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Abstract

In this thesis we use recent advances in deep learning to super resolve jet images. We
show that models trained with the proposed pipeline can estimate a high resolution jet
image from a singe low resolution input image. The generated images follow the physical
distributions of the data set. Finally, we show that the model performs well even on
previously unseen processes.

Zusammenfassung

In dieser Arbeit benutzen wir aktuelle Deep Learning Methoden um Jet Bilder höher
aufzulösen. Wir zeigen, dass die Modelle, die auf dem hier vorgeschlagenen Weg trainiert
werden in der Lage sind, aus einem niedrig aufgelösten Jetbild ein hochaufgelöstes zu
erstellen. Die generierten Bilder haben die gleichen physikalischen Eigenschaften, wie die
Bilder des zugrundeliegenden Datensatzes. Abschließend zeigen wir, dass das Modell auch
auf Jetbildern von zuvor nicht gesehenen Prozessen funktioniert.
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1. Introduction

The Large Hadron Collider (LHC) was built to check predictions of the Standard Model
and potentially find new physics. The former was most notably achieved by the obser-
vation of the Higgs boson in 2012 [1] with the ATLAS detector [2]. In the LHC protons
collide and produce new particles, e.g. top quarks. Top quarks themselves have a short
lifespan and decay into other particles, which in return continue to hadronize. These jets
can be tracked by the inner detector and are later observed in the calorimeter.
The inner detector covers a range of |η| < 2.5, while different calorimeters reach up to
|η| < 4.9. In the region 3.1 < |η| < 4.9 a different calorimeter is used, the so called
Forward Calorimeter (FCAL) [3]. It has a lower resolution than the calorimeters in the
central region, but since it is closer to the beam axis more events can be detected here.
The question now is, whether it is possible to generate some useful high resolution data
from the forward region.
With the rise of deep learning techniques, many super resolution models have been devel-
oped in the area of computer vision [4–12]. In this thesis we propose an adaptation to jet
images for one of these models.
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2. Physics of Jet Images

At the LHC, particles, e.g. protons, are accelerated to velocities close to the speed of light
and collide with each other. The center of mass energy can reach up to

√
s = 13 TeV and

will be increased to 14 TeV by 2021 [13]. During the collision, the quarks and gluons inside
the protons interact with each other via the strong force and new particles are created.
This interaction can be described with Quantum Chromodynamics (QCD). The process
we are mainly focusing on is the hadronization of the top quark. It is the heaviest quark
and thus has the shortest lifespan. Its electroweak decay can be seen in Fig. 2.1, where
the top quark splits into a bottom quark and a W -boson which in return decays into two
quarks itself. These quarks radiate gluons which produce more particles. The composition
of these particles are called jets. If the proton collision only produces lighter quarks, all
interactions can entirely be described with QCD, which is why we call the resulting jets
QCD jets.
Around the collision point, multiple detectors are placed. Each focuses on a different
particle type. The first section is the inner detector that acts as tracking system. Here
the direction, momentum and charge of electrically charged particles is measured. The
next part is the calorimeter setup which consists of the electromagnetic calorimeter, where
electromagnetic showers are detected, and after that a hadronic calorimeter, where hadrons
create hadronic showers. Only the muon spectrometer lies behind the calorimeters. The
detectors have a cylindrical shape. The surface can be described by two parameters. The
common choice are the azimuthal angle ϕ and the pseudorapidity

η = − ln
(

tan θ

2

)
, (2.1)

which depends on the angle θ relative to the beam axis.
The entries of the resulting images are corresponding to the absolute value of the mo-
mentum component that is perpendicular to the beam axis, called transverse momentum
pT .

q̄′

t

q

b

W

Figure 2.1. Feynman diagram of a top quark decay
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3. Neural Networks

3.1. Fully Connected Networks and Activation Functions

The simplest neural network architecture is a fully connected network (FCnet), also called
dense networks. The network is basically a composition of linear functions fl and nonlinear
activation functions ϕl called layers. A layer l can be described as follows:

zl = ϕl(fl(zl−1)︸ ︷︷ ︸
z̃l−1

) = ϕl(Wl · zl−1 + bl) (3.1)

Here zl−1 is the output of the layer l −1 and subsequently the input of the layer l. Wl and
bl are its weight matrix and bias vector respectively. z̃l is called the pre-activation of the
layer and zl is the activation of the layer. The final network is a composition of all layers.
The nonlinear activation function ϕ plays a crucial role in the success of neural networks.
Without the activation, the network would simply be a composition of linear functions,
which in return is again a linear function. So the activation functions give the neural
network its complexity and its power to approximate any mapping [14]. A popular choice
for an activation function is the Rectified Linear Unit (ReLU) [15]:

ϕ(t) = max(0, t) . (3.2)

The closely related leaky ReLU can also be seen often

ϕ(t) =

 t, for t ≥ 0
α t, for t > 0

(3.3)

with the parameter α > 0. Traditionally, the sigmoid function was used as an activa-
tion function but due to its saturation on both ends, it now only serves as an output
activation.

σ(x) = 1
1 + e−x

(3.4)

3.2. Convolutional Neural Networks

A convolutional neural network (CNN) is a special case of the fully connected network with
sparse weights and weight sharing. In Fig. 3.1 a convolutional layer is compared with a
fully connected layer. They can be generalized into any amount of dimensions. Especially
when applied to images, CNNs have an inherent advantage over FCnets. Neural networks
are generally looking for patterns in the output of the last layer, also called feature map or
feature vector for one dimensional networks. While fully connected networks are looking
for target patterns in the whole feature map, convolutional networks are restricted to a
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L0

L1

L0

L1

Figure 3.1. Comparison between a convolutional neural network (above) and a fully con-
nected neural network (below). The CNN has only 3 + 1 unique parameters
while the FCnet has 62 + 6 = 42 different weights and biases. The dotted
lines symbolize weight sharing.

smaller window that is sliding over the image. This translation invariance fits perfectly
with image-like data, since most of the time a target pattern is not filling the entire image,
but can be found anywhere in the picture or appear multiple times.

The significantly lower parameter count per layer allows for deeper networks without the
tendency for overfitting (see Fig. 3.1). Overfitting means that the model goes beyond
generalizing the training data and memorizes the individual samples. It often happens
when the model is too powerful, or in other words has too many trainable parameters.
A convolutional layer is parameterized by a number of values.

1. Kernel size: It describes how big the moving window is

2. Stride: Step size of the sliding window

3. Padding: Controls the amount of added zeros on each side of the input

4. Filters: The number of independent windows used in parallel.

In Fig. 3.1 the convolutional layer has a kernel size of 3, a stride of 1 and padding of
1. These parameters have the special property that they preserve the spatial dimension
which is why it is often used in practice.

3.3. Loss Functions

The loss function, or cost function, defines the training target and is a measure of how well
the model performs. It compares the prediction with the ground truth and reduces the
difference to a single scalar number. During training (see Sec. 3.4) we aim to minimize
the loss function as far as possible. It is common practice to calculate the loss for multiple
training examples at once, a so called mini batch of size N . In regression problems, popular
loss functions are the Mean Absolute Error (MAE) or Mean Squared Error (MSE), which
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3.4. Training Process
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Figure 3.2. Residual building block

rely on the L1 and L2 metrics respectively. The loss functions will be called by their metric
names in this thesis.

MAE(a, b) = 1
N

N∑
i

|ai − bi| , (3.5)

where a and b are N -dimensional.

For classification problems with two classes, the binary cross entropy (BCE) function is
used:

BCE(a, b) = 1
N

N∑
i

(
bi log(ai) + (1 − bi) log(1 − ai)

)
(3.6)

3.4. Training Process

In the case of supervised learning a training example consists of the input X and the
ground truth y∗, also called target or label. The input is given to the network f with the
parameters θ. Together they make a prediction ŷ = f(X; θ). Next, the performance is
measured by a loss function L(ŷ, y∗). All parameters are updated into the direction that
minimizes the loss function. This is done by using the gradients ∇θL that are calculated
with the backpropagation algorithm [16]. An optimization algorithm, like Adam [17], then
uses the gradients to compute the parameters θt+1 for the following iteration.

3.5. Deeper Networks with the help of Residual Connections

He et al. introduced a deep residual learning framework [18] that allows for deeper net-
works by adding a skip connection. It partially prevents vanishing gradients because the
gradients skip the nonlinear activation function. One building block can be seen in Fig.
3.2. The scaling parameter β is a hyperparameter of the model. Hyperparameters are
model defining parameters which stay fixed during the entirety of the training process.
In this thesis residual connection is used whenever the output of a subsection of the model
is added to its input, which is represented by + . A skip connection is used when, instead
of adding, the two objects are concatenated along the channel dimension, which is noted
by c .
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3.6. Generative Adversarial Networks

3.6.1. Basic Functionality

The concept of Generative Adversarial Networks (GANs) [19] is that two neural networks
are competing with each other. The generator G is given the task to generate new samples
that could belong to the training data set and the discriminator D has to decide if a given
sample belongs to the real data set or if it was generated by the generator. The idea is
that after successful training, the discriminator can no longer distinguish a real sample
from a fake sample. For the generator, this means that he has learned to convincingly
create real samples from the data set.
The loss function for the generator is

LGAN
G = −EXf ∼Q

[
log
(
D(Xf )

)]
. (3.7)

Here P/Q are the true/generated distributions respectively.
For the discriminator the loss function is as follows:

LGAN
D = −EXf ∼Q

[
log
(
1 − D(Xf )

)]
− EXr∼P

[
log
(
D(Xr)

)]
. (3.8)

These loss functions can be constructed as the sum of two BCE loss terms (3.6) using the
labels b ∈ {0, 1}.

3.6.2. Relativistic average GAN

In the standard GAN [19] the discriminator output D(X) is a measure of how realistic the
input X seems. In a relativistic average GAN [20] the discriminator tells us the probability
of a fake sample being more realistic than real samples on average, and vice versa. The
generator loss in the GAN setup, also called adversarial loss is as follows

Ladv = −EXf ∼Q

[
log
(
DRa(Xf )

)]
− EXr∼P

[
log
(
1 − DRa(Xr)

)]
(3.9)

with DRa(Xr) = σ
(
C(Xr) − EXf ∼Q C(Xf )

)
, DRa(Xf ) = σ

(
C(Xf ) − EXr∼P C(Xr)

)
where

C(x) is the unactivated output of the discriminator. The relativistic aspect of the setup
comes from the way DRa(X) is computed. We can see that when comparing this loss to
the standard adversarial loss (3.7), another term is added. In the standard GAN D(Xr)
is not dependent on the generator, which is why the term is not needed. However in the
relativistic GAN DRa(Xr) does depend on Xf . As a consequence it has to be added to
the target function.
The loss for the discriminator is the same as in (3.9) but with switched labels:

LD = −EXf ∼Q

[
log
(
1 − DRa(Xf )

)]
− EXr∼P

[
log
(
DRa(Xr)

)]
. (3.10)
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3.6. Generative Adversarial Networks

3.6.3. Gradient Penalty

The loss function of the generator or the discriminator depends on the parameters of one
another. That means that after each iteration the training target changes. If that happens
too quickly, the models cannot converge. That is why we use gradient penalty [20, 21]
in our project. It prevents the discriminator from changing its weights too drastically in
a single update by adding a constraint to the loss function that forces the norm of the
gradient to be close to 1. It comes in the form of the following regularization term.

LD → LD + λregLreg (3.11)

with
Lreg = EX̂∼PX̂

[(∥∥∥∇X̂C(X̂)
∥∥∥

2
− 1

)2
]

. (3.12)

Here X̂ is an interpolation between real and fake images
X̂ = ε Xr + (1 − ε) Xf , where Xr ∼ P, Xf ∼ Q, ε ∼ U [0, 1].

3.6.4. Markovian Discriminator

The Markovian Discriminator or also called PatchGAN [22, 23] differs from the standard
discriminator in its output. While a traditional discriminator projects the input to a single
number, the PatchGAN estimates the realness of multiple patches of the input image. Its
output is a matrix with each value corresponding to a different section of the image.
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4. Super Resolution on Jet Images

4.1. Super Resolution Networks

In the task of single image super resolution (SISR) the goal is to predict a high resolution
(HR), super resolved (SR) version of a given low resolution (LR) image. It is an ill-posed
problem because many HR images can correspond to a single LR image. The goal is
to generate a meaningful SR image. Learning based approaches hallucinate details and
texture that are consistent with the LR image but may look differently in the HR image.
This can be seen in Fig. 4.1 where I applied super resolution to the STL-10 [24] data set
which consists of approximately 100.000 color images with a resolution of 96 × 96 pixels.
In my experiment I chose an upsampling factor of f = 4, so the model learns to super
resolve LR images of the size 24 × 24 pixels.
The results are shown in Fig. 4.1. The super resolved image 4.1c has better refined
outlines, colors and sharper edges in comparison to the bicubic upsampled image 4.1b.
The eye of the parrot for example is grey in the LR image, but the model reconstructs the
correct color composition.

(a) LR (b) Bicubic (c) SR (d) HR

Figure 4.1. Example for super resolution on the STL-10 testset using the ESRGAN

4.2. Jet images as Datatype

The data set used in this thesis was originally created for top tagging [25]. It contains
tt̄-events and QCD dijets that were generated at a center of mass energy of

√
s = 14 TeV

using Pythia [26], a Monte Carlo event generator. After that, a detector simulation, called
DELPHES [27], simulates the ATLAS detector. The jet clustering was done by FastJet
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Figure 4.2. Energy distribution behaviour when raising it to different powers p

[28, 29] using the anti-kT algorithm [30] with a jet radius R = 0.8. Next, a pT cut was
made. The jet had to fulfill pT ∈ [550, 650] GeV. The training data set only consisted of
the top jets. At this point it is important to note that the events were required to fulfill
|η|jet < 2 which is well inside the central region of the ATLAS detector. The resulting data
comes in the form of images that display top quark hadronizations, where the pixel values
hold the transverse momentum pT . The images are sparse, since a jet only has about 50
constituents. That corresponds to a sparsity of 99.80% for 160 × 160 pixel big pictures.
The few non-zero values themselves cover a big range. The transverse momentum can be
as high as 500 GeV but most of the constituents still have momenta near zero. Usually,
in machine learning the data is normalized in some way. There are multiple ways of
normalizing jet images to be better suited for machine learning, e.g. dividing by the highest
pixel value or setting the sum of the transverse momenta to 1. These transformations do
not retain the information of the absolute momentum which may not be a problem for
classification tasks but for our purposes this information is needed. In Fig. 4.2 the energy
distribution of the data set is shown. When raising the images to a power p ∈ (0, 1) in
a pixel-wise fashion the distribution gets broader relative to its domain. The training is
significantly improved because of this preprocessing step.
Since most super resolution models are based on paired LR/HR data, we need an artificial
way of downsampling the HR image to get the LR version relatively quickly and if possible
in a differentiable manner. In this project Sum Pooling (see Fig. 4.3) is used. It can be
interpreted as a naive way of simulating a detector of lower resolution. This aspect of the
training pipeline could be improved by a more sophisticated downsampling method or by
using unpaired LR/HR images [31].

4.3. Network Architecture

The model used in this thesis is mainly based on the Enhanced SRGAN (ESRGAN) [10]
(see Fig. 4.4) which is an improved version of the Super Resolution GAN (SRGAN) [11].
It has two Markovian Relativistic average Discriminators with Gradient Penalty (RaGAN-
GP) [20, 22].
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4.3. Network Architecture
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Figure 4.4. Generator from ESRGAN. The ”Residual in Residual Dense Block” is shown
in Fig. 4.5.

4.3.1. Generator

The generator is the model we are ultimately interested in. It takes a LR image and
converts it into a SR image. The generator is a deep residual fully convolutional network.
The main building block of the generator are the Residual in Residual Dense Block (RRDB)
[10] which in return consists of 3 Dense Residual Blocks (DRB) [32] that are connected
with each other via residual connections. The DRB is built using a number of consecutive
convolutional layers, all of which have a 3×3 kernel size, stride 1, padding 1 and 64 filters.
The activation function is a LeakyReLU with α = 0.2. The particularity of the DRB is
that a layer receives the input of all other layers as addition to the output of the previous
layer. This structure fuses all the feature maps inside of the block and aims to extract
the most information in that way. The amount of RRDBs B is a hyperparameter and
determines how deep the neural network gets. All the convolutions used in the generator
preserve the spatial dimensions of the input image, but since we want to end up with
a bigger picture in the end, some sort of upsampling is needed. This is done by one or
more Pixel Shuffle-Layers [33]. Each doubles the spatial dimensions by spreading out the
feature maps. In the HR feature space there are two additional convolutional layers, one
of which only scales the output by a fixed value.

4.3.2. Discriminator

The discriminator network is fairly simple in comparison to the generator. It is a sim-
ple feed forward convolutional network with LeakyReLU activations. Every discriminator
block consists of two convolutional layers with a 3 × 3 kernel and padding 1. After each

13
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block the amount of filters is doubled. The first convolution of each block conserves the
spatial dimensions of the input while the second layer halves it because it is a strided
convolution. We used 4 blocks and started with 64 filters. So far this is the same discrim-
inator structure as Ledig et al. used in the SRGAN [11]. We deviated from the proposed
structure by removing the batch normalization layers to help the model converge. This
was recommended by Gulrajani et al. [21] when using gradient penalty. We also cut off
the network before it was flattened and fed into a fully connected layer. That way we
employed a Markovian discriminator in its place.

4.4. Loss Function

SRGAN and ESRGAN work great with images like in ImageNet [34] or STL-10 [24] but
they also had some excess functionalities e.g. the perceptual loss that aims to make the
resulting images visually more pleasing. It is a combination of the adversarial loss from
the Discriminator and a content loss that compares feature maps of a pre-trained image
classification network. The latter is redundant for our purposes and only the adversarial
loss remains. Additionally, we want the high resolution image to look like the ground
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4.5. Training on Jet Images

truth, so we add a L1 loss between SR and HR. L1 prevents blurring in comparison to the
L2 loss.

LHR = L1 (SR, HR) (4.1)

Since the high resolution jet image should correspond to its low resolution counterpart,
we added another loss term that compares the model input with the downsampled model
output on a pixel by pixel basis.

LLR = L1

∑
pool

(SR), LR

 (4.2)

Additionally, there is the GAN loss (3.9) from chapter 3.6.
The final loss function for the generator can be written as a weighted sum of the standard
loss and the power loss, which in return are a weighted sum of the HR, LR and adversarial
loss.

Ltot =
∑

s∈{std, pow}
λs (λHR LHR + λLR LLR + λadv Ladv) (4.3)

The discriminator loss only consists of the GAN loss (3.10) with gradient penalty (3.11).

4.5. Training on Jet Images

The process of a training iteration can be seen in Fig. 4.7. The starting point is the high
resolution ground truth jet image HR from which the low resolution input image LR is
computed via sum pooling. Next, the jet image it is raised to the power of p as a pixel-wise
operation and scaled by a factor k afterwards. We chose p = 0.3, any lower and we had to
deal with numerical instabilities, and k = 1/f with the upscaling factor f . This results in
a flatter energy distribution, as explained before, which in return is easier to learn for the
model. The data is then fed into the Generator RRDB and the output is divided by the
factor k from above. The result is supposed to be the super resolved image raised to the
power p: SRp. This intermediate result is saved for the computation of the loss later on.
But since the model is supposed to approximate the high resolution ground truth in the
end, we take the pth root of the intermediate result SR = p

√
SRp to get the final result.

Every loss is computed once for the standard jet images, the standard loss, and once for
the images raised to the pth power, the power loss. The first contribution comes from the
corresponding discriminator. Both, the standard loss and the power loss have their own
discriminators. Next the SR images are pooled to get their LR version and compared with
the real LR images as described in (4.2).
The hyperparameters we used can be seen in Tab. 4.1. Adam was used for the optimization
with β1 = 0.5, as suggested by Radford et al. [35], and β2 = 0.9. The learning rate was
set to λ = 0.0001. The training of a model took 50k-100k iterations.
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B N β p λreg λstd λpow λHR λLR λadv

15 15 0.1 0.3 0.002 0.2 1 1 0.1 0.05

Table 4.1. Hyperparameters we found to be optimal
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Figure 4.7. Training process for jet images. The generator can be seen in Fig. 4.4
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5. Evaluation

We want the super resolved images to be indistinguishable from the ground truth jet
images. That means the images have to show the same physical properties, and they need
to look like real jet images.

5.1. Evaluation Methods

5.1.1. Metrics

In the standard super resolution task metrics like the Peak Signal to Noise Ratio (PSNR) or
structural similarity (SSIM) are used to compare different models and approaches. These
metrics are meaningless in the context of jet images.
A natural metric is the L1 metric which is part of the loss function. It can be used as a
measure of how close the generated super resolution image is to the actual ground truth
image. But as stated above, we aim to produce meaningful high resolution images rather
than to reproduce the original image. Komiske et al. developed a metric for collider events
called Energy mover’s distance (EMD) [36], similar to the Earth mover’s distance, that
can measure how similar two jet images are with respect to the energy of the constituents.
This is a much better metric for our purposes than a pixel-wise comparison. In practice
the difference is not as pronounced as expected. Looking at the validation results during
the training of a model in Fig. 5.1, we can see the HR L1 metric as well as the EMD
metric. Both show the same tendencies at the same validation points but the L1 metric
is a little bit smoother while the EMD metric is more sensitive to the models parameter
changes. Nevertheless, it seems like the L1 metric is a comparable measure to the EMD
metric, when tested on many samples.
The best results for the EMD metric for all super resolution factors, evaluated on the test
set, can be found in Tab. 5.1.

5.1.2. Observables

We want our model to be able to reproduce the physics of the high resolution jet image.
That’s why we look at physical observables like energy of the nth constituent. As reference
for the HR/SR-distributions, we additionally plot both LR distributions. That way we

f 2 4 8 16

EMD [GeV] 31.40 ± 10.22 45.46 ± 14.13 67.90 ± 28.85 80.49 ± 27.13

Table 5.1. EMD metrics for different upsampling factors f . Uncertainties are of sta-
tistical nature. Information on the image dimensions can be found in Sec.
5.2.
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Figure 5.1. Validation metrics during the training of a 8× model
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Figure 5.2. Number of constituents

can see how different the HR and LR distributions are, i.e. how much work had to be
done by the model, and how good the model approximates the ground truth. We mainly
focused on the transverse momentum distributions of the single constituents.
A few of these distributions can be seen in Fig. 5.5. The model can approximate the
correct distributions for a wide range of constituents.
Additionally, we compare the number of constituents for SR and HR in Fig. 5.2.

5.1.3. Event-Event Evaluation

When looking at Fig. 5.5 one might get the impression that our model can reconstruct
the HR image with great precision. However, this is mostly a statistical effect. The model
learns these distributions very well, but on an event by event basis it struggles to assign
the correct energy to a constituent. This was to be expected because of the ill-posed
nature of the problem. The correlation of the hardest constituent in the HR image and
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5.1. Evaluation Methods
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Figure 5.3. Correlation between the energies of the hardest constituent in the HR image
and in the SR image

in the SR image can be seen in Fig. 5.3. Especially in Fig. 5.3a the energy spread can be
seen. If the model could reconstruct the original HR image, all entries would lie on the
bisecting line.
In Fig. 5.3b and Fig. 5.3c the energy range of the ground truth axis from Fig. 5.3a is
split into 5 sections. Every event from one section has the same color in both plots. The
distributions in Fig. 5.3c are additive. We can see that the model often gets the energy
of the hardest constituent wrong. In Fig. 5.3d and Fig. 5.3e the correlations of the high
resolution and low resolution images are shown, once for the ground truth and once for the
generated images. Because both correlation plots look very similar, we conclude that the
model learns how to generate jet images that follow the distributions of the training data,
although it rarely assigns the correct energy. That means that the spread is a property of
the data set and does not originate from an inadequate model.

5.1.4. Visual Quality

The images generated by our model can follow the physical distributions very closely but
the model still can deposit most of the energy in the same HR-pixel every time. In order
to detect such artifacts we introduce three new plots.
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Figure 5.4. Visual evaluation for 8× super resolution.

The first plot is simply the average jet image, as it can be seen in Fig. 5.4a. Here we can
see regularities, especially at the edges and in the middle of the prediction. Very similar
is the second plot, where we look at the histogram of the constituents. For every pixel in
the high resolution image, the amount of constituents is counted once for the predicted
SR image and once for the HR image (see Fig. 5.4b). To be classified as constituent,
the activation needs to be higher than 0.1 GeV. For the last plot we subdivide the high
resolution image into f × f big patches and count the constituents in those segments (see
Fig. 5.4c). Each patch corresponds to one pixel in the LR space. Here, the repeated
structure from the first two plots is isolated. We can see the habits of the model the best.
We can see that the model approximates to the ground truth distributions but there still
is room for improvement. Especially in Fig. 5.4c the artifacts of the model are visible.
While the ground truth distribution is almost uniform, the prediction clearly favors some
pixels over others.

5.2. f times Super Resolution

In this section the final model will be evaluated using the introduced methods.
The ground truth image size for our data has a resolution of 160 × 160 pixels. At this
resolution almost every constituent is in a single pixel. The natural first step in the super
resolution task was to test the model on a two times upscaling factor. The ground truth
images were scaled down to 40 × 40 pixels, so that the LR images have a size of 20 × 20
pixels.
In App. A.1.1 a few observables, the visual quality plots as well as a correlation plot can
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5.3. QCD Jets

be found. The model can approximate the ground truth distributions well for all energy
scales. However, when we look at the patch histogram, we can see that the bottom right
pixel is favored by the model. The relative difference in the entries is only 5%, but it could
be better because these artifacts can be seen in the average jet image aswell.
For 4× and 8× super resolution, the LR image size stays the same but as it can be seen in
App. A.1.2, for 4× upscaling, and in Figures 5.1.4, 5.2b, 5.3 and 5.5, for 8× upsampling,
the model still manages to learn the distributions. However, the model also has the same
shortcomings in distributing the energy evenly across all pixels.
For 16× super resolution the low resolution images had a size of only 10 × 10 pixels. Here
the model still approximates the first few pT distributions, as shown in App. A.1.3, but
the average jet image, as well as the number of constituents were not estimated correctly.
The relative difference in the patch histogram counts is > 50%. We conclude that 16-fold
super resolution is not possible in those regards with our current model.
It is important to note that for each of these upsampling steps, a new model was trained
from scratch, since our model structure does not allow for progressive upsampling.
In summary, it can be said that the model can approximate the observables very well
for all factors. However, the visual quality is not perfect yet, even for small upsampling
factors. We can see great differences in the patch histogram and it is getting worse for
higher factors.

5.3. QCD Jets

In reality more processes are happening than just the top hadronization, so we also tested
the model on QCD background jets, without fine tuning it first. The evaluation can be
seen in the Appendix A.2. The model almost performs as good on QCD data as it does
on top jets, even though the energy distributions and jet images are different. We see that
the model is not only limited to the top jet process but can operate in a wider range of
processes.
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Figure 5.5. Energy distributions of the nth hardest constituent computed over 50k test
images for eightfold super resolution. The blue line is the model prediction
which should approximate the ground truth in orange (dashed), the green
line (dash dotted) is the LR distribution which should be the same as the
downsampled SR output in red (dotted). On the x-axis the transverse mo-
menta are plotted in

√
GeV in order to get a wider distribution.
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6. Experiments and Improvements

The model described in this thesis is based on models proposed for computer vision [10,
11]. The changes we made and their effect on the performance will be discussed in this
chapter.

6.1. Multi-Power Learning

With two separate loss functions which both receive almost the same input, our training
setup is rather unconventional. In order to justify both, we train two new models, each
with one loss turned off. We expect the model to mainly focuses on the hardest con-
stituents, when only training on the standard loss, since their influence in the L1 loss is
the greatest. Without the standard loss, the hardest constituents should lose importance
while the softer particles gain some.
First, we investigate the effect of only training with the power loss. A few observables can
be seen in Fig. 6.1. The model assigns too little energy to the hardest constituent, seen
in Fig. 6.1a. Otherwise, the distributions align but the counts are not equal.
The results for the model which was only trained on the standard loss can be seen in Fig
6.2. The model performs better for the harder constituents but for the softer ones, the
distributions differ from the ground truth. This is in agreement with what we expected.
Both losses together compensate for their weaknesses and the generator is able to approx-
imate the distributions for the hard and for the soft constituents.

6.2. Gradient Penalty

SRGAN and ESRGAN have no gradient penalty incorporated into their discriminator loss,
but we found it to yield much better results for the image quality. It also improved the
stability of the training. Before implementing gradient penalty the discriminator could
easily distinguish the fake sample from the real sample. But the generator could not
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Figure 6.1. Energy distributions of a model trained only with the power loss
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Figure 6.3. Comparison between models with gradient penalty (b) and without (a) to
the ground truth (c)

improve the quality of super resolved images because the discriminator weights changed
too rapidly, and with it the adversarial target changed. The generator learned that not
every single one of the HR-pixels have non-zero entries so the model tends to choose
the same few pixels to carry most of the energy for every image. After adding gradient
penalty, both the adversarial loss for the generator and the discriminator loss saturated.
As a consequence the images had fewer artifacts. This can be seen in Fig. 6.3 where the
histograms of the average jet image are shown, as explained in Sec. 5.1.4.
Even though the jet images did not follow the average distribution before gradient penalty,
the observable distributions did. The same model that produced the average image in Fig.
6.3a was able to approximate the distribution for the nth constituent, seen in Fig. 6.4.

6.3. Conditional Discriminator

A discriminator is called conditional if it is presented with not only the real or fake sample
but also with the generator input [22, 37]. In our case that would be the LR image. The
idea is that the discriminator learns what a realistic LR image is to a corresponding HR
image and not only focuses on the realism of the HR image. This in addition to the LR loss
should, in theory, improve the quality of the SR image. The observables are approximated
very well but the visual quality of the images stays the same. However, that does not mean
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6.3. Conditional Discriminator
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Figure 6.4. Energy distributions of a model without gradient penalty

that the conditional discriminator did not improve some aspect of the performance. When
we compare the correlation plots for ground truth LR and downsampled SR, we notice
that the spread is much smaller when using a conditional discriminator (see Fig. 6.5). So
the condition does improve the predicted SR image in the regard that it fits better to the
underlying LR image.
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Figure 6.5. Effect of the conditional discriminator on the downsampled SR image
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7. Conclusion

Our modified model of the ESRGAN can successfully estimate a meaningful super resolved
image from its pooled low resolution version even for big upsampling factors. The predicted
distributions approximate the ground truth well, which is due to the proposed training
pipeline that helps the model to focus on all energy scales. The introduction of gradient
penalty helped stabilizing the training and reduced the number of artifacts, however some
artifacts in the SR image remain. Maybe the generator structure was not adapted enough
for our purposes and additional computation in the high resolution space could solve the
problem.
The model seems to generalize beyond its training data to some extent. It can successfully
super resolve QCD background events in the same pT range, even though it was only
trained on top jets. Additionally, one could explore the idea of a perceptual loss function
in the terms of the physical application, by minimizing the feature map difference between
SR and HR, calculated from a physical classification network.
The EMD metric is better suited for jet images, especially when we have to work with a
small sample size. That is why I would like to replace the high resolution L1 loss with
an implementation of the EMD metric. Also potentially interesting would be the idea
of progressive image super resolution like in LapSRN [8] or ProSR [12], or as already
mentioned, to explore the possibility of using unpaired data.
Another point is that the model used in this work is deterministic. The same input
image will always get super resolved to the same SR image. One could incorporate some
variational component into the forward pass and check if it solves the average jet image
distribution problem.
The work in this thesis serves as a proof of concept. We have not yet tested or fine tuned
the model on unseen FCAL data, which was the motivation of the project.
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A. Appendix

A.1. f times Super Resolution - Evaluation Plots

A.1.1. 2x Super Resolution
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Figure A.1. Evaluation of a model trained for 2× super resolution on the top jet test set
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A.1. f times Super Resolution - Evaluation Plots

A.1.2. 4x Super Resolution
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Figure A.2. Evaluation of a model trained for 4× super resolution on the top jet test set
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A.1.3. 16x Super Resolution
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Figure A.3. Evaluation of a model trained for 16× super resolution on the top jet test
set
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A.2. Evaluation on QCD jets (8x)

A.2. Evaluation on QCD jets (8×)
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Figure A.4. Evaluation on QCD background of a model trained on top jets with 8×
upsampling
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