
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Sebastian Guido Bieringer

born in Dieburg

2021

Using Invertible Networks to Measure QCD

Splittings from Parton Showers

This Master thesis has been carried out by Sebastian Guido Bieringer

at the

Institute of Theoretical Physics

under the supervision of

Prof. Tilman Plehn

Abstract

Hadronic parton showers are a fundamental property of QCD and are omnipresent
at collider experiments. For collinear and soft showers, the probability for the
splitting of a mother parton into two partons can be described in terms of splitting
kernels. In this work, we show, how we can use invertible neural networks, a
special realization of normalizing flows, to examine these splitting kernels from
low-level jet information.
We introduce a general parametrization of the splitting kernels, including param-
eters for collinearly suppressed rest terms, and present how a probability distri-
bution for the parameters can be obtained using machine learning inference. We
examine the effects of hadronization and detector simulations and show that the
uncertainty of the inferred distribution scales with the inverse square root of the
number of measurements for two orders of magnitude.

Zusammenfassung

Eine Auffächerung von Hadronen durch sukzessive Spaltungen is ein fundamet-
ale Ergebnis von Quanten Chromodynamik. Diese "shower" werden an allen
Teilchenbeschleunigern beobachtet und können für kleine Abstrahlungswinkel and
geringe Energieüberträge durch wenige Wahrscheinlichkeitsverteilungen der Spal-
tungen beschrieben werden. In dieser Arbeit zeigen wir, wie invertierbare Neu-
ronale Netze zur Analyse dieser Wahrscheinlichkeitsverteilungen genutzt werden
können.
Wir führen eine Parametrisierung für die Verteilungen ein, die auch einen Term
beinhaltet für Effekte, die bei kleinen Abstrahlungswinkeln unterdrückt sind. Für
diese Parameter zeigen wir, wie ihre bedingte Wahrscheinlichkeit durch neuronale
Netze gewonnen werden kann. Wir untersuchen den Einfluss von Hadronisierung
und Detektorsimulationen auf die Messung und zeigen, dass die Unsicherheit
der Messung für zwei Größenordnungen invers zur Wurzel der Messungsgröße
skaliert.

Contents

1 Introduction 1

2 Important concepts from particle physics 3
2.1 Particle content of the Standard Model 3
2.2 Electron-positron annihilation . 6

3 The data set: QCD parton showers 9
3.1 From splitting kernels to the parameter space 9

3.1.1 Altarelli-Parisi splitting kernels 11
3.1.2 Catani-Seymour dipoles . 13
3.1.3 Parametrization of the splitting kernels 16
3.1.4 Experimental measurements on the splitting kernels 17

3.2 Generating parton showers . 18
3.2.1 Sudakov-factors . 19
3.2.2 Sudakov veto algorithm . 20
3.2.3 Toy shower setup . 22

3.3 Augmenting the simulation chain . 22
3.3.1 Hadronization . 23
3.3.2 Detector simulation . 24
3.3.3 Jet clustering . 25
3.3.4 Sherpa setup . 27

3.4 Jet observables . 28

4 Introducing invertible neural networks 31
4.1 Neurons . 31
4.2 Layers . 32

4.2.1 Dense layers . 32
4.2.2 Pooling layers . 32

4.3 Activation functions . 33
4.4 Loss function . 33
4.5 Gradient descent . 34
4.6 Initialization . 35
4.7 Normalizing flows . 36
4.8 Invertible neural networks . 37

5 Constructing the inference method 39
5.1 Bayesian statistics . 39

5.2 Likelihood-free inference . 40
5.3 BayesFlow networks . 41

5.3.1 Conditional coupling blocks 41
5.3.2 Learning objective . 43
5.3.3 Summary network . 44

5.4 Inference setup . 46
5.5 Simulation-based calibration . 48

6 Benchmarking inference quality with the toy shower 50
6.1 Gluon-radiation shower . 50
6.2 Inference from a minimal number of high-level observables 55
6.3 Full parton shower . 58

7 Inference including hadronization and detector 61

8 Conclusions 65

A Explicit calculations on splitting kernels 67
A.1 Calculation of P̂qq . 67
A.2 +-Regularization . 69
A.3 Splitting kernel overestimates . 71

B Data handling 73

C Performance on the whole prior 74

D Bibliography 77

1 Introduction

With the continuous improvement of computational resources, modern machine
learning methods and especially deep learning methods have gained a lot of mo-
mentum in the last decade. The techniques have had much success in commercial
applications such as self-driving cars, image processing software, search algorithms,
language translation tools and more. With respect to particle physics, with its big
and well understood data sets, these computational developments have also found a
strong foothold in modern physics research. A multitude of successful routines have
been developed for example for classification tasks, such as jet classification [1], or
generative approaches, for example to accelerate Monte Carlo event generators [2].

One central flaw of these techniques is the "black box"-nature of neural networks.
They bring technological advance, that is better performance, however they usually
do not help with the understanding of the fundamental processes. Quite the contrary
is true, machine learning techniques often do not rely on a broad understanding of
the underlying physics and it is hard, seemingly impossible, to interpret them this
way. In this work we want to utilize an architecture, that uses neural networks to
improve the understanding of the studied process.

In contrast, normalizing flows are a rather new architecture of networks. They
allow an invertible mapping between a simple latent distribution and a complicated
target distribution. Therefore, they have been examined for both generative and
evaluation tasks. In [3] it was proposed how to use this class of networks for inference
tasks. Utilizing the efficiently invertible architecture from [4], this method has been
tested for different, small problems, mainly in sociology. The question arises: How
can we employ it in the context of contemporary particle physics? What quantities
can be inferred?

Hadronic parton showers in collider experiments, can be described in terms of only
three fundamental splitting kernels, derived from only the quark-gluon and triple
gluon interaction for collinear, soft radiation. They do not require an understanding
of electroweak corrections or parton densities. As such they are a natural candidate
for a LHC object to examine using normalizing flows.

The aim of this work is to introduce a new technique to analyze parton showers
from low-level observables, that is particle 4-momenta. To this end, we propose
a new parametrization for the splitting kernels including a small rest term not in-
cluded in leading-order quantum chromodynamics (QCD). We vary the parameters
beyond their Standard Model value and generate parton shower data using both
a simplified, as well as an established parton shower generator. Starting from a
leptonic electron-positron scattering, we try to estimate the possibility of using a
similar analysis in LHC context.

1

In chapter 2 we give a short introduction to the physics basics of our analysis.
We then introduce the description of parton showers in QCD, as well as the setups
we use to generate them in chapter 3. An introduction to normalizing flows starting
from neural network basics is given in chapter 4 and in chapter 5 we explain how we
can leverage this architecture as an inference technique. Chapter 6 and 7 present
the results for our toy setup and for events generated with Sherpa [5] respectively.
We conclude in chapter 8

The results of this work, including most of the figures, have been published in [6].
The project was a joint effort of Theo Heimel and me and results can be found in
both theses.

2

2 Important concepts from particle
physics

Finding the most fundamental building blocks of matter, is a central goal of particle
physics. High-energy collisions at particle colliders, such as the LHC, are used
to generate so far unobserved particles. As yet, the constituents found are well
described by the Standard Model of particle physics [7, 8, 9] and formulated in
the framework of Quantum Field Theory (QFT). There are a lot of textbooks on
QFT [10, 11] as well as the Standard Model [12], so we will only introduce a few
key concepts here. The Standard Model describes the elementary particles and the
strong and weak nuclear force, as well as the electromagnetic force. A unification
with gravity has not yet been successful. In the following we will introduce the full
particle content of the Standard Model.

2.1 Particle content of the Standard Model
The interactions between the elementary particles are described by the exchange
of gauge bosons, elementary particles of integer spin. The gauge bosons mediating
the elementary forces are spin-1 particles. Specifically, photons mediate the electro-
magnetic force, W+, W� and Z boson the weak interaction and gluons the strong
interaction. The last boson in the Standard Model is the spin-0 Higgs boson. It is
found to be essential in giving particles their masses through the Higgs mechanism
and electroweak symmetry breaking.

The fermionic particles carry a spin of 1
2 and can be grouped into two categories.

The first category are the quarks. They carry a color charge and therefore participate
in the strong interaction. The quarks themselves can also be put into two groups,
three generations of down-like quarks, called down, strange and bottom, with an
electric charge of �

1
3 and up-like quarks, called up, charm and top, with an electric

charge of 2
3 . Hadrons then emerge as combinations of quarks, held together by the

strong interaction, that is by the exchange of gluons. A proton for example contains
two up- and one down-quark. As a matter of fact, quarks are confined, meaning
they only appear as hadrons.

The second category of fermions in the Standard Model are the leptons. They do
not have a color charge and can therefore only interact electromagnetically, if they
have an electric charge, or via the weak interaction. There are three generations of
leptons, each containing an electron-like particle with a full negative charge and a
electrically neutral neutrino. The three generations are electrons, muons and tauons.

Every particle in this picture has an antiparticle or, in case of the photons, gluons

3

and Z boson, are their own antiparticles. This is only possible for neutral particles,
as antiparticles carry opposite charges but the same mass as the particle. One
example for an well known antiparticle relevant for this thesis is the positron, the
positively charged antiparticle of the electron.

The dynamics of a fermion are determined by the Dirac-equation. It can
be understood as the Schrödinger-equation for a particle obeying a linear energy-
momentum relation. Usually, it is expressed using the four �-martices

(i�µ@µ � m) = 0 . (2.1)

The solutions of Dirac-equation are the Dirac-spinors. Their properties are defined
by the algebra of the �-matrices. As a result of this, the solutions of the Dirac-
equations describe spin-12 particles. We will write a fermion with positive spin as
u+ and with negative spin u�.

To form Lorentz-invariant combinations of such spinors, we need to define the
adjoint spinor

 = †�0 . (2.2)

To derive the Lagrangian of the Standard Model, lets start at the Lagrangian of
fermions and introduce the bosonic content, except the Higgs, by constructing the
Lagrangian to be invariant under certain symmetry transformations. The Standard
Model Lagrangian can be defined as the minimal Lagrangian invariant under trans-
formations of the symmetry group SU(3) ⇥ SU(2)L ⇥ U(1)Y . To demonstrate the
generation of the bosons from symmetries, let us start at a Lagrangian of fermions.
Using the adjoint spinor, we can rewrite (2.1) as the Lorentz-invariant Lagrangian

L = (i�µ@µ � m) . (2.3)

We see that this Lagrangian is not symmetric under a local symmetry of the form

 (x) ! M (x) = ei✓a(x)ta (x), (2.4)

where M is part of the symmetry group and ta are the generators of the group.
For M 2 SU(N), there are N2

� 1 such generators, fulfilling the condition of a Lie
algebra

[ta, tb] = ifabctc. (2.5)

In case of SU(3) and SU(2), the structure constants fabc are given by a totally
antisymmetric Levi-Civita symbol. As U(1) only has one generator, its structure
constant is zero.

Because the derivative in the Lagrangian (2.3) acts on the factors ✓(x) of the local
symmetry transformation, it is not invariant under such transformations. To write
an invariant Lagrangian, we have to introduce a gauge field A. The transformation
properties, which render the Lagrangian invariant, are found to be

4

Aµ ! MAµM
† +

i

g
(@µM)M †, (2.6)

in order to restore the invariance of the Lagrangian, using the covariant derivative

Dµ = @µ + igAµ = @µ + igAµat
a (2.7)

instead of the regular derivative. It transforms as

Dµ ! MDµ . (2.8)

The factor g determines the coupling strength between fermions and the bosons
corresponding to the symmetry. For the strong interaction, we will write the coupling
strength gs.

To determine the dynamics of the new gauge field, we also have to include a kinetic
term for them into our Lagrangian. We can write a Lorentz and gauge invariant
kinetic term using the field strength tensor Fµ⌫ = �

i
g [Dµ, D⌫] as

L = �
1

2
TrFµ⌫F

µ⌫ . (2.9)

Using the covariant derivative (2.7), the whole fermionic content of the Standard
Model can be written in one Lagrangian as a sum of Dirac-Lagrangians similar to
(2.3) and kinetic terms similar to (2.9). We have to take into account the chirality of
the particles. This is important since only left-handed fermions interact weakly [13,
14] and thus only left-handed fermions can be doublets under SU(2). As sketched
above, the interaction between fermions and gauge bosons is expressed by the co-
variant derivative. To make the derivative term invariant under transformations of
the whole symmetry group SU(3) ⇥ SU(2)L ⇥ U(1)Y , the covariant derivative has
to include gauge fields for all three symmetries.

To include masses for the per se massless SU(2)L gauge fields, we also have to
include coupling terms to the Higgs field, that is a kinetic term for the Higgs. If we
assume this field to have a non-vanishing vacuum expectation value, the coupling to
it has an effect similar to a mass term of the Dirac-Lagrangian. The mass eigenstates
of the SU(2)L and U(1)Y gauge fields can then be written in terms of the interaction
eigenstates. These linear combinations, are the three massive bosons W+, W� and
Z and the massless photon. This formalism is commonly referred to as electroweak
symmetry breaking. The eight gauge bosons of the SU(3) symmetry, the gluons,
remain massless.

Couplings between fermions and the Higgs field also lead to mass terms and
mixing between the quark families via exchange of a Higgs. The masses, as well as
the mixing amplitudes, are determined by Yukawa-couplings.

Bringing all these different terms together, yields the full Lagrangian of the Stan-
dard Model. By restricting ourselves to the various gauge sectors, we distinguish
processes involving only the U(1) photon as quantum electrodynamics (QED) and
processes involving only the SU(3) gluons as quantum chromodynamics (QCD).

5

e�

e+

�

q

q̄

e�

e+

Z

q

q̄

Figure 2.1: Leading order Feynman diagrams for e+e� ! qq̄

2.2 Electron-positron annihilation
In this work we are interested in measuring contributions to hadronic parton showers.
These arise as a sequence of quark-gluon and triple gluon interactions of final-state
quarks or gluons. A thorough discussion of parton showers will be done in Chapter
3.

As the parton showering happens with rather small momentum transfers, we will
distinguish between these soft splittings and the underlying hard process. To bet-
ter examine the QCD processes, we want to choose a rather simple hard process.
Generating hadronic showers from quarks generated in electron-positron scattering

e+e� ! qq̄ (2.10)

at the Z-boson mass mZ = 91.18 GeV circumvents having to distinguish between
hadronic initial-state radiation and the showers from final-state quarks. Here qq̄
denotes a quark/antiquark pair. For simplicity, we will only consider the production
of an up-, down- or or strange-quark. and assume the quarks to be massless. With
respect to the large Z-boson mass this is a good approximation.

In experiments, for example at the LEP, collisions of leptons also have the advan-
tage that the energy of the process is known. In hadron colliders, such as the LHC,
the momentum of the initial-state particles is always distributed following parton
distribution functions and only the momentum of the full hadron is known.

Figure 2.1 shows both leading-order Feynman diagrams for this process. Using
the Feynman rules for QED and for the weak interaction, we calculate the total
matrix element as the sum of both matrix elements

|M|
2 = |M� + MZ |

2 = |M�|
2 + |MZ |

2 + 2ReMZM� (2.11)

and determine the differential cross section of the process. The value of the cross
section can then be used to unweight calculated events, that is to scale the frequency
of the events with their cross section value.

Due to the mass of the propagating Z-boson, the matrix element squared for the
weak interacting process has the shape of a Breit-Wigner distribution

6

-1 1cos �

0.5 d�
d cos �

/ (1 � cos �)2/ (1 + cos �)2

Figure 2.2: Normalized differential cross section for e+e� ! qq̄ at
p
s = 91.18 GeV.

The data has been generated using the matrix element generator from
[16], which has been used in our toy model from Section 6.

|MZ |
2

/
1

(s � m2
Z)

2 +m2
Z�

2
Z

, (2.12)

with s the invariant mass square of the sum of the initial-state particles and �Z

the total decay width of the Z-boson. It peaks at mZ , where it dominates the total
matrix element [15]. As we examine collisions at

p
s = mZ we can neglect the QED

and mixed contributions.
There are two degrees of freedom to the final states

pq =

p
s

2

0

BB@

1p
(1 � cos ✓)2 cos�p
(1 � cos ✓)2 sin�

cos ✓

1

CCA and pq̄ =

✓p
s/2

�~pq

◆
(2.13)

of this process, the azimuthal angle � 2 {0, 2⇡} and the polar scattering angle
relative to the initial beam direction ✓ 2 {0, ⇡}. The cross section is independent of
the azimuthal angle �. Thus, we can pick a random value for this angle for every
event we generate.

The matrix element however depends on the chirality of the initial- and final-state
particles. For vanishing mass the helicity of a particle corresponds to its chirality
and therefore the matrix element depends on the polar scattering angle ✓. Due to
the chirality of the weak interaction, the resulting matrix elements depend on the
chirality of the outgoing relative to the ingoing particles. The spin-averaged matrix
element squared therefore has contributions proportional to

/ (1 + cos ✓)2 and / (1 � cos ✓)2 .

This can be seen in Figure 2.2. All these properties of the differential cross section,
including the exact shape of the ✓-dependence, are rather unimportant in the toy

7

example in Chapter 6, as we work with weighted data in the beginning. This means
our events are created with a uniform distribution over cos ✓. Since the neural
network we want to use does not have to learn the angular distribution as an artefact
of the hard process, this should simplify the learning process.

However, in Chapter 7 we generate data using Sherpa [5] for a more realistic
setting. As such, we work with unweighted data like it would appear in experiment.

8

3 The data set: QCD parton showers

Quarks and gluons from hard scattering are not observed directly in collider exper-
iments. For one, they cause hadronic showers by radiating quarks and gluons via
quark-gluon and triple gluon vertices. These can then split again as long as the
energy is sufficient. Including a splitting to the process yields a process next-to-
leading order (NLO) in the strong coupling constant. As we will encounter in the
discussion of splitting kernels in Section 3.1, processes of this nature exhibit infrared
(IR) divergences. In Section 3.2, we discuss the machinery to calculate such parton
showers and implement it in a first toy setup.

There are also, NLO terms with loop diagrams, exhibiting ultraviolet (UV) diver-
gences that can be dealt with by renormalization [10]. UV divergent terms are well
understood and will not be part of this thesis.

Another important effect, due to which the final states of the hard process are
not observed directly, is the color confinement of QCD. At low energies, quarks only
appear in bound states,which are singlets under the color SU(3) group transfor-
mation, meaning that quarks are only observed indirectly through hadrons. The
process forming hadrons from quarks at the end of our simulation chain is called
hadronization. More details on additional mechanisms after parton showering and
a summary of our more realistic simulation setup can be found in Section 3.3.

In Section 3.4, observables suitable for examining parton showers are introduced.
For an introduction to QCD events at colliders, we refer to [17], whilst an even more
in depth discussion is presented in [18].

3.1 From splitting kernels to the parameter space
As just introduced, IR divergent terms arise (amongst others) from radiation of soft
quarks or gluons from initial or final state particles, that is radiation with a small
momentum transfer. As the initial-state particles of our hard process are electrons
and positrons (see Section 2.2), they can only radiate photons. Radiation that can
be traced back to one final-state parton, is referred to as a jet. Please note that
jets are commonly defined by the reconstruction of the radiation history from the
the measured energy depositions, as we will see in Section 3.3.3, and not by the
construction from the final-state partons of the hard scattering. The discussion of
splitting kernels and jets in this chapter is largely adapted from [17].

As the splittings can happen multiple times, a description in a factorized phase
space will be very useful. Let us introduce some notation, to describe how the
(n+ 1)-particle phase space can be factorized into the n-particle phase space and a
splitting event.

9

For a splitting of a single, arbitrary mother parton, denoted with an index a, into
two daughter partons, b and c, we define the energy fraction of the final states as

z =
|Eb|

|Ea|
= 1 �

|Ec|

|Ea|
. (3.1)

The opening angle between the momenta of the outgoing particles ✓, can be related
to the energy fraction as

p2a = z(1 � z)E2
a✓

2 + O(✓4)
✓ ! 0
=) ✓ '

1

|Ea|

s
p2a

z(1 � z)
. (3.2)

The limit ✓ ! 0, that is the limit in which the sister parton is radiated in beam
direction, is called the collinear limit. The whole description of parton showers
through splitting kernels is done is this limit. For an initial state with finite positive
invariant mass much higher than that of the final states, it allows us to write the
kinematics of the splitting in Sudakov-decomposition

pb = (�zpa + �n+ pT) (3.3)
pc = (�(1 � z)pa � �n � pT) . (3.4)

Here n is an arbitrary unit vector, pT is the momentum orthogonal to the momentum
of the original state pa and the unit vector n and � is a free factor. Using the
Sudakov-decomposition, the (n+ 1)-particle phase space can be divided into the n-
particle phase space and the splitting process. Neglecting terms of linear or higher
order in the opening angle ✓ in the collinear limit, we can derive the separated
collinear phase space

d�n+1 = d�n
dpc,3 dp2T d�

4(2⇡)3 |Ec|

1

z
= d�n

dz dp2a d�

4(2⇡)3
(1 + O(✓))

✓ ! 0
= d�n

dz dp2a
4(2⇡)2

. (3.5)

In the last step, we also assumed azimuthal symmetry and get a factor of 2⇡. A
step-by-step calculation of this factorization with all neglected terms can be found
in the literature [17].

The (unregularized) splitting kernel P̂ (z) now arises from the fact that we can
factorize the matrix element of the (n+1)-particle process to get the matrix element
of the n-particle process and from the assumption that this part can be expressed
depending on z only

|Mn+1|
2

'
2g2s
p2a

P̂ (z)|Mn|
2 . (3.6)

10

With this assumption the total cross section can be calculated as

d�n+1 = |Mn+1|
2d�n+1

= |Mn+1|
2d�n

dp2a dz

4(2⇡)2

'
2g2s
p2a

P̂ (z)|Mn|
2d�n

dp2a dz

16⇡2

(3.7)

=) �n+1 '

Z
�n

dp2a
p2a

dz
↵s

2⇡
P̂ (z) using g2s = 4⇡↵s . (3.8)

It is helpful to write the integration in terms of a more accessible variable. In
(3.5) we have implicitly used that

p2a =
p2T

z(1 � z)
. (3.9)

For initial state radiation, pb often is the momentum of a particle entering a
consecutive splitting event. In this context, it can interpret it as the Mandelstam-
variable of a t-channel diagram. From the Sudakov-decomposition of the emitted
momentum (3.3), we can express the Mandelstamm-variable as

t ⌘ p2b =
p2T

1 � z
. (3.10)

According to our problem, we can therefore choose our integration variable in (3.8)
from

dp2a
p2a

=
dp2T
p2T

=
dt

t
. (3.11)

3.1.1 Altarelli-Parisi splitting kernels

The definition of the splitting kernel in (3.6) relies on the assumption that the matrix
element factorizes at least in the collinear limit. One can prove this assumption by
direct calculation of the total matrix element in this limit. In Appendix A.1 we have
done this calculation at leading order for the splitting q(pa) ! q(pb) + g(pc).

The splitting of a quark into a quark and a gluon is fundamental for our hard
process, as we only discuss jets produced from quarks. For the first discussion in
Chapter 6, we even limit our shower to this splitting exclusively.

For a gluon radiating of a massless quark, we get in the collinear limit (see Ap-
pendix A.1)

|Mn+1|
2 =

2g2s
p2a

N2
c � 1

2Nc

1 + z2

1 � z
|Mn|

2 . (3.12)

11

With (3.6) we identify the splitting kernel of this splitting as

P̂qq(z) = CF
1 + z2

1 � z
with CF = (N2

c � 1)/2Nc =
4

3
. (3.13)

As we will see later, it is useful to rewrite this by expanding the numerator

P̂qq = CF
1 + z2

1 � z
= CF

✓
2z

1 � z
+

z2 � 2z + 1

1 � z

◆
(3.14)

= CF

✓
2z

1 � z
+

(1 � z)2

1 � z

◆
= CF

✓
2z

1 � z
+ (1 � z)

◆
(3.15)

The same quark-gluon vertex, that describes the splitting 3.16, describes the the
splitting of an incoming gluon into on outgoing quark and antiquark. As in the
derivation of P̂qq, the contribution of the unphysical scalar and longitudinal gluon
polarizations, �0 and �3 respectively, cancel. For this splitting, only terms from
diagonal spin combinations contribute. In the case of equal spin, the terms vanish
due to the fact that gluons only couple to fermions with a spin-difference of 1. This
leaves us with the unregularized splitting kernel

P̂gq(z) = TR

⇥
z2 + (1 � z)2

⇤
with TR = 1/2 . (3.16)

Naturally, it is symmetric under the exchange of the outgoing quark and antiquark
z , (1 � z).

A similar calculation can be done for the triple gluon vertex with special attention
to the different possible polarizations of the gluons. The unregularized splitting
kernel for the g ! gg splitting event is

P̂gg(z) = CA

z

1 � z
+

1 � z

z
+ z(1 + z)

�
with CA = Nc = 3 . (3.17)

Again, it is symmetric under the exchange of the produced gluons and diverges
in the case of a soft gluon.

These splitting kernels are often called Altarelli-Parisi splitting kernels [19].

Regularization

If we want to calculate the total cross section using (3.8), we have to integrate the
splitting kernels over z. This is important for us, as we have to evaluate the prob-
ability of a splitting happening during the simulation of a parton shower. Because
of the divergence of P̂qq and P̂gg for soft outgoing particles, z ! (0,)1, we need to
regularize this integral. In practise this is often done by a simple cutoff, although
the +-Regularization scheme using dimensional regularisation is analytically more
appealing. It is shortly discussed in Appendix A.2.

12

p̃1k

p1 + k

k

p1

p̃s ps

Figure 3.1: Catani-Seymour dipole splitting vertex for q ! q + g splitting

As our parton shower simulations use a cutoff as opposed to dimensional regu-
larisation, we do not need to circumvent the divergences our splitting kernels ana-
lytically. We will thus drop the hat in the following Pqq(z) = P̂qq(z). Section 3.2.2
explains in more detail how the divergences are avoided by defining a transverse
momentum cutoff. The IR divergences of the splitting kernel are simply not in the
interval in which z is simulated.

3.1.2 Catani-Seymour dipoles

One problem of the above description is that it is missing the necessary degrees
of freedom to include on-shell conditions for the partons in the splitting. This is
no problem in theory, however, if one wants to compute a parton shower splitting
after splitting, it is. The problem can be solved by considering a spectator quark
[20]. A diagrammatic representation of the spectator is given in Figure 3.1. Here,
p̃1k = p1 + k is the momentum of the so-called emitter and p̃s the momentum of the
spectator. Momentum conservation for this diagram reads

p̃µ1k + p̃µs = pµ1 + kµ + pµs . (3.18)

And we simultaneously impose the on-shell conditions

p̃21k = p̃2s = p21 = k2 = p2s = 0 (3.19)

for massless partons, for the emitter particle, as well as for all others. Defining the
transferred momentum fraction y to the spectator, we can make sure the on-shell
condition p̃2s = 0 follows from the one for the outgoing spectator

ps = (1 � y)p̃s . (3.20)

13

We can calculate the momentum fraction y from p̃21k = 0 using momentum con-
servation

0
!
= p̃21k =

✓
p1 + k + ps �

ps
1 � y

◆2

() y =
(p1k)

(p1k) + (p1ps) + (psk)
. (3.21)

The momentum fraction transmitted to p1 from the emitter now is defined for the
projection onto p̃s, which gives the collinear direction. From momentum conserva-
tion we calculate

(p1p̃s) = z̃1 (p̃1kp̃s) () z̃1 =
(p1ps)

(p1ps) + (psk)
. (3.22)

The momentum transfer to the gluon is simply given as

z̃k = 1 � z̃1. (3.23)

Using (3.21) and (3.22) we find the leading pole

1

1 � z̄1(1 � y)
=

(p1k) + (p1ps) + (psk)

(p1k) + (psk)
. (3.24)

We want to make sure that this pole shows the right divergence for soft gluon
radiation, z ! 0, 1. In the collinear limit we also want to recover the results from
the naive, collinear derivation in Appendix A.1. Again, we consider the case of a
soft gluon being emitted of a hard quark, thus z̃1 ! 1.

Soft radiation limit: This far, in Appendix A.1 we have only discussed the
splitting in the collinear limit to derive the pole structure for soft radiation. For
the case of a soft gluon being emitted of a quark leg, that is neglecting the gluon
momentum, we can calculate the factorization of the matrix element without the
collinear limit as

Mn+1 = gs✏
⇤
µ(k)

X

j

T̂ a
j

pµj
(pjk)

!
ū(p)Mn , (3.25)

with k and pj as before. The sum includes the possibility of the gluon splitting of
one of the two quarks of our hard process. For massless partons, we then calculate
the matrix element squared

|Mn+1|
2 = �2g2s

X

i<j

T̂ a
i T̂

a
j

(pipj)

(pik) + (pjk)

✓
1

(pik)
+

1

(pjk)

◆
|Mn|

2 . (3.26)

If we use this to calculate the total cross section, we get a logarithmic divergence in
the soft gluon limit, as well as in the collinear limit. The IR divergences however
cancel due to the Kinoshita–Lee–Nauenberg theorem [21, 22].

14

In the soft limit, the momentum transfer to the emitter vanishes, y ! 0. The
Feynman diagram 3.1 thus reduces to a triple vertex without a spectator and the
leading pole of the Catani-Seymour leading pole (3.24) becomes

1

1 � z̄1(1 � y)
=

1

�

p1ps + O(�)

(p1p) + (psp)
(3.27)

As k vanishes, we need to define a new reference momentum through k =: �p, with
� ! 0 a small parameter characterizing the soft limit. This pole shows the same
structure as (3.26). We can thus use this pole to write the soft splitting kernel.

Collinear radiation limit: For the collinear limit of the splitting we can write
the outgoing daughter partons in a Sudakov-decomposition

p1 = zp+ pT �
p2T
z

n

2(pn)
and k = (1 � z)p � pT �

p2T
1 � z

n

2(pn)
(3.28)

In the collinear limit where pT ! 0 the Diagram 3.1 again reduces to a triple vertex,
not connected to the spectator, and

y ! 0 and z̃1 ! z + O(p2T) . (3.29)

Therefore, in the collinear limit, the divergence (3.24) is exactly the same as the
divergence of the splitting kernel in the naive derivation

1

1 � z̃1(1 � y)
=

1

1 � z

�
1 + O

�
p2T
��

. (3.30)

The Sudakov-decomposition (3.28) is also used for the explicit kinematic descrip-
tion of the particles in our parton shower. In our shower generator, as in many
parton shower generators, n is identified with the spectator momentum.

We conclude that the Catani–Seymour description with a spectator parton keeps
all particles on-shell and the divergences exhibit the expected behaviour in the soft
and collinear limit.

In Section 6 we will see that the divergent terms dominate the behaviour of a
shower. This description is therefore very effective.

15

3.1.3 Parametrization of the splitting kernels

The first step towards the splitting kernels we actually use in this work is to rewrite
(3.13), (3.16) and (3.17) in terms of Canani-Seymour dipoles. This simply corre-
sponds to the transformation z ! z(1 � y) in the divergent terms, as motivated in
the previous discussion. Here we simplify writing z̃1 as z for clarity, as it corresponds
to z in the collinear and in the soft limit. The Cantani-Seymour splitting kernels
are

P̂qq = CF

✓
2z(1 � y)

1 � z(1 � y)
+ (1 � z)

◆
(3.31)

P̂gg = 2CA

✓
z(1 � y)

1 � z(1 � y)
+

(1 � z)(1 � y)

1 � (1 � z)(1 � y)
+ z(1 � z)

◆
(3.32)

P̂gq = TR

�
z2 + (1 � z)2

�
, (3.33)

where we used the rewritten version of P̂qq. This way, the divergent terms of P̂qq

and P̂gg have the same shape and the finite terms of both only differ by a factor of
z. Furthermore, all parts of the splitting kernels are positive and can be interpreted
as probabilities themselves.

We now want to parameterize the divergent, finite and constant contributions to
these splitting kernels. Actually, we want to parameterize the contributions to the
cross section (3.8)

�n+1 '

Z
�n

dp2T
p2T

dz
↵s

2⇡
P̂ (z) .

A constant term in the cross section thus needs to be suppressed with p2T / yz(1�z).
Scaling the constant term with p2T also ensures that it vanishes in the collinear limit,
where our calculation of the splitting kernels is exact.

As the finite terms of the P̂qq and P̂gq kernel originate from the same vertex, the
parameter factorizing both should also coincide in a consistent theory. Including all
of these considerations into our parameterization, we get

Pqq(z, y) = CF

Dqq

2z(1 � y)

1 � z(1 � y)
+ Fqq(1 � z) + Cqq yz(1 � z)

�
(3.34)

Pgg(z, y) = 2CA

Dgg

✓
z(1 � y)

1 � z(1 � y)
+

(1 � z)(1 � y)

1 � (1 � z)(1 � y)

◆

+ Fgg (z(1 � z)) + Cgg yz(1 � z)

� (3.35)

Pgq(z, y) = TR

⇥
Fqq

�
z2 + (1 � z)2

�
+ Cgq yz(1 � z)

⇤
. (3.36)

In the following, we will ignore the hats on the splitting kernels, as we do not need
to regularize them for the parton shower code including a transverse momentum
cutoff.

16

From our previous considerations it is clear, that to leading order in QCD

Dqq,gg = 1 Fqq,gg = 1 Cqq,gg,gq = 0 . (3.37)

We will refer to this set of values as the Standard Model (SM) point of the
parameter space examined in this work. In more evolved parton showers, D is
often modified to include effects of higher-order contributions on the normalization
[23]. For our toy model in Chapter 6, we ignore these contributions. In Sherpa
they are included in the running of the strong coupling.

As we vary the parameters, we can encounter negative splitting kernel values. To
make sure the splitting probabilities stay positive, we set the splitting kernels to
zero for negative kernel values.

Figure 3.5 shows the effect of varying the parameters in terms of the high-level
observables defined in Section 3.4for the example of Dqq 2 {0.5, 2}. Generally, higher
splitting kernel values lead to higher splitting probabilities and thus to higher particle
numbers in the shower. This result is further discussed at the end of this chapter,
once parton showers have been fully introduced.

The parameterization introduced in this section was developed in cooperation
with Stefan Höche [6].

3.1.4 Experimental measurements on the splitting kernels

Because the divergent terms by far dominate the the other contributions (see Section
6.1), our measurements of Dqq and Dgg can be compared to experimental measure-
ments of CF and CA, for example at LEP. The color factors also appear in our
splitting kernels (3.13)-(3.16) and for QCD have the values CF = 4/3, CA = 3 and
CA/CF = 2.25.

• In 3-jet events from electron-proton annihilation via a Z-Boson, OPAL mea-
sured the multiplicity of quark and gluon jets. From their energy dependence,
they determine CA/CF = 2.23 ± 0.14 [25] (solid line in Figure 3.2).

• DELPHI measured parton densities for quarks and gluons for similar 3-jet
events. From the ratio of both, they measure CA/CF = 2.26 ± 0.16 [26]
(dashed line).

• ALEPH examined 4-jet events from the same process. From of a fit to the
rate and angular correlations of the events, they get CA = 2.93 ± 0.60 and
CF = 1.35 ± 0.27 [27] (red ellipse).

• In a similar analysis, OPAL measured CA = 3.02± 0.56 and CF = 1.34± 0.30
[28] (green ellipse).

• The authors of [29] used fits to event shape observables and get CA = 2.84 ±

0.24 and CF = 1.29 ± 0.18 (blue ellipse).

17

Figure 3.2: Measurements on the color factors CF and CA as discussed in section
3.1.4. The 4-jet measurements and the combined measurement of both
factors are highly correlated. This figure was taken from [24].

The combination of the results [24, 30] (yellow shades in Figure 3.2) gives

CA = 2.89 ± 0.21 and CF = 1.30 ± 0.09 . (3.38)

For all presented analysis, both measurements are highly correlated, as can be see
in Figure 3.2. The uncertainty of the results are dominated by systematic errors.
and the relative error on the measurements are ⇠ 7.3% and ⇠ 6.9% respectively.

3.2 Generating parton showers
Up to this point, we have discussed the collinear factorization of phase space and
the step-by-step derivation of our splitting kernels without paying attention to the
regularization techniques to deal with the IR divergences emerging from multiple
QCD splittings. Many of those techniques, such as resummation of parton splittings
in the initial state and the associated scales or the running of the parton densities
via the DGLAP-equation [19, 31, 32], are mostly important for hadronic initial
states and are thus not relevant to this work. Furthermore, in this work we are
not interested in the weights of the events, but in the events themselves. As such,

18

we are not investigating the inclusive cross section of our hard process, including
QCD splittings of final-state partons. Instead, we start at the hard process and add
partons trough splittings according to the probability of the splitting.

A more detailed review of the technicalities of parton shower generators can be
found in [33] or in the literature belonging to the different event generators, for
example [34].

3.2.1 Sudakov-factors

In order to calculate the probability of a splitting according to the factorization of
the cross section (3.8), we need to integrate the splitting kernels in both, z and the
evolution variable t.

The distribution of the splittings is given as

dPij(t) =
dt

t

Z zmax

zmin

dz
↵s

2⇡
Pij(z, y(z, t)) =: dtfij(t) . (3.39)

This has to be understood as the differential probability for one splitting with a
specific i, j 2 {q, g} at one point in the evolution variable t.

It is the nature of this "radioactive decay"-like process, that a splitting can only
happen, if it did not happen before. Technically, we are therefore interested in the
probability for a single splitting to occur at t without any splittings prior to this
point. The probability for no splitting to happen between a the scale t and an upper
evolution scale t0 can be calculated as

�i(t, t
0) := P0,i(t, t

0) = exp

�

X

j

Z t0

t

dt̃fij(t̃)

!
, (3.40)

with the sum going over all possible splittings. �i is commonly referred to as a
Sudakov-factor and an evolution equation can be derived for these factors. The
exponential arises from the summation of all virtual corrections and unresolved
emissions between the two scales [33]. It is related to the probability for a single
branching to occur at t when starting at a scale t0 by Poisson-statistics

P1,i(t, t
0) =

d

dt
�i(t, t

0) =
Y

j

fij(t) exp

�

Z t0

t

dt̃fij(t̃)

!
. (3.41)

To generate splittings in our parton shower generator, we now want to sample
values of t according to this probability. For simplicity, assume only one integrated
splitting kernel f(t). If this splitting kernels has an invertible primitive function
F (t), it is easy to sample from P1.

19

3.2.2 Sudakov veto algorithm

To understand this, we review the basics of sampling from a distribution. A pseudo-
random number generator typically generates uniform distributed numbers between
0 and 1. We can sample from a random distribution p(x) in an interval [xmin, xmax],
by applying P�1 to the random numbers. Here,

P (x) =

Z x

xmin

dx0p(x0)

is the cumulative distribution function which for a probability distribution is con-
tinuously increasing and therefore invertible.

The first key difference to our problem is, that after integrating (3.41) we are left
with only the exponential Sudakov-factor. We would therefore sample by applying
the inverse primitive function F�1(t) to the logarithm of a random number. As
motivated above, this is easy if the primitive function is known and invertible.

Our splitting kernels are not this nicely behaved. The Sudakov veto algorithm
still allows us to sample from (3.41) by introducing a function g(t) > f(t) that
bounds the integrated splitting kernel from above [34]. This overestimate g(t) must
have an invertible primitive function G(t). To sample according to the probability
distribution (3.41), we now

1. start at the lower bound of the evolution scale integral t0 = t for i = 0,

2. sample a point ti by applying G�1(G(ti�1)�logR) to the logarithm of a random
number R,

3. reject this point with the probability g(ti)/f(ti)

4. and sample another point with the condition ti+1 > ti until a point is accepted
[34].

One can see that this way the total probability to sample a value t is given by the
sum over the probabilities to sample t with n intermediate steps

P
(n)
1 (t, t0) =

f(t)

g(t)
g(t) exp

⇢
�

Z t1

t

dt̃ g(t̃)

�

⇥

nY

i=1

Z ti+1

ti�1

dti

✓
1 �

f (ti)

g (ti)

◆
g (ti) exp

⇢
�

Z ti+1

ti

dt̃ g(t̃)

��

=P
(0)
1 (t, t0)

1

n!

 Z t0

t

dt̃
⇥
g(t̃) � f(t̃)

⇤
!n

,

(3.42)

where tn+1 = t0. The sum over all n thus gives an exponential and the term g(t)

in the new exponential cancels the one in the prefactor P
(0)
1 . The total probability

20

to sample a point t then corresponds to (3.41) [34]. It is easy to see that for this
algorithm to be efficient, f(t)/g(t) should be as close to 1 as possible.

In (3.8) we have seen that we can choose pT as an evolution variable. This has
the advantage that sub-leading order corrections which force decreasing scattering
angles for subsequent emissions are implemented by design [35]. Our toy shower
generator, as well as recent Sherpa and Pythia implementations use the trans-
verse momentum as the evolution scale. While the t increases with the number
of splittings, the maximum possible transverse momentum pT decreases like the
parton energy from splitting to splitting. This means, we want to start the veto
algorithm at the maximum possible transverse momentum, given by the momentum
of the final-state partons of the hard scattering. We then generate new points by
G�1(G(ti�1) + logR) and enforce the condition that subsequently generated points
are smaller than their predecessors.

We also have to introduce a lower bound on the evolution scale where confinement
becomes relevant, that is a bound of order ⇤QCD. Partons differing less than 1 GeV
in transverse momentum can not be be resolved. This introduces a cutoff scale
pT,0 for the IR. For lower values the veto algorithm terminates. As pT is related to
the energy fraction z and y as p2T/Q

2 = yz(1 � z), with Q the momentum sum of
spectator and emitter, the cutoff directly introduces a zmin and zmax. This means,
we can use unregularized splitting kernels with the veto algorithm.

We can now build the parton shower generator by repeatedly using the algorithm
to generate pT values at which a splitting occurs. For every value, we also sample z
from g(pT) = g(pT , z) and reject the pair with the probability g(pT , z)/f(pT , z). For
an accepted point, this already fixes all degrees of freedom, except the azimuthal
angle. However, in the derivation of (3.8) we assumed azimuthal symmetry, so we
can sample the angle from a uniform distribution.

Multiple splitting kernels and splittings from different partons can be included in
this algorithm, by using the second step of the algorithm to generate a value of pT
for every kernel and emitter and choose the one with the highest value. We then go
on with the third step of the algorithm as before.

Multiple splittings are created by running the algorithm until it reaches the cutoff
scale.This can be thought of as the factorization of the probability for multiple
splittings into a chain of probabilities for single splittings.

To use the splitting kernels Pij(z, y(z, pT)) in the veto algorithm, we need to
find an overestimate P̃ij(z), denoted with a tilde. We choose the overestimate to
only depend on z, making the primitive function of the integral over the evolution
variable a linear function in p2T . It only depends on the momentum of the emitter
and spectator and on the cutoff via the integral boundaries. Our choice for the
overestimates and their integrals for the splitting kernels (3.34) - (3.36) can be
found in Appendix A.3.

21

3.2.3 Toy shower setup

The toy parton shower used to benchmark our inference technique is a direct imple-
mentation of the veto algorithm. Without any further modifications it reproduces
the same results as Sherpa [5]. The toy setup allows us to generate only one jet
by excluding the second quark from the shower. To minimize momentum transfer
to the second quark, we only allow it to be the spectator of the first splitting. We
then directly use the momenta generated by the parton shower generator without
including hadronization or detector effects to train or network. They are part of the
simulation chain for Sherpa data and are explained in more detail in Section 3.3.

We have to pay attention to the ordering of the momenta generated by the shower
generator. Every time a splitting occurs, the code updates the momenta of the
mother particle with one of the daughter particle and appends the other daughters
momentum to the array of momenta. In a q ! qg splitting, the daughter quark
replaces the mother quark. In a g ! gg splitting the symmetry in the splitting leads
to a random choice. And, in a g ! qq̄ splitting, the daughter quark again replaces
the mother gluon. This way, we get an ordering, which includes information on
the sequence of the splittings. We refer to this as truth-sorting. Using truth-sorted
data for inference poses an information-backdoor, as this information is not available
from experiment. Therefore, it is necessary to develop a sorting algorithm inspired
by by the sequence of splittings that only uses the information of the momenta.
This sorting, which we will refer to it as kT -sorting, is introduced in Section 3.3.3.

For Standard Model (SM) parameters of the splitting kernels, Figure 3.3 shows the
distribution in transverse momentum of a single jet for our toy parton shower. We
see most jets are generated at the upper boundary given by the momentum of the
quark after the hard scattering. Figure 3.3 also shows the distribution for showers
generated for e+e� ! qq̄ with Sherpa’s CSSHOWER++ [36] shower generator.
To get a single jet from Sherpa results we used an anti-kT jet clustering algorithm
with a cutoff at 20 GeV.

From Figure 3.5 we can see that the toy shower data is dominated by showers
with a very low number of splittings nPF < 4. Therefore, it poses no constraint
that we limit the maximum number of constituents used for inference to n = 13.
To achieve a constant input size for the inference network, we cut or pad the toy
shower data to the correct size.

3.3 Augmenting the simulation chain

More evolved event generators, such as Sherpa [5], describe more physical scenarios
than our simple toy shower generator. They have to apply different physic schemes
for collinear and hard jets and account for color confinement of the jet products by
hadronization. We also want to include a simulation of the restrictions in the exper-
imental setup and an algorithm to determine the jets from the measured momenta.

As we are only examining single electron-positron collisions, effects, such as initial-

22

Figure 3.3: Spectrum of the total transverse momentum pT of a single jet for n = 104

jets generated from our toy setup and from Sherpa. The single jet gen-
erated with Sherpa was defined using an anti-kT clustering algorithm
cutoff at 20 GeV.

state radiation, underlying events from particles not included in the hard process
and pile-up from using bunches instead of single particles, are not relevant for this
study.

It should also be mentioned that parton shower generators for initial-state radi-
ation are fundamentally different from final-state ones. They often employ a back-
wards evolution scheme starting from the incoming particles of the hard interaction
[34]. Luckily, we have chosen a hard process with leptonic initial states that do not
exhibit initial-state parton showers.

Another fact worth mentioning is, that the parton shower as described above
relies on a hard process, which is only described to leading order. There are several
methods to include next-to-leading order terms in Monte Carlo methods. The two
main algorithms are the POWHEG and the MC@NLO method [17].

3.3.1 Hadronization

The toy setup we use for benchmarking our inference process uses the momenta of
the quarks after the parton shower generator terminates. However, at small energies,
color confinement becomes relevant and we have to transition from single gluons and
quarks to hadronic final states as they would be measured in a collider experiment.
This transition is hard to describe, because at scales where confinement is relevant,
QCD is a non-perturbative theory.

We will briefly discuss the two models currently used to describe hadronization in
Monte Carlo event generators [33].

23

String model

The first model is the string model. It builds on the observation that the potential
between a quark-antiquark pair rises linearly as

V (r) = r with ⇡ 1 GeV/fm. (3.43)

This corresponds to the picture where a flux tube with constant energy per length is
stretched between the two quarks. The energy flux in the tube can be described as
a massless string. When the original pair is separated further, the energy contained
in the string leads to the creation of a new quark-antiquark pair.

Cluster model

The hadronization model used in Sherpa is called the cluster model [33]. It uses
the preconfinement property of QCD: At every stage, the parton shower forms color-
singlet combinations of partons (clusters). The invariant mass distribution of these
clusters only depends on the cutoff scale and ⇤QCD, and is independent of the center-
of-mass energy of the collision itself.

At the cutoff scale, final-state gluons are split into quarks non-perturbatively. And
included into primary clusters. The mass distribution of the clusters is then closely
connected to the hadron spectra [37]. This is known as local parton-hadron duality.

The clusters are then transformed into hadrons via two-body decays. Clusters of
mass above 3 � 4 GeV first have to split into two lighter clusters, while very low
mass clusters can transition into hadrons directly.

The cluster model produces marginally more accurate results, whilst using fewer
parameters than the string model.

3.3.2 Detector simulation

In our simulation chain we assume the hadrons to be stable enough to reach the
detector without decaying. However, the measurement process itself introduces
constraints on the measured data. They are given by the spatial and momentum
resolution of the detector.

In our experimental setup we use Delphes [38] to simulate the detector effects of
the ATLAS detector. It includes a track propagation system embedded in a magnetic
field, electromagnetic and hadron calorimeters, and a muon identification system
[38]. Tracks and calorimeter deposits are then used to reconstruct the particles,
as is done in experiment. A common algorithm for this reconstruction is the CMS
particle flow event-reconstruction algorithm [39]. To profit from these insights, we
use particle flow (PF) objects when including detector simulations in our setup.

24

3.3.3 Jet clustering

From experiment or in our case from simulation, we obtain a large set of particle
momenta. Unlike at the start of this chapter, we do not know to splitting history.
As such, we have to employ recombination algorithms to assign the particles to a
shower. Although the term jet has been mentioned already, the proper definition of
a jet is via a recombination algorithm. It groups the particle momenta according to
the initial hard process by trying to recreate the splitting history.

The idea is to find collinear partners for identified subjets. Generally, this is done
by constructing a distance measure yij for the collinearity of two particles or subjets
i and j and combining two subjets if this distance meausrure falls below a threshold
value. To construct the concrete measures, we need the azimuthal angle � and the
scattering angle ✓ in form of the pseudorapidity

⌘ = � log tan
✓

2
. (3.44)

More concretely, we are interested in the distance of the two particles in the ⌘-�
plane

�Rij =
q

��2
ij +�⌘2ij . (3.45)

where � denotes the distance in the respective dimension. Using this distance scaled
with some power of the transverse momentum as the distance measure, corresponds
to

• the kT algorithm [40]

yij =
�Rij

R
min(pT,i, pT,j) and yiB = pT,i ,

• the Cambridge/Aachen algorithm [41]

yij =
�Rij

R
and yiB = 1

• or the anti-kT algorithm [42]

yij =
�Rij

R
min(p�1

T,i, p
�1
T,j) and yiB = p�1

T,i .

Here R is a value which has to be chosen appropriately for the "size" of a jet and
to distinguish jets from beam radiation. A jet recombination algorithm then finds
the combination of particles or subjets, i and j with the minimal distance, and
combines the two if min (yij, yiB) = yij or removes them if they are beam radiation,
min (yij, yiB) = yiB, until a distance cutoff or a minimal number of jets is reached.
Recombination algorithms like these are infrared save, meaning they are independent
on the IR cutoff of the showering.

25

The distance measure of the kT algorithm scales with the transverse momentum.
It therefore starts from the softest constituent, while the anti-kT algorithm does the
opposite and starts the sorting with the hard constituents. As the radiation of our
parton shower is ordered in pT , the kT algorithm approximates the splitting history
of the shower. The tree generated by the anti-kT algorithm has no simple physical
interpretation. It is however more compact and easier to interpret geometrically,
making it easier to subtract background effects depending on the geometry of the
jet. The Cambridge/Aachen algorithm can be interpreted geometrically as well. It
produces jets circular in the ⌘-� plane.

In this work we need recombination algorithms to perform two different tasks:

Finding a single jet

In our simulation chain we need to identify a single jet from the e+e� ! qq̄ simula-
tion, as Sherpa we use sherpa to generate two showers, one each from the quarks
exiting the hard process. For this we use the implementation of an anti-kT algorithm
in FastJet [43] with R = 1.2 and a lower cutoff at pT = 20 GeV. We then choose
the harder one of the two jets, as it contains more splittings. Figure 3.3 shows the
transverse jet momentum of jets recombined this way.

We note that FastJet uses an anti-kT algorithm where every entry in the distance
measure above is squared.

kT -sorting

As explained in Section 3.2.3, we also need a clustering algorithm to construct a
sorting for the particle momenta, because the toy parton shower generator produces
an array including information on the shower history. We have found that the results
using this information backdoor are significantly better than training on shuffled
data or data sorted by pT . We therefore want to find an ordering that includes an
estimated shower history.

To reconstruct the shower history, we use a kT algorithm. We can choose R = 1
since we do not have to discriminate between different jets. Starting from the first
splitting in the reconstructed shower history, we follow the hardest constituent in
every splitting, that is the daughter particle with the highest energy fraction z, to
produce the first entry of the array. We then go to the second constituent of this
splitting and again follow the hardest constituent. We do so for every branching in
the shower history.

This sorting, in the following referred to kT -sorting, reproduces the truth-sorted
data for a correctly identified shower history with the difference that the daughter
partons of a splitting are ordered in their energy fraction and not depending on the
splitting.

For low numbers of splittings, our quark jets are dominated by the radiation
of a soft gluon of a hard quark. Therefore, we expect the kT -sorting to produce
similar results to the truth-sorting for low numbers of emissions. Even assuming the

26

Figure 3.4: Ratio of momenta remaining on the same position in kT -sorting and in
truth-sorting depending on the position in the sorted array (n = 105).

kT algorithm produced the right sorting history, for higher numbers of branchings
in the shower, the symmetry in the gluon emission leads to significant differences
between both sortings. This can be seen in Figure 3.4. For the first entries of the
array, that is the left side of the graph, the ratio is dominated by the high number
of parton showers with few splittings (see Figure 3.5). Only for these showers with
low nPF the sorting gives similar results to the truth-sorting.

For Sherpa generated data or data from experiment, there exists no truth-sorting.
It still is sensible to include the reconstructed splitting history in the sorting. We
have tried different ordering schemes and have found the kT -sorting to give the best
results.

The results presented in Section 6.1 indicate that further improvements to the
sorting strategies will have an overall positive effect on the inference performance.

3.3.4 Sherpa setup

In the following we summarize the data generation setup for the realistic scenario
including hadronization. We use a modified version Sherpa 2.2.10 [5] that includes
our modified splitting kernels (3.34)-(3.36) to simulate the hard process

e+e� ! qq̄ . (3.46)

We limit the quark flavours to up, down and strange and assume them to be massless.
Like in the toy setup, we terminate the parton shower generation at 1 GeV. The
resulting quarks are then hadronized.

To examine the effect of hadronization, we save the momenta of the hadrons, pho-
tons and charged leptons at this point and use an anti-kT algorithm from FastJet
3.3.4 [43] with R = 1.2 and a lower cutoff at 20 GeV to select a single jet.

27

In Section 7, we also want to examine the effect of the detector simulation on
the inference. We apply Delphes 3.4.2 [38] with the default ATLAS card to the
simulation after hadronization. Again, we use an anti-kT algorithm to determine a
single jet and then save all particle flow (PF) objects [39].

In both cases, like in the toy setup, we use the kT -sorting to sort the momenta.
We then crop the data to n = 13 constituents to keep the input dimension constant.
As can be seen in Figure 3.5, the parton showers in the more realistic setup can
contain more particles than this. This should not be problematic, as only very soft
constituents get cropped due to the kT -sorting. We have found that limiting the
number of constituents further can decrease the quality of inference.

3.4 Jet observables
To analyze parton showers with a variable number of constituents, as well as to
benchmark the effect of training directly on the particle momenta, we use six stan-
dard jet observables [44] without regard to their infrared and collinear safety. We
introduce

• the particle multiplicity [45]

nPF =
X

i

1 , (3.47)

• the girth of the distributed radiation [46]

wPF =

P
i pT,i�Ri,jetP

i pT,i
(3.48)

with Ri,jet being the angular separation between momentum pi and the total
jet momentum,

• a measure

pTD =

qP
i p

2
T,i

P
i pT,i

(3.49)

for the effect of the "softness" of the radiation [47]

• and the two point energy correlator [48]

C0.2 =

P
i,j ET,iET,j(�Rij)0.2

(
P

i ET,i)
2 (3.50)

with 0.2 a tuned parameter to discriminate between quarks and gluons and
ET =

p
m2 + p2T the transversal energy.

The remaining two jet observables are the highest fraction of pT,jet carried by a
single constituent xmax and the smallest number N95 of constituents carrying 95%
of pT,jet [49].

28

10 20
nPF

0.0

0.1

0.2

0.3

0.4

toy shower

hadronization
detector

0.0 0.2 0.4 0.6 0.8
wPF

0

2

4

6 toy shower

hadronization

detector

0.4 0.6 0.8 1.0
pT D

0

2

4

6 toy shower

hadronization

detector

0.00 0.25 0.50 0.75 1.00
C0.2

0

1

2

3

4

5
toy shower

hadronization

detector

Figure 3.5: Distribution of the high-level jet observables nPF , wPF , pTD, and C0.2

for 105 jets generated with the toy setup and the Sherpa setup with and
without detector simulation. Exemplary, the bands show the variation
of the leading term of quark splitting between Dqq = 0.5 (dotted) and 2
(dashed).

Effect of the parametrization on the jet observables

Figure 3.5 shows the distribution of the first four observables for the toy shower
setup and for the Sherpa setup directly after hadronization and including detector
simulations. To show the effect of varying a parameter in our splitting kernels, bands
delimited by Dqq = 0.5 and 2 are shown. The edge defined by the lower parameter
is dotted, while the edge for the higher parameter is dashed.

In the upper left panel, we can clearly see the effect of hadronization and detector
resolution on the particle number. As expected, the we observe a higher number of
particles after hadronization. This number decreases during the detector simulation,
because very soft particles can not be resolved. We also see the effect of an increased
splitting kernel, which leads to a higher splitting probability. Thus, the distributions

29

for higher Dqq are shifted to the right.
Because the toy shower generates just a few splittings, its girth wPF in the upper

right panel accumulates at the lower limit. A slight peak can be found for the
showers with enough splittings. For hadronization and detector level data, wPF

shows a clear peak at wPF ⇡ 0.2. As for the particle number, increasing Dqq and
thus the splitting kernel shifts the distribution to higher values.

For the toy parton shower generator, the distribution of pTD in the lower left
again is dominated by the low number of splittings. A single parton has pTD = 1.
Adding soft radiation shifts the distribution to lower values. For events with a higher
number of splittings, a second peak forms at pTD ⇡ 0.7. For the full simulation we
then see a broad peak at pTD ⇡ 0.4. Like for wPF , the distribution only changes
slightly when detector effects are included. As expected, a higher splitting kernel
value leads to more soft particles.

Just like the distributions of the other three observables, the toy setup distri-
bution for the correlator C0.2 is again dominated by C0.2 = 0 for a single parton.
Hadronization then moves the broad maximum of the toy-level distribution to higher
values. The distribution peaks at C0.2 ⇡ 0.7 and again detector effects contribute
only marginally.

From this discussion, we expect big changes in the inference when going to
hadronized data and only little changes when including detector effects. This is
confirmed by our results in Chapter 7.

30

4 Introducing invertible neural networks

The aim of this work is, to use the BayesFlow algorithm [50] to infer the splitting
kernel parameters, introduced in Chapter 3.1.3, from the particles calculated in our
simulation chain. This inference technique is based on conditional invertible neural
networks (cINN). In this chapter, we derive this architecture from the very basics
of neural networks.

A neural network is a chain of linear functions, called neurons, and non-linear
activation functions. This chain forms a composite function with a high dimensional
parameter space. The parameters are then optimized to minimize a loss function
by some form of gradient descent. The learning objective usually is for the network
to transform data with a given input data distribution pZ(z) into output data with
a distribution pY (y) resembling a specific target distribution. In simple supervised
models or in generative adversarial networks, this distribution is given in form of
true data. And, in our case, it is simply a Gaussian distribution.

Denoting the vector of parameters of the network as �, we can write the network
as a function

f� : Z ! Y, z 7! f�(z) = y (4.1)

where z is a vector in the original space Z and y in the target space Y . In terms
of probability densities of input and output we can write

z ⇠ pZ(z) and y ⇠ pY (f�(z)) = pY (y)) . (4.2)

4.1 Neurons
A neuron is the basic building block of a neural network. It has n inputs zi, which
each are weighted by multiplying with a trainable weight wi. All weighted inputs
are then summed over and an additional trainable bias b can be added. Finally,
the output is processed with an activation function f . We will discuss different
activation functions in Section 4.3. The output y of a single neuron can be written
as

y = f(wizi + b) , (4.3)

where summation over identical indices is implied.
This architecture was chosen to resemble the function of a neuron in the brain

of a mammal. In the biological prototype, the neuron gets information in form of
electrical impulses from multiple dentrites. The electrical potential in the neuron

31

sums up over time and various inputs, until it reaches a threshold. If this level is
reached, the neuron fires and sends out an electrical signal via its axion, resetting its
internal potential. This firing behaviour is remodeled with the activation function.
However, in the brain there are a several kinds of different neurons, where in the
case of an artificial neuron mostly the activation function, the connections between
them and the order of different networks are altered.

4.2 Layers
As mentioned above, the connections of the neurons between each other are decisive
for the networks function. While there is no limit to ones imagination in ordering
neurons, it is sensible to build networks from layers differing in activation functions
and architecture. There are different kinds of layers for different uses. However, we
will only discuss the basics which are important for the BayesFlow architecture.

4.2.1 Dense layers

The simplest way to connect neural networks, is to use every output of the preceding
layer as an input for every neuron in the current layer. This is called a fully connected
or dense layer. In (4.3) we wrote the weights of a single neuron as a vector with
n entries, where n was the number of inputs to the neuron. In the case of a dense
layer, n is the same as the dimension of the preceding layer. The weights of all m
neurons in one layer can now be summarised as a n⇥m matrix and the biases as a
m-dimensional vector

yj = f(wjizi + bj) . (4.4)

Dense layers are the basis for many more complicated layers. Since calculating a
dense layer reduces to vector calculus, it can be highly parallelised and is thus best
computed on a GPU.

4.2.2 Pooling layers

Just like convolutional layers, pooling layers are most commonly used to reduce the
dimensions of 2-dimensional image-like tensors. The function of pooling layers is
simple. If given a input tensor of 1 (2) dimension, we split the input into non-
overlapping parts of size a(⇥b). We then calculate the average, sum, maximum or
another kind of mathematical operation for all parts. This gives us the output of
the pooling layer. It is not a trainable layer, but is only used to reduce the size of
the input.

In our case, we work with sets of 1-dimensional vectors, that can be stacked to
a 2-dimensional tensor. We use average-pooling or sum-pooling layers to reduce
tensors to the size of one 1-dimensional vector.

32

4.3 Activation functions
The most simple activation function one can construct for a neuron, is a linear
activation function. Usually, a linear activation function is just the identity.

However, activation functions are used to introduce non-linearity into the neural
network. With a linear activation function, a network would simply be a big con-
catenation of linear functions, and as such linear again. As most problems are not
linear, we should only use linear activation functions in special cases, such as output
layers.

A common non-linear activation function is the Rectified Linear Unit (ReLU)

ReLU(x) = max(x, 0). (4.5)

It is very fast to compute and is therefore often used in big architectures. The ReLU
has some obvious problems. First, its derivative is undefined in 0. As this is only
one point, it usually is not problem for the gradient based optimisation method. It
however has a problem with the vanishing derivative for values < 0. As the output
in this region always vanishes, it does not change between optimization steps and
can therefore not be optimized with its output being 0 for the rest of the training.
The neuron is dead in some sense and only takes up resources. In principle this can
be solved by assigning a small slope for negative values. We use ReLU activation
functions in the summary network of our architecture.

An activation function that is differentiable in 0 and solves the vanishing gradient
problem is the Exponential Linear Unit (ELU)

ELU(x) =

⇢
↵ (ex � 1) if x 0
x if x > 0

, (4.6)

with ↵ > 0. As an ELU flattens for small values, it helps the network converge by
reducing the outputs and thus gradients during training. We use ELU activation in
the inference part of our network, because of their stability.

4.4 Loss function
Following the notion of (4.1) and the preceding sections, a neural network is concate-
nation of multi-parameter functions mapping from a initial probability distribution
to a target probability distribution. In order to optimize the parameters of the func-
tion, we first have to introduce a metric to determine how well the network output
is resembling the target distribution. This is usually formulated as the sum of a
distance measure for the output point from the target point over all data points in
one training step. For classical classification purposes this is often a mean-squared
error (MSE) distance or cross entropy. The learning incentive of BayesFlow ar-
chitectures is to transform a given distribution into a Gaussian latent distribution.
In Section 5.3.2 we explain in more detail how to derive the loss function explicitly.

33

4.5 Gradient descent

If a loss function L(f�(z)) for the network f� is specified, we can try to find the global
minimum of this function in the high-dimensional parameter space by updating
our parameter point iteratively into the direction where the loss decreases. We
therefore have to calculate the derivative r� of the loss function with respect to
every parameter in �. This results in long chains of derivatives, but is in principle
elementary analysis. We use this gradient to define a step in our iterative process

�t+1 = �t � vt := �t � ⌘tr�tL(f�t(z)) . (4.7)

The parameter ⌘ is called learning rate and has to be tuned for every problem. A low
learning rate leads to very slow convergence and a high learning rate might hinder
convergence if the step size is bigger than the minimum we search for.

This simple gradient descent method also can be unstable, since the loss function
might exhibit local minima or saddle points where the gradient vanishes and the
optimization process stagnates.

A first improvement on this descent method, is to evaluate the loss function for
batches instead of the whole data set. This introduces stochastic variations leading
to a more stable routine and speeds up the calculation. It is often referred to as
stochastic gradient descent [51].

A more stable algorithm can be built by adding a momentum term

vt = �vt�1 + ⌘tr�tL(f�t(z)) , (4.8)

where � should be smaller than 1. This allows the network to carry on if the
gradient vanishes, making it more stable against saddle points and local minima. It
also allows the algorithm to pick up speed over multiple optimization steps, if the
gradients are constantly small.

One way to further improve this optimization algorithm is by dynamically chang-
ing the learning rate. It improves convergence for the training to decrease the
learning rate further into the training, when the parameters are close to the global
minimum. This can be done by a preset exponential decay or depending on the
changes of the loss function over the last optimization steps.

A more evolved algorithm is implemented in the Adam optimizer [52]. It scales
the learning rate dynamically, to achieve higher learning rates into directions with
less curvature. As calculating the second order derivative, that is the Hessian matrix,
requires a lot of resources, the algorithm instead uses the mean and the uncentered
variance of the gradient to determine the curvature. These are calculated as moving
averages during training. Parameters �1 and �2 control the exponential decay of the
moving averages

34

gt :=r� (L(f�t(z))) (4.9)

mt =
�1mt�1 + (1 � �1) gt

1 � �t
1

(4.10)

st =
�2st�1 + (1 � �2) g2t

1 � �t
2

. (4.11)

As both averages are initiated as zeros, the denominator has to be included to
counteract the resulting initialization bias. The update step of the parameters is
then constructed according to

�t+1 = �t � ⌘t
mt

p
st + ✏

. (4.12)

The defaults for the decay parameters are �1 = 0.9, �2 = 0.999 and for the diver-
gence prohibiting constant ✏ = 10�8. Since its introduction, Adam has established
itself as the default optimization technique for neural network purposes. We also use
Adam in this work without changing the default values, except the starting learning
rate.

Since we use a stochastic gradient descent method, an optimization step is done
after evaluating a batch, that is set of data points with a fixed size. In our application
the batch size coincides with the amount of points processed by the network at once.
One full run through all points in one data set will be referred to as an epoch.

4.6 Initialization
As mentioned for activation functions we want to avoid vanishing gradients during
training. We also want to avoid gradients that are too high, as they can hinder
convergence of the training. It is thus important not to set your network weights to
high or to low at the beginning of your training.

One way to circumvent these problems is using a Glorot initialization, also called
Xavier initialization [53]. It is a good idea to construct the initialization such that
its mean vanishes. To ensure proper forward and backward (training) properties,
we also want the variance over the inputs and the variance of the derivative of the
loss function with respect to the outputs of one layer to be the same for all layers.
These conditions can be reformulated as

Var[W i] = 1/ni (4.13)
Var[W i] = 1/ni+1, (4.14)

with W i the weights in the i-th layer, ni the number of neurons in that layer and
ni+1 the number of neurons in the subsequent layer. As both conditions exclude
each other, we have to find a compromise.

35

Glorot and Bengio proposed [53]

Var[W i] =
2

ni + ni+1
. (4.15)

This can be satisfied by sampling the individual weights wi from a uniform distri-
bution U

wi ⇠ U

"s
�6

ni + ni+1
,

s
�6

ni + ni+1

#
(4.16)

or from a normal distribution N

wi ⇠ N

"
0,

s
2

ni + ni+1

#
. (4.17)

The biases are initialized as 0. In our work we use a Glorot uniform initialization.

4.7 Normalizing flows
Now that we have discussed all the building blocks of neural networks, we will go into
more detail on our specific application. One common task for neural networks is to
model a probability density function given data from the distribution. Normalizing
flows are a class of techniques designed for this purpose. Comprehensive reviews
on the topic can be found in [54] and [55]. As BayesFlow in principle uses a
normalizing flow to learn the probability distribution of the parameters we want to
infer, we will also give a short summary in the following.

The statistical interpretation (4.1) of neural networks is the basis of describing
normalizing flows. Normalizing flows are invertible and differentiable mappings of
elements from a usually simple base distribution to elements with a more compli-
cated target distribution. As the concatenation of invertible mappings is invertible
again and as the same is true for differentiable mappings, multiple invertible and
differentiable elements can be linked together to form a normalizing flow.

Because it is invertible by design, a normalizing flow can be used in two directions.
The first direction maps the simple, often Gaussian base distribution pZ(z) to the
complicated target distribution pY (y).

g� : Z ! Y, z ⇠ pZ(z) 7! y ⇠ pY (y) (4.18)

We refer to it as the generative direction, because points in the target distribu-
tion can be sampled by generating points in the base distribution and using the
normalizing flow on the points. The inverse direction

f� = g�1
� : Y ! Z, y ⇠ pY (y) 7! z ⇠ pZ(z) (4.19)

36

normalizes the complicated distribution, giving this class of networks its name.
We will refer to this direction as the normalizing direction. The target distribution
is related to the original one as

pY (y) = pZ(f�(y))

����det
@f�
@y

����

= pZ(f�(y))

����det
@g�
@z

����
�1

,

(4.20)

where @f
@y denotes the Jacobian of the function. In principle, it has been shown

that normalizing flows can, within reasonable assumptions on both distributions,
transform any base distribution into any target distribution [56]. However, to be
practical in use and not only in principle, a normalizing flow should be

• efficiently invertible, to use both directions of the flow. Often training is done
in normalizing direction or in both directions, while the generative direction
is often of interest.

• Furthermore, for density evaluations according to (4.20) the Jacobian should
be efficiently computable

• and while both of these conditions should be fulfilled, the network still needs
to be expressive enough for the task at hand.

4.8 Invertible neural networks
One class of normalizing flows, which is by construction easily invertible and has
an accessible Jacobian, can be constructed from multiple coupling blocks [57], each
made up of two complementary affine coupling layers [58, 59]. We will refer to
one block as an affine coupling block (ACB) and to the total architecture as an
invertible neural network (INN), although all normalizing flows are constructed to
be invertible. Normalizing flows built from coupling layers are called coupling flows.

The trick with our architecture is that the networks themselves do not have to
be inverted, as they are only used in element-wise multiplication (�) and addition.
To achieve this, one coupling block f�(Y) splits the input vector into two similarly
sized vectors y = (yA, yB). It then learns the representation in the base distribution
from the on in the target distribution as

f�(y) =

✓
zA

zB

◆
=

yA � es2(y

B) + t2
�
yB
�

yB � es1(z
A) + t1

�
zA
�

!
, (4.21)

with the inversion

g�(z) =

✓
yA

yB

◆
=

 �
zA � t2

�
yB
��

� e�s2(yB)
�
zB � t1

�
zA
��

� e�s1(zA)

!
. (4.22)

37

Here, s1 , s2 , t1 and t2 can be arbitrarily complicated functions, learned by a neural
network. In principle there are no restrictions to their architecture, except that
the output dimension must match the dimension of the element-wise multiplication.
In practice, we choose a shallow network of equally sized, fully connected layers
with ReLU activation. The exponential function is in principle not needed, but
circumvents division by zero in the inverse direction. As both directions use the
same neural networks, both directions are easily accessible.

The vector notation in (4.21) can be misleading, as one coupling block contains
two concatenated layers. The first one only calculates zA from yA and yB, the second
one gives zB in terms of zA and yB. The Jacobian of a coupling block can thus be
calculated as the Jacobian of both functions. It is the product of two triangular
matrices

@f�(y)

@y
=

0

finite diag es1(z
A)

!
diag es2(y

B) finite
0

!
. (4.23)

As the determinant of the product of two matrices is the product of the determinants,
the Jacobian determinant of a coupling block can be computed very efficiently.

To increase the expressiveness of the neural network, we concatenate multiple
coupling blocks. The architecture then fulfils all requirements of a normalizing flow
by construction.

Improvements on the coupling blocks

The coupling flow architecture has been pioneered and improved by NICE [58],
RealNVP [59] and Glow [60]. While the latter uses a 1 ⇥ 1-convolution between
coupling layers to ensure the connection of every part of the input with every part
of the output, we use fixed permutations between the coupling blocks, as done in
NICE and RealNVP. Since our parameter space is low-dimensional compared to the
image spaces investigated in the pioneering work, it contains at most 3 dimensions,
using fixed permutations is expected not to limit the performance. It also guarantees
a cheap inversion of the mixing.

We also apply a bijective soft clamping

sclamp
i =

2↵

⇡
arctan

⇣si
↵

⌘
for i = 1, 2 , (4.24)

with a clamping parameter of ↵ = 1.9 in every coupling layer. It prevents instabilities
from divergent outputs and has been optimized in [4].

38

5 Constructing the inference method

The basic idea of inference using conditional normalizing flows is simple [3]: Train
a flow to map from the inference parameters space to a simple latent space given
a condition and using the generating direction with a fixed condition will give you
the distribution in the parameter space. To make this more specific, we discuss the
basics of Bayesian statistics in Section 5.1, as well as some established methods of
likelihood-free inference in Section 5.2, before discussing the BayesFlow method
in Section 5.3.

We introduce our detailed setup in Section 5.4 and showcase a method to ensure
correct calibration of the trained model in Section 5.5.

5.1 Bayesian statistics

In statistics, two different approaches to probabilities are distinguished: The Bayesian
and the frequentist approach.

As the name already implies, the frequentist approach treats probabilities as the
relative frequency of events in an infinite repetition of the experiment. In a frequen-
tist inference setup, usually confidence intervals for hypothesis tests are constructed,
often using a (log-)likelihood ratio. Pure frequentist approaches can not account for
dependencies on other variables that have a probability distributions of their own.

The Bayesian approach on the other hand interprets probabilities as the degree of
belief in an event. It can be updated if information is gained using Bayes’ theorem

p(y|x) =
p(x|y)p(y)

p(x)
. (5.1)

Here y and x are events. In our case, y are the parameters of our simulation. The
corresponding event would be "the true parameter combination is y". The second
event x is a measurement of shower data.

The aim of our inference is the conditional probability of a parameter combination
given a fixed measurement p(y|x). It is called the posterior. It depends on the
likelihood p(x|y), the marginal likelihood p(x) and the prior p(y). The likelihood is
the probability distribution of the measurement given our theory parameters and
can therefore be obtained from our simulation chain numerically. The prior encodes
our knowledge of the the parameters before the measurement. In standard Bayesian
inference applications, the posterior of a past measurement can be used as the prior
of the next measurement. This chain of Bayesian updates improves the posterior
over consecutive measurements. The last piece of the puzzle can be calculated from

39

the likelihood and prior using the normalization property of a probability density
fucntion

p(x) =

Z
dy p(x|y) p(y) . (5.2)

However, for problems with high-dimensional parameter spaces, this integral is nu-
merically cost intensive to calculate.

While in frequentist approaches hypotheses are usually accepted or rejected within
a specific confidence, Bayesian approaches can give a full probability distribution for
a hypothesis under a certain condition.

5.2 Likelihood-free inference
In our case, as well as in many others, the likelihood p(x|y) cannot be calculated
from the the simulation parameters y analytically. Inference problems of this nature
are dubbed likelihood-free or simulation-based inference problems, as the intractable
likelihood has to be obtained from the simulation in a different way. In [61] the
authors give an broad overview on different likelihood-free inference techniques.

As mentioned in the previous section, the simulation in principle generates a nu-
meric approximation of the likelihood and can thus be directly used for the inference.
To do so, if the output space of the simulation is high-dimensional, lower-dimensional
summary statistics have to be derived. They have to be tailored to the inference
problem at hand, as their distribution is compared between simulated and observed
data. One can do so by using density estimation methods, such as histograms or ker-
nel density approximations, to approximate the likelihood or by using Approximate
Bayesian Computation (ABC).

In the past, ABC has been very popular for likelihood-free inference. The basic
rejection ABC estimates the posterior distribution by running the simulation for
different values of y. The value is saved as a point in the posterior, if the simulated
data and the observed data are sufficiently close regarding a pre-defined distance
measure. If the rejection criterion, that is the tolerance, is chosen sufficiently small,
the resulting posterior tracks the posteriors well. For small tolerances ABC is ineffec-
tive and the whole simulation chain has to be repeated for new measurements. ABC
therefore is an example for an inference technique that is not amortized. As particle
physics produces many independent and identically distributed (i.i.d.) observations,
amortization is an important criterion for an inference technique.

Density estimation based methods are one example for an amortized technique,
because new measurements can directly be used with the estimated likelihood in
both frequentist and Bayesian approaches. However, the technique still scales poorly
with the dimension of the data, as the required number of simulations depends
exponentially on it. Thus, effective summary statistics are very important in both
approaches. Going from handmade to machine learned summary statistics is one
way to improve upon these techniques using modern methods.

40

We have already discussed two areas in which traditional likelihood-free inference
methods need to be improved.

• The first area was the amortization of the technique. We do not want to repeat
the simulations if we collect new data.

• Also, we want to improve the sample efficiency of the techniques, as detectors
at particle colliders produce high-dimensional data and calculating summary
statistics from the observation bears the risk of losing information.

• Not losing information in summary statistics, is one possibility of improving
quality of inference itself. The ultimate goal of the likelihood-free inference
method is to approximate the true likelihood as good as possible.

Neural networks are one possibility to evaluate data that scales better with dimen-
sionality. But, training a network directly to give point estimates of the simulation
parameters is not very insightful in terms of a statistical interpretation. However, if
we introduce conditions for normalizing flows, we can use them to generate a pos-
terior parameter distribution from a latent distribution given the measurement as a
condition [3].

5.3 BayesFlow networks
This is exactly what BayesFlow does using a conditional form of INNs [50]. The
network will be trained for the number of measurements to be within a certain
interval. As such, it is only amortized within this interval. Although, Bayesian
updating can in principle be used with the BayesFlow method, it is very inefficient
as the network has to be retrained.

As a neural network application, it should scale well with the dimensionality of
the data, although we limit this analysis to 52-dimensional measurements.

The quality of the inference will be estimated in the chapters 6 and 7.

5.3.1 Conditional coupling blocks

To use INNs from Section 4.8 for inference purposes, we need a conditional normal-
izing flow [3]

f�(y ; x
⇤) : Y ! Z, y ⇠ pY (y|x = x⇤) 7! z ⇠ pZ(z) . (5.3)

The inverse direction g�(z ; x⇤) then transforms the latent distribution pZ(z) back
to the posterior distribution pY (y|x = x⇤). Sampling from the latent distribution
and applying the network in generating direction samples the posterior distribution
as can be proven using of the change of variable formula (4.20) [50].

41

To derive this, let p�(y|x) be the learned and p(x|y) the true posterior. We
suppress writing the space of the probability distributions for brevity. Assuming a
perfectly converged normalizing flow f�, the learned posterior distribution is

p�(y|x
⇤) = p(f�(y ; x

⇤))

����det
@f�
@y

���� (5.4)

and in in normalizing direction the prior is

p(z) = p(y|x⇤)

����det
@g�
@z

���� . (5.5)

Using that the normalizing direction is the inverse of the generating direction and the
multiplicativity of the determinant, we can show that the learned posterior indeed
is the true one

p�(y|x
⇤) = p(z)

����det
@f�
@y

����

= p(y|x⇤)

����det
@g�
@z

����

����det
@f�
@y

����

= p(y|x⇤)

�����det
✓
@f�
@z

◆�1
�����

����det
@f�
@y

����

= p(y|x⇤)

�����det
✓
@f�
@z

◆�1 @f�
@y

�����

= p(y|x⇤) .

(5.6)

The INN (4.21) can be easily redesigned to include conditions and to learn this
function by concatenating every input with the condition

f�(y ; x⇤) =

✓
zA

zB

◆
=

yA � es2(y

B , x⇤) + t2
�
yB, x⇤�

yB � es1(z
A, x⇤) + t1

�
zA, x⇤�

!
. (5.7)

We will refer to this as a conditional invertible neural network (cINN).

Notation

As mentioned in the introduction to this section, we want our model to work with
sets of measurements. We will therefore denote a set of simulated or measured
data for parameters y as x1:M = (x1,x2, ...,xM), where every entry is a scalar or
vector. In our case, every entry is a 52-dimensional vector containing particle 4-
momenta from the simulation. The parameters of our model build a L-dimensional
vector y = (y1, ..., yL). Our model has 7 total parameters, however we only examine
subsets with D = 2 or 3 at a time. The normalizing flow thus is a function

f� : RL
! RL .

42

cINN

Summary
net

Sherpa
jets

QCD
model Gaussian

x̃ = f

x1:M, y

y z

f�(y ; x̃) p(z)

Training

cINN

Summary
net

LHC
jets

QCD
measurement

Gaussian
sampling

Inference

f

x1:M

y z

p(y|x1:M) g�(z ; x̃) z ⇠ p(z)

Figure 5.1: BayesFlow setup of the cINN for training and inference as in [50]
adapted from [6]

If we assume the existence of a fixed sized summary statistic ⌘ containing all the
information of x1:M on the parameters y, the same arguments as in (5.6) can be used
to prove the convergence of the setup for sets of multiple measurements. However,
the values of this vector or if it exists are a priori not clear. The best estimate
is to use a neural network f (x1:M) to process the data and train both networks
simultaneously to reproduce the true posterior distribution as good as possible. For
perfect convergence, the summary network then learns the maximally informative
summary statistic

⌘ = f (x1:M) =: x̃ .

We will call this network the summary network as it generates summary statistics
of the measurement. Figure 5.1 shows a graphic of both, the normalizing, training
direction and the generative, inference direction.

5.3.2 Learning objective

From the discussion in the previous section it is clear, that we want to train our
network to learn the true posterior as good as possible. To do so, we need a measure
to compare the true and the estimated probability distribution with. One popular
choice for fitting a flow-based model to a target distribution is the Kullback-Leibler

(KL) divergence [55, 62].
The KL divergence (or relative entropy) is the expectation value of the logarith-

mic difference between two probability distributions. In more intuitive words, it
measures how different two probability distributions p(x) and q(x) are or how much
information is gained going from p to q. It is defined as

KL(pkq) =
Z

dy p(y) log
p(y)

q(y)
. (5.8)

As can be readily seen, it is positive semi-definite and vanishes if, and only if both
distributions are the same.

43

Thus perfect convergence of our inference setup is defined by

KL(p(y|x1:M) k p�(y|x1:M)) = 0 . (5.9)

Minimizing the KL divergence between both distributions can be used as a training
objective. We get the optimal parameters of the cINN �̂ and summary network ̂
as

�̂, ̂ = argmin
�,

⌦
KL(p(y|x1:M)kp�(y|x1:M))

↵
x

= argmin
�,

⌦
log p(y|x1:M) � log p�(y|x1:M)

↵
x,y

= argmin
�,

⌦
� log p�(y|x1:M)

↵
x,y

,

(5.10)

where we neglected terms independent of � or . As we do minibatch optimiza-
tion, we write this for one batch with N simulated data sets and data generating
parameters

�̂, ̂ = argmin
�,

�
1

N

NX

i=1

log p�(y
i
|xi

1:M) . (5.11)

Using the change of variables formula (4.20) to write the estimated posterior in
terms of the latent space distribution and enforcing a normal distributed latent space
with unit standard deviation, we finally arrive at

�̂, ̂ = argmin
�,

1

N

NX

i=1

⇣
log p(f�(y

i; f (x
i
1:M))) � log

���detJ i
f�

���
⌘

= argmin
�,

1

N

NX

i=1

kf�(yi; f (xi

1:M))k
2
2

2
� log

���det
⇣
J i
f�

⌘���

!

=: argmin
�,

L(f�, (y)) ,

(5.12)

in terms of a batch-wise loss function L(f�, (y)) .

5.3.3 Summary network

To learn maximally informative summary statistics of the data sets x1:M , we need
a summary network that is tailored to the task at hand. In [50] the authors for
example use long-short term memory (LSTM) recurrent networks for the inference
analysis of time series data. This is not necessary for our purpose, as the shower
events in our data sets are independent and identically distributed. For our events
the summary statistic should be independent of the ordering of the shower events
within x1:M . Ideally, they are also independent of the ordering of the single 4-vectors
within one shower event. In practice however, the inference is highly dependent on
this preprocessing of the data, as will be seen in the Section 6.

44

To obtain summary statistics of constant length independent of M and to be
invariant under permutations of x1:M , our summary network needs to have a pooling
layer. In the simplest case, the summary network uses a fully connected sub-network
f 2 before and another one f 1 after pooling. The full summary network then acts
on the input data x1:M = (x1, ...xM) as

x̃ = f (x) = f 1

1

N

NX

i=1

f 2(xi)

!
, (5.13)

In our case, we use mean-pooling, however one can also use a sum-pooling here. Sum-
pooling has the advantage that the summary statistic also contains information on
M , but it may lead to less stable training, as the output of the pooling layer is
not bounded from above. We solve this by concatenating

p
M to the output of the

pooling layer when training with varying M .
In practise we found that the second network f 1 did not improve the performance

of the inference. We therefore only used one fully connected network with subsequent
mean-pooling. The summary network architecture we found to work best is six
layers with 64, 64, 64, 64, 32 and 32 nodes, ReLu activation in the first five layers
and one layer with ELU or linear activation to avoid vanishing summary statistics.
A further reduction of the output dimensions led to more unstable and over all worse
performing networks.

Attention mechanism

In [50] an additional attention mechanism for the summary network is introduced.
A third sub-network f 3 calculates weights for the events of one data point before
pooling

x̃ = f (x) = f 1

1

N

NX

i=1

wi � f 2(xi)

!
(5.14)

wi = exp(f 3(xi)) ↵

NX

j=1

exp(f 3(xj)) . (5.15)

In theory the summary network should then be able to weight different events cor-
responding to one parameter combination, and for example neglect showers without
splittings. Like the network after pooling, this did not improve our results.

Three stage summary network

We also used a similar attention mechanism to construct an architecture invariant
under the sorting of the 4-momenta. To achieve this, we first used a network on the
individual 4-momenta, weighted the outputs of the first network with the attention
mechanism, pooled the results for individual shower events and used the previously

45

defined network architecture from here. This setup did not yield better results than
a single fully convolutional network with a pooling layer.

Even when exchanging the weighting algorithm with a self-attention mechanism
as described in [63] to allow the network to learn from pair-wise correlations of the
momenta, the results did not improve.

Recursive Summary network

Following [64], we also experimented with a recursive network architecture. The
architecture follows the tree-like structure of the parton shower by repeatably using a
rather small fully convolutional network on the 4-momenta and the network outputs.
One asset of this architecture is, that differing numbers of particles are naturally
part of the tree structure and do not have to be implemented by 0’s. We found the
architecture to give equally good results to the simple summary network, even with
much smaller numbers of notes. A further benefit from the invariance in the particle
ordering could not be observed.

5.4 Inference setup
Information on the setup used in this work has been scattered between the discus-
sions on the theoretical foundation throughout the preceding sections. For clarity,
we summarize all important parameters of our setup in Table 5.1. With all relevant
steps introduced, we present the full methodology of our approach, schematically
presented in Figure 5.1.

We start at our QCD model from Section 3.1.3. It includes 7 parameters for
the distributions of our splitting kernels. However, we only examine L = 2 or

Symbol Value

Number of parameters L 2, 3
Maximum number of constituents F 13
Jets per parameter point (variable/fixed) M 102 ... 105 / 104

Batch size N 16
Batches per epoch E 6250
Output dimension summary network S 32
Fully connected summary net architecture Si 64,64,64,64,32,32
Coupling blocks nblocks 5
Fully connected coupling layer architecture si/ti 64,64,64
Epochs e 10 ... 40
Decay steps (toy shower/PF flow) ns 200 ... 500 / 500 ... 1000
Learning rate after t batches ⌘t 10�3

· 0.99bt/nsc

Training/testing points 100k / 10k

Table 5.1: Network and training hyperparameters.

46

3-dimensional subspaces. We concentrate on the inference of

• the hierarchically ordered terms of the quark-quark splitting Dqq, Fqq and
Cqq,

• the soft-collinear leading terms Dqq and Dgg

• and the pT -suppressed rest terms Cqq, Cgg and Cgq.

When varying these parameter combinations away from their SM point, we keep all
other 5 or 6 parameters at their SM values. Per batch we choose N = 16 parameter
combinations from a completely uniform prior. Due to the cutoff for negative kernel
values, we do not have to implement complicated boundary conditions for the prior.

For every parameter combination we generate M quark showers with the toy setup
from Section 3.2.3 or with the Sherpa setup described in Section 3.3.4. We get M
arrays of momenta of partons or particle flow objects, which we then crop or pad
with zeros to contain F particles. More information on data generation and handling
is given in Appendix B.

The summary network then pools this N ⇥ M ⇥ F · 4 dimensional tensor over
all showers generated for the same data point. In our case, the summary network
consists of six fully connected layers with ReLU activation, ELU or linear activation
in the last layer and the described mean pooling afterwards. The layers have the
dimensions 64.64, 64, 64, 32 and 32. Thus the summary network returns a tensor of
N ⇥ S per batch with S = 32.

Alternatively, we can use arrays of the high-level observables from Section 3.4
instead of the four-momenta. This changes the input dimension of the summary
network from F ·4 to the number of high-level observables used. Although the input
dimension is significantly smaller now, we have found the best results when leaving
the summary network architecture unchanged to preserve the expressiveness of the
network.

If we want to train the right scaling behaviour as well, we have to train varying M
from batch to batch. As we use mean-pooling in the summary network, the summary
statistics do not contain any information on M . We found that appending

p
M to

the output leads to the most stable results for the scaling with the measurement
size. The summary network then transfers a tensor of size N ⇥S+1 to the inference
network.

The inference network itself consists of nblocks = 5 coupling blocks. The four
networks in each coupling block have three fully connected layers with 64 nodes and
ELU activation.

To construct the whole architecture we use TensorFlow r1.14 [65]. We initialize
the system with the built-in Glorot uniform initialization and train the network with
the built-in Adam optimizer to map to a Gaussian latent space. We implement an
additional stepwise exponential decay function for the learning rate after t batches

⌘t = 10�3
· 0.99bt/nsc . (5.16)

47

Adapting the decay rate of the learning rate is the most effective tool to manipulate
convergence and thus quality of the inference.

After training, we use the network to infer a parameter distribution from a simu-
lated or measured data set. L-dimensional points are sampled from the latent space
and transformed to parameter points by the cINN. We can then use histograms or
kernel-estimation techniques to relate the point cloud to a density.

Bayesian updating

Since we use the prior to sample from in the training stage, a Bayesian updating is
very ineffective in this setup, as the network needs to be trained again for the new
prior. However, we have found similar results when training with M = 105 using
the posterior of an earlier training with M = 105 as the prior and when training the
same setup for M = 2 · 105 showers.

5.5 Simulation-based calibration
One problem with likelihood-free inference methods is estimating the correctness of
the results. For Bayesian methods capable of generating posterior samples, such as
BayesFlow, simulation-based calibration (SCB) [66] is one method of validating
the inference. It uses the data averaged posterior

Z
dx̃ dỹ p(y|x̃) p(x̃|ỹ) p(ỹ)

!
= p(y), (5.17)

which analytically is equal to the prior of the model. A mismatch between both
thus indicates an error in the Bayesian inference. This self-consistency check can be
performed by examining histograms of rank statistics. For a well calibrated model
they should be uniform.

Consider model parameters chosen from the prior ỹ ⇠ p(y), data simulated given
these parameters x̃ ⇠ p(x|ỹ), a set of parameters generated by Bayesian inference
{y1, ..., yL} ⇠ p(y|x̃) and an arbitrary one-dimensional random variable f . According
to (5.17), the rank statistic of the prior sample with respect to the posterior sample
regarding the random variable

{yi with i = 1, ..., L | f(ỹ) < f(yi)} 2 [0, L] (5.18)

has to be uniformly distributed. A proof can be done by calculating the probability
distribution of the rank statistic directly and is given in [66].

Generating histograms of the rank statistic of single prior samples, with respect to
a set of corresponding posterior samples for all dimensions separately, is therefore a
self-consistency check of the system. Not only does the uniformity of the histograms
confirm the consistency of the method, certain kind of variations also track specific
problems:

48

• A uniform distribution with excess at the edges indicates correlated posterior
samples, as the posterior samples are, due to the correlation, either higher or
lower than the prior sample on average.

• A similar distribution is obtained for over-contracted posteriors. If the com-
puted posterior is narrower than the true posterior, that is the prior, the
samples from the prior are again biased towards the edges of the histogram.
This time the shape of the histogram is convex.

• By the same logic, an overdisperse posterior leads to an excess in the middle
of the histogram and therefore a concave shape.

• If the inference misidentifies the actual point, that is the computed posterior
is biased towards one direction, the histogram will lean towards the same side.

As we use a summary network before the inference step, the results of the SBC have
to be handled with care. Uniform histograms in SBC are necessary for a consistent
inference, however they do not guarantee good results, as a badly trained summary
network can hinder the inference without causing inconsistencies in the SBC. We
check the SBC distribution for every run and only present well calibrated results.

49

6 Benchmarking inference quality with
the toy shower

For a first benchmark of the networks performance, we generate data from our toy
setup. As explained in Section 3.2.3, it calculates the simple hard process

e+e� ! qq̄

and implements a parton shower for one of the two quarks, ignoring all sub-leading
jets. To keep the momentum transfer to the second quark as small as possible,
we only allow the second quark to be the spectator of the first scattering. The
spectators for later scatterings are fixed to be products of the shower.

The calculations are done at 91.1786 GeV, the mass of the Z-boson, the running
coupling is chosen such that ↵s (mZ) = 0.118 and the parton-shower cutoff is set to
1 GeV.

6.1 Gluon-radiation shower
In the very first step, we restrict the QCD splittings to the Pqq kernel. This corre-
sponds to successive radiation of soft gluons of the hard quark. Because the gluon
shower can be parallelised to a high degree, we can use the GPU to generate data
during training. As generating datasets for the full parton shower is numerically cost
intensive, we use the gluon-radiation shower to benchmark the sorting and show the
scaling behaviour of the posteriors.

During training, we choose the three parameters of the kernel to be uniformly
distributed in

{Dqq, Fqq, Cqq} 2 [0.5, 2] ⇥ [0, 4] ⇥ [�10, 10] . (6.1)

Effects of sorting

As explained in Section 3.2.3, in the toy shower the ordering of the data is given
by the appearance of the splittings in the shower generator. This truth-sorting
constitutes an information backdoor, as such we expect it to give the best results.
Figure 6.1 shows the posterior probabilities of the gluon shower parameters for
truth- and kT -sorting for training on M = 102 to 105 jets per parameter point
distributed with 1/M and Meval = 104 jets in the measurement. As can be seen, we
find approximately Gaussian posteriors. Unsurprisingly, the sensitivity is higher for
truth-sorting. This is partly caused by the correlations introduced by going from

50

0.98 1.0 1.02

Dqq

10

20

30
� =0.012

0.9 1.0 1.1

Fqq

0.98

1.0

1.02

Dqq

0.9 1.0 1.1

Fqq

2

4

6

8
� =0.049

-2.5 0 2.5

Cqq

0.98

1.0

1.02

Dqq

-2.5 0 2.5

Cqq

0.9

1.0

1.1

Fqq

-2.5 0 2.5

Cqq

0.1

0.2

0.3

0.4
� =0.97

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

0.95 1.0 1.05

Dqq

5

10

15

20
� =0.019

0.5 1.0

Fqq

0.95

1.0

Dqq

0.5 1.0

Fqq

1

2

3 � =0.13

-2.5 0 2.5

Cqq

0.95

1.0

Dqq

-2.5 0 2.5

Cqq0.5

1.0

Fqq

-2.5 0 2.5

Cqq

0.1

0.2

0.3

0.4 � =1.0

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

Figure 6.1: Posterior probabilities of the hierarchical parameters of the gluon-
radiation shower , {Dqq, Fqq, Cqq}. We measure 104 SM-like jets and
consider truth-sorting (left) and kT -sorting (right).

truth- to kT -sorting, because the marginal posteriors are generated as the projection
of the whole prior onto the specific dimension.

The posteriors also depict the hierarchy of the different terms. The standard
deviation of the leading term �(Dqq) = 0.019, the finite term �(Fqq) = 0.13 and
the pT -suppressed rest term �(Cqq) = 1.0 are separated by almost a full order of
magnitude each. A summary of all results, including the width of the 1-dimensional
distribution obtained at the SM values of the other parameters to counter the effects
of the correlations, can be found in Table 8.1.

Scaling behaviour

The training was done on on varying number of jets per parameter point. Therefore,
the network should have also learned the right scaling behaviour of the measurement.
To test this, we evaluate the SM measurement for different numbers of showers Meval.
For every value of Meval we take 200 independent measurements in form of point
clouds estimating the posterior. Every point cloud has 2000 points.

Figure 6.2 shows that the uncertainty of the measurement, that is the mean of the
standard deviation of the 1-dimensional posterior over all measurements with the
same Meval, scales with 1/

p
Meval. This is exactly what we want for a statistically

limited measurement. The standard deviation of the posterior also overestimates
the true error slightly. The true error is generated as the average deviation between
the point cloud mean and the SM value.

For large statistics, the scaling behaviour exhibits a small deviation from the ex-
pected behaviour, especially for the rest terms. It is caused by oscillations of the

51

103 104 105

Meval

10�2

�(Dqq)

�(Dqq)

True error

a ⇤ nb; b � -0.49

103 104 105

Meval

10�1

�(Fqq)

b � -0.48

103 104 105

Meval

100

�(Cqq)

b � -0.42

103 104 105

Meval

10�2

�(Dqq)

b � -0.47

103 104 105

Meval

10�1

�(Fqq)

b � -0.46

103 104 105

Meval

100

�(Cqq)

b � -0.49

Figure 6.2: Dependence of the error on the measurement size, for the measure-
ment of the hierarchical parameters of the gluon-radiation shower,
{Dqq, Fqq, Cqq}. The standard deviation of the posterior (red), a fit to the
standard deviation (black) and the absolute difference between the esti-
mated and true parameters (blue) are shown. We consider truth-sorting
(upper) and kT -sorting (lower)

inferred value around the true value. As Cqq is has the smallest effect and thus is
the hardest to learn, the inferred value for the rest term shows the biggest oscilla-
tions. For high statistics they are relevant and hinder the network from learning
the right scaling behaviour as the oscillation exceed the statistical limitations of the
measurement.

Usually, this can be solved by further tuning of the learning rate to suppress the
oscillations in combination with choosing M from a uniform distribution to enlarge
the number of training points at high statistics. However, this comes at a high
computational cost.

Calibration

The good agreement between standard deviation and true error in Figure 6.2 already
indicates a good calibration of the model. However, it only corresponds to a single
point in parameter space. We want to make sure the network performs well on the
whole prior.

Figure 6.3 shows how well the network approximates the true value of a measure-
ment for the whole prior. We chose approximately 1000 parameter combinations

52

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

0 2 4
Estimated Fqq

2

4

True
Fqq

-10 0 10
Estimated Cqq

0

10

True
Cqq

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

0 2 4
Estimated Fqq

2

4

True
Fqq

-10 0 10
Estimated Cqq

0

10

True
Cqq

Figure 6.3: True values over posterior means for the hierarchical parameters of the
gluon-radiation shower, Dqq (left), Fqq (middle) and Cqq (right), for pa-
rameter combinations drawn from the prior (Meval = 104). We compare
truth-sorting (upper) and kT -sorting (lower).

from the prior and calculate Meval = 104 showers for every point. For each measure-
ment, we then sample 2000 points from latent space and transform them to a point
cloud of the posterior using the generative direction of our network. We show the
true parameter combination over the mean of the point clouds, that is the estimated
parameter value. As can be seen, the network performs similarly well for every com-
bination in the prior and shows no bias. The spread of the graph corresponds well to
uncertainty obtained for the SM point in Figure 6.1. We check this for every run in
the following, but exclude them from the main evaluation as they do not allow any
more insights then the posteriors at the SM point. The evaluations for the whole
prior for kT -sorted toy setup and including hadronization and detector effects are
attached in Appendix C.

To guarantee good calibration all over the prior, we also employ the simulation-
based calibration method introduced in Section 5.5. Figure 6.4 shows the model is
well calibrated.

53

Figure 6.4: Simulation-based calibration plots for the Bayesian inference of the hi-
erarchical parameters , {Dqq, Fqq, Cqq}, of the gluon-radiation shower in
truth-sorting (upper) and kT -sorting (lower).

For later results, we always ensure a good calibration using this method. However,
for brevity sake we only present this for the current, representative example.

Comparison to high-level observables

We have already established the effect of the sorting on the inference quality. A
natural continuation of this question is, whether using the permutation invariant
high-level observables from Section 3.4 effects the results significantly. This is also
interesting, as it allows us to judge the impact of using low-level 4-momenta in the
first place.

We use the same setup with variable M and Meval = 104 as before but train on
all six previously defined jet observables. In Figure 6.5 we can see, that going from
high-level observables to kT -sorted momenta improves the results and reduces corre-
lations. Clearly, the truth-sorting is superior and shows the room for improvement
concerning the sorting algorithm.

54

0.9 1.0 1.05

Dqq

10

20

30

0.5 1.0 1.5

Fqq

0.95

1.0

1.05

Dqq

0.5 1.0 1.5

Fqq

2

4

6

8

-5 0 5

Cqq

0.95

1.0

1.05

Dqq

-5 0 5

Cqq
0.5

1.0

1.5
Fqq

-5 0 5

Cqq

0.1

0.2

0.3

0.4

HLO
LLO kT -sorted

LLO true-sorted

Figure 6.5: Comparing the posterior probabilities of the gluon-radiation shower pa-
rameters, {Dqq, Fqq, Cqq}, for training on low-level observables with both
sortings (compare figure 6.1) and high-level jet observables.

6.2 Inference from a minimal number of high-level
observables

An additional question, diagonal to the main goal of this work, is how many high-
level observables are actually needed to resolve all three parameters and how ex-
pressive the individual jet observables actually are.

In principle the distribution of one high-level observable might already contain
enough information to infer certain parameters. Again, we examine this in the most
simple case, the gluon radiation shower, varying the three hierarchically ordered
terms Dqq, Fqq and Cqq and training on a single observable at a time.

We find that the network is able to reconstruct the leading term for every observ-
able. Reasonable posteriors for all three parameters are generated when using the
distributions of C0,2, xmax, pTD and with larger uncertainties also for the rest terms
also wPF . The particle number observables nPF and N95 seem to be less expressive
and the network has problems inferring more than the leading contribution.

The best results we find for C0,2. This does not surprise as C0,2 was optimized to
discriminate between quarks and gluons and the varying the parameters manipulates

55

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

C0,2

6 HLO

0 2 4
Estimated Fqq

2

4

True
Fqq

-10 0 10
Estimated Cqq

0

10

True
Cqq

Figure 6.6: True values over posterior means for the hierarchical parameters of the
gluon-radiation shower, Dqq (left), Fqq (middle) and Cqq (right), for pa-
rameter combinations drawn from the prior (Meval = 104). We compare
the results from training on 6 high-level observables (blue) and a single
observable C0,2 (orange).

the radiation of a single gluon. In Figure 6.6 we show that the performance on a
single observable can be compared to that on all six. Both networks track the true
values reasonable well and the spread using only C0,2 is only slightly larger than for
a training with all six jet observables.

It can therefore be instructive to compare the influence of the parameters on the
distributions of the observables by hand, to judge the complexity of the inference
task. Figure 6.7 shows the effect of varying every parameter in the splitting kernels
on the distribution of C0,2 for the toy setup without hadronization. We see the lower
limit of the priors chosen in this work in blue, the SM value in orange and the upper
limit in green. All values that were not altered remain at the SM value. The upper
plot depicts the histograms over 104 showers, where we cut off the access at C0,2 = 0
caused by showers with no splittings, while the lower plot illustrates the difference
between the histograms generated at the limit values and the one at the SM value.
Statistical errors are shown as a shaded band.

In general, we find the same results as in Section 3.4. Increasing the splitting
kernel, that is increasing a parameter value, shifts the distributions to the right. As
can be seen, the influence of the quark splitting parameters is clearly visible and
statistically relevant and the effect of the different terms decreases hierarchically.
Small changes in the leading term lead to big changes in the distribution of C0,2,
while the effect of the finite and rest term are smaller.

We also find a relevant effect when altering the leading term of the gluon split-
ting. However, from the distributions we conclude, that inferring Dgg is significantly
harder than inferring Dqq.

For the rest terms of both gluon splitting kernels, we find no significant changes
in the distributions. Inferring these parameters from high-level observables seems

56

to be a very hard task.
Including hadronization and detector effects dramatically increases the number of

particles and smears out the effects of the parameters even further.

Figure 6.7: Effects of varying all parameters in the splitting kernels on the distribu-
tion of C0,2 for 104 showers from the toy shower setup without hadroniza-
tion. We show the distribution for the lower limit of the respective pa-
rameter (blue), the SM value (orange) and the upper limit (green).

57

0.95 1.0 1.05

Dqq

10

20

30 � =0.013

0.9 1.0 1.1

Dgg

0.975

1.0

1.025

Dqq

0.9 1.0 1.1

Dgg

5

10

� =0.034

Posterior

Gaussian fit

Relative error of 2%

0.95 1.0 1.05

Dqq

10

20

30 � =0.013

0.9 1.0 1.1

Dgg

0.975

1.0

1.025

Dqq

0.9 1.0 1.1

Dgg

5

10

� =0.033

Posterior

Gaussian fit

Relative error of 2%

Figure 6.8: Posterior probabilities of the soft-collinear leading terms , {Dqq, Dgg}, for
the full toy shower. We measure Meval = 104 SM-like jets and consider
truth-sorting (left) and kT -sorting (right).

6.3 Full parton shower
In the next step, we include all QCD splittings in the toy shower, which slows
down the generation of data considerably. We thus have to start training on a fixed
dataset of 105 parameter points. As we have already proven the scaling behaviour,
we generate M = 104 showers per parameter combination.

Leading terms

For this setup, we can now compare the contributions of the leading terms of quark-
gluon and the triple quark interactions. We vary them within

{Dqq, Dgg} 2 [0.5, 2] ⇥ [0, 3] , (6.2)

and find a significantly smaller width for the measurement of the Dqq than for
Dgg in Figure 6.8. This makes sense. Since we evaluate showers with an initial
quark, the hardest splitting has to be a quark-gluon splitting. The influence of the
quark-gluon splitting, and thus of Dqq, has to be higher than the one of the triple
gluon interaction. If this is the true reason of the difference, it can be corrected by
including showers with initial gluons.

This measurement is especially interesting, as the measurement of the leading
terms can be compared to the measurement of CA and CF in Section 3.1.4. The
combined experimental measurement [24, 30] displayed relative errors of ⇠ 7% for
both quantities, dominated by systematic errors and with high correlations between
the two. The results presented in Figure 6.8 show significantly smaller errors than

58

-2.5 0 2.5

Cqq

0.1

0.2

0.3

0.4
� =0.86

-10 0 10

Cgg-2.5

0

2.5
Cqq

-10 0 10

Cgg

0.05

0.1
� =3.4

-5 0 5

Cgq-2.5

0

2.5
Cqq

-5 0 5

Cgq

-10

0

Cgg

-5 0 5

Cgq

0.05

0.1

0.15
� =2.5

Posterior

Gaussian fit

Absolute error of 2.5

-2.5 0 2.5

Cqq

0.1

0.2

0.3

0.4
� =0.9

-10 0 10

Cgg
-2.5

0

2.5
Cqq

-10 0 10

Cgg

0.02

0.04

0.06

0.08 � =5.6

-10 0 10

Cgq
-2.5

0

2.5
Cqq

-10 0 10

Cgq

-10

0

Cgg

-10 0 10

Cgq

0.02

0.04

0.06

0.08 � =4.9

Posterior

Gaussian fit

Absolute error of 2.5

Figure 6.9: Posterior probabilities of the pT -suppressed rest terms , {Cqq, Cgg, Cgq},
for the full toy shower. We measure Meval = 104 SM-like jets and consider
truth-sorting (left) and kT -sorting (right).

the previous LEP measurements and no correlations for both, the truth- and the
kT -sorting. This is very promising and makes us optimistic for the runs including
hadronization and detector effects.

Rest terms

The most interesting measurement for improvements on the splitting kernels , if the
form of the leading order terms is true, is the measurement of the Rest terms

{Cqq, Cgg, Cgq} 2 [�10, 10] ⇥ [�15, 15] ⇥ [�15, 15] . (6.3)

Again, we employ the same architecture and get the results shown in Figure 6.9.
Compared to the gluon-radiation shower, the posterior of Cqq is slightly more narrow,
because the network does not have to disentangle effects of different magnitude.
Again, due to the same logic, we obtain significantly better results for the splittings
where the mother parton is a quark, that is Cqq, as for splittings of a gluon, Cgg

and Cgq. The high (anti-)correlation between both gluon splittings then leads to the
high uncertainty. If we estimate the variance of one parameter with the others at 0,
the error on Cgg and Cgq is only slightly higher than the one on Cqq (see Table 8.1).

Going from truth- to kT -sorting, the anti-correlation increases and the uncertainty
in the gluon-parameters grows accordingly. There is no reason why the correlation
should decrease if we include hadronization and detector effects.

59

-2.5 0 2.5

Cqq

0.1

0.2

0.3

0.4

-10 0 10

Cgg

-2.5

0

2.5
Cqq

-10 0 10

Cgg
0.02

0.04

0.06

0.08

0.1

-10 0 10

Cgq

-2.5

0

2.5
Cqq

-10 0 10

Cgq

-10

0

Cgg

-10 0 10

Cgq

0.05

0.1

0.15

HLO
LLO kT -sorted

LLO true-sorted

Figure 6.10: Comparing the posterior probabilities of the pT -suppressed terms,
{Cqq, Cgg, Cgq}, for training on low-level observables with both sort-
ings (compare Figure 6.9) and high-level jet observables from the toy
shower data.

Comparison to high-level observables

As for the pure gluon-radiation shower, we want to determine the effect of going
from jet observables to jet momenta. No significant improvements were found for
the leading terms. The uncertainty on the standard deviations between different
training runs is exceeds the slight decrease of the standard deviations we detected
in Table 8.1.

For the rest terms, the situation is different, as can be seen in Figure 6.10. Again,
the performance of the truth-sorting is unmatched, although using kT -sorting de-
creases correlations and prevents non-Gaussian structures compared to the training
on high-level observables. As discussed in Section 6.1, this motivates developing a
better sorting algorithm.

When discussing Figure 6.10, we have to keep in mind that it only shows one
single training run. We have found similar behaviour for all runs, however different
runs can have varying performance, as the convergence is not totally stable. It might
be possible to find better trainings, with less non-Gaussianities.

60

7 Inference including hadronization and
detector

The next step is to include hadronization and detector effects into our simulation.
We use Sherpa [5] to generate

e+e� ! qq̄

at mZ , including parton showers and hadronization. For the results including de-
tector effects, we also apply a simulation of the ATLAS detector. We then use an
anti-kT algorithm with cutoff at 20 GeV to extract a single jet. Without the de-
tector, we train on kT -sorted 4-momenta of hadrons, photons and charged leptons.
They correspond to the particle flow objects we consider when including detector
simulations. We presented a more detailed discussion of the simulation chain in
Section 3.3.4.

We choose the same setup for our model, including the intervals of the uniform
prior distributions, as in the toy example. However, we found that due to the
increased complexity of the problem, a slightly slower learning rate decay gives
better results (see Table 5.1).

Hierarchical terms of Pqq

In analogy to the examination of the toy setup, we start with varying the parameters
of the the quark-gluon splitting kernel Pqq. A big difference to the toy setup is, that
we do not exclude the other two splittings.

As explained in Section 3.4 with regard to the distributions of high-level jet ob-
servables for the different setups, we expect a significant difference when including
hadronization, but only a small influence of the detector effects. This is confirmed
by the results in presented in Figure 7.1 and Table 8.1. The uncertainties on the
leading term and on the rest term increase by a factor of two or more, while the un-
certainty of the finite term does not increase significantly. As expected, the detector
simulation only slightly deteriorates results.

Leading terms

Comparing Figures 7.2 to Figures 6.8, we find the same behaviour. Hadronization
deteriorates the results by a factor of four in Dqq and up to a factor ten in Dgg.
The detector simulation then only diminishes the inference quality slightly. Table
8.1 shows that about half of this is due to the high correlation of both parameters
after hadronization.

61

Again, we assume that the initial particle of the shower being a quark leads to
the high correlation and including a gluon shower in the sample could pose a simple
resolution to this problem. However, even if we account for the effect of the corre-
lations, the uncertainty on Dgg still surpasses the uncertainty of LEP measurement
by a factor of four.

The results for Dgg in this section have to be taken with a grain of salt. For
a normal distribution centered at 1 with a standard deviation of 0.5, parts of the
distribution are already outside of the lower threshold of the prior. Therefore, the
boundary of the prior actually leads to an underestimation of the uncertainty. As
negative values for Dgg can not be justified theoretically, increasing the prior can-
not fix this. When including a gluon-shower to remove the correlation or when
considering bigger statistics, this is expected not to be an issue.

0.9 1.0 1.1

Dqq

2

4

6

8 � =0.054

0.5 1.0 1.5

Fqq

0.9

1.0

1.1

Dqq

0.5 1.0 1.5

Fqq

1

2

� =0.18

-5 0 5

Cqq

0.9

1.0

1.1

Dqq

-5 0 5

Cqq
0.5

1.0

Fqq

-5 0 5

Cqq

0.1

0.2 � =2.0

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

0.9 1.0 1.1

Dqq

2

4

6
� =0.06

0.5 1.0 1.5

Fqq

0.9

1.0

1.1

Dqq

0.5 1.0 1.5

Fqq

1

2 � =0.2

-5 0 5

Cqq

0.9

1.0

1.1

Dqq

-5 0 5

Cqq

0.5

1.0

Fqq

-5 0 5

Cqq

0.1

� =2.3

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

Figure 7.1: Posterior probabilities of the parameters of the quark-gluon splitting
kernel , {Dqq, Fqq, Cqq}, for the Sherpa shower. We measure 104 SM-
like jets and consider the shower immediately after hadronization (left)
and including detector simulations (right).

62

Rest terms

The results form the toy shower, especially the strong correlation between Cgg and
Cgq, already hinted at the problems occurring when including hadronization. After
hadronization the effect of both rest terms is so small, the network can not dis-
tinguish it from statistical noise. Thus the network returns the prior, a uniform
distribution between �15 and 15.

Although the rest terms of the gluon splittings cannot be resolved, the result
for the quark splitting Cqq is more positive. The rest term can clearly be inferred
and the uncertainty only drop by 50% compared to the toy setup. Therefore, it is
conceivable that similar results for Cgg and Cgq are in reach, when including a gluon
shower.

0.9 1.0 1.1

Dqq

5

� =0.047

0.5 1 1.5

Dgg

0.9

1

1.1

Dqq

0.5 1 1.5

Dgg

1 � =0.41

Posterior

Gaussian fit

Relative error of 2%

0.9 1.0 1.1

Dqq

5

� =0.047

0.5 1 1.5

Dgg

0.9

1

1.1

Dqq

0.5 1 1.5 2

Dgg

0.5

� =0.5

Posterior

Gaussian fit

Relative error of 2%

Figure 7.2: Posterior probabilities of the soft-collinear leading terms , {Dqq, Dgg}, for
the Sherpa shower. We measure Meval = 104 SM-like jets and consider
the shower immediately after hadronization (left) and including detector
simulations (right).

63

-5 0 5

Cqq

0.1

0.2

� =1.5

-10 0 10

Cgg-5

0

5
Cqq

-10 0 10

Cgg

0.05

-10 0 10

Cgq-5

0

5
Cqq

-10 0 10

Cgq

-10

0

10

Cgg

-10 0 10

Cgq

0.05

Posterior

Gaussian fit

Absolute error of 2.5

-5 0 5

Cqq

0.1

0.2

� =1.4

-10 0 10

Cgg-5

0

Cqq

-10 0 10

Cgg

0.05

-10 0 10

Cgq-5

0

Cqq

-10 0 10

Cgq

-10

0

10

Cgg

-10 0 10

Cgq

0.05

Posterior

Gaussian fit

Absolute error of 2.5

Figure 7.3: Posterior probabilities of the pT -suppressed rest terms , {Cqq, Cgg, Cgq},
for the Sherpa shower. We measure Meval = 104 SM-like jets and con-
sider the shower immediately after hadronization (left) and including
detector simulations (right).

64

8 Conclusions

In this work we estimated the usability of conditional invertible neural networks for
inference of QCD parton shower contributions.

We started at the description of the Altarelli-Parisi splitting kernels in terms of
Catani-Seymour dipoles, where we introduced factors for the leading divergent terms
and the finite terms. We also added pT -suppressed rest terms, which vanish in the
collinear limit, where the derivation of the splitting kernels is exact.

These parameterized splitting kernels were then implemented in a simple toy
setup, only including a hard scattering process and a parton shower. In a first step,
we limited the splittings to the radiation of a soft gluon of a hard quark and found
that the network was able to recover all three parameters, with minor correlation
only between the finite and the rest term. The uncertainty in the individual mea-
surements reflected the hierarchy in the terms. In this setting we were also able to
show that the uncertainty of the measurement scales like a statistically limited mea-
surement for two orders of magnitude. Including all QCD splittings in the parton
shower generator, we were able to recover both divergent and all three rest terms at
the same time.

Comparing results from training on jet 4-momenta and on jet observables, we
found that the low-level data indeed contained more information on the QCD split-
tings.

Including hadronization we found similar results with and without detector effects.
We were able to recover the hierarchical structure of the terms in the Pqq kernel. For
the measurement of the leading terms including hadronization, we found a strong
correlation between the leading term of the quark-gluon and the triple gluon split-
ting. After hadronization the rest terms of the gluon splittings could not be resolved
anymore.

A necessary next step would be to include a parton shower originating from a
gluon to avoid the correlations of the leading terms and improve the measurements
on the splittings originating from gluons. As the results for the Pqq kernel were very
promising and showed smaller errors than the LEP measurement of CF even for our
small amount oft jets in the measurement, we are very optimistic the method can
prove useful in a LHC setting.

Our setup, using electron-positron scattering as a hard scattering, does not exhibit
some of the key difficulties of hadron colliders such as intial state radiation, pile-up
or additional interactions of the partons. Due to its low energy the effects of the
thresholds of the detector are small as well. These difficulties have to be overcome
when using BayesFlow for LHC analysis. However, a larger number of measure-
ments, as well as harder jets including more splittings and thus more information

65

Setup & Parameter Toy shower Sherpa
Truth-sorted kT -sorted HLO Hadronized Detector-level

{Dqq, Fqq, Cqq}
�(Dqq) 0.012 (0.013) 0.019 (0.013) 0.024 (0.015) 0.054 (0.025) 0.060 (0.03)
�(Fqq) 0.05 (0.04) 0.16 (0.07) 0.19 (0.08) 0.18 (0.09) 0.20 (0.1)
�(Cqq) 0.97 (0.8) 1.04 (0.8) 1.7 (1.0) 2.0 (1.2) 2.3 (1.4)

{Dqq, Dgg}
�(Dqq) 0.013 (0.013) 0.013 (0.013) 0.013 (0.013) 0.047 (0.025) 0.047 (0.025)
�(Dgg) 0.034 (0.034) 0.033 (0.033) 0.035 (0.035) 0.41 (0.23) 0.50 (0.25)

{Cqq, Cgg, Cgq}
�(Cqq) 0.86 (0.8) 0.90 (0.8) 1.0 (1.0) 1.5 (1.0) 1.4 (0.9)
�(Cgg) 3.4 (1.4) 5.6 (1.7) 5.4⇤ (1.7) ⇤ ⇤ ⇤ ⇤

�(Cgq) 2.7 (1.1) 4.9 (1.4) 5.2⇤ (1.4) ⇤ ⇤ ⇤ ⇤

Table 8.1: Error on the splitting kernel parameters (Meval = 104) obtained as the
standard deviation of a Gaussian fit on the projected posterior distribu-
tion and, in brackets, assuming only one variable splitting parameter at a
time. We consider the different setups: gluon radiation only, soft-collinear
leading contributions, and pT -suppressed rest terms. The asterisk denotes
non-Gaussian posteriors.

on the kernels, are expected to have a positive effect.
By design, an inference method using a normalizing flow to learn a posterior dis-

tribution is limited to the analysis of measurements not bigger then the sets trained
on. The method does not scale well with additional, new data and Bayesian updat-
ing can not be incorporated without retraining the network. One could therefore
say, that it is not amortized well. It will thus be computationally expensive to train
a network to work with millions of jets. However, as the posteriors are normally
distributed, breaking down the measurements into many small measurements and
combining them might be a viable option.

66

A Explicit calculations on splitting kernels

A.1 Calculation of P̂qq

To confirm that the matrix element factorizes at least in the collinear limit in the
definition of the splitting kernel in (3.6), we will explicitly calculate the matrix
element of an additional q(pa) ! q(pb) + g(pc) branching. To do this, we first
need to express the spinors of the massless quarks u(pa) and u(pb) in terms of two-
component spinors

u±(p) =
p

E

✓
�±
±�±

◆
(A.1)

with

�+ =

✓
1
✓/2

◆
(spin up)

�� =

✓
�✓/2
1

◆
(spin down) .

(A.2)

This simple form of the spinors is only true for massless quarks in the collinear limit,
where the scattering angle ✓ goes to 0. We use this to calculate the matrix element
of the splitting

Vqqg = �igsT
aū± (pb) �µ✏

µ
au± (pc) =: �igsT

a✏µqF
(j)
± , (A.3)

with the �-matrices in Dirac-representation. Doing so, we only need to do the
calculations for the physical gluon polarizations �1 and �2, as the contributions of
the unphysical scalar polarization �0 and the longitudinal polarization �3 cancel
each other. Since the gluon carries away a spin of 1, we also only need to look at
quark combinations with a spin flip. For the spin-up case this is

F (1)
+

p
Eb

p
Ea

=
ū+ (pb) �1u+ (pa)

p
Eb

p
Ea

=

✓
1,
✓⇤b
2
, 1,

✓⇤b
2

◆
0

BB@

1
1

1
1

1

CCA

0

BB@

1
✓⇤a/2
1

✓⇤a/2

1

CCA

=

✓
1,
✓⇤b
2
, 1,

✓⇤b
2

◆
0

BB@

✓⇤a/2
1

✓⇤a/2
1

1

CCA = ✓⇤a + ✓⇤b

(A.4)

67

F (2)
+

p
Eb

p
Ea

=
ū+ (pb) �2u+ (pa)

p
Eb

p
Ea

=

✓
1,
✓⇤b
2
, 1,

✓⇤b
2

◆
0

BB@

i
�i

�i
i

1

CCA

0

BB@

1
✓⇤a/2
1

✓⇤a/2

1

CCA

= i

✓
1,
✓⇤b
2
, 1,

✓⇤b
2

◆
0

BB@

�✓⇤a/2
1

�✓⇤a/2
1

1

CCA = i (✓⇤b � ✓⇤a) .

(A.5)

The spin-down case can be calculated analogously

F (1)
�

p
Eb

p
Ea

=
ū� (pb) �1u� (pa)

p
Eb

p
Ea

= ✓⇤a + ✓⇤b

F (2)
�

p
Eb

p
Ea

=
ū� (pb) �2u� (pa)

p
Eb

p
Ea

= i (✓⇤a � ✓⇤b) .

(A.6)

The angles in the spinors are given relative to the gluon direction pc. They are
related to the total opening angle ✓ as

✓⇤b = ✓ and ✓⇤a = �✓c = �z✓ (A.7)

=) ✓⇤a + ✓⇤b = ✓(1 � z) and ✓⇤a � ✓⇤b = ✓(�z � 1) . (A.8)

To calculate the (n+1)-particle matrix element from the n-particle one according
to (3.6), we need to average over all spin combinations in (A.3), colors configurations
and gluon polarizations. We then need to square the absolute value of the vertex.
To make our life a little easier we observe, that u+ū� = u�ū+ = 0 for spinors with
the same momentum and that

F (i)
+

⇣
F (j)
+

⌘⇤
= �F (i)

�

⇣
F (j)
�

⌘⇤
, (A.9)

for i 6= j. Thus, when taking the absolute value squared of the vertex, the
terms mixing u+ and u� vanish and the terms mixing �1 and �2 cancel each other
respectively. We are therefore only left with the squares of (A.4) - (A.6). They
compute to

���F (1)
+

���
2

=
���F (1)

+

���
2

= EaEb (✓
⇤
a + ✓⇤b)

2 = E2
az(z � 1)2✓2 (A.10)

and
���F (2)

+

���
2

=
���F (2)

+

���
2

= EaEb (✓
⇤
a � ✓⇤b)

2 = E2
az(z + 1)2✓2. (A.11)

As a last step, we have to include a internal quark propagator of the form uū/p2a,
because the incoming quark now is an internal particle of the overall diagram. We

68

need to express the factor p2a in terms of Ea before putting everything together. From
four momentum conservation and on-shell conditions for the outgoing particles we
know

p2a = (pb + pc)
2 = 2pbpc = 2(EbEc � |~pb||~pc| cos ✓) = 2EbEc(1 � cos ✓)

= 2(zEa)((1 � z)Ea)(1 � cos ✓) = 2E2
a(z(1 � z))(✓2 + O

�
✓4
�
).

(A.12)

We can now calculate the (n + 1)-particle matrix element by tracing out T a and
averaging over the color and spin configurations of the intermediate quark pa.

• Since there are two possible spin states the latter leaves us with a factor of
Na = 2 and from the color average we get a factor Nc, that is the number of
color charges Nc = 3.

• We know TrT 2 = 1 for every generator of SU(n) and the dimension of the
group is n2

� 1. Therefore, we get TrT aT a = N2
c � 1.

Including all these factors, the calculation yields

|Mn+1|
2 =

✓
1

p2a

◆2 1

Nc

1

Na

h
�igsT

a✏jaF
(j)
±

i2
|Mn|

2

=

✓
gs
pa

◆2 1

Nc

1

Na
TrT aT a

h
✏jaF

(j)
±

i2
|Mn|

2

=
g2s
p2a

1

Nc

1

Na
TrT aT a2 [E

2
az(z � 1)2✓2 + E2

az(z + 1)2✓2]

p2a
|Mn|

2

=
g2s
p2a

N2
c � 1

2Nc

2 [E2
az(z � 1)2✓2 + E2

az(z + 1)2✓2]

2E2
a(z(1 � z))

|Mn|
2

=
g2s
p2a

N2
c � 1

2Nc

(1 + z)2 + (1 � z)2

1 � z
|Mn|

2

=
2g2s
p2a

N2
c � 1

2Nc

1 + z2

1 � z
|Mn|

2

(A.13)

With (3.6) we identify the splitting kernel as

P̂qq(z) = CF
1 + z2

1 � z
with CF = (N2

c � 1)/2Nc =
4

3
. (A.14)

A.2 +-Regularization
We have to integrate over z, if we want to calculate the total cross section using
(3.8). This is important to us, as we have to evaluate the probability that such
a splitting happened during the simulation of a parton shower (see Section 3.2.2).

69

Because of the divergence of P̂qq and P̂gg for soft outgoing particles z ! 1(, 0), we
need to regularize this integral. In practise this is often done by a simple cutoff,
although using dimensional regularisation is analytically more appealing

Z 1

0

dz
f(z)

(1 � z)1�✏
=

Z 1

0

dz
f(z) � f(1)

(1 � z)1�✏
+

Z 1

0

dzf(1)
1

(1 � z)1�✏

=

Z 1

0

dz
f(z) � f(1)

(1 � z)
(1 + O(✏)) +

f(1)

✏

=

Z 1

0

dz
f(z)

(1 � z)+
(1 + O(✏)) +

f(1)

✏

)

Z 1

0

dz
f(z)

(1 � z)1�✏
�

f(1)

✏
=

Z 1

0

dz
f(z)

(1 � z)+
(1 + O(✏)).

(A.15)

The implicitly defined plus subtraction scheme is

F (z)+ ⌘ F (z) � �(1 � z)

Z 1

0

dyF (y)

()

Z 1

0

dz
f(z)

(1 � z)+
=

Z 1

0

dz

✓
f(z)

1 � z
�

f(1)

1 � z

◆
.

(A.16)

It regularizes the splitting kernel as the plus subtracted integral (with terms O(✏)),
is the dimensionally regularized integral minus the pole.

Using this subtraction scheme on the splitting kernel P̂qq from (3.13), we can
calculate the regularized splitting kernel Pqq

✓
1 + z2

1 � z

◆

+

� (1 + z2)

✓
1

1 � z

◆

+

=
1 + z2

1 � z
� �(1 � z)

Z 1

0

dy
1 + y2

1 � y
�

1 + z2

1 � z
+ �(1 � z)

Z 1

0

dy
1 + z2

1 � y

= �(1 � z)

Z 1

0

dy
y2 � 1

y � 1

= �(1 � z)

Z 1

0

dy(y + 1) =
3

2
�(1 � z)

(A.17)

=) Pqq(z) = CF

✓
1 + z2

1 � z

◆

+

= CF

1 + z2

(1 � z)+
+

3

2
�(1 � z)

�
. (A.18)

In the calculation of parton density evolutions vie the DGLAP-equation terms
appear that can be used to naturally +-regularize the splitting kernels. However,
the scheme is rather unimportant for final-state parton-shower generators.

70

A.3 Splitting kernel overestimates

To use the veto algorithm in our parton shower generator as described in Section
3.2.2, we need overestimates of our splitting kernels (3.34) - (3.36). As explained
before we choose them to be independent of p2T and therefore independent of y. We
use

P̃qq(z) = 2CF

Dqq +

✓
Fqq

2

◆+

+

✓
Cqq

8

◆+
!

1

1 � z
, (A.19)

P̃gg(z) = 2CA

Dgg +

✓
Fgg

8

◆+

+

✓
Cgg

8

◆+
!✓

1

1 � z
+

1

1 � (1 � z)

◆
, (A.20)

P̃gq(z) = TR

(Fqq)

+ +

✓
Cgq

4

◆+
!
. (A.21)

As explained in Section 3.1.3 we cut off the kernels at 0 with (x)+ = max{x, 0}.
The algorithm uses the integral over z

Iij(z1, z2) =

Z z2

z1

P̃ij(z)dz (A.22)

to generate new values for p2T and to sample values of z The integrals of the overes-
timates are

Iqq(z1, z2) = 2CF

Dqq +

✓
Fqq

2

◆+

+

✓
Cqq

8

◆+
!
log

✓
1 � z1
1 � z2

◆
, (A.23)

Igg(z1, z2) = 2CA

Dgg +

✓
Fgg

8

◆+

+

✓
Cgg

8

◆+
!
log

✓
(1 � z1)z2
(1 � z2)z1

◆
, (A.24)

Igq(z1, z2) = TR

(Fqq)

+ +

✓
Cgq

4

◆+
!
(z2 � z1). (A.25)

For the parton shower algorithm, we also need to sample z according to the
overestimate. If we define

u(z) =
Iij(zmin, z)

Iij(zmin, zmax)
. (A.26)

we can draw a z 2 [zmin, zmax] from the probability overestimate by drawing a random
number u 2 [0, 1] from a uniform distribution and then calculating z = z(u) using
the inverse of the function u(z).

71

From (A.23)-(A.25) we can calculate the sampling functions as

zqq(u) = 1 + (zmax � 1)

✓
1 � zmin

1 � zmax

◆u

(A.27)

zgg(u) =
e↵u

e↵u + �
(A.28)

zgq(u) = zmin + u(zmax � zmin) , (A.29)

where we introduced the abbreviations

↵ = log

✓
(1 � zmin)zmax

(1 � zmax)zmin

◆
(A.30)

� =
1 � zmin

zmin
. (A.31)

72

B Data handling

Within this work we use two different approaches to the training data.

Online learning

As mentioned before, reducing the possible splittings to a gluon radiating of a quark,
allows us to parallelize multiple showers. Running the shower on the parallelized
code on the GPU during training is quick enough to calculate the data when needed
without slowing down the training. This online training has the advantage that
overfitting is impossible by design. Furthermore, changes to the theory can be
included without constructing a new dataset.

Loading training data in big batches

When including more splittings or working with Sherpa data, the simulation is
to slow to be done during the training. The datasets then contain 106 parameter
points with 105 showers each. For each shower we save 52 momentum entries and 6
high-level observables in a HDF5 file with medium compression. Still the file easily
is bigger (⇠ 150GB) than our available working memory. Loading each batch from
the the hard drive produces to much I/O between the machine the data is stored on
and the one doing the training and jams the computer cluster for other users. To
solve this problem we came up with a compromise.

• We reduce I/O by loading a multiple the size of one batches at once, colloqui-
ally referred to as super-batches.

• We then train on all batches in one super-batch for multiple iterations, shuf-
fling the super-batch after every full pass. After a fixed amount of iterations,
jokingly referred to as quasi-epochs, we load another super-batch.

This data loading routine introduces minor instabilities for the training. If the
number of quasi-epochs before loading is two big compared to the size of a super-
batch, the training is more prone to converge into a local minimum. This is most
important at the beginning of the training.

We have found that using a super-batch size of 100 batches, each containing 16
datapoints, and reloading every 25 quasi-epochs leads to the most stable results.
The loss still converges to the same value as in the classical training.

73

C Performance on the whole prior

In the main part of this work, we focus on the posterior distributions at one point
in parameter space. After all, we assume the parameter values to be close to the
SM values. However, the network should still perform well all over the prior.

To assert this, we calculate the mean of 1000 point clouds (2000 points each)
sampled for measurements (Meval = 104) generated with arbitrary parameter com-
binations.

Figures C.1 - C.3 show the estimated values track the true values without bias
and the spread corresponds well to the standard deviations from Table 8.1. Only
for parameters inferred with low certainty, effects of the boundary can be seen for
very high or low values.

For the inference of the rest terms including hadronization and detector effects, the
network is not able to estimate the parameters of the gluon splittings (see Figure 7.3).
Therefore, the network correctly returns the prior for every parameter combination.
As the prior is a uniform distribution symmetric around zero, the mean vanishes for
all true parameters.

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

0 2 4
Estimated Fqq

2

4

True
Fqq

-10 0 10
Estimated Cqq

0

10

True
Cqq

Figure C.1: True values over posterior means for the parameters of the gluon-
radiation shower, Dqq (left), Fqq (middle) and Cqq (right), for parameter
combinations drawn from the prior (Meval = 104). We show the results
for the kT -sorted Sherpa shower including detector effects.

74

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

0 1.0 2.0 3.0
Estimated Dgg

1.0

2.0

3.0

True
Dgg

0.5 1.0 1.5 2.0
Estimated Dqq

1.0

1.5

2.0

True
Dqq

0 1.0 2.0 3.0
Estimated Dgg

1.0

2.0

3.0

True
Dgg

Figure C.2: True values over posterior means for the soft-collinear leading terms,
Dqq (left), Dgg (right), for parameter combinations drawn from the prior
(Meval = 104). We show the results for the kT -sorted toy shower (upper)
and for the kT -sorted Sherpa shower including detector effects (lower).

75

-10 0 10
Estimated Cqq

0

10

True
Cqq

-10 0 10
Estimated Cgg

0

10

True
Cgg

-10 0 10
Estimated Cgq

0

10

True
Cgq

-10 0 10
Estimated Cqq

0

10

True
Cqq

-2 0 2
Estimated Cgg

0

15

True
Cgg

-2 0 2
Estimated Cgq

0

15

True
Cgq

Figure C.3: True values over posterior means for the pT -suppressed rest terms, Cqq

(left), Cgg (middle) and Cgq (right), for parameter combinations drawn
from the prior (Meval = 104). We show the results for the kT -sorted toy
shower (upper) and for the kT -sorted Sherpa shower including detector
effects (lower).

76

D Bibliography

[1] Michael Kagan. Image-Based Jet Analysis. 2020. arXiv: 2012.09719.
[2] Anja Butter and Tilman Plehn. Generative Networks for LHC events. 2020.

arXiv: 2008.08558 [hep-ph].
[3] Christina Winkler et al. Learning Likelihoods with Conditional Normalizing

Flows. 2019. arXiv: 1912.00042 [cs.LG].
[4] Lynton Ardizzone et al. “Guided Image Generation with Conditional Invertible

Neural Networks”. In: arXiv e-prints (July 2019), arXiv:1907.02392. arXiv:
1907.02392 [cs.CV].

[5] Enrico Bothmann et al. “Event generation with Sherpa 2.2”. In: SciPost Physics

7.3 (Sept. 2019). issn: 2542-4653. doi: 10.21468/scipostphys.7.3.034.
[6] Sebastian Bieringer et al. Measuring QCD Splittings with Invertible Networks.

2020. arXiv: 2012.09873 [hep-ph].
[7] Sheldon L. Glashow. “Partial-symmetries of weak interactions”. In: Nuclear

Physics (1961). issn: 00295582.
[8] Steven Weinberg. “A model of leptons”. In: Physical Review Letters (1967).

issn: 00319007. doi: 10.1103/PhysRevLett.19.1264.
[9] Abdus Salam and J. C. Ward. “Weak and electromagnetic interactions”. In: Il

Nuovo Cimento Series 10 (1959). issn: 00296341. doi: 10.1007/BF02726525.
[10] Michael E Peskin and Daniel V Schroeder. An introduction to quantum field

theory. Boulder, CO: Westview, 1995.
[11] Steven Weinberg. The Quantum Theory of Fields. Vol. 3. Cambridge Univer-

sity Press, 2000. doi: 10.1017/CBO9781139644198.
[12] Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013.

doi: 10.1017/CBO9781139525367.
[13] C. S. Wu et al. Experimental test of parity conservation in beta decay [5]. 1957.

doi: 10.1103/PhysRev.105.1413.
[14] R. Bayes et al. “Experimental Constraints on Left-Right Symmetric Models

from Muon Decay”. In: Phys. Rev. Lett. 106 (4 Jan. 2011), p. 041804. doi:
10.1103/PhysRevLett.106.041804.

[15] S. Schael et al. “Precision electroweak measurements on the Z resonance”. In:
Phys. Rept. 427 (2006), pp. 257–454. doi: 10.1016/j.physrep.2005.12.006.

[16] Stefan Höche. “Introduction to Parton-Shower Event Generators - Tutorial for
summer schools”.

77

https://arxiv.org/abs/2012.09719
https://arxiv.org/abs/2008.08558
https://arxiv.org/abs/1912.00042
https://arxiv.org/abs/1907.02392
https://doi.org/10.21468/scipostphys.7.3.034
https://arxiv.org/abs/2012.09873
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1007/BF02726525
https://doi.org/10.1017/CBO9781139644198
https://doi.org/10.1017/CBO9781139525367
https://doi.org/10.1103/PhysRev.105.1413
https://doi.org/10.1103/PhysRevLett.106.041804
https://doi.org/10.1016/j.physrep.2005.12.006

[17] Tilman Plehn. “Lectures on LHC physics”. In: Lecture Notes in Physics 886
(2015), pp. 1–340. issn: 00758450. arXiv: 0910.4182.

[18] John Campbell, Joey Huston, and Frank Krauss. The Black Book of Quantum

Chromodynamics. Vol. 1. 2018, pp. 1–11. isbn: 9780199652747. doi: 10.1093/
oso/9780199652747.001.0001.

[19] G. Altarelli and G. Parisi. “Asymptotic freedom in parton language”. In: Nu-

clear Physics, Section B 126.2 (1977), pp. 298–318. issn: 05503213.
[20] S. Catani and M. H. Seymour. “A general algorithm for calculating jet cross

sections in NLO QCD”. In: Nuclear Physics B 485.1-2 (1997), pp. 291–419.
issn: 05503213. arXiv: 9605323.

[21] Toichiro Kinoshita. “Mass Singularities of Feynman Amplitudes”. In: Journal

of Mathematical Physics 3.4 (1962), pp. 650–677. doi: 10.1063/1.1724268.
[22] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”.

In: Phys. Rev. 133 (6B Mar. 1964), B1549–B1562. doi: 10.1103/PhysRev.
133.B1549.

[23] S. Catani, B.R. Webber, and G. Marchesini. “QCD coherent branching and
semi-inclusive processes at large �”. In: Nuclear Physics B 349.3 (1991), pp. 635–
654. issn: 0550-3213.

[24] S. Kluth. “Jet physics in e+e annihilation from 14 to 209 GeV”. In: Nuclear

Physics B - Proceedings Supplements 133 (July 2004), pp. 36–46. issn: 0920-
5632. doi: 10.1016/j.nuclphysbps.2004.04.134.

[25] G. Abbiendi et al. “Particle multiplicity of unbiased gluon jets from e+e three-
jet events”. In: The European Physical Journal C 23.4 (Apr. 2002), pp. 597–
613. issn: 1434-6052. doi: 10.1007/s100520200926.

[26] P. Abreu et al. and The DELPHI Collaboration. “Measurement of the gluon
fragmentation function and a comparison of the scaling violation in gluon and
quark jets”. In: The European Physical Journal C - Particles and Fields 13.4
(2000), pp. 573–589. doi: 10.1007/s100520000313.

[27] A. Heister et al. and The ALEPH Collaboration. “Measurements of the strong
coupling constant and the QCD colour factors using four-jet observables from
hadronic Z decays”. In: The European Physical Journal C - Particles and Fields

27.1 (2003), pp. 1–17.
[28] G. Abbiendi et al. “A simultaneous measurement of the QCD colour factors

and the strong coupling”. In: The European Physical Journal C 20.4 (May
2001), pp. 601–615. issn: 1434-6052. doi: 10.1007/s100520100699.

[29] S. Kluth et al. “A measurement of the QCD colour factors using event shape
distributions at

p
s = 14 to 189 GeV”. In: The European Physical Journal C

21.2 (June 2001), pp. 199–210. issn: 1434-6052. doi: 10.1007/s100520100742.
[30] Stefan Kluth. “Tests of quantum chromo dynamics at e+e colliders”. In: Re-

ports on Progress in Physics 69.6 (May 2006), pp. 1771–1846. issn: 1361-6633.

78

https://arxiv.org/abs/0910.4182
https://doi.org/10.1093/oso/9780199652747.001.0001
https://doi.org/10.1093/oso/9780199652747.001.0001
https://arxiv.org/abs/9605323
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1016/j.nuclphysbps.2004.04.134
https://doi.org/10.1007/s100520200926
https://doi.org/10.1007/s100520000313
https://doi.org/10.1007/s100520100699
https://doi.org/10.1007/s100520100742

[31] Yuri L Dokshitzer. “Calculation of the structure functions for deep inelastic
scattering and e+ e- annihilation by perturbation theory in quantum chromo-
dynamics”. In: Zh. Eksp. Teor. Fiz 73 (1977), p. 1216.

[32] V.N. Gribov and L.N. Lipatov. In: Sov.J.Nucl.Phys. 15 (1972), p. 438.
[33] Stefan Höche. “Introduction to parton-shower event generators”. In: arXiv e-

prints (Nov. 2014), arXiv:1411.4085. arXiv: 1411.4085 [hep-ph].
[34] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “PYTHIA 6.4 physics

and manual”. In: Journal of High Energy Physics 2006.05 (May 2006), pp. 026–
026. issn: 1029-8479.

[35] Gösta Gustafson. “Dual description of a confined colour field”. In: Physics

Letters B 175.4 (1986), pp. 453–456.
[36] Steffen Schumann and Frank Krauss. “A Parton shower algorithm based on

Catani-Seymour dipole factorisation”. In: JHEP 03 (2008), p. 038. arXiv:
0709.1027 [hep-ph].

[37] Ya I Azimov et al. “Similarity of parton and hadron spectra in QCD jets”. In:
Zeitschrift für Physik C Particles and Fields 27.1 (1985), pp. 65–72.

[38] J. de Favereau et al. “DELPHES 3: a modular framework for fast simulation
of a generic collider experiment”. In: Journal of High Energy Physics 2014.2
(Feb. 2014). issn: 1029-8479. doi: 10.1007/jhep02(2014)057.

[39] Florian Beaudette. The CMS Particle Flow Algorithm. 2014. arXiv: 1401.8155
[hep-ex].

[40] Stephen D. Ellis and Davison E. Soper. “Successive combination jet algorithm
for hadron collisions”. In: Phys. Rev. D 48 (1993), pp. 3160–3166. doi: 10.
1103/PhysRevD.48.3160.

[41] M. Wobisch and T. Wengler. “Hadronization corrections to jet cross-sections
in deep inelastic scattering”. In: Workshop on Monte Carlo Generators for

HERA Physics (Plenary Starting Meeting). Apr. 1998, pp. 270–279.
[42] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-ktjet clustering

algorithm”. In: Journal of High Energy Physics 2008.04 (Apr. 2008), pp. 063–
063. issn: 1029-8479.

[43] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user manual”.
In: The European Physical Journal C 72.3 (Mar. 2012). issn: 1434-6052.

[44] Gregor Kasieczka et al. “Quark-gluon tagging: Machine learning vs detector”.
In: SciPost Physics 6.6 (2019), pp. 1–23. issn: 2542-4653. doi: 10.21468/
scipostphys.6.6.069. arXiv: 1812.09223.

[45] Christopher Frye et al. “Casimir meets Poisson: improved quark/gluon dis-
crimination with counting observables”. In: Journal of High Energy Physics

2017.9 (Sept. 2017). issn: 1029-8479. doi: 10.1007/jhep09(2017)083.

79

https://arxiv.org/abs/1411.4085
https://arxiv.org/abs/0709.1027
https://doi.org/10.1007/jhep02(2014)057
https://arxiv.org/abs/1401.8155
https://arxiv.org/abs/1401.8155
https://doi.org/10.1103/PhysRevD.48.3160
https://doi.org/10.1103/PhysRevD.48.3160
https://doi.org/10.21468/scipostphys.6.6.069
https://doi.org/10.21468/scipostphys.6.6.069
https://arxiv.org/abs/1812.09223
https://doi.org/10.1007/jhep09(2017)083

[46] Jason Gallicchio et al. “Multivariate discrimination and the Higgs+W/Z search”.
In: Journal of High Energy Physics 2011.4 (Apr. 2011). issn: 1029-8479. doi:
10.1007/jhep04(2011)069.

[47] Performance of quark/gluon discrimination in 8 TeV pp data. Tech. rep. CMS-
PAS-JME-13-002. Geneva: CERN, 2013.

[48] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. “Energy correlation
functions for jet substructure”. In: Journal of High Energy Physics 2013.6
(June 2013). issn: 1029-8479. doi: 10.1007/jhep06(2013)108.

[49] Jon Pumplin. “How to tell quark jets from gluon jets”. In: Phys. Rev. D 44 (7
Oct. 1991), pp. 2025–2032. doi: 10.1103/PhysRevD.44.2025.

[50] Stefan T. Radev et al. “BayesFlow: Learning complex stochastic models with
invertible neural networks”. In: (2020). arXiv: 2003.06281.

[51] Léon Bottou. “Stochastic Gradient Descent Tricks”. In: Neural Networks: Tricks

of the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr,
and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 421–436. isbn: 978-3-642-35289-8.

[52] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A method for stochastic
optimization”. In: 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings. 2015. arXiv: 1412.6980.
[53] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training

deep feedforward neural networks”. In: Journal of Machine Learning Research.
2010.

[54] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. “Normalizing Flows: An
Introduction and Review of Current Methods”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (2020). issn: 0162-8828. doi: 10 .
1109/tpami.2020.2992934. arXiv: 1908.09257.

[55] George Papamakarios et al. Normalizing Flows for Probabilistic Modeling and

Inference. 2019. arXiv: 1912.02762.
[56] V I Bogachev, A V Kolesnikov, and K V Medvedev. “Triangular transforma-

tions of measures”. In: Sbornik: Mathematics 196.3 (Apr. 2005), pp. 309–335.
doi: 10.1070/sm2005v196n03abeh000882.

[57] Lynton Ardizzone et al. “Analyzing inverse problems with invertible neu-
ral networks”. In: 7th International Conference on Learning Representations,

ICLR 2019 i (2019), pp. 1–20. arXiv: 1808.04730.
[58] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Inde-

pendent Components Estimation. 2015. arXiv: 1410.8516 [cs.LG].
[59] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation

using Real NVP. 2017. arXiv: 1605.08803 [cs.LG].

80

https://doi.org/10.1007/jhep04(2011)069
https://doi.org/10.1007/jhep06(2013)108
https://doi.org/10.1103/PhysRevD.44.2025
https://arxiv.org/abs/2003.06281
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934
https://arxiv.org/abs/1908.09257
https://arxiv.org/abs/1912.02762
https://doi.org/10.1070/sm2005v196n03abeh000882
https://arxiv.org/abs/1808.04730
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

[60] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with In-

vertible 1x1 Convolutions. 2018. arXiv: 1807.03039 [stat.ML].
[61] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-

based inference”. In: (2019), pp. 1–10. arXiv: 1911.01429.
[62] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: Annals

of Mathematical Statistics 22.1 (Mar. 1951), pp. 79–86. doi: 10.1214/aoms/
1177729694.

[63] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv e-prints (June
2017). arXiv: 1706.03762 [cs.CL].

[64] Gilles Louppe et al. “QCD-aware recursive neural networks for jet physics”.
In: Journal of High Energy Physics (2019). issn: 10298479. doi: 10.1007/
JHEP01(2019)057.

[65] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. Software available from tensorflow.org. 2015.
[66] Sean Talts et al. Validating bayesian inference algorithms with simulation-based

calibration. 2018. arXiv: 1804.06788.

81

https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1911.01429
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://arxiv.org/abs/1804.06788

Acknowledgements

2020 was not not an easy year for students. It was characterized by long stretches
of social distancing, home office and online teaching. Loosing motivation and focus
was a permanent threat.

As such I first and foremost want to thank Prof. Tilman Plehn, not only for the
opportunity to work this project, but also for the continuous supervision, always
making sure we are busy.

I also want to thank Theo Heimel for the easy, productive and fun cooperation.
Many parts of this project, for example running a parton shower algorithm on a
GPU, would not have been possible without his technical abilities. Thank you, for
always being patient with a rather computer novice like me. I will miss our daily
discussions.

Furthermore, I am grateful for Stefan Radev’s advice on machine learning and
statistics and for being available for questions always and all the time. My gratitude
extends to Anja Butter for her help defining, setting up and working out technical
problems of the project. It also extends to Stefan Höche for supplying the initial
parton shower code and further assistance with Sherpa, constructing a sensible
sorting algorithm and the final parametrization of the splitting kernels. And to
Prof. Ulrich Köthe for general advice on the architecture.

Last, but not least, I want to thank Frederick del Pozo and again Theo Heimel
for making sure this work is readable and all my friends and family for keeping me
sane during the year!

82

83

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 13.01.2021 .

84

	Introduction
	Important concepts from particle physics
	Particle content of the Standard Model
	Electron-positron annihilation

	The data set: QCD parton showers
	From splitting kernels to the parameter space
	Altarelli-Parisi splitting kernels
	Catani-Seymour dipoles
	Parametrization of the splitting kernels
	Experimental measurements on the splitting kernels

	Generating parton showers
	Sudakov-factors
	Sudakov veto algorithm
	Toy shower setup

	Augmenting the simulation chain
	Hadronization
	Detector simulation
	Jet clustering
	Sherpa setup

	Jet observables

	Introducing invertible neural networks
	Neurons
	Layers
	Dense layers
	Pooling layers

	Activation functions
	Loss function
	Gradient descent
	Initialization
	Normalizing flows
	Invertible neural networks

	Constructing the inference method
	Bayesian statistics
	Likelihood-free inference
	BayesFlow networks
	Conditional coupling blocks
	Learning objective
	Summary network

	Inference setup
	Simulation-based calibration

	Benchmarking inference quality with the toy shower
	Gluon-radiation shower
	Inference from a minimal number of high-level observables
	Full parton shower

	Inference including hadronization and detector
	Conclusions
	Explicit calculations on splitting kernels
	Calculation of qq
	+-Regularization
	Splitting kernel overestimates

	Data handling
	Performance on the whole prior
	Bibliography

