2 [fp + fn]2 , (2.40)

which includes an enhancement by the square of the mass number A2. Hence, to
detect spin-independent interactions, heavy nuclei, like Xenon, are preferred.
The spin-dependent cross section, on the other hand, depends on the nucleon

spins and can be expressed as [66]

σSD
0 =

32

π
µ2
A G

2
F [ap 〈Sp〉 + an 〈Sn〉]2

J + 1

J
, (2.41)

with Fermi’s constantGF , the total nuclear spin J , and the effective proton (neutron)
couplings ap,n. Further, 〈Sp,n〉 denote the spin expectation values from protons and
neutrons, respectively. In contrast to the spin-independent case, the spin-dependent
interactions with nucleons are not summed coherently. Therefore, there is no signif-
icant enhancement of the cross section with the mass of the nucleus.
Instead of distinguishing only spin-independent and spin-dependent interactions,

one can also describe the interactions between DM and the nucleus in the framework
of a non-relativistic effective field theory [68].
Overall, the recoil spectrum from Eq. (2.35) assumes an approximately exponen-

tial form [67], i.e.

dR

dE
(E) ≈

(
dR

dE

)
0

F 2(E) exp

(
− E
Ec

)
, (2.42)
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with a characteristic energy scale Ec. Hence, the spectrum is dominated by events
with low recoil energies. In general, for a fixed energy threshold of the detector, the
lower the DM mass, the smaller is the part of the recoil spectrum that the detector is
sensitive to. Due to the exponential form of Eq. (2.42), this means that for low DM
masses detectors are typically only sensitive to a very small fraction of the spectrum,
underlining the need for low-threshold detectors.
Typical rates expected for example for a MSSM neutralino are in the range below

1 event d−1kg−1 [4], which lies far below the typical radioactive background. It is
therefore essential to use extremely radio-pure materials in the experiment and to
shield it well from cosmic rays.
So far, there has been no convincing DM signal from direct detection experiments.

Only the DAMA collaboration has reported a supposed signal, which is claimed to
be consistent with a WIMP of either mχ ≈ 50 GeV and σχp ≈ 7 · 10−6 pb, or
mχ ≈ 6-16 GeV and σχp ≈ 2 ·10−4 pb. However, these options are strongly excluded
by other experiments [69, 70].
In absence of a signal, the different direct detection experiments are currently set-

ting limits on the DM-nucleon interaction cross section. At present, the strongest
limits for DM with masses & 6 GeV stem from liquid noble gas detectors, with
Xenon or Argon as target elements. This type of detector is, for example, employed
by the XENON [69], PandaX [70] and LUX [71] collaborations. These three exper-
iments are all Xenon-based. Furthermore, they are dual phase detectors containing
both a liquid and a gaseous phase. This detector design brings the advantage that
two scintillation signals S1 and S2 can be measured for each event. The primary
scintillation S1 is induced directly by the scattering event, whereas the second, later
scintillation S2 originates from ionization electrons that drift from the liquid into
the gas and are amplified there. The time delay between S1 and S2 makes it possible
to determine the position of the scattering event in the z-direction. Moreover, by
comparing S1 and S2 one can distinguish between nuclear and electronic recoils.
Fig. 2.3 shows current limits from XENON1T, which at the moment provides the

strongest limits on the spin-independent DM-nucleon cross section for DM masses
above 6 GeV, with a minimum of 4.1·10−47 cm2 atmχ = 30 GeV [69]. Towards lower
masses the limits quickly become much weaker due to the energy threshold of the
detector, in combination with the exponential form of the recoil spectrum as given
in Eq. (2.42). The weakening of the limits towards larger masses, on the other hand,
is due to the fact that for higher masses the local DM mass density ρ0 corresponds
to a lower DM number density and, thus, lower scattering rates, cf. Eq. (2.35). The
local abundance of a given DM constituent is also reduced if it comprises only part
of the dark matter and hence does not account for the full relic density. Therefore,
in this case, weaker, rescaled DD limits have to be applied.
In the case of spin-dependent DM-nucleon scattering, one needs to distinguish

between DM-proton and DM-neutron scattering. The currently strongest limits on
the spin-dependent DM-neutron cross section result from the full exposure of the
LUX experiment [71]. The best DM-proton scattering limits, on the other hand,
stem from the PICO-60 experiment [72], which employs a bubble chamber filled
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Figure 2.3: 90% confidence level upper limit on the spin-independent cross sec-
tion σSI from the XENON1T experiment with 1 t×yr exposure. From
Ref. [69].

with C3F8.
Upcoming noble gas detectors, like XENONnT [73], LZ [74] and DARWIN [75],

will yield sensitivity improvements of up to two orders of magnitude compared to
the current capabilities of XENON1T. Thus, DARWIN is expected to eventually
become sensitive to the large, irreducible background from neutrino scattering [75].
This background is commonly referred to as the neutrino floor, since it constitutes a
limit on the sensitivity attainable with the current approach to DM direct detection,
which relies on very low background.
In addition to the ones mentioned above, several other detector designs and ap-

proaches are being pursued. One example are solid state detectors, which are par-
ticularly sensitive to light DM in the GeV range, due to their lower energy threshold
compared to noble gas detectors. Different approaches include for example exploit-
ing ionization electrons from nuclear recoils to measure low-energy nuclear recoils
that are otherwise undetectable [76].
Overall, direct detection experiments aim to conclusively test the WIMP freeze-

out scenario over the next years.

2.4.2 Indirect detection

Another approach is to detect dark matter indirectly through its annihilation prod-
ucts, which can complement direct searches, in particular for large DM mass and
coupling scenarios that direct detection is not sensitive to. In regions of high DM
density, e.g at the centers of galaxies, dark matter may still be annihilating today
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at a sizable rate into particle-antiparticle pairs or photons. Possible annihilation
channels are, for example [61]

χχ→ l+l−

χχ→ qq̄ → pp̄+X

χχ→ τ+τ−, W+W−, bb̄+X → l+l−, pp̄+X ...

χχ→ γγ , (2.43)

where the last annihilation into a pair of photons is only possible at loop level.
Particle-antiparticle pairs are usually searched for through antiparticles, since the
background of e.g. positrons from other astrophysical sources is much lower than for
electrons. Depending on whether the measured annihilation products are directly
pair-produced or radiated off other final state particles, the signal either takes the
form of a monoenergetic line or of a continuous spectrum with a cutoff [61], i.e.

Ee+,γ = mχ or Ee+,γ < mχ . (2.44)

In terms of the discrete or continuous annihilation spectrum
dNe+,γ
dEe+,γ

, the flux of
positrons or photons measured by an observer over the solid angle ∆Ω and along a
particular line of sight is given by [61]

dΦe+,γ

dEe+,γ
=
〈σv〉
8πm2

χ

dNe+,γ

dEe+,γ

∫
∆Ω

dΩ

∫
line of sight

dz ρ2
χ(z). (2.45)

As can be observed from Eq. 2.45, the DM density profile ρχ represents a key
input for indirect detection, which can however not be measured directly. Instead,
one needs to rely on simulation results, which are usually parameterized as NFW,
Einasto or Burkert profiles.
Examples for indirect detection experiments are the Fermi-LAT collaboration [77]

studying photon signals, and AMS02 [78], which investigates the antimatter flux.

2.4.3 Dark matter searches at the LHC

A third way of detecting dark matter lies in its production at colliders, which provide
a controlled environment with many collisions where the kinematics and backgrounds
are better understood than in direct or indirect detection experiments. The sizable
interactions with Standard Model particles that are needed for thermal freeze-out
should allow for the production of WIMPs at the LHC, at least if they interact with
quarks or gluons. However, dark matter itself does not interact with the detector.
Therefore, collider searches need to rely on detecting visible particles produced in
association with dark matter, while the DM particles carry away part of the en-
ergy. At a hadron collider the longitudinal momentum of the partons entering any
particular collision is not known. Instead, the probability that a parton enters the
hard process carrying a fraction x = 0..1 of the proton momentum is parametrized
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by parton distribution functions fi(x), with i = u, d, c, s, g, such that cross sections
take the form

σ =

∫ 1

0

dx1

∫ 1

0

dx2

∑
ij

fi(x1) fj(x2) σ̂ij(x1x2s) , (2.46)

where i, j denote the incoming partons and x1, x2 the momentum fractions they
carry. However, the transverse momenta add to zero. At the LHC dark matter
hence manifests itself as missing transverse energy ET,miss, which has to be recon-
structed from the visible particles that the DM recoils against. These can be jets,
leptons, photons, W , Z or Higgs bosons. Processes where dark matter is produced
in association with one such visible object X, i.e.

pp→ χχ̄ + X , (2.47)

are referred to as mono-X processes [5]. The resulting signature is X + ET,miss.

Experimental signals

A broad program of experimental dark matter searches is carried out by ATLAS and
CMS. As of yet, none of these have yielded a significant excess over the expected
background. In the following we briefly summarize the different types of mono-X
and related signals. This overview follows Ref. [79].

Mono-jet: Mono-jet (jet + ET,miss) [6–9, 80, 81] strictly speaking refers to the
production of DM in association with exactly one high-pT QCD jet. However, in
practice, events with multiple jets are typically also included. The leading back-
grounds are Z(→ νν̄) + jets, W (→ lν) + jets where the lepton is lost, and jet
mismeasurements faking ET,miss. Mono-jet processes usually come with the largest
rates of all mono-X processes, due to the large QCD coupling involved.

Mono-photon: Mono-photon (γ + ET,miss) [10, 11, 82, 83] signals are typically
associated with lower rates than mono-jet. However, mono-photon signals profit
from their very clean final state with one high-pT photon. The background for
this signal is very low and typically stems from detector effects, e.g. electron or jet
misidentification, and beam induced events [79].

Mono-Z: Leptonically decaying mono-Z (Z(→ ll) + ET,miss) [15–20, 84, 85] pro-
vides another clean signal, for which background can be effectively suppressed by
requiring the pT of the leptons to be opposite in azimuthal direction and to be sim-
ilar in magnitude to ET,miss. Further, the invariant mass of the leptons is required
to be similar to mZ . The dominant, irreducible backgrounds stem from di-boson
production, particularly Z(→ νν)Z. Apart from that, hadronically decaying Z
bosons [21, 86] can contribute to the mono-jet rate, if the transverse momentum of
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the Z is sufficiently high. This is the case if mZ/(2pT,Z) . R, where R denotes the
distance parameter of the jet-clustering algorithm.

Mono-W: Mono-W [12–14, 87, 88] gives rise to a mono-lepton signal. Since an
identical signal is produced in the decay of an off-shell W , background suppression
is more difficult than for the mono-Z signal. Nonetheless, mono-W may be an
attractive channel as it is sensitive to differences between the couplings of DM to
up- and down-type quarks [89]. However, some set-ups used in studies to argue that
mono-W rates can be large have been found to violate gauge-invariance [90].

Mono-Higgs: Mono-Higgs [22–25] processes where the Higgs decays into photons
(h(→ γγ) + ET,miss) [91, 92] profit from low background and good invariant-mass
resolution for the photon pair. For the decay h → bb̄ [93, 94], on the other hand,
rejecting the large backgrounds from tt̄ and Z/W + jets is of great importance.
Like for mono-Z and mono-W , the hadronic decay can result in a single fat jet if
mh/(2pT,Z) . R.

DM + tops: In addition to mono-X signatures, it can be attractive to search
for dark matter in the channel tt̄ + ET,miss, if DM couples most strongly to heavy
flavors [95–97]. The strongest limits for this process stem from the semi-leptonic
channel where one of the W bosons from the decay t → bW decays hadronically
while the other decays into leptons. Furthermore, DM production together with a
single top quark has been considered [98–101]. Such a signal must rely on flavor-
changing transitions or b quarks from the initial state.

Invisible Higgs decays: If dark matter couples to the Higgs boson and is lighter
than half the Higgs mass, i.e. mχ < mh/2, the decay h → χχ contributes to the
invisible branching ratio of the Higgs boson. Both ATLAS and CMS are searching for
invisible Higgs decays [102–104]. The most sensitive channel, yielding the strongest
bound of BRh→inv < 24% [105], is vector boson fusion (VBF), in which a Higgs boson
is produced in association with two jets with large ∆ηjj and large invariant mass
mjj [106]. Other, less sensitive channels are associated V h production and gluon
fusion with a jet from initial state radiation. Note that V h production followed by
an invisible V decay is also a contribution to mono-V .

EFTs and simplified models

On the theory side, a number of different approaches to making predictions for mono-
X processes are being pursued. On the one hand, dark matter eventually needs to
be part of a consistent, UV-complete theory. On the other hand, too strong model
assumptions may mean missing important signals. For that reason, DM signatures
are being studied within frameworks that range from the generality of effective field
theories (EFT) to the completeness of full models like the (N)MSSM. Furthermore,
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simplified models attempt to strike a balance between these two approaches. The
structure of the summary presented here follows Ref. [79].

EFTs constitute the most minimal and agnostic approach to dark matter at the
LHC [107, 108]. The underlying assumption is that the DM particle is the only
kinematically accessible new state at the LHC, while other new particles are heavy
enough to always be far below their mass shell. Integrating out these heavy states
gives rise to effective operators with mass dimension greater than four, linking DM
to SM fields. These operators are suppressed by powers of a suppression scale Λ,
with 1/Λn−4 being the suppression factor for an operator of mass dimension n. For
example, interactions via a heavy mediator V with axial-vector coupling to both
DM and quarks are captured by an operator that reads [79]

1

Λ2
(q̄γµγ5q) (χ̄γµγ5χ) . (2.48)

Here, Λ denotes a suppression scale, which in this case can be identified as

Λ =
mV√
gqgχ

, (2.49)

where gq is the coupling of the mediator to quarks, gχ the coupling to DM, and
mV and denotes the mediator mass. In an analogous fashion, one can write down
effective operators that represent interactions between DM and SM Higgs or gauge
bosons.

However, despite its generality, DM EFT is limited in its scope of application [109,
110]. An obvious limitation is that other particles like mediators or additional dark-
sector states, may only be integrated out if their masses lie sufficiently far above the
typical center of mass energy in processes at the LHC. In the example of the axial-
vector mediator above, this requires mV to be at least in the TeV range, suppressing
the operator Eq. (2.48). On the other hand, sizable cross sections are typically only
obtained if Λ < 1 TeV [79]. As can be observed from Eq. (2.49), this requirement
can only be reconciled with a significantly larger mass mV if the couplings gq, gχ
are large. However, this scenario can lead to unitarity violation [111]. Within the
EFT, this can be seen considering the fact that cross sections scale as s/Λ4. Hence,
at large center of mass energies

√
s, the cross section can violate unitarity, even if√

s � mV . This has been found to typically be the case for
√
s > (2..3)Λ [79].

Moreover, for DM and mediator masses, for which an EFT description is viable and
does not make unphysical predictions, it is challenging to obtain the correct relic
density while still predicting appreciable LHC rates [109]. Again, this is the case
because the relic abundance scales as 〈σv〉−1 ∼ m4

med/(m
2
χg

2
qg

2
χ), where mmed needs

to be large while gq, gχ must not be too large. Otherwise an EFT description is not
possible. Finally, it is known that EFTs can predict incorrect shapes for kinematic
distribution [109]. For instance, pT -spectra obtained within an EFT description of
DM are typically too hard.
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A central shortcoming of the EFT framework is that it precludes light mediators.
Simplified models attempt to remedy this problem without introducing too much
model dependence [112–114]. In contrast to the EFT, a simplified model explicitly
includes a mediator, which couples to both DM and SM quarks or gluons. Depending
on the interaction structure, the simplified model can allow production of DM at
the LHC either through s-channel or, if the mediator carries color charge, through
t-channel processes. In the case of an s-channel mediator, the parameters in the
simplified model Lagrangian are the DM mass mχ, the mediator mass mmed, the
coupling of the mediator to quarks gq, and the coupling of the mediator to DM gχ.
Scalar, pseudoscalar, vector, and axial-vector mediators have been considered. The
interaction part of the Lagrangian for an s-channel scalar mediator φ reads [79]

L ⊃ gq φ
∑
q

yq√
2
q̄q + gχ φχ̄χ . (2.50)

Analogously, for a pseudoscalar a we have [79]

L ⊃ gq a
∑
q

yq√
2
q̄γ5q + gχ aχ̄γ5χ . (2.51)

For a vector mediator V it takes the form [79]

L ⊃ gq Vµ
∑
q

q̄γµq + gχ Vµχ̄γ
µχ , (2.52)

and finally for an axial-vector V the form [79]

L ⊃ gq Vµ
∑
q

q̄γµγ5q + gχ Vµχ̄γ
µγ5χ . (2.53)

For the (axial)vector model, minimal flavor violation is implemented by requiring the
mediator-quark couplings to be identical for all quarks [112]. For the (pseudo)scalar,
minimal flavor violation requires the couplings to be proportional to the respective
Yukawas yq [112].
The only additional parameter needed to define the simplified model is the medi-

ator width Γmed. However, simplified model studies often make the assumption that
the mediator can only decay to DM, quarks, or gluons, as specified in the simplified
model Lagrangian [79], i.e.

Γmed = Γχχ̄ +
∑
q

Γqq̄ + Γgg . (2.54)

Further, it is commonly assumed that kinematic spectra and other results have only
a trivial dependence on the couplings gq and gχ, such that these may be fixed to
constant values. The most common choice is gq = 0.25 and gχ = 1 [79]. Thus,
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the only free parameters left in the simplified model are the masses mχ and mmed.
Correspondingly, constraints are usually depicted in the plane spanned by mχ and
mmed.
While simplified models are useful to translate experimental limits into mass and

coupling constraints and to guide LHC searches, they are not complete models that
well-defined at the quantum-level. Like for EFT approaches, issues of unitarity and
gauge invariance have been shown to also arise in simplified models, in particular
again in the context of mono-W signals [14, 115]. Moreover, simplified models are
often not anomaly-free, for example if a new mediator couples to quarks, but not
to leptons. The hope is that, despite not being realistic models, simplified models
still capture the relevant phenomenology correctly. However, it is not clear that
that is always the case. For instance, unitarity, gauge invariance, and freedom from
anomalies typically require the existence of additional particles in the dark sector,
which may contribute to processes at the LHC [116, 117]. The presence of these other
states may affect phenomenological predictions. Furthermore, simplified models fail
to account for relations between the masses and couplings that may arise from a
complete theory.

One way to remedy these problems is to study dark matter as part of a UV-
complete model [118–124]. One interesting possibility are Two-Higgs-Doublet Mod-
els (2HDM) [116, 117]. These contain two Higgs doublets, whose components after
electroweak symmetry breaking mix to form the SM Higgs, another neutral scalar,
one neutral pseudoscalar, and one charged scalar. Electroweak symmetry breaking
in a model with two Higgs doublets will be elaborated on in more detail in Sec. 3.2,
as part of the treatment of the Minimal Supersymmetric Standard Model (MSSM).
An alternative, bottom-up approach is to impose the requirements of unitarity and

gauge invariance directly onto the simplified model instead of deriving the simplified
model from a UV-completion [125].
In our analysis, we will use the MSSM and NMSSM, described in Sec. 3.2 and

Sec. 3.3, as UV-complete frameworks for dark matter.

Mono-X from ISR

Independent of the model framework, one type of topology that can always produce
a mono-X signal is initial state radiation (ISR). As long as DM can be produced from
a quark initial state through a mediator or some EFT operator, a jet, photon, or
vector-boson can be radiated off the initial state quarks. Representative diagrams for
ISR mono-jet, ISR mono-photon, and ISR mono-Z are shown in Fig. 2.4. While all
three diagrams shown in Fig. 2.4 exhibit the same structure, the involved couplings
are different. Neglecting the Z boson mass, this leads to the simple estimate for the
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cross sections [126]

σχχγ
σχχj

≈ α

αs

Q2
q

CF
≈ 1

40

σχχ``
σχχj

≈ α

αs

Q2
qs

2
w

CF
BR(Z → `+`−) ≈ 1

2000
. (2.55)

Including the Z mass, one finds σχχ``/σχχj ≈ 10−4.
Moreover, the scaling relations in Eq. (2.55) also apply to the leading Z(→ νν̄)Z

background. Further, the similarity of the diagrams suggests that kinematic x-
distributions should have roughly the same shape for the different types of ISR
processes [126], i.e.

1

σχχj

dσχχj
dx

≈ 1

σχχγ

dσχχγ
dx

≈ 1

σχχff

dσχχff
dx

. (2.56)

Fig. 2.5 illustrates this point for a simplified model with a heavy vector mediator
Z ′. Indeed, there is no visible difference between the shapes of the distributions for
the different mono-X signals. The same applies to the shapes of the background
distributions.
If the leading uncertainties are statistical, the significances are given by

nσ,X =
√
εXL

σχχX√
σννX

, (2.57)

with L denoting the luminosity and εX the efficiency for acceptance and other cuts.
Hence, comparing mono-photon and mono-jet significances, one finds [126]

nσ,γ
nσ,j
≈
√
εγ
εj

√
σχχγ
σχχj

≈ 1

6.3

√
εγ
εj
, (2.58)

and analogously for mono-Z. Therefore, as long as the efficiencies do not strongly
prefer photons over jets, mono-jet is by far the most promising ISR mono-X channel.
Mono-Z, mono-W and mono-Higgs, on the other hand, are negligible as long as only
initial state radiation is considered.
Hence, to understand where large Mono-Z, mono-W or mono-Higgs rates could

originate from we need to study a different type of topology. A more promising class

q

q̄

g

χ

χ

q

q̄

γ

χ

χ

Zq

q̄

f̄

f

χ

χ

Figure 2.4: Feynman diagrams contributing to mono-X production. Figure from
Ref. [126].
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Figure 2.5: Transverse momentum spectrum for different mono-X signals and back-
grounds assuming a heavy vector mediator. Figure from Ref. [126].

of topologies, namely decays in the final state, appears for non-minimal dark matter
sectors. To study these processes we employ the Minimal and the Next-to-Minimal
Supersymmetric Standard Model (MSSM and NMSSM) as frameworks for WIMPs
as part of an extended dark matter sector.
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3 Supersymmetric dark matter

Supersymmetry (SUSY) is the unique extension of the symmetries of space and
time [127, 128]. It extends the Poincaré algebra by fermionic generators. This
has the remarkable consequence of relating bosons to fermionic superpartners and
fermions to bosonic superpartners. Supersymmetry not only provides a WIMP DM
candidate, but is also motivated by gauge coupling unification and as a solution
to the hierarchy problem [129]. Regarding the latter, supersymmetry leads to a
cancellation between the bosonic and fermionic loop contributions to the Higgs mass.
This explains why the Higgs mass is not subject to large quantum corrections from
heavy particles beyond the Standard Model. In this chapter, we briefly introduce
the MSSM and NMSSM, focusing on their dark matter sectors. We follow the
presentation and conventions of Ref. [129] and Ref. [130].

3.1 SUSY generalities

In N = 1 supersymmetry, the Poincaré algebra, which generates the Poincaré group,
is extended by Grassmann-valued generators Q fulfilling the (anti-)commutation
relations

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = {Qα̇, Qβ̇} = 0

[Pµ, Qα] = [Pµ, Qα̇] = 0 (3.1)

with spinor indices α, α̇. σµαα̇ denote the Pauli matrices. In supersymmetric exten-
sions of the Standard Model, a particle and its superpartner form a supermultiplet.
Supermultiplets are irreducible representations of the supersymmetry algebra. For
example, for a massless particle with Pµ = (E, 0, 0, E) and, hence,

σµαα̇Pµ =

(
0 0
0 4E

)
, (3.2)

the ladder operators

a :=
1√
4E

Q2 , a† :=
1√
4E

Q2̇ (3.3)

define a fermionic harmonic oscillator, i.e. {a, a†} = 1. One can show that

[J3, a] = −1

2
a , [J3, a

†] =
1

2
a† . (3.4)
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Hence, a lowers the helicity of a state by 1
2
, while a† raises it by 1

2
, thus turning

bosonic states into fermionic states, and vice versa. In supersymmetric extensions
of the SM, the SM fermions and their superpartners form chiral multiplets, which
are defined by the lowest-helicity state having helicity λ0 = 0. Applying a† yields

a† |λ = 0〉 = |λ =
1

2
〉 . (3.5)

The helicity can only be raised once, since (a†)2 = a2 = 0. To make the theory
CPT-invariant, one needs to add the CPT conjugates. Hence, the full massless
chiral multiplet consists of the states{

|−1

2
〉 , |0〉 , |0〉CPT , |

1

2
〉
}
, (3.6)

where each state is labeled by its helicity. Thus, a chiral multiplet comprises two
scalar degrees of freedom, one chiral (positive helicity) Weyl fermion, and one anti-
chiral (negative helicty) Weyl fermion, exactly as needed to contain an SM fermion
and its scalar superpartner.
Starting instead from the state with λ0 = 1

2
, such that

a† |1
2
〉 = |1〉 , (3.7)

and again adding the CPT conjugate, defines a vector multiplet{
|−1〉 , |−1

2
〉 , |1

2
〉 , |1〉

}
, (3.8)

containing a chiral and an anti-chiral Weyl fermion, and a massless vector. In
supersymmetric extensions of the SM, the latter are the gauge bosons, and the
former their fermionic superpartners.
The choices λ0 = 1 and λ = 3

2
correspond to the gravitino multiplet and the

gravity multiplet, respectively.
Massive chiral and vector multiplets can be defined in an analogous fashion, see

e.g. Ref. [130]. Finally, according to Eq. (3.1), the generators Q commute with Pµ
and, hence, also with PµP µ = m2. Therefore, if SUSY is unbroken, all states in a
supermultiplet have the same mass.

As a consequence of extending the Poincaré algebra by anticommuting generators
Qα and Qα̇, spacetime obtains Grassmann-valued directions θα and θα̇. In this space,
the generators of SUSY transformations are represented by

Qα = −i ∂
∂θα
− σµ

αβ̇
θ
β̇
∂µ ,

Qα̇ = i
∂

∂θα̇
+ θβσµβα̇∂µ . (3.9)
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A SUSY transformation hence acts on a (scalar) superfield as

e−i(εQ+εQ)f
(
xµ, θ, θ

)
= f

(
xµ + iεσµθ + iθσµε, θ + ε, θ + ε

)
(3.10)

For the theory to be supersymmetric, the action S has to be invariant under SUSY
transformations. Using superfields, which are fields in superspace, i.e. functions of
x, θ and θ, it is possible to build actions that are manifestly invariant under the
transformation Eq. (3.10). In addition to being invariant under SUSY transfor-
mations, the action needs to be a spacetime scalar of mass dimension four. The
ordinary action in four dimensional spacetime is then obtained by integrating over
the Grassmann coordinates, i.e.∫

d4x L =

∫
d4x d2θ d2θ LSUSY . (3.11)

Now, we can introduce the types of superfields corresponding to the chiral and vector
multiplets introduced above.

A chiral superfield Φ(x, θ, θ) is defined as fulfilling the constraint

Dα̇ Φ = 0 , (3.12)

whereDα denotes the SUSY-covariant derivative, which is defined such that {D,Q} =
0. Explicitly, one finds

Dα =
∂

∂θα
+ iσµ

αβ̇
θ
β̇
∂µ ,

Dα̇ = − ∂

∂θ
α̇
− iθβσµβα̇∂µ . (3.13)

Using the constraint Eq. (3.12), one can show that chiral superfields take the form

Φ(x, θ, θ) = φ(x)− iθσµθ∂µφ(x)− 1

4
θ2θ

2
∂2φ(x) +

√
2θψ(x)

+
i√
2
θ2∂µψ(x)σµθ + θ2F (x) . (3.14)

Here, φ(x) denotes a complex scalar field and ψ(x) a Weyl fermion. The second
scalar field F (x) can be shown to be only an auxiliary field, which can be eliminated
from the action using the equations of motion. In addition, the equations of motion
reduce the number of fermionic degrees of freedom by half. Hence, on-shell, i.e.
using the equations of motion, Φ and Φ together comprise 2 scalar and 2 fermionic
degrees of freedom, which matches the degrees of freedom in the chiral multiplet, cf.
Eq. (3.6).
The kinetic part of the action can then be constructed as

Skin =

∫
d4xd2θd2θ ΦΦ

=

∫
d4x

(
∂µφ∂

µφ+ ∂µψσ
µψ + FF

)
(3.15)
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More generally, Φ and Φ can be combined into a real-valued Kähler potential
K(Φ,Φ).
Furthermore, since any holomorphic function of Φ is again a chiral superfield,

terms of the form∫
d4xd2θ W (Φ) + h.c. (3.16)

where W (Φ) is holomorphic, are SUSY invariant. The function W (Φ) is called
superpotential.
Vector superfields V are defined as real superfields, i.e. fulfilling

V = V † . (3.17)

In so-called Wess-Zumino gauge these take the form

V (x, θ, θ) = θσµθAµ(x) + iθ2θ λ(x)− iθ2
θλ(x) +

1

2
θ2θ

2
D(x) , (3.18)

with a massless vector field Aµ, a Weyl fermion λ, and another auxiliary fieldD. The
auxiliary field can again be eliminated by the equations of motion. Hence, on-shell
the degrees of freedom are the same as in the vector multiplet given in Eq. (3.8).
To build a supersymmetric action from V , one can exploit the fact that the gaugino
superfield defined as

Wα = −1

4
D

2
DαV ,

W α̇ = −1

4
D2Dα̇V (3.19)

is a chiral superfield. By explicit calculation one finds

Wα = λα + θαD − (σµνθ)α Fµν + iθ2
(
σµ∂µλ

)
α
. (3.20)

Since Wα has mass dimension [Wα] = 3
2
, the only renormalizable term that can be

built from it reads
1

4g2

∫
d2θWαWα + h.c. , (3.21)

where we neglect non-perturbative effects, by assuming a vanishing theta angle
θYM = 0. Furthermore, a so-called Fayet-Iliopoulos term

SFI = ξ

∫
d4xd2θd2θ V (3.22)

can also appear in the action.
Finally, in an Abelian gauge theory, in which the chiral superfields charged under

the gauge group transform as

Φ→ e−qΛΦ , (3.23)
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the Kähler potential needs to be modified to K(Φ, e2gV Φ) to preserve gauge invari-
ance.
In addition, for a non-Abelian gauge group with generators T a acting on the chiral

superfields as

Φ→ e−ΛaTaΦ , (3.24)

the gaugino superfield needs to be modified. In Wess-Zumino gauge, it now takes
the form

W a
α = −1

4
D

2
DαV +

1

8
D

2
[V,DαV ] . (3.25)

Supersymmetric non-Abelian gauge theories are also called Super-Yang-Mills the-
ories. Collecting all terms, the most general Lagrangian for a Super-Yang-Mills
theory including matter consists of the parts

L = LSYM + Lmatter + LFI , (3.26)

which read

LSYM =
1

32π
Im[ τ

∫
d2θ Tr WαWα] , (3.27)

with the complexified gauge coupling τ = θYM/(2π) + i 4π/g2,

LFI = ξ

∫
d2θd2θ V , (3.28)

and

Lmatter =

∫
d2θd2θ Φe2gV Φ +

(∫
d2θ W (Φ) + h.c.

)
. (3.29)

3.2 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the minimal N = 1 su-
persymmetric extension of the Standard Model. It is minimal in the sense that
it adds the lowest number of new particles. Moreover, any other supersymmetric
extension of the SM has to include the MSSM as a subsector [130].
In the MSSM, the SM quarks and leptons are placed inside chiral supermulti-

plets/superfields together with their scalar superpartners, called squarks and slep-
tons, respectively. Furthermore, the Higgs boson, being a scalar particle, is also
contained in a chiral multiplet, whose fermionic components are called higgsinos.
However, instead of one, supersymmetry requires two Higgs doublets, Hu and Hd,
for two separate reasons. First, the superpotential has to be holomorphic, as de-
scribed in Sec. 3.1. Hence, it is not possible to use both the Higgs doublet φ and its
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Names superfield spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 3.1: Chiral supermultiplets in the MSSM. Adapted from Ref. [129].

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 3.2: Vector supermultiplets in the MSSM. From Ref. [129].

charge conjugate φc to give masses to up-type quarks, down-type quarks, and lep-
tons. Instead, a second Higgs doublet with opposite weak hypercharge assignment is
needed. Secondly, the higgsinos are additional fermions carrying weak hypercharge.
If there were only one Higgs doublet in the model, this would lead to a gauge anomaly
rendering the theory inconsistent. Tab. 3.1 gives a complete list of chiral superfields
in the MSSM, and the SM particles and superpartners they contain.
Analogously, the gauge bosons and their spin-1

2
superpartners, the gauginos, are

placed inside vector multiplets, as summarized in Tab. 3.2.
The superpotential is given by

WMSSM = Yu u Q Hu −Yd d Q Hd −Ye e L Hd + µ HuHd (3.30)

where we have suppressed flavor and gauge indices. The Yukawa matrices Yu, Yd,
and Ye are the same as in the Standard Model. In addition, the superpotential
contains a supersymmetric mass term HuHd for the Higgs, whose coefficient is the
higgsino mass µ.
Gauge symmetries would also allow for terms in WMSSM of the form [130]

1

2
λijkLiLjek + (λ′)

ijk
LiQjdk + (µ)i LiHu +

1

2
(λ′′)

ijk
uidj dk . (3.31)

However, the first three of these terms violate lepton number and the last one baryon
number. Experimentally, this would lead to rapid proton decay, which is in conflict
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with observation. A way to forbid these additional terms, which has important
consequences regarding dark matter, is to introduce an additional Z2 symmetry
called R-parity. The R-parity of a field is given by

PR = (−1)3(B−L)+2s , (3.32)

where B denotes baryon number, L lepton number, and s spin. All superpartners
are odd under this symmetry, while all SM particles and Higgs bosons are even. If R-
parity is conserved, any interaction between SM particles and superpartners includes
an even number of superpartners. In particular, superpartners can only decay into
SM particles and an odd number of superpartners. As a consequence, the lightest
supersymmetric particle (LSP) is stable. If the LSP is electrically neutral it can
therefore serve as a dark matter candidate.
With R-parity conserved, the MSSM with unbroken supersymmetry contains one

less parameter than the SM. However, unbroken supersymmetry predicts that the
superpartners have the same mass as their SM counterparts, as explained in Sec. 3.1.
As no superpartners have been observed so far, this is clearly not the case. This
means that supersymmetry is broken. SUSY breaking that does not spoil the UV
properties of the model can be parametrized by soft terms, which are superrenor-
malizable, explicitly SUSY-breaking terms in the Lagrangian. In the MSSM these
take the form

Lsoft
MSSM =

1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
− Q̃†mQ

2 π
0

√
2

+
η√
6

π0

√
2

+
η√
6
deQ− L̃†mL

2L̃− ũ∗Rmu
2ũ∗R − d̃∗Rmd

2d̃∗R − ẽ∗Rme
2ẽ∗R

−m2
HuH

†
uHu −m2

Hd
H†dHd − (bHuHd + h.c.)

−
(
ũ∗RAuQ̃Hu − d̃∗RAdQ̃Hd − ẽ∗RAeL̃Hd + h.c.

)
. (3.33)

Above, the first line contains soft gaugino masses, the second line soft squark and
slepton masses, and the third line soft Higgs masses. The last line contains tri-linear
A-terms involving sfermions and Higgs boson.

MSSM Higgs sector

Collecting all contributions to the scalar potential from the superpotential and soft
terms, the Higgs scalar potential of the MSSM reads [129]

VHiggs =
(
|µ|2 +m2

Hu

) (
|H0

u|2 + |H+
u |2
)

+
(
|µ|2 +m2

Hd

) (
|H0

d |2 + |H−u |2
)

+
(
b
(
H+
u H

−
d −H0

uH
0
d

)
+ h.c.

)
+

1

8

(
g2 + g′2

) (
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2 (3.34)
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The mass spectrum of particles in the Higgs sector is determined by the minimum
of this potential. First, the vacuum expectation value 〈H+

u 〉 can be set to zero by an
SU(2) rotation. Second, from the condition that ∂V

∂H+
u

= 0 at the minimum, it follows
that also 〈H−d 〉 vanishes. Hence, electromagnetism is unbroken as required. Rela-
tions between the parameters can then be derived using the conditions ∂V/∂H0

u = 0
and ∂V/∂H0

d = 0 on the remaining potential. It is convenient to introduce the
parameter

tan β =
vu
vd

, (3.35)

where vu = 〈H0
u〉 and vd = 〈H0

d〉. These fulfill the relation

v2
u + v2

d = v2 (3.36)

with v being the Higgs vev of the Standard Model. Minimizing the potential yields
the relations

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2 , (3.37)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu −m2
Hd
− 2|µ|2 . (3.38)

The two Higgs doublets comprise eight real scalar degrees of freedom. After elec-
troweak symmetry breaking, three of these become the longitudinal modes of the
massive Z, W+ and W− bosons. The five remaining degrees of freedom form two
CP-even neutral scalars h0 and H0, one neutral pseudoscalar A0, and two CP-even
charged scalars H+ and H−. These mass eigenstates are related to the gauge eigen-
states byH0

u

H0
d

 =

vu
vd

+
1√
2
Rα

h0

H0

+
i√
2
Rβ0

G0

A0

 (3.39)

and H+
u

H−∗d

 = Rβ±

G+

H+

 , (3.40)

with the orthogonal rotation matrices

Rα =

 cosα sinα

− sinα cosα

 ,

Rβ0 =

 sin β0 cos β0

− cos β0 sin β0

 , Rβ± =

 sin β± cos β±

− cos β± sin β±

 . (3.41)
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At tree level, β0 = β± = β with β as defined in Eq. (3.35) [129]. The masses of the
mass eigenstates are

m2
A0 =

2b

sin(2β)
,

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√(

m2
A0 −m2

Z

)2
+ 4m2

Zm
2
A0 sin2(2β)

)
,

m2
H± = m2

A0 +m2
W , (3.42)

where in the second and third line the parameter b has been eliminated in favor of
m2
A0 . The angle α is determined by

sin(2α)

sin(2β)
= −m

2
H0 +m2

h0

m2
H0 −m2

h0
,

tan(2α)

tan(2β)
=
m2
A0 +m2

Z

m2
A0 −m2

Z

. (3.43)

From Eq. (3.42) follows that, at tree level, the mass of the light neutral CP-even
Higgs is bounded from above by

mh0 < mZ |cos(2β)| . (3.44)

Hence, if h0 is to be identified with the known 125 GeV Higgs boson, its mass needs
to receive large loop corrections. Indeed, top and stop loops can provide sufficiently
large corrections to lift mh0 to match observation [129]. Hence, mh can be set by, for
example, adjusting the parameter At, defined as a component of Au in Eq. (3.33).
Finally, in the decoupling limit, withm2

A0 � m2
Z andm2

H0 � m2
h0 , Eq. (3.43) implies

that α = β − π/2. In this limit, the couplings of h0 are identical to the couplings of
the Standard Model Higgs boson.

MSSM dark matter sector: electroweakinos

The neutral part of the MSSM electroweakino sector contains the bino B̃, the neu-
tral wino W̃ 0, and the two neutral higgsinos H̃0

u and H̃0
d . These mix to form four

mass eigenstates called neutralinos. The neutralinos are neutral Majorana fermions
denoted by χ̃0

i , with i = 1..4. Following usual convention, we label the states χ̃0
i

in ascending order of mass from lightest to heaviest. By R-parity conservation, cf.
Eq. (3.32), the lightest neutralino χ̃0

1 is a good dark matter candidate if it is the
lightest supersymmetric particle (LSP). In all that follows, we assume that χ̃0

1 is the
LSP and, thus, our DM candidate.
In terms of gauge eigenstates ψ̃0 = (B̃, W̃ 0, H̃0

u, H̃
0
d), the mass term in the La-

grangian reads

L ⊃ −1

2

(
ψ̃0
)T

Mχ ψ̃
0 + h.c. (3.45)
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The mass matrix takes the form

Mχ =


M1 0 −mZcβsw mZsβsw

0 M2 mZcβcw −mZsβcw

−mZcβsw mZcβcw 0 −µ
mZsβsw −mZsβcw −µ 0

 . (3.46)

The diagonal entries M1 and M2 stem from the soft SUSY breaking mass terms
shown in Eq. (3.33). The higgsino mass entries ∼ µ are off-diagonal since the µ-term
in the superpotential combines Hu and Hd, cf. Eq. (3.30.) The remaining entries
stem from Higgs-higgsino-gaugino interaction terms, with the Higgses replaced by
their vevs. M1 and M2 can be chosen real and positive by suitable rotations of the
fields B̃ and W̃ 0 by a complex phase. Hu and Hd, on the other hand, are already
fixed by the Higgs sector, described in Sec. 3.2. Hence, µ has a sign that cannot be
rotated away. In general, µ can also be complex. However, this leads to additional
CP-violation. In the following, we, therefore, consider only real values of µ.
The mass matrix Mχ can be diagonalized by a unitary matrix N, chosen such

that

N∗MχN
−1 = diag

(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
. (3.47)

The neutralino mass eigenstates are thus given by

χ̃0
i = Nij ψ̃j . (3.48)

Hence, the elements Nij of the neutralino mixing matrix describe the bino, wino,
and higgsino portions in each of the neutralinos and, thus, their couplings. Even
independent of SUSY, the MSSM neutralino sector can be viewed as a model for a
mixed dark sector consisting of singlets, doublets and triplets under SU(2)L.

The chargino sector comprises the charged winos and the charged higgsinos. These
mix to two charged Dirac fermions called charginos. In terms of the gauge eigenstates
ψ̃± = (W̃+, H̃+

u , W̃
−, H̃−d ), the mass term is given by

L = −1

2

(
ψ̃±
)T

Mχ̃± ψ̃
± + h.c. , (3.49)

where

Mχ̃± =

0 XT

X 0

 , (3.50)

with the 2× 2 matrix

X =

 M2

√
2mW sβ

√
2mW cβ µ

 . (3.51)
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Since the matrix X is not symmetric, two unitary matrices U and V are necessary
to diagonalize it. We then have

U∗XV−1 = diag
(
mχ̃±1

,mχ̃±2

)
. (3.52)

The mass eigenstates are related to the gauge eigenstates viaχ̃+
1

χ̃+
2

 = V

W̃+

H̃+
u

 ,

χ̃−1
χ̃−2

 = U

W̃−

H̃−d

 . (3.53)

Neutralino and chargino couplings

In general, neutralinos and charginos couple to W , Z and Higgs bosons, squarks,
and sleptons. In the following, we will focus on the interactions with the electroweak
and Higgs sector. The relevant couplings are:

Z-neutralino-neutralino interaction: Neutralinos couple to the Z boson through
their higgsino content. This is an axial-vector interaction, since the vector current
¯̃χγµχ̃ vanishes for Majorana fermions. The coupling strength reads

gZχ̃0
i χ̃

0
j

=
g

2cw
(Ni3Nj3 −Ni4Nj4) . (3.54)

Higgs-neutralino-neutralino interaction: The scalar coupling to the light
Higgs, which is induced by the gaugino-higgsino content in the neutralinos, reads

ghχ̃0
i χ̃

0
j

=
1

2
(g′Ni1 − gNi2) (sα Nj3 + cα Nj4) + (i↔ j) . (3.55)

In the decoupling limit, with α = β−π/2, the coupling takes the approximate form

ghχ̃0
i χ̃

0
j
≈ 1

2
(g′Ni1 − gNi2) sβ

(
−Nj3

tβ
+Nj4

)
+ (i↔ j) . (3.56)

W-neutralino-chargino interaction: A chargino and a neutralino couple to
W bosons through their higgsino content or their wino content. The coupling is,
hence, given by

gWχ̃0
i χ̃

+
j

= g

(
1√
2
Ni4V

∗
j2 −Ni2V

∗
j1

)
. (3.57)

3.3 NMSSM dark matter sector

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) extends the su-
perfield content of the MSSM by one chiral superfield S, which is a singlet with
respect to all SM gauge groups. In terms of particles, this adds one scalar and one
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pseudoscalar to the Higgs sector, as well as a singlino to the neutralino sector. In
our presentation of the NMSSM and its DM sector, we follow Ref. [131, 132]. The
main theoretical motivation for the NMSSM is the µ-problem: The Higgs sector of
the MSSM relates mHu , mHd , and µ to mZ , as shown in Eq. (3.38), and, thus, to
the electroweak scale. The soft masses mHu and mHd are expected to be on the
SUSY breaking scale and, hence, close to the electroweak scale, if SUSY solves the
hierarchy problem. However, µ is not tied to the electroweak scale at all. Therefore,
fine-tuning seems to be needed to fulfill Eq. (3.38). The NMSSM solves the µ-
problem by generating µ as a vev, whose value is determined by soft SUSY-breaking
parameters. The superpotential of the scale-invariant NMSSM reads

WNMSSM = λSHuHd +
κ

3
S3 +WYukawa , (3.58)

with WYukawa the same as in the MSSM. λ and κ are new, dimensionless parameters
coupling the singlet to the Higgs sector and to itself, respectively. When S assumes
its vev, it generates an effective µ-term given by

µ = λ〈S〉 . (3.59)

The additional soft terms are of the form

Lsoft
NMSSM ⊃ m2

S|S|2 −
(
λAλHuHd +

1

3
κAκS

3 + h.c.

)
. (3.60)

Minimizing the scalar potential relates mS to 〈S〉 and, thus, to µ. Hence, either mS

or µ can be used as a free parameter.

NMSSM Higgs sector

In the Higgs sector, the two real, scalar degrees of freedom in the singlet superfield
give rise to one additional, singlet scalar and one additional, singlet pseudoscalar.
From the dark matter perspective, these serve as additional mediators.
In the basis (H, h, SR), with h and H defined in terms of H0

u and H0
d as in the

MSSM, and SR denoting the real part of the complex scalar S, the scalar mass
matrix reads

M2
H,h,SR

= m2
Z


s2

2βδ + 2µ
s2βm

2
Z

(Aλ + κ̃µ) c2βs2βδ −c2β
λ̃
mZ

(Aλ + κ̃µ)

· c2
2β + s2

2βλ̃
2 2λ̃

mZ

(
µ− s2β

Aλ
2
− s2βκ̃µ

)
· · s2β

λ̃2Aλ
2µ

+ κ̃µ
m2
Z

(Aκ + 4κ̃µ)

 ,

(3.61)

with the convenient combinations

κ̃ =
κ

λ
, (3.62)

λ̃ =
λ

g
, (3.63)

δ = 1− λ̃ . (3.64)
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Like in the MSSM, in the decoupling limit with m2
H � m2

h, h has the couplings of
the SM Higgs boson. Furthermore, mixing between the singlet and h is suppressed
if the off-diagonal element M23 in the mass matrix, Eq. (3.61) vanishes. This is the
case if [132]

Aλ = 2µ

(
1

s2β

− κ̃
)
. (3.65)

In this way, constraints from the Higgs coupling strength can be avoided.
Similarly, the pseudoscalar mass matrix in the basis (A, SI), where A is again

defined like in the MSSM, and SI denotes the imaginary part of S, reads

M2
A,SI

= m2
Z

2µ(Aλ+κ̃µ)

s2βm
2
Z

tildeλ
mZ

(Aλ − 2κ̃µ)

· s2βλ̃
2
(
Aλ
2µ

+ 2κ̃
)
− 2κ̃µAκ

m2
Z
.

 (3.66)

NMSSM neutralino sector

Finally, the fermionic component of the singlet superfield, called singlino, enters the
neutralino sector. Thus, the neutralino mass matrix is extended to a 5× 5 matrix,
which reads

Mχ =



M1 0 −mZcβsw mZsβsw 0

0 M2 mZcβcw −mZsβcw 0

−mZcβsw mZcβcw 0 −µ −mZsβλ̃

mZsβsw −mZsβcw −µ 0 −mZcβλ̃

0 0 −mZsβλ̃ −mZcβλ̃ 2κ̃µ


. (3.67)

The pure-singlino mass is, hence, given by mχ̃S = 2κ̃µ. More generally, if the LSP
is predominantly, but not purely, singlino, its mass is approximately

mχ̃ ≈ 2κ̃µ+ λ̃2m
2
Z

µ

2κ̃− s2β

4κ̃2 − 1
. (3.68)

The coupling of neutralinos to a CP-even Higgs boson Hi now reads

gHkχ̃0
i χ̃

0
j

=
1

2
[λ
√

2 (Sk1Ni4Nj5 + Sk2Ni3Nj5 + Sk3Ni3Nj4)

− λκ̃
√

2Sk3Ni5Nj5 − (g′Ni1 − gNi2) (Sk1Nj3 − Sk2Nj4)]

+ (i↔ j) , (3.69)

where Sij is the mixing matrix that rotates the CP-even weak eigenstates (H0
uR, H

0
dR, SR)

into mass eigenstates. The coupling to a pseudoscalar Ak has the same form, i.e.

gAkχ̃0
i χ̃

0
j

=
1

2
[λ
√

2 (Pk1Ni4Nj5 + Pk2Ni3Nj5 + Pk3Ni3Nj4)

− λκ̃
√

2Pk3Ni5Nj5 − (g′Ni1 − gNi2) (Pk1Nj3 − Pk2Nj4)]

+ (i↔ j) , (3.70)
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only with Sij replaced by Pij, which denotes the pseudoscalar mixing matrix, again
with respect to the weak eigenstates. Hence, the coupling of a singlino-higgsino LSP
to a singlet-like scalar or pseudoscalar is

ghS χ̃0
1χ̃

0
1

= gaS χ̃0
1χ̃

0
1

= λ
√

2
(
N13N14 − κ̃N2

15

)
. (3.71)

Further, the coupling of a singlino-higgsino LSP to the SM-like Higgs reads

gh125χ̃0
1χ̃

0
1

= −
√

2λN15

(
N13 +

N14

tβ

)
. (3.72)

The couplings to W and Z bosons remain as in the MSSM, cf. Eq. (3.57) and
Eq. (3.54), since the singlino is a gauge singlet.

3.4 Annihilation channels

Neutralinos in the MSSM can annihilate efficiently towards the observed relic density
through a set of mediators. These are the SM Z and Higgs bosons, heavy new Higgs
bosons, and scalar superpartners of the SM fermions [133, 134]. In the NMSSM, one
additionally gains another CP-even scalar and another pseudoscalar as mediators.
These mediators give rise to a large number of s-channel, t-channel, and coanni-
hilation processes. Which of these processes dominate depends on the couplings
and masses of the particles involved and, thus, on the (N)MSSM parameter space.
As described in Sec. 2.3, the resulting relic density Ωχh

2 approximately follows the
inverse thermally-averaged annihilation cross section 〈σv〉−1. In the following, we
briefly summarize the most important channels. As we will be concerned mainly
with light neutralinos, giving rise to large mono-X rates, we will focus particularly
on the Z, scalar, and pseudoscalar funnel processes.

3.4.1 MSSM annihilation channels

The overview of MSSM annihilation channels in this section follows the correspond-
ing list in Ref. [126].

Z-funnel annihilation

Annihilation through a Z boson in the s-channel, as shown in the left diagram of
Fig. 3.1, is mediated by the coupling

gZχ̃0
1χ̃

0
1

=
g

2cW

(
N2

13 −N2
14

)
, (3.73)

which follows from Eq. (3.54) with i = j = 1. The coupling vanishes for equal
higgsino fractions, i.e. N13 = N14, which is, however, only realized in the limit
tan β → 1 or for very large µ, if the LSP is a pure higgsino. As shown in Tab. 3.3,
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Annihilation process σv

Z-funnel
3g2

χg
2
f

2π

(
m2
f

m4
Z

+
v2m2

χ

3
(
m2
Z − 4m2

χ

)2

)

(Higgs) scalar funnel
3v2 m2

χ g
2
χg

2
f

8π
(
m2
h − 4m2

χ

)2

pseudoscalar funnel
3 g2

χg
2
f m

2
χ

2π
(
m2
a − 4m2

χ

)2

Table 3.3: Annihilation cross sections for s-channel funnel processes for Majorana
DM. Shown are the leading terms assuming small velocity v and small
fermion massesmf . gχ and gf denote the couplings of the mediator to DM
and fermions, respectively. Note that σv is not yet thermally averaged.
Formulae from Ref. [135].

the leading contribution to σv can be either s-wave or p-wave. While the s-wave
term is suppressed by the masses of the fermions in the final state of the annihilation
process, the p-wave term is, by definition, suppressed by the velocity v2. Close to
the Z-pole, i.e. for mχ̃0

1
≈ mZ/2, the cross section is resonantly enhanced and the

p-wave contribution dominates. For the correct relic density, the LSP mass typically
needs to be slightly above or below 45 GeV, as annihilation directly on the pole is
too efficient.

Z

χ̃0
1

χ̃0
1

f

f̄

h/H/A

χ̃0
1

χ̃0
1

f/W±/Z/h

f̄/W±/Z/h

χ̃0
i /χ̃

±
j

χ̃0
1

χ̃0
1

W±/Z/h

W±/Z/h

Figure 3.1: Feynman diagrams for the annihilation of neutralinos into fermions, weak
bosons, and Higgs bosons, through s-channel Z, s-channel Higgs, and t-
channel electroweakino exchange.
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Higgs funnel annihilation

Similarly, in the Higgs funnel region around the pole of the SM-like Higgs boson,
the annihilation proceeds predominantly through a Higgs s-channel diagram, shown
in the center of Fig. 3.1. Here, almost all annihilations go into bb̄ final states. The
coupling follows from Eq. (3.56) as

ghχ̃0
1χ̃

0
1

= (g′N11 + gN12)

(
−N13

tβ
+N14

)
, (3.74)

which requires gaugino-higgsino mixing in the LSP. As shown in Tab. 3.3, the scalar
coupling gives rise to a velocity-suppressed p-wave annihilation cross section. Due
to the narrow Higgs width Γh, the width of the funnel region is determined by the
DM velocity distribution rather than Γh, as described below.
Fig. 3.2 illustrates the Z- and Higgs-funnel annihilation regions for a bino-higgsino

LSP for different, fixed values of µ, M1 = 10..80 GeV, and tan β = 10. In the
non-relativistic limit, the squared propagator in the cross section for the relevant
s-channel annihilation process reads

1

(s−m2
h)

2
+m2

hΓ
2
h

≈ 1(
4m2

χ +m2
χv

2 −m2
h

)2
+m2

hΓ
2
h

(3.75)

for the Higgs funnel and analogously for the Z-funnel. Here, v denotes the relative
velocity of the two annihilating DM particles. Since the annihilating DM particles
possess a non-vanishing velocity, the resonant enhancement is strongest when the
DM mass is slightly below mZ/2 or mh/2. Furthermore, for a fixed velocity v, the
maximum value of the propagator that can be reached by adjusting mχ is given by
(m2

hΓh)
−1 and (m2

ZΓ2
Z)−1, respectively. Since Γh � ΓZ , this enhancement is much

stronger for the Higgs funnel. However, integrating over the velocity distribution
to arrive at 〈σv〉 washes out the sharp Higgs peak, leading to similar widths and
similar heights for the Z- and the Higgs peak in Fig. 3.2. The width of the Z-peak is
mainly given by the physical Z-width ΓZ , resulting in an approximately symmetrical
peak. The width of the Higgs peak, on the other hand, is predominantly determined
by the width of the velocity distribution, leading to a strongly asymmetrical shape.
Furthermore, the pure higgsino coupling to the Z, as given in Eq. (3.73), is indepen-
dent of the sign of µ. In contrast, the mixed gaugino-higgsino coupling, Eq. (3.74),
relevant for the Higgs funnel is larger for positive µ.

Heavy Higgs funnel annihilation

Furthermore, the pseudoscalar A gives rise to s-wave annihilation, cf. Tab. 3.3.
Like the SM-Higgs funnel described above, the coupling relies on gaugino-higgsino
mixing in the LSP. However, due to the strong lower bounds on its mass mA [136],
annihilation through the MSSM pseudoscalar will not play a role in the following.
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Figure 3.2: Inverse relic density near the Z-pole and Higgs pole in the MSSM. The
vertical dashed lines indicate mZ/2 and mh/2. The horizontal dashed
line indicates the inverse of the observed relic density. Figure from
Ref. [126]

t-channel chargino exchange

The t-channel exchange of a chargino χ̃±i , shown in the right diagram of Fig. 3.1,
mediates the process χ̃0

1χ̃
0
1 → WW . It relies on the coupling

gWχ̃0
1χ̃

+
i

= g

(
1√
2
N14V

∗
i2 −N12V

∗
i1

)
, (3.76)

cf. Eq. (3.57). For this process, the LSP needs to be at least as heavy as the W
boson. In addition, the chargino should not be much heavier than the LSP. For
mχ̃0

1
. 100 GeV this process is, therefore, disfavored.

t-channel neutralino exchange

t-channel neutralino exchange can mediate the processes χ̃0
1χ̃

0
1 → ZZ or χ̃0

1χ̃
0
1 → hh,

shown in the right diagram of Fig. 3.1. The relevant couplings are given in Eq.(3.54)
and Eq.(3.55), respectively. The LSP needs to be at least as heavy as the Z boson
or the SM Higgs boson, respectively, for this process to be kinematically allowed.

t-channel sfermion exchange

Another t-channel process is given by sfermion exchange, for example via tau slep-
tons, requiring a sizable wino portion in the LSP. However, for LSP mass mχ̃0

1
.

100 GeV, LEP limits [137–145] on the slepton masses strongly constrain this anni-
hilation channel.
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Co-annihilation

Finally, co-annihilation processes can significantly enhance neutralino annihilation [146–
151]. However, as explained in Sec. 2.3.2, this requires another supersymmetric
particles with a mass that is not larger than the LSP mass by more than about
10%. Hence, chargino or slepton co-annihilation is disfavored by LEP [137–145] if
mχ̃0

1
. 100 GeV. Moreover, since both wino and higgsino neutralinos have chargino

counterparts, two neutralinos with similar masses . 100 GeV imply at least one
chargino in the same mass range. This is again disfavored by LEP.

The masses of pure bino, wino, or higgsino DM are fixed by the observed relic
density. For pure wino LSPs, this requires a mass between about 2 and 3 TeV.
Similarly, pure higgsino DM has to fall in a mass range of 1 to 2 TeV [31, 32]. A
pure bino LSP requires light sleptons to annihilate, as it does not couple to gauge or
Higgs bosons. With general neutralino mixing, a wide DM mass range from tens of
GeV to the TeV range is viable [31, 32]. In particular, for relatively light neutralinos
in the mass range . 100 GeV, one has to dominantly rely on the Z and SM-like
Higgs as mediators, requiring gaugino-higgsino mixing.

3.4.2 NMSSM annihilation channels

In contrast, the NMSSM provides an additional singlet scalar hS and an additional
singlet pseudoscalar AS. While collider bounds force e.g. the pseudoscalar A of the
MSSM to be heavy [136], these singlet mediators can be light and, hence, efficiently
annihilate DM in the mass range far below 45 GeV. For this, the LSP needs to be
predominantly singlino.

Light singlet scalar funnel

Like in the SM-Higgs-funnel region, the cross section for the annihilation χ̃0
1χ̃

0
1 →

hS → ff̄ is velocity suppressed, see Tab. 3.3. The coupling, as given in Eq. (3.71),
is mediated by the singlino and higgsino fractions in the LSP. For this channel to be
resonantly enhanced, it is necessary that mχ̃0

1
≈ mhS/2, with mχ̃0

1
as in Eq. (3.68)

and

mhS ≈ s2β
λ̃2Aλ
2µ

+
κ̃µ

m2
Z

(Aκ + 4κ̃µ) , (3.77)

following Eq. (3.61).

Light singlet pseudoscalar funnel

Analogously, annihilation can proceed through a light singlet pseudoscalar, whereby
χ̃0

1χ̃
0
1 → aS → ff̄ , which results in an s-wave, i.e. not velocity-suppressed cross
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section. The coupling, shown in Eq. (3.71), is the same as for the singlet scalar.
The pseudoscalar mass reads

mAS ≈ s2βλ̃
2

(
Aλ
2µ

+ 2κ̃

)
− 2κ̃

µAκ
m2
Z

, (3.78)

cf. Eq. (3.66).

3.5 Direct detection of neutralinos

As explained in Sec. 2.4.1, direct detection experiments put constraints on the inter-
action between DM and nucleons. In the case of neutralino DM, these are mediated
by Higgs and Z bosons. Due to the Majorana nature of χ̃0

1, the coupling to the Z bo-
son is of axial-vector form, inducing a spin-dependent neutralino-nucleon interaction.
The scalar coupling to the Higgs, on the other hand, gives rise to spin-independent
neutralino-nucleon interactions. Hence, for a given LSP mass mχ̃0

1
, spin-independent

DD limits constrain the coupling ghχ̃0
1χ̃

0
1
, while spin-dependent DD limits constrain

gZχ̃0
1χ̃

0
1
. To illustrate the connection between the fundamental neutralino interactions

described in Sec. 3.2 and the neutralino-nucleon cross section relevant for direct de-
tection, we sketch in the following the calculation of the spin-independent cross
section, mediated by the Higgs. The presentation and calculations in this section
follow Ref. [61].
To determine the coupling of the Higgs to nucleons, the corresponding interaction

operator can be related to the nucleon mass, determined by the trace of the energy-
momentum tensor, i.e.

mN 〈N |N〉 = 〈N |T µµ |N〉 . (3.79)

Including the contribution to T µµ from the running QCD coupling αS and taking
into account contributions with opposite sign from heavy quarks q = c, b, t via loops
and gluon splitting, one finds that [61]

mN〈N |N〉 =
∑
u,d,s

mq 〈N |q̄q|N〉+
αs
8π

(
2× nlight

3
− 11

3
Nc

)
〈N |Ga

µνG
aµν |N〉 .

(3.80)

This means that the nucleon mass is only determined by the light quarks u, d, s,
while the heavier quarks decouple.
The dominant contribution to the Higgs-nucleon interaction, on the other hand,

stems from heavy quark loops giving rise to an effective coupling between the Higgs
and gluons. Here, the heavy quarks do not decouple, since the quark masses cancel
between the propagators and the Yukawa couplings. The thus induced effective
operator is [61]

L ⊃ −i αs
12π

h Ga
µνG

µν a . (3.81)
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Also taking into account the sub-dominant contribution from the Yukawa coupling
to light quarks, the interaction operator between two nucleon states reads

〈N |
∑
u,d,s

mqHq̄q|N〉 − 〈N |
∑
c,b,t

αs
12π

HGa
µνG

aµν |N〉 . (3.82)

The contribution from the light quark masses to the nucleon mass, Eq. (3.80), and to
the interaction operator, Eq. (3.82), are both negligible. Then, comparing Eq. (3.80)
and Eq. (3.82), we find that they have the same structure, but there is a mismatch
in the coefficients. Explicitly, we have

〈N |mqHq̄q |N〉 =

2nheavy

3

11
3
Nc − 2nlight

3

HmN 〈N |N〉

=
2

9
HmN 〈N |N〉 (3.83)

Hence, the nucleon Yukawa coupling to the Higgs is given by [61]

2

9
mNfN , (3.84)

with fN = 〈N |N〉.
Now, one can use this result to calculate the spin-independent neutralino-nucleon

cross section from Higgs exchange. As explained in Sec. 2.4.1, the momentum ex-
change in such a scattering event is much lower than the Higgs mass. Therefore,
the Higgs can be integrated out, resulting in an effective four-fermion interaction
between nucleons and neutralinos, with suppression scale Λ = mh. Using Eq. (3.84),
the coupling for this interaction is given by

gNNχ̃0
1χ̃

0
1

=
2

9
mNfN ghχ̃0

1χ̃
0
1
, (3.85)

with the Higgs-neutralino coupling ghχ̃0
1χ̃

0
1
as in Eq. (3.74). Then, the matrix element

reads [61]

M =
gNNχ̃0

1χ̃
0
1

Λ2
ūχ(k2)uχ(k1)ūN(p2)uN(p1) . (3.86)

Spin-averaging and using the fact that all particles involved are non-relativistic,
yields

|M|2 =
16 g2

NNχ̃0
1χ̃

0
1

Λ4
m2
χ̃0
1
m2
N . (3.87)

Plugging this result into the neutralino-nucleon cross section and using Λ = mh, we
find

σSI
(
χ̃0

1N → χ̃0
1N
)

=
1

16πs
|M|2 =

g2
NNχ̃0

1χ̃
0
1
m2
χ̃0
1
m2
N

π
(
mN +mχ̃0

1

)2

m4
h

. (3.88)
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Including the coherent enhancement with the number of nucleons, as described in
Sec. 2.4.1, the SI cross section for neutralino-nucleus scattering reads

σSI
(
χ̃0

1A→ χ̃0
1A
)

=
A2 g2

NNχ̃0
1χ̃

0
1
m2
χ̃0
1
m2
N

π
(
mN +mχ̃0

1

)2

m4
h

. (3.89)

As described in Sec. 3.4.1, the coupling ghχ̃0
1χ̃

0
1
and, thus, the SI cross section are

driven by gaugino-higgsino mixing in the lightest neutralino. In addition, ghχ̃0
1χ̃

0
1

=
(g′N11 − gN12)(−N13/tβ +N14) vanishes if the higgsino portions fulfill the relation

N13

tβ
= N14 , (3.90)

giving rise to a blind spot in SI direct detection. Another blind spot can arise
from negative interference between t-channel with the light and the heavy Higgs
scalar [152]. However, this will not be relevant in the following, as we decouple the
heavy Higgs states, see Sec. 3.6.
Finally, in the NMSSM, a light, predominantly singlet-like scalar can mediate a

sizable spin-independent interaction, if the cross section is sufficiently enhanced by
small Λ = mhS . The relevant coupling in this case is given in Eq. (3.71).

Similarly, the axial-vector coupling to the Z boson gives rise to another four-
fermion interaction once the Z is integrated out. In this case, the matrix element
reads [61]

M =
gNNχ̃0

1χ̃
0
1,Z

Λ2
ūχ(k2)γµγ5uχ(k1)ūN(p2)γµγ5uN(p1) , (3.91)

where

gNNχ̃0
1χ̃

0
1
∝ gZqq gZχ̃0

1χ̃
0
1
. (3.92)

The spin-dependent cross section then reads

σSD
(
χ̃0

1N → χ̃0
1N
)

=
1

16πs
|M|2 =

g2
NNχ̃0

1χ̃
0
1,Z

m2
χ̃0
1
m2
N

π
(
mN +mχ̃0

1

)2

m4
Z

. (3.93)

As mentioned in Sec. 3.4.1, the coupling gZχ̃0
1χ̃

0
1
and, hence, the spin-dependent direct

detection rate only vanishes for pure higgsinos.

3.6 SFitter setup

We employ the SFitter framework [133, 134, 153–156, 132] for our global analysis.
However, we emphasize that, while we use SFitter for parameter scans and as a
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toolbox, we do not carry out a likelihood fit. We use the following tools, interfaced
to SFitter:
For a given set of parameters, the MSSM particle spectrum, including the masses

and mixing matrices described in Sec. 3.2, is calculated in SuSpect3 [157, 158].
Based on this spectrum, the branching ratios of supersymmetric particles and in the
Higgs sector are determined using SUSY-Hit [159–161], which contains the tools
SDecay and HDecay. For the NMSSM, we employ NMSSMTools, which com-
prises NMSPEC [162] for spectrum calculations, and NMHDECAY [163, 164] and
NMSDECAY [165] for decay widths and branching ratios. We use micrOMEGAs
[166] to calculate DM annihilation cross sections and the resulting relic density,
as well as DM-nucleon cross sections relevant to direct detection. Finally, we em-
ploy MadGraph5 [167] to calculate leading-order cross sections for LHC processes.
Next-to-leading order corrections to the processes considered by us are known and
typically too small to have an impact on our discussion [168–174].
Since we focus on the electroweakino sector, we decouple all sfermions by setting

their masses to 5 TeV. This assumption is further motivated by strong bounds on
squark and slepton masses rendering them largely irrelevant for light neutralino dark
matter in the mass range . 100 GeV [175, 137–145]. Furthermore, we decouple
all Higgs (pseudo-)scalars except the SM-like Higgs boson and, in the NMSSM,
the light singlet-like scalar and pseudoscalar. Again, we realize this decoupling by
setting mH = mA = mH± = 5 TeV. While these heavy Higgs states can in principle
play an important role for dark matter phenomenology [116, 176, 117, 177], their
contribution to e.g. the annihilation of light dark matter is suppressed due to the
lower bounds on their masses. Regarding the mass of the SM-like Higgs boson, we
ensure that mh125 = (125±3) GeV by adjusting the tri-linear coupling At [178–184],
defined as a component of Au in Eq. (3.33). Throughout our analysis, we assume

Observable Constraint

ΓZ→χχ < 2 MeV [137–145]

BRh→inv < 24% [104, 102, 103]

mχ̃±1
> 103.5 GeV [137–145]

Ωχh
2 0.1187± 20% [49]

σSI Xenon1T [69], PandaX [70]

σpSD Pico60 [72]

σnSD LUX [71]

Table 3.4: Constraints on the dark matter sector. From Ref. [126].
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tan β = 10. Whenever we decouple the wino from the other neutralino states, we
set M2 = 1 TeV.

Observables and constraints

Tab. 3.4 lists the constraints on the dark sector we successively include in our anal-
ysis.
First, decays of the Z boson to pairs of neutralinos contribute to the invisible

Z decay width if they are kinematically allowed. The corresponding partial width
reads [185]

ΓZ→χ̃0
1χ̃

0
1

=
mz

24π
g2
Zχ̃0

1χ̃
0
1

(
1−

4m2
χ̃0
1

m2
Z

)3/2

, (3.94)

for mχ̃0
1
≤ mZ/2 and with gZχ̃0

1χ̃
0
1
as in Eq. (3.73). As listed in Tab. 3.4, we impose

an upper limit of 2 MeV [137–145] on the neutralino contribution to the invisible
Z-width.

Analogously, sufficiently light neutralinos contribute to the invisible branching
ratio of the Higgs. The partial width of the decay h→ χ̃0

1χ̃
0
1 is given by [185]

Γh→χ̃0
1χ̃

0
1

=
mh

16π
g2
hχ̃0

1χ̃
0
1

(
1−

4m2
χ̃0
1

m2
Z

)3/2

, (3.95)

for mχ̃0
1
≤ mh/2 and with ghχ̃0

1χ̃
0
1
as in Eq. (3.74). Apart from decays to neutralinos,

in the NMSSM, there is an additional contribution to BRh→inv from decays of the
SM-like Higgs to light singlet (pseudo-)scalars which in turn decay invisibly. We
impose the currently strongest experimental upper limit of BRh→inv < 24% from
CMS [105].
Furthermore, LEP places constraints on charge particles decaying to leptons, pho-

tons, jets, or missing energy [137–145]. As described above, we assume all charged
scalars to be decoupled with masses of 5 TeV. Hence, in our analysis, mass limits
from LEP are only relevant for charginos. We impose a conservative lower bound of
mχ̃±1

< 103.5 GeV on the mass of the lightest chargino.
When we impose the relic density as a constraint, we consider a window of 20%

around the measured value of Ωχh
2 = 0.1187 ± 0.002 [49]. Note that a narrower

window would not make a difference to our discussion.
Of course, any particular DM candidate might only comprise part of the relic den-

sity and, conversely, additional mediators or co-annihilation partners may reduce the
relic density if the result is too large. Furthermore, there may be deviations from the
standard thermal production mechanism. Nevertheless, we stress that the correct
relic density is an important constraint for a global dark matter interpretation.
Finally, we include the current best limits on neutralino-nucleon scattering from

direct detection experiments. For spin-independent scattering, these have been
obtained by the Xenon1T experiment [69]. For spin-dependent interactions with
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protons and neutrons, the best bounds are currently provided by Pico60 [72] and
LUX [71], respectively.
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4 Final state decays in the MSSM

The research presented in this chapter has been previously published in Ref. [126].
All plots and large parts of the text of this chapter are identical to Sec. 4, “Final
state decays in the MSSM”, in that article.
To estimate the power of mono-X analysis from final state decays we need a dark

matter model with several particles, where the heavier states have an enhanced
production rate at the LHC. Supersymmetric winos and higgsinos are obvious and
established candidates for such searches. While for example the bino fraction allows
us to explain the relic density with a light neutralino, the winos and higgsinos couple
strongly to our SM mediators, cf. Sec. 3.2. We will discuss such signatures first for
the MSSM, where we have to negotiate a large LHC rate with the relic density
and direct detection constraints. Ignoring these constraints would allow us to quote
much large LHC rates, but we feel that this would mean taking the experimentalists
for a ride. Because the main change in the NMSSM electroweakino sector is a
new mediator, we can use this extension to estimate an increased LHC reach from
non-SM mediators.

4.1 Mono-Z

In the MSSM framework, mono-Z production is defined as the hard process

pp→ χ̃0
1χ̃

0
1 Z . (4.1)

As long as we decouple the sfermions and heavy Higgs bosons, the diagrams shown
in Fig. 4.1 are the only diagrams contributing to this process at tree level. This
means we can separate three distinct topologies

pp→ ZZ → Z (χ̃0
1χ̃

0
1) ISR

pp→ Zh→ Z (χ̃0
1χ̃

0
1) invisible Higgs decays

pp→ χ̃0
j χ̃

0
1 → (χ̃0

1Z) χ̃0
1 heavy neutralinos j = 2, 3, 4 . (4.2)

Z
q

q̄

χ̃0
1

χ̃0
1

Z

Z h

q

q̄

χ̃0
1

χ̃0
1

Z

Z

χ̃0
i

q

q̄

χ̃0
1

χ̃0
1

Z

Figure 4.1: Feynman diagrams contributing to mono-Z production in the MSSM,
including initial-state Z-radiation with a Z-portal, Zh production with
a SM-like Higgs portal, and heavy neutralino decays.
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To avoid issues with gauge invariance we always include all topologies in our sim-
ulation. If kinematically allowed, intermediate on-shell states lead to a significant
enhancement of the LHC production rate in all three cases.
The first two topologies gain impact when the neutralinos are lighter than 45 GeV

or 62 GeV. Because of the LEP limits on charginos, this implies that the dark
matter agent cannot be a wino or a higgsino and instead requires a sizable bino
admixture. Based on the couplings discussed in Sec. 3.2, invisible Z-decays require
a large higgsino fraction, leading us to focus on bino–higgsino dark matter. Similarly,
invisible SM-like Higgs decays [186–192] require gaugino–higgsino mixing, or in our
case also bino–higgsino dark matter.
For the third topology with its intermediate heavy neutralinos the production

process requires a sizable higgsino content in both of the neutralinos involved. The
decay χ̃0

j → Zχ̃0
1 is mediated by the same coupling, giving

σχ̃0
1χ̃

0
1Z
∝
g4
Zχ̃0

1χ̃
0
j

Γχ̃0
j

. (4.3)

It is then crucial that the mass difference between the two relevant neutralinos
is large, mχ̃0

j
− mχ̃0

1
> mZ . For dominantly higgsino dark matter with mZ �

|µ±M1|, |µ±M2| we can approximate [193, 129]

mχ̃0
1,2

= |µ|+ m2
Z(1± s2β)(µ∓M1c

2
w ±M2s

2
w)

2(µ∓M1)(µ∓M2)

mχ̃0
2
−mχ̃0

1
= mZ

(
mZ

M2

c2
w +

mZ

M1

s2
w

)
. (4.4)

This mass difference is always smaller than mZ [31, 32, 194], again indicating that
higgsinos alone will not lead to a large mono-Z signal. The obvious solution is to
again add a sizable bino content to the dark matter candidate and analyze all three
topologies in the limit

M1 < |µ| �M2 , (4.5)

with three propagating neutralinos.

In the left panel of Fig. 4.2 we show the combined LHC production and decay rate
for all three mono-Z topologies in the µ−M1 plane. The dominant contribution to
the sizable rate slightly below the pb range comes from on-shell heavy neutralinos.
In the absence of all constraints, the slight asymmetry in the sign of µ comes from
the decay threshold as a function of µ and M1. Limits from invisible Z-decays
constrain small M1 values through the dark matter mass and small |µ| through the
higgsino fraction. In contrast, invisible decays of the SM-like Higgs require a large
bino–higgsino mixing and are therefore sensitive to the relative sign of N13 and N14

in Eq.(3.56). This leads to a cancellation and hence weaker constraints for µ < 0.
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Figure 4.2: Cross section profiles for the mono-Z process in the µ −M1 plane. All
points fulfill the chargino mass bound (left) and, in addition, predict at
most the measured relic density (right). Regions excluded by invisible
Z and Higgs decays are shown in light gray and dark blue.

As explained Sec. 2.3 and Sec. 3.6, in any realistic thermal dark matter model
the observed relic density is a major constraint. Even the weaker assumption that a
given dark matter candidate only contributes a fraction of the observed relic density
translates into a relevant lower limit on the dark matter annihilation rate. In the
right panel of Fig. 4.2 we show the allowed parameter space in terms of the dark
matter mass mχ̃0

1
and µ. The general feature is that for a given dark matter mass

the relic density defines minimum coupling strengths for bino–higgsino dark matter,
translated into maximum values of µ. The Higgs poles are highly asymmetric with
respect to the sign of µ, while the Z poles are approximately symmetric, as already
seen in Fig. 3.2. Because of the on-shell enhancement of the annihilation rate, the
invisible decay constraints do not significantly constrain these parameter regions.
Other annihilation channels would appear for example for heavier dark matter, but
since we are interested in large LHC production rates we limit ourselves to mχ̃0

1
<

70 GeV at this stage.
In the upper left panel of Fig. 4.3 we start with all parameter points in agreement

with the observed relic density. The curve is identical to the shape shown in Fig. 4.2.
The important result is that for the Z and Higgs funnels the higgsino fractions are
relatively small, leading to mono-Z rates around 10 fb at the LHC. Larger LHC
rates up to 350 fb are possible, but in regions where the dark matter annihilation is
not enhanced by on-shell diagrams.
When we include the exact relic density constraint, we should also consider the

DD limits described in Sec. 3.6. As explained in Sec. 3.5, the limits translate into
limits on the gZχ̃0

1χ̃
0
1
and ghχ̃0

1χ̃
0
1
couplings, competitive with the full range of the

on-shell peaks in Fig. 4.2. In the remaining three panels of Fig. 4.3 we show all
parameter points predicting the observed relic density and indicate if they agree
with the current DD constraints.
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Figure 4.3: Mono-Z cross sections in agreement with the observed relic density (up-
per left). For the three LHC topologies we also show the combination
with DD limits (upper right to lower right). Points excluded by spin-
independent DD limits are light gray, points excluded by spin-dependent
direct detection in dark gray.

The upper right panel of Fig. 4.3 shows the results for the ISR topology. First,
we observe some general features from the interplay of the relic density constraint
with spin-independent and spin-dependent direct detection. Just like the shape of
the Higgs pole annihilation, the spin-independent constraints are very asymmetric
in the sign of µ. This reflects the mixed bino–higgsino coupling to the Higgs with
a relative sign between N13 and N14. Large preferred values of µ > 0 imply small
ghχ̃0

1χ̃
0
1
and correspond to the usual peak in the allowed parameter space. This peak

is not (yet) ruled out by direct detection. For µ < 0 the spin-independent DD
constraints are weak, so the leading constraints are spin-dependent limits. Even for
mχ̃0

1
≈ mh/2 they are driven by gZχ̃0

1χ̃
0
1
.

As expected from our general ISR discussion in Sec. 2.4, the expected LHC mono-
Z rates are very small. They reach 0.07 fb at most, and in a very small region of
parameter space around mχ̃0

1
≈ 42 GeV. This is the only region of parameter space

52



MET trigger [GeV]
100 150 200 250 300

 in
v)

 [%
]

→
95

%
 C

Ls
 li

m
it 

on
 B

r(
H

0

2

4

6

8

10

12

14

16

L = 300 ifb

L = 3000 ifb

ZH reach at L = 300 ifb

ZH reach at L = 3000 ifb

 trigger [GeV]
T,j2

p
40 60 80 100 120 140 160

 in
v)

 [%
]

→
95

%
 C

Ls
 li

m
it 

on
 B

r(
H

0

5

10

15

20

25

30

L = 300 ifb

L = 3000 ifb

ZH reach at L = 300 ifb

ZH reach at L = 3000 ifb

Figure 4.4: CLs limits on invisible Higgs decays from weak boson fusion, as a func-
tion of trigger cuts on missing transverse energy (left) or the transverse
momentum of the tagging jets (right), compared to the expected reach
in the leptonic Zh channel. Figures from Ref [195].

where the LHC process is still enhanced by an on-shell Z-decay, but the couplings
are not ruled out spin-dependent direct detection.
The next, lower left panel shows the same information for the Zh topology com-

bined with invisible Higgs decays. The structure is similar to ISR case, but with
significantly large cross sections. The reason are the limits from invisible Z and
Higgs decays, which following Sec. 3.6 look similar in terms of the partial width,
but very different in terms of invisible branching ratios. The latter are relevant for
the different (2 → 2) mono-Z channels. Driven by the relic density constraint the
largest rate for the Zh topology of around 2 fb appears for mχ̃0

1
≈ 41 GeV. The large

Higgs couplings are barely allowed by DD constraints.
We can skip a dedicated analysis of mono-Z production in the Zh topology and

instead resort to the literature [196–200]: the problem is that we can search for
exactly the same model using invisible Higgs decays in weak boson fusion [201,
195]. In Fig. 4.4 we show the results from Ref. [195] which indicate that even with
conservative assumptions on triggering at the high-luminosity LHC the Zh topology
will never be the discovery channel for such dark matter models.
Finally, we show the expected rates for on-shell neutralinos in the lower right

panel. Typical mono-Z rates can reach 2.5 fb for light dark matter,mχ̃0
1

= 40 ... 47 GeV.
This window is given by the relic density requirement, where annihilation off the
Z-pole is preferred because of the larger corresponding couplings. While the rate for
this topology does not reach the invisible Higgs rates, this channel generally extends
to larger dark matter masses. The limiting factor is the lower limits on the heavier
two higgsino masses and the corresponding LHC production cross sections through
an s-channel Z.

While we are not arguing that ATLAS and CMS should not perform mono-Z
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searches, we have seen that any interpretation of such a signal as dark matter is
likely to require a modification of the standard thermal freeze-out cosmology. In
large parts of the allowed parameter space, the dominant mono-Z topology in the
MSSM, after taking into account all constraints, is invisible Higgs decays. Those
are best searched for in weak-boson-fusion production [201, 195], while mono-Z
production can only confirm the invisible Higgs measurement and add at most very
little new information. So there goes the glory of mono-Z.

4.2 Mono-W(-pairs)

Mono-W production is defined through the hard process

pp→ χ̃0
1χ̃

0
1 W

± . (4.6)

The relevant MSSM diagrams contributing to this process are shown as the first
three diagrams in Fig. 4.5. Like for mono-Z production, we can distinguish three
topologies,

pp→ W±Z → W± (χ̃0
1χ̃

0
1) ISR

pp→ W±h→ W± (χ̃0
1χ̃

0
1) invisible Higgs decays

pp→ χ̃±j χ̃
0
1 → (χ̃0

1W
±) χ̃0

1 heavy charginos j = 1, 2 . (4.7)

The first two rely on the same dark matter couplings as their mono-Z counterparts
and only differ in the production process of the SM-like mediators. Therefore, we will
again focus on bino-higgsino dark matter for the ISR and invisible Higgs topologies.
Also in analogy to mono-Z production, a third topology features heavy states from

the dark matter sector decaying into dark matter and a weak boson. The heavy state
is one of the two charginos with the decay χ̃±j → Wχ̃0

1. Again, production and decay
are mediated by the same coupling,

σχ̃0
1χ̃

0
1W
∝
g4
Wχ̃0

1χ̃
±
j

Γχ̃±j
. (4.8)

The coupling gWχ̃0
1χ̃
±
j
is in part a higgsino-higgsino coupling, which following Sec. 4.1

leads us to consider bino-higgsino dark matter. In addition, gWχ̃0
1χ̃
±
j

includes a

Z
q

q̄

χ̃0
1

χ̃0
1

W

W h

q

q̄

χ̃0
1

χ̃0
1

W

W
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q

q̄
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χ̃0
1
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1
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1

W

Figure 4.5: Feynman diagrams contributing to mono-W production in the MSSM,
including initial-stateW -radiation with a Z-portal,Wh production with
a SM-like Higgs portal, chargino decays, and W -pair production.
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Figure 4.6: Cross section for the mono-W process in the µ−M1 plane. Left: points
fulfilling the chargino mass bound, shown with the limits on invisible Z
and Higgs decays. Right: points also predicting the correct relic density,
shown with DD bounds.

wino-wino interaction, cf. Eq. (3.57). However, bino-wino dark matter is difficult
to reconcile with LEP bounds in the absence of explicit bino-wino mixing in the
neutralino mass matrix. Therefore, all three mono-W topologies again lead us to
focus on bino-higgsino dark matter with

M1 < |µ| �M2 , (4.9)

just like for the mono-Z analysis in Sec. 4.1.

In the left panel of Fig. 4.6 we show the mono-W rate in the µ−M1 plane. Like
in Fig. 4.2 we again include the limits on invisible decays. The largest rates lie in
the pb range and stem from the chargino-decay topology. They are two to three
times as large as the largest mono-Z rates passing the same constraints. This is due
partly to the combination of mono-W+ and mono-W− production, and partly to
the relevant Z and W couplings.
In the right panel of Fig. 4.6 we show the points in agreement with the observed

relic density. In addition, we indicate spin-independent and spin-dependent DD
limits. Since the mono-W topologies rely on the same type of dark matter couplings
as mono-Z production, the constraints work the same way as in Sec. 4.1: ISR rates
become negligible, while rates from chargino decays are suppressed by the large
(charged) higgsino masses required by direct detection. The largest LHC rates are
again found in a narrow window around the Z-pole annihilation funnel. The only
difference is that typically mono-W rates are roughly twice as large as mono-Z rates.

A major constraint on mono-Z and mono-W rates at the LHC are DD limits.
Both, spin-independent and spin-dependent DD limits impose a strong upper bound
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Figure 4.7: Cross section for the mono-W -pair process in the µ−M1 plane in analogy
to Fig. 4.6. Left: points fulfilling the chargino mass bound, shown with
the limits on invisible Z and Higgs decays. Right: points also predicting
the correct relic density, shown with DD bounds.

on the higgsino admixture in the dark matter candidate through the gZχ̃0
1χ̃

0
1
and

ghχ̃0
1χ̃

0
1
couplings. We can try to circumvent them through an LHC production process

which survives the limit N13, N14 → 0. This happens for mono-W -pair production

pp→ χ̃+
i χ̃
−
j → (χ̃0

1W
+) (χ̃0

1W
−) with i, j = 1, 2 , (4.10)

shown in the right diagram of Fig. 4.5. The rate for chargino pair production
through an s-channel photon is strongly enhanced compared to purely weak mono-
W production. It does not have a counterpart in mono-Z production. Furthermore,
even for small couplings we can assume

BR
(
χ̃±1 → W±χ̃0

1

)
≈ 1 , (4.11)

since it is the only kinematically allowed two-particle decay mode at tree level. We
show the rates for mono-W -pair production in Fig. 4.7. Before taking into account
DD constraints, the rates for mono-W and mono-W -pair production are similar.
Since the actual couplings are not constrained by direct detection, the maximum
rates remain larger than for mono-W production. However, we find that the spin-
dependent DD bound on the neutral higgsino, |µ| & 250 GeV leads to a kinematic
suppression of the χ̃−j χ̃

+
j production rate.

Our mono-W study implies that in contrast to, for instance, effective theory ar-
guments, intermediate on-shell states prefer mono-W production over mono-Z pro-
duction. One of the mechanisms behind this is the mono-W -pair topology. Its
contributions are removed, if we employ jet or lepton vetoes to remove top back-
grounds for the mono-W signal. Again, there is no point in performing a detailed
signal-background analysis of this channel, because chargino pair production is a
bread-and-butter signature for electroweakinos at the LHC [202, 203].
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4.3 Mono-Higgs(-pairs)

Mono-Higgs production is the third electroweak process we consider in our compre-
hensive study of final state decay leading to mono-X signatures. The hard process
reads

pp→ χ̃0
1χ̃

0
1h . (4.12)

The Higgs boson in the final state is the SM-like light scalar of the MSSM. The
Feynman diagrams shown in Fig. 4.8 define two mono-Higgs topologies

pp→ hZ → h (χ̃0
1χ̃

0
1) invisible Z-decays

pp→ χ̃0
j χ̃

0
1 → (χ̃0

1h) χ̃0
1 heavy neutralinos j = 2, 3, 4 . (4.13)

Obviously, the usual ISR topology is not relevant for the Higgs case. The Zh
topology is based on the same production mechanism as for mono-Z production, but
combined with a strongly constrained branching ratio BRZ→χχ. The two relevant
couplings driving the neutralino decay topology are

σχ̃0
1χ̃

0
1h
∝
g2
Zχ̃0

1χ̃
0
i
g2
hχ̃0

1χ̃
0
i

Γχ̃0
i

. (4.14)

The production process still requires a sizable coupling to the Z, while the decay
proceeds through the Higgs coupling. The decay χ̃0

i → χ̃0
1h competes with the decay

χ̃0
i → χ̃0

1Z. Just like for mono-Z and mono-W production, the observed relic density
combined with all available constraints motivates mixed bino-higgsino dark matter,

M1 < |µ| �M2 . (4.15)

In the left panel of Fig. 4.9 we show the rates we start with, before considering
relic density and DD constraints. We see that the mono-Higgs rates are more than
an order of magnitude smaller than their mono-Z or mono-W counterparts shown in
Fig. 4.2 and Fig. 4.6. For the Zh topology the limiting factor is the smaller invisible
branching ratio of the Z-boson as compared to the invisible Higgs decays, described

Z Z

q

q̄

χ̃0
1

χ̃0
1

h

Z

χ̃0
iχ̃
0
i

q

q̄
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h

Figure 4.8: Feynman diagrams contributing to mono-Higgs production in the
MSSM, Zh production with a Z-portal, and heavy neutralino decays,
and Higgs pair production.
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Figure 4.9: Cross section for the mono-Higgs process in the µ − M1 plane. Left:
points fulfilling the chargino mass bound, shown with the limits on in-
visible Z and Higgs decays. Right: points also predicting the correct
relic density, shown with DD bounds.

in Sec. 3.6. The neutralino decay topology predicts smaller rates because especially
for large production rates and before considering DD limits the competing decay
rate χ̃0

2,3 → χ̃0
1Z is large.

In the right panel of Fig. 4.9 we see the effect of the spin-dependent and spin-
independent DD limits. The Zh topology is now suppressed to unobservable LHC
rates through the invisible Z branching ratio, just like the ISR topology of the mono-
Z signature described in Sec. 4.1. Unlike for the mono-Z case, the neutralino decay
topology becomes the leading channel with possible LHC rates in the range of 1 fb.
The predicted mono-Higgs rate after taking into account DD constraints is indeed
not much smaller than the expected mono-Z rates from neutralino decay.

Inspired by the mono-W case, it turns out that one way out of some of the leading
constraints is mono-Higgs-pair production shown in the right panel of Fig. 4.8,

pp→ χ̃0
i χ̃

0
j → (χ̃0

1h) (χ̃0
1h) with i, j = 2, 3, 4 . (4.16)

The neutralino production couplings are now separated from the decay couplings
and, more importantly, from the couplings mediating direct detection,

σχ̃0
1χ̃

0
1hh
∝
g2
Zχ̃0

i χ̃
0
j
g2
hχ̃0

1χ̃
0
i
g2
hχ̃0

1χ̃
0
j

Γχ̃0
i
Γχ̃0

j

. (4.17)

In our preferred scenario with bino-higgsino dark matter and another, relatively
light higgsino the production of heavy neutralino pairs will be sizable. At the same
time, the decay to Higgs bosons requires a gaugino content just like the annihilation
responsible for the correct relic density.
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Figure 4.10: Cross section for the mono-Higgs-pair process in the µ − M1 plane.
Left: points fulfilling the chargino mass bound, shown with the limits
on invisible Z and Higgs decays. Right: points also predicting the
correct relic density, shown with DD bounds.

We show the LHC rates for the mono-Higgs-pair signature in Fig. 4.10. First,
the mono-Higgs-pair cross section is suppressed by the phase space of two heavy
higgsinos in the final state with |µ| & 300 ... 400 GeV, just like the mono-W -pair
rate. This is why the rate before applying any constraints is in the same range as
the mono-Higgs rate. On the other hand, every coupling contributing to the LHC
rate is unrelated to direct detection. Through a large bino fraction of the dark
matter agent we can essentially decouple the DD constraints, so the LHC rates with
and without relic density and DD constraints are very similar. All we need to do
is enhance the annihilation rate in the early universe through an on-shell condition
mχ̃0

1
≈M1 ≈ mZ/2 or mχ̃0

1
≈M1 ≈ mh/2.

The LHC signature of mono-Higgs-pair production is similar to Higgs pair pro-
duction at the LHC. While the expected production rate for a pair of SM-like Higgs
bosons is around 35 fb, the additional missing energy in the mono-Higgs-pair signal of
Eq.(4.16) should allow for a better background rejection. Which decay combination
of the two Higgs bosons works best for this purpose is currently under study [204].
For SM-like Higgs pairs the combination bb̄ γγ works best to guarantee detection
and reduce backgrounds, but for the smaller dark matter signal the combinations
bb̄ bb̄ /ET or bb̄ WW /ET might be more promising.

Finally, for completeness and in analogy to mono-W pairs and mono-Higgs pairs,
we consider the mono-Wh pair process given by

pp→ χ̃±i χ̃
0
j → (χ̃0

1W
±) (χ̃0

1h) with i = 1, 2 and j = 2, 3, 4 . (4.18)

This topology is driven by the production coupling gWχ̃0
j χ̃
±
i
and, for the decay, gWχ̃0

1χ̃
±
i
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Figure 4.11: Cross section for the mono-Wh-pair process in the µ−M1 plane. Left:
points fulfilling the chargino mass bound, shown with the limits on
invisible Z and Higgs decays. Right: points also predicting the correct
relic density, shown with DD bounds.

and ghχ̃0
1χ̃

0
j
,

σχ̃0
1χ̃

0
1Wh ∝

g2
Wχ̃0

j χ̃
±
i

g2
Wχ̃0

1χ̃
±
i

g2
hχ̃0

1χ̃
0
j

Γχ̃±i Γχ̃0
j

. (4.19)

In the scenario of a bino-higgsino LSP, heavier higgsinos and a decoupled wino, the
production cross section for a heavy chargino-neutralino pair will be sizable. Like
in the mono-W (-pair) process, we again have

BR
(
χ̃±1 → W±χ̃0

1

)
≈ 1 . (4.20)

On the other hand, the decay χ̃0
j → χ̃0

1h of the heavy neutralino, requiring gaugino
and higgsino parts in the LSP, competes with the decay χ̃0

j → χ̃0
1h.

Hence, rates before relic density and direct detection constraints, shown in the left
panel of Fig. 4.11, lie between the rates for mono-Higgs pairs and those for mono-W
pairs. Like for mono-W pairs and mono-Higgs pairs, production couplings and de-
cays are decoupled from direct detection. The correct relic density can be guaranteed
through the resonant enhancement at mχ̃0

1
≈ M1 ≈ mZ/2 or mχ̃0

1
≈ M1 ≈ mh/2.

Hence, the mono-Wh-pair cross section is only suppressed kinematically through the
production of heavy higgsinos. The resulting rates are shown in the right panel of
Fig. 4.11. We find cross sections of up to 70 fb, slightly above the mono-W -pair rate.
We do not perform a signal-background analysis, since neutralino-chargino pairs be-
long to the electroweakino signatures already being studied at the LHC [205].
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5 Final state decays beyond the MSSM

The research presented in this chapter has been previously published in Ref. [126].
All plots and large parts of the text of this chapter are identical to Sec. 5, “Final
state decays beyond the MSSM”, in that article.
The leading constraint on the size of electroweak mono-X signals in the MSSM

comes from direct detection or, more specifically, from the combination of the relic
density constraint and the DD limits. The reason is that we need large couplings
to the Z and SM-like Higgs mediators to reach the observed relic density, direct
detection strongly constrains these couplings, and most LHC rates again rely on
the same couplings. In extended models like the NMSSM a dark sector mediator
is responsible for the correct relic density, in spite of very small couplings to the
Standard Model. From our mono-W (-pair) and mono-Higgs(-pair) we know how to
decouple the decay topologies at the LHC from the DD constraints, which motivates
our NMSSM study.
Following Sec. 3.3 we adjust the singlet–singlino dark matter sector such that a

light singlino with mχ̃0
1

= 10 GeV can annihilate to the correct relic density through
an on-shell singlet. Because this annihilation relies on the couplings within the
singlet–singlino sector we can decouple the gaugino masses in our |µ| � M1 =
M2 = 1 TeV. Following Eq. (3.68), we ensure the corresponding mass relation by
choosing κ̃ such that

mχ̃0
1
≈ 2κ̃µ+

m2
Z

µ
λ̃2 2κ̃− s2β

4κ̃2 − 1
= 10 GeV . (5.1)

If we include the LEP constraints |µ| & 100 GeV, this typically implies

|κ̃| =
mχ̃0

1

2|µ| . 0.05 . (5.2)

or |κ| � |λ| in the original notation. For our mass hierarchy this means

|κ̃µ| � |µ| �M1 ≈M2 . (5.3)

The singlino couplings from Eq.(3.71) are approximately given by

gasχ̃0
1χ̃

0
1
≈ ghsχ̃0

1χ̃
0
1
≈ −
√

2g λ̃κ̃ N2
15 . (5.4)

They are not large compared for example to gauge couplings, but sufficiently large to
explain the observed relic density for an on-shell annihilation process. The remaining
free parameters in the NMSSM electroweakino sector which we vary in our analysis
are κ̃, λ̃ and Aκ.
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Figure 5.1: Cross section profiles for the mono-Z (left) and mono-Higgs-pair (right)
processes in the µ−λ plane. All points fulfill the chargino mass bounds.
Regions excluded by invisible Z and Higgs decays are shown in light gray
and dark blue.

While it is generally possible to extend all MSSM analyses of Sec. 4 to the NMSSM
we focus on the two most interesting cases, the strongly constrained mono-Z signal
and the most flexible mono-Higgs-pair signal

pp→ χ̃0
1χ̃

0
1 Z and pp→ χ̃0

i χ̃
0
j → (χ̃0

1h) (χ̃0
1h) . (5.5)

For the mono-Z signal the ISR, invisible SM-like Higgs h125, and heavy neutralino
topologies shown in Fig. 4.1 are supplemented by the associated Zhs mediator pro-
duction.
As usual, we start with the cross sections without the dark matter constraints

in Fig. 5.1. Because we fix the dark matter mass to 10 GeV, there is no threshold
left to consider. Instead, we show the correlation between the higgsino mass and
the singlino–higgsino mixing parameter λ̃. In general, the LHC cross section grows
with λ, since all contributing diagrams are driven by bino-higgsino mixing, times λ̃
connecting the higgsino content to the singlino content. For heavy gaugino masses,
the Z and Higgs decay constraints limit the size of the higgsino fraction of the lightest
neutralino, or λ̃ for a given value of µ. While in the MSSM the invisible Higgs limits
were stronger for µ > 0, they now constrain mostly µ < 0. This is because of the
sign difference between the singlino–Higgs coupling and the bino-Higgs coupling,

gh125χ̃0
1χ̃

0
1
≈


g′N11sβ

(
−N13

tβ
+N14

)
bino

−
√

2λN15

(
N13 +

N14

tβ

)
singlino.

(5.6)

The mono-Higgs-pairs rate shown in the right panel of Fig. 5.1 are similar to the
NMSSM case shown in Fig. 4.10. As expected from the enhanced flexibility in all
couplings, they prefer a small higgsino mass and can exceed the mono-Z rates.

62



Figure 5.2: Mono-Z (left) and mono-Higgs-pair (right) cross section versus the
singlet-like pseudoscalar and scalar masses and the singlino–higgsino
mixing parameter. All points fulfill the relic density, chargino mass,
and invisible Z decay bounds. The effects of the invisible Higgs decays
and spin-independent direct detection are shown in grey.

The interesting question is, how these large LHC rates change when we apply the
constraints from the relic density and direct detection. In the left panel of Fig. 5.2
we show the results for mono-Z production in the NMSSM framework. The general
pattern confirms that either the scalar or the pseudo-scalar mediator has to be just
slightly off its mass shell, with a width given by the velocity distribution. The
main difference between them arises from CMB bounds, which are irrelevant for
scalar p-wave annihilation, while a 10 GeV neutralino is barely allowed for s-wave
annihilation through the pseudoscalar [206, 207]. In addition, following Eq.(5.6) the
LHC production rate is roughly proportional to a factor λ from the explicit couplings
and another factor λ̃ from the higgsino fractions.
After including all constraints, the Zh topology with an invisible Higgs again

emerges as the dominant mono-Z process. However, while for the MSSM the direct
detection constraints effectively enforce BR (h125 → χ̃0

1χ̃
0
1) . 0.003, they now fall

behind the LHC limit of 24%. This way, the LHC rate in the NMSSM can be forty
times as large as in the MSSM, exceeding 100 fb. The light, new scalar mediator
also leads to spin-independent singlino–nucleon scattering. This manifests itself in
the excluded points at low mhS and large singlino–higgsino mixing λ.

Also in Fig. 5.2 we show the same effects for mono-Higgs-pair production. In
that case the relevant third parameter is not the singlino–higgsino mixing, but the
higgsino mass parameter. In the NMSSM the LHC rates can be three times as large
as in the MSSM. The reason is a kinematic effect, because the weaker DD bounds
for smaller dark matter masses allow for a larger higgsino fraction in the dark matter
candidate and hence lighter on-shell higgsinos. The subsequent branching ratios for
the decays χ̃0

2,3 → h125χ̃
0
1 are similar to typical MSSM values, namely around 40%.
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For constant µ this branching ratio is approximately independent of λ, since both
ghχ̃0

1χ̃
0
1
and gZχ̃0

1χ̃
0
1
are proportional to λ2 from the explicit and implicit dependences.

Altogether, we indeed see how the light NMSSM mediators allow us to decouple
the different relic density, direct detection, and LHC observables. Most importantly,
our dark matter singlet as well as the heavier higgsinos can now be lighter than in
the MSSM. For all channels this directly translates into an increase of the LHC
rate by a factor three to forty. The mono-W channel will obviously follow the same
pattern.
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6 Conclusion

Mono-X processes provide a promising class of signatures for dark matter searches
at the LHC. These processes are typically motivated employing EFT frameworks
or as initial state radiation in simplified models. In this thesis, we instead focused
on mono-X signals from final state decays. Such processes rely on the on-shell
production of heavy intermediate particles and are, therefore, clearly not covered by
an EFT approach.
We studied mono-Z, mono-W (pair), and mono-Higgs (pair) processes in the

MSSM and NMSSM, focusing on how decays involving heavy electroweakinos can
structurally lead to large LHC cross sections. In the MSSM, we found that, while
large mono-Z rates are initially possible, the combination of relic density and direct
detection constraints cuts deeply into the allowed parameter space, reducing LHC
expectations. In particular, we found that strong resonant enhancement of the
annihilation cross section becomes necessary to reach the observed relic density.
Overall, we found that large mono-Z rates at the LHC could not be reconciled
with dark matter constraint when only SM mediators were involved. Furthermore,
associated Zh production followed by invisible Higgs decay emerged as a leading
mono-Z channel. However, this signature is known to be a weaker probe of invisible
Higgs decays than weak boson fusion.
For mono-W , we found larger cross sections than for mono-Z, contrary to EFT

arguments. Moreover, considering mono-W pairs allowed us to largely decouple
annihilation and direct detection from LHC expectations, reducing, in particular,
the impact of direct detection limits to a mere kinematic suppression through the
masses of intermediate higgsinos. Note that experimentally it needs to be ensured
that the pair contribution to mono-W signals is not removed through jet or lepton
vetoes.
Mono-Higgs does not appear promising at first. However, we found that one can,

again, consider pairs, in order to largely decouple LHC cross sections from dark
matter constraints. Hence, including constraints, this allows for larger rates for
mono-Higgs pairs than for simple mono-Higgs. A detailed analysis of the mono-
Higgs pair signature is currently under study [204]. Furthermore, the mono-Wh
process also allows to largely decouple direct detection and relic density from the
LHC cross sections, resulting in slightly larger cross sections than mono-W -pairs.
Finally, we examined how the remaining constraints can be alleviated in the dark

matter sector of the NMSSM. To this end, we reconsidered mono-Z, which was the
most constrained process considered by us in the MSSM, and mono-Higgs pairs,
which was the most flexible, in the NMSSM. The additional NMSSM scalar and
pseudoscalar mediators allowed for the efficient annihilation of significantly lighter
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dark matter than in the MSSM. Thus, the annihilation is completely separated
from mono-X processes at the LHC, and direct detection can be decoupled more
efficiently. Hence, an NMSSM scenario with light singlino dark matter allowed for
much larger mono-X cross sections. Furthermore, our conclusions that mono-W
appears more promising than mono-Z and that pairs should be included remained
valid.
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