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Higgs Physik am LHC

Die meisten Physiker erwarten, dass ein Higgs-Boson am LHC entdeckt wird. Zuvor muss
das Higgs-Boson jedoch produziert werden. Aus diesem Anlass wird im ersten Teil der
Arbeit der Wirkungsquerschnitt für den Gluon-Fusionsprozess ausgerechnet. Für diesen
Prozess mit anschließendem Zerfall nach bottom-Quarks wurde eine Monte-Carlo Simu-
lation geschrieben, die den totalen und die differentiellen Wirkungsquerschnitte für ver-
schiedene physikalische Observablen in führender Ordnung bestimmt. Denkbar ist auch
eine andere Realisierung des Higgs-Bosons als im minimalen Standard Modell. Diese Physik
jenseits des Standard Modells kann Auswirkungen auf die Higgskopplungen haben. Des-
halb wird im zweiten Teil der Arbeit die Modifikation der Kopplungen, hervorgerufen
durch Wechselwirkungen mit einem versteckten Sektor und einem speziellen zusammenge-
setzten Higgsmodell, die am LHC zugänglich sind, untersucht. Beide Szenarien wirken sich
ähnlich auf die Kopplungen aus, in dem sie universelle und teilweise universelle Modifika-
tionen verursachen. Zusätzliche unsichtbare Zerfälle durch den Zerfall in den versteckten
Sektor werden ebenfalls berücksichtigt. Experimentelle Grenzen an diese möglichen Modi-
fikationen werden durch die Übereinstimmung eines beobachteten Higgs-Bosons mit dem
Standard Modell bestimmt.

Higgs physics at the LHC

Most physicists expect to discover the Higgs boson at the LHC. But first the Higgs boson
has to be produced. For this reason, we calculate the gluon-fusion Higgs production cross
section in the first part. A Monte Carlo simulation for this process with subsequent decay to
bottom quarks at leading order was written to obtain the total and differential cross sections
with respect to physical observables. There can be other Higgs boson implementation as
the minimal Standard Model. This physics beyond the Standard Model can affect the
Higgs couplings. Thus, in the second part of this thesis, we study modifications through
interactions with a hidden sector and in specific composite Higgs models accessible at the
LHC. Both scenarios give rise to congruent patterns of universal, or partially universal,
shifts. In addition, Higgs decays to the hidden sector may lead to invisible decay modes
which we also exploit. Experimental bounds on such potential modifications will measure
the concordance of an observed Higgs boson with the Standard Model.
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1. Introduction

It is due to the ambition of mankind in the last centuries that we are able to think about the
most elementary constituents of the universe and their dynamics. Approaching questions
of such fundamental relevance is remarkable and fascinating at the same time. The laws of
nature how they are realized in our universe make evolution possible to develop sufficiently
intelligent life forms. This is the enchantment why people feel the necessity to reveal all laws
of nature. Today, we can explore questions that were once originated from a philosophical
point of view on profound footing of natural sciences.

Up to now, has been developed a profound theory that can explain every experiment in
high energy physics. The Standard Model (SM) of elementary particles contains three of
the four fundamental interactions the quantum electrodynamics (QED), weak interaction
and quantum chromodynamics (QCD) with the corresponding gauge bosons photon γ,
weak gauge bosons W±, Z0 and the gluons g and the matter particles which are six colour
charged quarks and leptons of the same amount. The latter twelve particles are fermions
and can be classified in three generations. In the Standard Model, symmetry and symmetry
breaking play a crucial role.

From the claim that the Lagrangian is gauge invariant under local gauge transformations
the fundamental interactions arise from gauge theories. Mathematically, these symmetries
can be described by group theory with the Standard Model gauge group SU(3)C×SU(2)L×
U(1)Y . The Standard Model gauge group splits to QCD SU(3)C and the unification of
the symmetries of weak interaction and electromagnetism SU(2)L × U(1)Y , based on the
work from Sheldon Glashow [6], Abdus Salam [7] and Steven Weinberg [5]. Local gauge
transformations are only preserved if the gauge fields are massless. This leads to a problem
because it is experimentally proven that the weak gauge bosons has a huge mass. For this
reason, the electroweak symmetry must be broken.

Already in 1964, Peter Higgs [1], [2], Francois Englert, Robert Brout [3] and Thomas W.
B. Kibble [4] found a solution for the symmetry breaking. By introducing a complex
scalar field, which is an SU(2) doublet called Higgs field that is charged under U(1)Y
with an appropriate potential such that it acquires a vacuum expectation value, breaks the
SU(2)L×U(1)Y electroweak symmetry to the U(1)Q gauge group of the electromagnetism.
Three of the four degrees of freedom from the complex doublet are Goldstone bosons which
are eaten by the three weak gauge bosons. Due to this, they give them a longitudinal
polarization mode and their masses. The last degree of freedom is a physical observable
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particle: the Higgs boson. Also the fermions get their masses from the Higgs field by
Yukawa couplings.

The Higgs sector in the Standard Model is highly hypothetical. No Higgs boson has been
observed yet. From LEP at CERN where electron positron collisions were observed, we
know that the Higgs boson must be heavier than 114 GeV [8]. There are also theoretical
constraints on the mass. From the renormalization group equation for the quartic Higgs
coupling [9], which describes the energy dependence of that coupling because of divergences
in higher order corrections, follows the stability and triviality bound. The running coupling
has a singularity at a certain energy scale. Up to this scale, we can rely on the perturbative
theory. This point depends on the Higgs mass and is called triviality bound [10]. The
stability bound [12] is given by the condition that the quartic Higgs coupling has to be
bigger than zero because only then the Higgs potential is bounded from below. At the
Planck scale (1019 GeV) these two bounds predict a Higgs mass of around 180 GeV to
190 GeV [11].

At the moment, nobody knows how the electroweak symmetry is broken at the TeV scale.
This was one of the major aspects for constructing the LHC. Over the years, scientists de-
veloped alternative or extended models to explain electroweak symmetry breaking. Having
only one Higgs doublet is preferred to keep the theory as easy as possible. Alternatively,
we can think about introducing another doublet. There are three different types of two
Higgs doublet models. In the first one, only one Higgs doublet couples to both up- and
down-type fermions and the other does not couple to any fermion [13]. In the second type
of model, one of the two Higgs doublet couples to up- and the other to down-type fermions
[14]. And the third type of model allows all kinds of possible couplings [15]. In all of these
models, more than one Higgs boson appears.

In the Higgs sector occurs a problem which is referred to as the hierarchy problem. From
higher order perturbative corrections, divergences appear in the Higgs mass or Higgs po-
tential parameter, e.g. the one loop contribution from the top-Quark is quadratically di-
vergent. We can introduce a cut-off to keep it finite. But this means that the theory is
limited to a certain energy. For this reason, the Standard Model is expected to be only a
low energy limit of a more fundamental theory. Also the huge amount of free parameters
in the Standard Model is another hint. One solution for this problem is Supersymmetry
[24] which transforms a boson to a fermion and vice versa. It means that every boson
(fermion) has a corresponding supersymmetric fermion (boson). If this symmetry is exact
then the quadratic divergences from the loop corrections to the tree level parameters cancel
exactly because fermion loops have an additional minus sign in comparison to boson loops.
But supersymmetry is not an exact symmetry because otherwise we would have observed
supersymmetric partners of the Standard Model particles predicted from Supersymmetry.

Also models with extra dimensions was once motivated by String Theory became pop-
ular in the last decade. There are models with large extradimension as in the Arkami-
Hamed, Dimopoulos and Dvali (ADD) model [21] or with warped extra dimensions as in
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the Randall-Sundrum model [22]. Basing on these approaches, models with or without
a Higgs boson are invented. One class of model is the minimal composite Higgs model
(MCHM) [124–126] where the Higgs boson appears as a pseudo-Goldstone boson from new
strong dynamics. This model takes advantage of the holographic principle that is based on
the AdS/CFT correspondence [23], where strongly-coupled theories in four dimensions are
identified with weakly-coupled theories in five dimensions. The minimal composite Higgs
model predicts a shift in the Higgs couplings of the minimal Standard Model.

In general, mass is a strange thing. Everybody has a good feeling about what mass means
but nobody can explain where it comes from. We know since centuries that masses attract
each other by gravity. But only from the beginning of the 20th century on, people got
new fundamental insights into mass, energy and space-time. In 1905, Albert Einstein
formulated the special theory of relativity [16] that yields a relation between mass and
energy. It means that energy and mass can be transformed into each other. This relation
is proven over and over again in particle colliders where it is used to produce heavier
particles.

Ten years later general relativity [17] was found and it is still the best theory of gravity.
It is a classical field theory. Today, no quantum field theory of gravity is known so that
it cannot be a part of the Standard Model. Scientists are looking for hints like a graviton
that would be the mediator of the gravitational force. But also the graviton has not yet
been observed. Since gravity is very weak, it does not play a role in nowadays collider
physics.

From astronomical observations in the last two decades, we know that only 5 % of our
universe is made up from known particles [19]. The rest splits into 23 % dark matter and
72 % dark energy. In the observation of galactic rotations, there occurred a discrepancy
between the theoretical prediction and the measurement. One solution is that there is
more matter than we can see because it interacts only very weak that is called dark matter.
Another explanation is that our theory of gravity is not valid at all distances [18]. The first
solution is much preferred. We also observe an accelerating universe [20] that demands
something like negative pressure that is called dark energy. Probably, the LHC will teach
us more about these topics.

As we have seen, there are unexplained things in nature. Some of these things will hopefully
be solved at the LHC, but others are still beyond the possibilities of the LHC. So there is
still a lot of work that has to be done in the next decades. But there is a good chance to
reveal the electroweak symmetry breaking mechanism in the near future. Such knowledge
would lead to a limited class of models.





2. LHC physics

2.1. Gluon-fusion process

At the LHC, there are four Higgs-boson production processes, see Fig. (2.1). On the
experimental side, the gluon-fusion (GF) process has the biggest cross section. And on the
theoretical side, it is the most challenging process to compute because of the top-loop. For
that reasons, it is worth it to study this process in more detail.

In the SM, there is no direct coupling between gluons and Higgs-boson. That is why
another particle is needed to connect them with each other. The top-quark is a good
choice for this particle because it has the biggest coupling constant to the Higgs-boson due
to its huge mass that is proportional to the coupling. The top-loop coupling corresponds
to an effective Lagrangian [61] that is given by

L ∝ HGµνG
µν , (2.1)

where H is the Higgs field and Gµν is the QCD field strength tensor.

2.1.1. Higgs production cross section

The first step in calculating a cross section is putting together all the Feynman rules [50]
that are needed for the diagram and writing down the matrix element. For the gluon-fusion
process, three fermion propagators, two gluon couplings to fermions, one loop integral, one
Yukawa coupling and a minus sign for the fermion loop are needed. In the following, gS
denotes the strong gauge coupling, m the top-quark mass, pi the four-momentum vectors
of the incoming gluons, εi the gluon polarization vectors, γ the Dirac matrix, T the SU(3)
group generators and GF the Fermi constant. The matrix element for the GF process can
then be written as

5
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g

g

Ht

(a) gluon fusion
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q′

HW,Z

(b) weak boson fusion

q

q̄
W, Z

W,Z

H
(c) Higgs strahlung

q

q̄
g

t

t

H

(d) heavy quarks associated Higgs production

Figure 2.1.: Shows the four major partonic Higgs production processes at the LHC.

Ht

x1P1

x2P2

P2

P1

Figure 2.2.: Depicts the hadronic gluon-fusion process at the LHC. P1 and P2 denote the
two incoming protons.
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M =−
∫

d4q

(2π)4
Tr

[
εµ1(−igSγµT ajk)

i(/q + /p1
+m)

(q + p1)2 −m2
(−igSγνT bkj)εν2

i(/q + /p1
+ /p2

+m)

(q + p1 + p2)2 −m2

(−im(
√

2GF )
1
2 )
i(/q +m)

q2 −m2

]
=

1

4π
(
√

2GF )
1
2 αSm Tr(T aT b) εµ1 ε

ν
2 F PTµν .

(2.2)

Because of the fermion loop, the trace is applied only to the occurring Dirac matrices. The

relation αS =
g2S
4π

for the strong coupling constant is used. F (explicitly defined in Eq. (2.5))

is the form factor of the effective gluon-gluon-Higgs coupling and PTµν = ηµν − pµ1 p
ν
2

p1·p2 is a
transverse projector. Due to the fact that gluons are massless, they only have transverse
components. For this reason, one can introduce the transverse projector without losing
any information. The calculation of the Dirac trace can be done by hand or using a tool
like form [25, 26] that can do it. The result is

T µν = Tr
[
γµ
(
/q + /p1

+ /p2
+m

) (
/q +m

)
γν
(
/q + /p1

+m
)]

=4m (4qµqν + 2qµpν1 + 2qνpµ2 + 4qνpµ1
+ pµ2p

ν
1 + pν2p

µ
1 + 2pµ1p

ν
1 + ηµνm2

−ηµνq · q − 2ηµνq · p1 − ηµνp1 · p2 − ηµνp1 · p1)

(2.3)

and applying the transverse projector to it yields

PTµνT
µν = 4m

(
3m2 −m2

H −
8

m2
H

p1µp2νq
µqν − 2p1µq

µ + ηµνq
µqν
)
. (2.4)

Because of the loop momenta in this expression tensor integrals Cµν and Cµ in F appear.
In App. A I explain how to reduce them to scalar integrals. The method is called Passarino
Veltman reduction. For F , one finds [28]

F =
1

2
P µν
T

∫
d4q

iπ2

Tr[(/q +m)γµ(/q + /p1
+m)γν(/q + /p1

+ /p2
+m)]

(q2 −m2)((q + p1)2 −m2)((q + p1 + p2)2 −m2)

= 2m+m(4m2 −m2
H)C0(p1, p2,m) .

(2.5)

Here, C0 denotes the 3-point scalar function, which is calculated in App. B in full detail.
The result is
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C0(p1, p2,m) =

 −
2
m2
H

arcsin2
(√

1
ρ

)
, ρ > 1

1
2m2

H

(
log
(

1+
√

1−ρ
1−
√

1−ρ

)
− iπ

)2

, ρ < 1
, ρ =

4m2

m2
H

. (2.6)

Now the matrix element is completely determined. The last step is squaring the matrix
element and averaging over all possible initial states, that means the polarizations and the
adjoint representation of the gluons, because the beams are not polarized. The averaged
squared matrix element is

|M|2 =
1

2 · 2 · 8 · 8
∑
pols

8∑
a,b=1

M2

=
GF α

2
Sm

2

128
√

2π2
F 2.

(2.7)

What we calculated so far is the matrix element of the partonic process (Fig. 2.1). But at
the LHC, two protons collide head-to-head. Therefore, we are interested in the hadronic
cross section (Fig. 2.2). In hard parton processes, the hadronic cross section is given by

σtot =

∫
dx1

∫
dx2 f(x1) f(x2)σparttot (x1, x2) . (2.8)

where x1 and x2 are the longitudinal momentum fractions of each proton that is carried
by a parton and f is the parton distribution function. A hadron is a pretty sophisticated
object. It doesn’t only consist of the valence quarks but also of sea quarks. Due to the
uncertainty relation, quarks, antiquarks and gluons can be created if they annihilate in a
certain period of time. These dynamical objects are the so-called sea. They also carry a
non-negligible amount of the hadron momentum. Thus, f gives the probability for finding
a certain parton at longitudinal momentum fraction x. We are interested in gluons.

Therefore, using the longitudinal momentum fractions x1 and x2 the center of mass energy
of the partonic process s can be expressed by the hadronic com energy S through

s = p1 + p2 = x1P1 + x2P2 =



x1E

0
0
x1E

+


x2E

0
0

−x2E




2

= 4x1x2E = x1x2S , (2.9)
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where P1 and P2 are the incoming proton momenta with energy E. If the LHC operates at
full power then the energy of a proton is E = 7 TeV which is much bigger than its mass.
For this reason the proton’s mass can be neglected.

In the following calculation, it is easier to change the variables from x1, x2 to τ, y given by
the relations

τ = x1x2, y =
1

2
log

(
x1

x2

)
; x1 =

√
τ exp(y), x2 =

√
τ exp(−y); dx1dx2 = dτdy . (2.10)

The cross section is Lorentz invariant under boosts along the beam axis. For this reason,
the calculation can be done in the center of mass frame. That means, the Higgs boson is
created at rest

σgg→Htot =

∫
dx1

∫
dx2 f(x1) f(x2)

∫ |M|2
2s

(2π)4 δ4(k1 + k2 − p)
d3p

(2π)32p0

=

∫
dτ

∫
dy τ f(

√
τ exp(y)) f(

√
τ exp(−y))

π|M|2
τ 2S2

δ(τ − τ0)

=
GFα

2
S

128
√

2π
ρ2

(
1 + (1− ρ) arcsin2

(√
1

ρ

))2

∫
dy f(

√
τ0 exp(y)) f(

√
τ0 exp(−y)) .

(2.11)

In the last step, I plugged in the light Higgs solution. The light Higgs solution is also used
in the following because it is in favor.

2.1.2. Higgs decay cross section to bb̄

The Higgs boson is a very short lived particle thus it will never be observed directly. The
detectors can only measure the decay remnants. Up to a Higgs mass of 160 GeV the decay
is dominated by the bottom quarks. So for this reason let’s have a look at a gluon fusion
produced Higgs boson with subsequent decay to bottom quarks.
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mH [GeV] BR [1] Γ [GeV] 31-35
120 0.67 3.60 · 10−3

240 0.13 · 10−2 3.40
480 0.13 · 10−3 59.06

Table 2.1.: The branching ratio BR and decay width Γ of the Higgs boson is shown for
three different Higgs masses mH . The values are from hdecay [119].

Narrow width approximation

A light Higgs boson has a small decay width such that we can approximately treat it like
a stable on mass shell particle. In this case, the total cross section separates into the
production cross section times the branching ratio

σtot = σgg→Htot BR(H → bb̄)

=
GFα

2
S

128
√

2π
ρ2

(
1 + (1− ρ) arcsin2

(√
1

ρ

))2

∫
dy f(

√
τ0 exp(y)) f(

√
τ0 exp(−y)) BR(H → bb̄) .

(2.12)

We only have to multiply the production cross section with the branching ratio of the
decay. The branching ratio is the fraction of the decay width of the decay channel and the
total decay width. It gives the probability that a Higgs boson decays to bottom quarks.
From Table 2.1 follows that the decay has a probability of 67.3 % when the Higgs boson
has a mass of 120 GeV.

Breit-Wigner propagator

In the narrow width approximation (NWA), the Higgs boson is treated like a real particle
that is always on mass-shell. But it is a highly unstable particle where it is produced as a
virtual particle that is smeared out around the Higgs mass (off mass-shell). For this reason,
to get a more realistic result, the Dirac delta function has to be replaced by a function
that approximates it such that the mass is distributed around a mean value. One possible
approximation is a Breit-Wigner (BW) function [29]

lim
Γ→0

1

(s−m2
H)2 +m2

HΓ2
=

π

mHΓS
δ(τ − τ0) ⇒ δ(τ − τ0) ≈ SmHΓ/π

(s−m2
H)2 +m2

HΓ2
(2.13)
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But why did we use a Breit Wigner and not, e.g., a gaussian that can approximate it,
too? The propagator of a particle has, at leading order, a singularity at the mass. But if
we consider all one loop vacuum polarizations, that means summing over all one particle
irreducible M2, the propagator looks like

i

p2 −m2
H

→ i

p2 −m2
H,0 −M2(p2)

, (2.14)

where mH,0 is the bare mass term in the non-renormalized Lagrangian. The physical mass
is the defined by

m2
H −m2

H,0 − Re(M2(m2
H)) = 0 . (2.15)

We can expand this equation around p2 ≈ m2
H , which gives

p2 −m2
H,0 −M2(p2) ≈p2 −m2

H,0 − Re(M2(m2
H))− (p2 −m2

H)
d

dp2
Re(M2(p2))

∣∣∣∣
p2=mH

+ i Im(M2(m2
H))

=

(
1 +

d

dp2
Re(M2(p2))

∣∣∣∣
p2=mH

)(
p2 −m2

H

)
+ i Im(M2(m2

H))

=Z−1
(
p2 −m2

H

)
+ i Im(M2(m2

H)) .

(2.16)

In the last step, we introduced the field renormalization factor Z, which is defined by

Z−1 = 1 + d
dp2

Re(M2(p2))
∣∣∣
p2=mH

. The imaginary part of the vaccum polarization can be

linked to the total decay width according to the optical theorem

Im(M2(m2
H)) = −Z−1mHΓ . (2.17)

Now, the propagator of Eq. (2.14) is determined. The cross section is proportional to the
modulus squared propagator which reads

σ ∝
∣∣∣∣ 1

s−m2
H + imHΓ

∣∣∣∣2 =
1

(s−m2
H)

2
+m2

HΓ2
. (2.18)

Replacing the Dirac delta function in Eq. (2.11) with the relation of Eq. (2.13), we get the
more realistic result for the total cross section.
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σtot =
GFα

2
S

128
√

2π

∫
dτ

∫
dy τ f(

√
τ exp(y)) f(

√
τ exp(−y))

ρ2

(
1 + (1− ρ) arcsin2

(√
1

ρ

))2

S
mHΓ/π

(s−m2
H)2 +m2

HΓ2
BR(H → bb̄) .

(2.19)

With this formula, we will see a resonance at mH , that means the cross section is enhanced
around that point.

2.1.3. Heavy top-quark limit

In the case when the top-quark mass is much bigger than the Higgs mass, the limit

lim
ρ→∞

ρ

(
1 + (1− ρ) arcsin2

(√
1

ρ

))
=

2

3
, (2.20)

can be performed with the Taylor expansion of the inverse sine function [53]

arcsin2

(√
1

ρ

)
=

(
1

ρ
1
2

+
1

6ρ
3
2

+O(ρ−
5
2 )

)2

=
1

ρ
+

1

3ρ2
+O(ρ−3) . (2.21)

The top-quark is not a propagating particle any more and the form factor gets independent
of the top-quark mass.

2.2. Monte Carlo program for gluon-fusion process

In physics and in particular in high energy physics computer programs and simulations are
widely used. There is a class of algorithm which is called Monte Carlo because it is based
on pseudo random numbers. According to this, physicists in the 40’s who were working on
the nuclear weapon project in Los Alamos gave the name to it. On a computer, random
numbers are generated using some algorithm; therefore, they cannot really be random
numbers. Over the last decades, people tried to improve these algorithms to make the
random numbers more and more statistical independent to get them closer to random
numbers.

In high energy physics, Monte Carlo methods are good tools to simulate experiments,
detectors or to calculate integrals which are very difficult or even unfeasible to calculate
analytically. For instance, sherpa [30] and pythia [31] are two event generators using
Monte Carlo techniques.
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2.2.1. Integrating functions and making histograms

Assume we want to integrate a function f that depends on two variables x ∈ [a, b] = Ix
and y ∈ [c, d] = Iy. We can calculate the integral with random numbers using the mean
value theorem [53]. That means, we need to calculate the mean value of the function in the
domain and multiply it with the area of the domain. Therefore, we generate two random
numbers xi and yi in the appropriate interval and calculate the value of f at this point.
This sampling must be done N times. Mathematically spoken,

A =

∫ d

c

∫ b

a

f(x, y)dxdy ≈ (c− d)(b− a)

N

N∑
i=1

f(xi, yi) . (2.22)

The error of the integral is decreasing with increasing sampling size. Hence, we have to pay
attention that the sampling size is sufficiently large. This method is plain Monte Carlo. It
assumes that f is ”gutartig”. For other functions it is better to use an improved method,
important sampling [51].

With the described method, we are able to calculate the total cross section. But we are
also interested in histograms of differential cross sections, which I want to explain now.
Assume we are interested in a histogram of the derivative of f with respective to y. For
this, we need to divide the interval of y into n equidistant pieces:

Iy =
n−2⋃
i=0

[ci, di) ∪ [cn−1, dn−1] with Iky ∩ Ijy = ∅, k 6= j, k, j ∈ {0, . . . , n− 1} . (2.23)

The discrete histogram function h containing n bins with bin width d−c
n

is then defined by

h(k) =
(c− d)(b− a)

N

nk∑
i=1

f(xi, yi), yi ∈ Iky , k ∈ {0, . . . , n− 1},
n−1∑
i=0

nk = N . (2.24)

Also y is discretized by a function Y

Y (k) = c+ k
d− c
n

, k ∈ {0, . . . , n− 1} . (2.25)

The last step is to write all the pairs (Y (k), h(k)) into a file and plot them with a program,
e.g., gnuplot.
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2.2.2. Generating events

We are interested in physical quantities of the final state particles, e.g., the scattering
angle, the energy. But in the calculation of the gluon-fusion process, we only calculated
the production cross section and multiplied it with the branching ratio of the decay channel.
In a two to two scattering process there is one parameter that is not determined. In general,
it is the scattering angle. But it does not appear in the equation because we only integrated
over the one-particle phase space in the production cross section. This information is lost
and we have to reconstruct it. The notation is similar to the previous section. The Higgs
four-momentum vector is given by the sum of the gluons momenta

pH = p1 + p2 = x1P1 + x2P2 (2.26)

which gives us the energy of the Higgs EH = (x1 + x2)E. Here, E is the energy of a
proton. We need to know this for the boost into the lab frame. In the center of mass
frame, the decay of a Higgs boson is pretty easy to describe. The Higgs boson energy
is only its mass and the momentum is zero. The two bottom quarks decay back-to-back
because of momentum conservation and their energies are half the Higgs mass. Due to the
Higgs boson that is spinless, there is no angle dependence in the decay. The bottom quark
momenta are equally distributed on a sphere which means φ ∈ [0, 2π] and cos(θ) ∈ [−1, 1]
are generated by flat distributed random numbers. Thus, the four-momentum vector in
the center of mass frame reads

pb =


mH

2

p sin(θ) cos(φ)
p sin(θ) sin(φ)

p cos(θ)

 , p =

√
m2
H

4
−m2

b . (2.27)

But in general at the LHC, the Higgs boson will not be produced in the center of mass
frame. This only happens when x1 = x2 is valid. For this reason, the bottom quark vector
has to be boosted into the lab frame. This yields the vector


Eb
px
py
pz

 =


γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ




mH
2

p sin(θ) cos(φ)
p sin(θ) sin(φ)

p cos(θ)

 (2.28)

with

β =

√
1− m2

H

E2
H

, γ =
EH
mH

. (2.29)
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If x2 is bigger than x1 then the boost must be performed in the negative z-direction, that
means the sign of pz flips. At this point, the event is completely generated and we can
compute every physical quantity we want to simulate.

2.2.3. Algorithm for the program

The algorithm for calculating the total cross section and making the histograms for differ-
ential cross section is given by the following steps.

1. Set the limits of the physical observable

2. Set bin width

3. Repeat the following steps until sampling size is reached (i < N)

a) Generate τi and yi in the appropriate interval

b) Evaluate the corresponding function at τi and yi

c) Generate an event

d) Calculate the value of the observable in the lab frame

e) Add the result of the function at τi and yi to the corresponding bin of the
observable value

4. Multiply every bin with V
N

, where V is the integration volume

5. Calculate the total cross section by summing over all bins and multiplying with the
bin width

6. Write histogram to a file

2.3. Results

In this section, we want to discuss the results I obtained from the program described above
for the hadronic GF process in Fig. 2.2. The program determines the results numerically as
described in Sec. 2.2.3. The parton distribution functions and the strong coupling constant
are implemented with the lhapdf (Les Houches Accord Parton Density Function) [32]
interface to calculate the hadronic cross section. Via lhapdf, we used the MRST2004 nlo
[33] parametrization of the parton distribution functions. We embedded the ran2 random



16 2.3. Results

 0.01

 0.1

 1

 10

 100

 100  400  700  1000

σ t
o
t
 
[
p
b
]

mH [GeV]

mt = 171.4 GeV
mt -> ∞

(a) Total cross section σtot of the GF Higgs produc-
tion process in dependence of the Higgs mass mH

for finite and infinite top mass.

 0

 500

 1000

 1500

 2000

 119.96  120  120.04

d
σ/

d
m
b
b
 
[
p
b
/
G
e
V
]

mbb [GeV]

mt = 171.4 GeV
mt -> ∞

(b) Reconstruction of the invariant mass mbb for a
mH = 120 GeV Higgs boson for finite and infinite
top mass.

 0

 500

 1000

 1500

 2000

 119.96  120  120.04

d
σ/

d
m
b
b
 
[
p
b
/
G
e
V
]

mbb [GeV]

wo smear
smear

(c) Reconstruction of the invariant mass mbb for a
mH = 120 GeV Higgs boson with and without de-
tector effects

 0

 0.0003

 0.0006

 0.0009

 0.0012

 230  240  250

d
σ/

d
m
b
b
 
[
p
b
/
G
e
V
]

mbb [GeV]

wo smear
smear

(d) Reconstruction of the invariant mass mbb for a
mH = 240 GeV Higgs boson with and without de-
tector effects

 0

 7e-07

 1.4e-06

 2.1e-06

 2.8e-06

 3.5e-06

 420  480  540

d
σ/

d
m
b
b
 
[
p
b
/
G
e
V
]

mbb [GeV]

wo smear
smear

(e) Reconstruction of the invariant mass mbb for a
mH = 480 GeV Higgs boson with and without de-
tector effects

 30  120  210  300  390  480

µ
R
 [GeV]

 30

 120

 210

 300

 390

 480

µ F
 
[
G
e
V
]

 6

 8

 10

 12

 14

 16

 18

 20

(f) The total cross section σtot in dependence of the
renormalization µR and factorization scale µF

Figure 2.3.: The figures show the results for the total cross section in dependence of the
Higgs mass and the factorization and renormalization scale, distribution of the
invariant mass with and without simulated detector effects obtained from the
MC program.
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Figure 2.4.: The figures show the distributions of observables measured from the bottom-
quarks in the com and lab frame obtained from the MC program. Four different
scenarios are compared. First the most realistic case where the Higgs mass is
smeared out by a Breit-Wigner (BW) and with a finite top mass, second the
BW with infinite top mass, third the narrow width approximation (NWA) with
finite top mass and fourth the NWA with infinite top mass.

number generator from numerical recipes [51] in the program. The values for the top-
quark mass mt = 171.4 GeV and the bottom-quark mass mb = 4.2 GeV are taken from the
particle data group [34].

Fig. 2.3(a) shows the total cross section σtot of the gluon-fusion Higgs production cross
section for finite and infinite top-quark mass in dependence of the Higgs mass mH . For the
plot, 91 points are calculated each with a sampling size of 100000, that is a stepsize of ten
GeV in the plotted range. In comparison with Ref. [52], there is a deviation of a global
factor of roughly two. This is due to a K factor

K =
σHO
σLO

(2.30)

that describes the deviation from higher order (HO) QCD corrections to the leading order
(LO) process. In this work only leading order is taken into account. In the textbook [52],
higher order of QCD corrections are taken into account. QCD corrections are in general
big. Therefore, a factor of two can be identified with this. From this result, we know that
the program delivers reasonable results.
In the total cross section there is bump for the finite top-quark case. The bump is located
at twice the top mass because at that energy the top-quarks are produced on-shell. This
leads to an enhancement of the cross section. In the infinite top-mass limit, the cross
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section has no dependence of the top mass any more. Therefore, it cannot show this effect.
The heavy top-quark limit is a good approximation for small Higgs masses.

In the Figs. 2.3(b)–2.3(e) the simulated invariant mass reconstruction from the bottom-
quarks are shown. The reconstruction of the invariant mass is a common method at colliders
to explore new particles, e.g., this was done for the Z-boson. From this measurement, one
can conclude the mass of the particle and the total decay width. The Higgs boson is a
highly unstable particle and decays in a very short period of time. Therefore, it cannot
be seen directly in a detector. Only the decay products can be measured at colliders.
From the measured energies and momenta of the decay products, the invariant mass of
the intermediate particle can be reconstructed. The measurement of bottom-quarks is
complicated at the LHC because of the huge QCD background. It is easier to detect
charged leptons or photons where QCD does not play a role. The Higgs boson can decay
either directly to charged leptons or via weak gauge bosons.
The first Fig. 2.3(b) depicts the comparison between a finite top-quark mass and the heavy
top-quark limit. For a Higgs mass mH = 120 GeV, the error is rather small. In the above
discussed total cross section, we saw that for small Higgs masses the heavy top-quark limit
is a good approximation. For this reason the error here is expected to be small.

The next three figures show a simulation of the detector error for different Higgs masses
(120 GeV, 240 GeV and 480 GeV). Because of the detector inaccuracy, the true value is
smeared out by a Gaussian. The program first calculates the invariant mass mi

bb and then
determines a smeared value by a gauss distribution around that point with a standard
deviation σ = 0.01mi

bb. For a small Higgs mass, this method for simulating the detector
effect produces a much too big error. Therefore, no resonance for a light Higgs boson
can be observed in Fig. 2.3(c) because of the huge noise. This method does not obtain
a reasonable result and, for this reason, has to be improved. But for a bigger mass like
mH = 240 GeV, see Fig. 2.3(d), show the qualitative right behavior: the higher peaked
Breit-Wigner smears out to a flatter and broader Gauss distribution. For a mH = 480 GeV
the detector effect becomes smaller because of the bigger decay width, see Fig. 2.3(e).
The total decay width of the Higgs boson increases very strong around 160 GeV because
the kinematic threshold for the W -boson is reach. At that stage, the Higgs boson can
decay into two of these bosons on-shell. For Higgs masses bigger than that threshold, the
branching ratio is dominated by this decay channel. For larger Higgs masses, the decay
width is of the same order as its mass because of the longitudinal weak gauge bosons
contribution.

In the following, we want to discuss the theory error for the cross section. The theory
error arises from the strong coupling constant and the parton distribution function. The
strong coupling constant depends on the energy scale that is called the renormalization
scale µR. The running of the constant arises from loop correction in which divergences
appear. Also the parton distribution function depends on the energy, called factorization
scale µF . These two scales are not exactly determined at the scattering process. It is
reasonable to assign these scales with the center of mass energy because it is an s-channel
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µF [GeV] µR [GeV] σtot [pb]
30 30 14.35
30 480 6.18
480 30 18.98
480 480 8.19
120 120 11.11

Table 2.2.: Shows the total cross section of the four corners of Fig. (2.3(f)) and the reference
point, when the two scales take the center of mass energy Ecm = 120 GeV.

process. But it remains an uncertainty for these two parameters. Therefore it is better to
scan the area around the center of mass energy to get a range in which the true value has
to be expected. We chose the range mH

4
≤ µF , µR ≤ 4mH and a step width of 10 GeV.

According to this, 2116 points are calculated and the points between them are interpolated,
see Fig. 2.3(f). In the following, the total cross section of all four corners of the figure are
compared to the com energy because the deviation to these points are particularly big.

It shows that there is a huge deviation in the total cross sections σtot. From the upper
left to lower right corner, see Tab. 2.3, there is a factor of more than three. And it makes
an error of around 50%. The behavior in the renormalization scale is easy to see because
there is an analytical expression for the running coupling constant

αS(µR) =
2π

b0 log
(
µR
Λ

) (2.31)

which indicates that the coupling constant decreases with increasing energy.

In the following, we present the distributions for the cosine of the scattering angle θ, the
pseudorapidity η, the transverse momentum pT and the energy of the bottom quarks Eb for
the four different cases: NWA and BW propagator with finite and inifite top-quark mass
and compare the center of mass (com) and lab frame results. Every distribution is made
with a sampling size of 100000.

We mentioned already that the Higgs has no spin. Hence, the decay product particles have
no preferred direction. In the com frame we expect that cos(θ) is flat. This is depicted in
Fig. 2.4(b). The scattering angle is not Lorentz invariant. For this reason the distribution
must be different in the lab frame, see Fig. 2.4(a). The Higgs boson decays in the lab
frame. Thus, the quarks are boosted parallel or anti-parallel to the z-direction with equal
likelihood. And hence, we expect that the scattering angle tends to 0 and π, which means
peaks at cos (θ) = ±1.

The pseudorapidity η is defined by
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η =
1

2
log

(
1 + cos(θ)

1− cos(θ)

)
. (2.32)

It depends only on cos(θ). If cos(θ) is flat and symmetric, the η-distribution will be sharply
peaked at η = 0 and will also be symmetric with respect to this point, see Fig. 2.4(d). In
the lab frame Fig. 2.4(c), the peak flattens and broadens because cos(θ) is shifted from the
center to the outer part.

We next look at the transverse momentum distribution as a function of the transverse
momentum. Because of the flatness of the cos(θ) in the com frame, the propability for a
bigger transverse momentum increases. This can be understood in the following way. If we
slice the sphere where the quark momenta end such that the z-axis is cut perpendicularly
and equidistantly then the area of the fraction of the sphere increases with increasing
transverse momentum. The case where the transverse momentum is zero is very unlikely
because it corresponds only to exactly two points of the surface (the intersection points
with the z-axis). This explains the increase of the transverse momentum distribution
for larger values. The transverse momentum is Lorentz invariant under boosts in the
z-direction. Since, the distribution for the lab Fig. 2.4(e) and com frame Fig. 2.4(f) are
identical. The transverse momentum of one bottom-quark cannot be bigger than half of the
Higgs mass. This is because if Higgs boson decays such that the bottom-quark momentum
is in the perpendicular direction to the z-axis the bottom-quark has the biggest transverse
momentum. From Eq. (2.27) follows pmaxT =

√
m2
H/4−m2

b . And as mentioned, the boost
doesn’t alter the result.

Finally, we look at the energy distribution as a function of the energy of one bottom-quark
in the com Fig. 2.4(h) and lab frame Fig. 2.4(g). In the com frame, the energy is given
by the Higgs mass such that both of the quarks takes half of it. Therefore, in this frame,
it must be a sharp peak in the energy distribution at that point. But if the Higgs is not
produced in resonance, the energy of the quarks smears out, too. For this reason, the
energy splits into two bins.
In the lab frame, the energy distribution smears out to both sides because a bottom-quark
can be boosted in the opposite direction, which lowers the momentum and thereby also
the energy. The lowest energy a bottom-quark can have is its mass. The distribution has
a peak at half the Higgs mass. that means that for most of the scattering events, the
Higgs boson is not strongly boosted. The cos(θ) and pseudorapidity distribution show a
similar result. If most of the boost are very strong we would expect to see two peaks in
the pseudorapidity distribution symmetrically located around η = 0 and stronger peaks in
the cos(θ) distribution.

In all subfigures of Fig. 2.3, the comparison of the four investigated scenarios shows rather
small deviations. This has two main reasons. First, a 120 GeV Higgs boson has a very
small decay width. For this reason, the Breit-Wigner distribution is sharply peaked and
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therefore close to a Dirac delta function. Second, as mentioned before, the heavy top-quark
limit is good if the mass is sufficiently big in comparison to the Higgs mass.

The MC program simulates the expected data for one special process at the LHC at a basic
level. In most of the results no detector effects are considered. And the so far implemented
detector effect is not good. No cuts on the events are taken into account. Cuts to the
pseudorapidity and transverse momentum would give a more realistic picture. The beam
pipe has a finite volume and therefore events with a small tranverse momentum cannot be
measured.

This starting project, including the calculation of the gluon-fusion process, coding the
program and applying it to that process, offered a good opportunity to get familiar with
the techniques commonly used in LHC physics. In addition to this, it helped to get a better
feeling for processes at the LHC and how to interpret the results which will be collected at
the LHC.



3. Extensions of the Standard Model

In this section, we discuss two possible extensions to the Standard Model. First, we discuss
a Higgs portal model, which is a kind of hidden valley model. Hidden valley models are
present in supersymmetric models [35, 36] and String Theories [37]. Second, we discuss
a composite Higgs model that arises from the breaking of a global symmetry where the
Higgs boson is a pseudo Goldstone boson. These two models have in common, that they
affect the Standard Model Higgs couplings by a fudge factor.

3.1. Hidden Higgs portal

There can be unknown particles in our universe because they are too heavy to be produced
so far at colliders or there is a hidden valley which is accessible only via a heavy mediator
belonging to the Standard Model. Hidden valley means that there is no connection to the
already known Standard Model particles. At the moment, in the Standard Model exists
a hypothetical sector that is the Higgs sector. The idea of a Higgs boson is more than
four decades old, but the Higgs boson has not yet been observed. So it provides a good
interface to get a link to a new physics sector.

Let us consider a hidden valley that consists of at least one gauge group with a corre-
sponding Higgs boson. Also a complete copy of the Standard Model is possible, which
means, the hidden sector would look like a mirror world [64]. The hidden Higgs boson is
a singlet under the Standard Model gauge group SU(3)C × SU(2)L × U(1)Y . To preserve
renormalizability of the Standard Model also in the extended version, we consider only
operators with mass dimension four in the Lagrangian. The new Langrangian looks like a
copy of the Standard Model Higgs part and an additional interaction term between these
Higgs bosons. It reads

−L = µ2
s |φs|2 + λs |φs|4 + µ2

h |φh|2 + λh |φh|4 + ηx |φs|2 |φh|2 , (3.1)

where s denotes the Standard Model and h the hidden sector. This kind of model is called
Higgs portal [66].

23
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3.1.1. Scalar case

First, we have a look at the simplest case where the prefactor of the quadratic hidden Higgs
term is positive. In this case, the hidden Higgs does not acquire a vacuum expectation
value vh because the minimum of the potential is at the origin,

µ2
h > 0 ⇒ vh = 0 ; (3.2)

therefore, the corresponding gauge group is not spontaneously broken by the Higgs or can
be considered as an additional scalar to the Standard Model with a potential. Unitarity
constraints for an ordinary additional scalar with a potential are discussed in Ref. [38].
And for the Standard Model Higgs follows

µ2
s = −λsv2

s , (3.3)

the well known relation as in the minimal Standard Model Higgs version, so that the weak
gauge group is still broken. This relation comes from the minium of the potential with
the vacuum expectation value vs. The basic idea of the Higgs mechanism is to introduce a
complex SU(2) doublet, which has four degrees of freedom. Three degrees of freedom are
Goldstone bosons that break the gauge group and are eaten by the weak gauge bosons to
give them the longitudinal polarization. The fourth degree of freedom is the Higgs boson.
In the unitary gauge, the Standard Model and the hidden Higgs field become

φs =

(
0

vs+hs√
2

)
, φh =

hh√
2
. (3.4)

Putting this into Eq. (3.1), the expanded Langrangian is given by

−Ls =
µ2
s

2

(
v2
s + 2vshs + h2

s

)
+
λs
4

(
v4
s + 4v3

shs + 6v2
sh

2
s + 4vsh

3
s + h4

s

)
,

−Lh =
µ2
h

2
h2
h +

λh
4
h4
h ,

−Lx =
ηx
4

(
v2
s + 2vshs + h2

s

)
h2
h .

(3.5)

Sorting the Lagrangian by the powers of the fields helps to read off the masses and the
interactions among the fields:
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−Lmass =
1

2

(
µ2
s + 3λsv

2
s

)
h2
s +

1

2

(
µ2
h +

ηxv
2
s

2

)
h2
h ,

−Lint =
ηx
4
h2
sh

2
h +

ηx
2
vshsh

2
h ,

−Lself =
λs
4
h4
s + λsvsh

3
s +

λh
4
h4
h ,

−Lconst =
λs
4
v4
s +

µ2
s

2
v2
s .

(3.6)

While the mass term is not affected by the hidden sector and remains the same as in the
minimal Standard Model, the mass term of the hidden Higgs depends on the Standard
Model vacuum expectation value vs and the coupling constant of the interaction term χx.

m2
s = µ2

s + 3λsv
2
s = 2λsv

2
s , m2

h = µ2
h +

ηxv
2
s

2
. (3.7)

We can forget about the constant Lagrangian above because the physics is in the equations
of motion, which are given by derivatives of the Lagrangian. Also the Standard Model
Higgs interactions remains unaffected but are extended by a four-point self-interaction of
the hidden Higgs boson and a four- and three-point interaction term between the SM and
hidden Higgs boson.

The electroweak sector of the model consists of two gauge groups. The first group, the
SU(2)L, has three generators T a = τa

2
, where τ are the Pauli matrices and the three

corresponding fields W a
µ . The second group, U(1)Y , has only one generator and therefore

only one corresponding field Bµ. The Standard Model Higgs doublet is charged under the
U(1)Y with hypercharge Y = 1. Because of this, it couples to both groups via the covariant
derivative,

|DµΦs|2 =

∣∣∣∣(∂µ − ig2
τa
2
W a
µ − ig1

1

2
Bµ

)
Φs

∣∣∣∣2
=

1

2
(∂µhs)

2 +
1

8
g2

2 (vs + hs)
2
∣∣W 1

µ + iW 2
µ

∣∣2 +
1

8
(vs + hs)

2
∣∣g2W

3
µ − g1Bµ

∣∣2
=

1

2
(∂µhs)

2 +m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ

+
2m2

W

vs
hsW

+
µ W

−µ +
m2
Z

vs
hsZµZ

µ +
m2
W

v2
s

h2
sW

+
µ W

−,µ +
m2
Z

2v2
s

h2
sZµZ

µ ,

(3.8)

where g1 and g2 denote the coupling constants to the two gauge groups. With the definitions
of the mass eigenstates
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W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, Zµ =

g2W
3
µ − g1Bµ√
g2

1 + g2
2

, Aµ =
g2W

3
µ + g1Bµ√
g2

1 + g2
2

, (3.9)

and the masses

mW =
1

2
g2vs, mZ =

1

2

√
g2

1 + g2
2vs , (3.10)

the Langrangian of Eq. (3.8) yields the kinetic term of the Higgs boson, the coupling to the
weak gauge bosons and their mass terms. The SU(2) is broken and U(1) remains unbroken
with the field Aµ that can be identified with the photon. The charged weak gauge bosons
are complex fields; therefore, it makes a difference of a factor two to the neutral gauge
boson terms.

At this point we achieved our first goal. We have derived the mass terms of the weak
gauge bosons. Our second goal, determining the fermion mass term, is still left. The weak
interaction distinguishes between left- and right-handed particles. The W -boson couples
only to left-handed particles and transforms an up-type fermion to a down-type fermion
and vice versa. Due to the coupling only to left-handed particles, the weak interaction
violates maximally parity. The W -boson couples to all fermions with the same strength
except of the quarks because of the Cabibbo rotation. This leads to a small correction to
the quark couplings. For the Z-boson, the situation is different because its couplings to
the fermions are charge dependent. Thus, the left-handed particles are doublets under the
SU(2),

L ∈
{(

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

}
, Q ∈

{(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

}
, (3.11)

and the right-handed fermions are singlets,

e ∈ {eR, µR, τR} , u ∈ {uR, cR, tR} , d ∈ {dR, sR, bR} . (3.12)

Leptons and quarks can be grouped into three generations. Because of the handedness,
a Dirac mass term L = −m(Ψ̄LΨR + Ψ̄RΨL) is forbidden in order to preserve gauge
invariance. The Higgs doublet can solve this problem. The mass terms are given by
Yukawa couplings

LF = −λieL̄iΦsei − λidQ̄iΦsdi − λiuQ̄iΦ̃sui + h.c.

= − 1√
2
λe (vs + hs) ēLeR −

1√
2
λd (vs + hs) d̄LdR −

1√
2
λu (vs + hs) ūLuR + · · · ,

(3.13)
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where Φ̃s = iτ2Φ∗ is the isodoublet, has hypercharge Y = −1 and gives the mass to the
up-type quarks. In the first line of Eq. (3.13), the index i implies a summation over the
three generations, and in the second line, only the first generation is shown in full detail.
The Lagrangian in Eq. (3.13) describes two things. First, the mass term of the fermions
with mass

mf =
λfvs√

2
, (3.14)

which is proportional to the vacuum expectation value vs, and second, the coupling of the
Higgs boson to the fermions. In this model, the neutrinos are still massless. And there is
another weak point in the model. Instead of the fermion mass mf , the Yukawa coupling
constant λf has to be put into the theory.

As we have seen, the hidden Higgs boson only couples directly to the Higgs boson of the
Standard Model and can affect the total decay width if

ms > 2mh (3.15)

is valid. Then additional invisible decays to the hidden valley are possible. And with that,
the branching ratios of the decay channels decreases. In the scalar case, the Standard
Model Higgs couplings are still unaffected. The hidden Higgs boson can only have effects
on the Standard Model via higher order corrections, not until at two loop order.

3.1.2. Mixing case

In the following, we explain the more general case, in which both Higgs bosons acquire
a vacuum expectation value, and implications to the Standard Model. Analogous to the
scalar case, all the steps have to be done again. The Standard Model Higgs remains as in
Eq. (3.4) but the hidden Higgs now reads

φh =
vh + hh√

2
. (3.16)

Putting this into Eq. (3.1) and using

∂V

∂ |Φs|2
= µ2

s + 2λs |Φs|2 + ηx |Φh|2 = 0 ⇒ µ2
s = −λsv2

s −
ηx
2
v2
h

∂V

∂ |Φh|2
= µ2

h + 2λh |Φh|2 + ηx |Φs|2 = 0 ⇒ µ2
h = −λhv2

h −
ηx
2
v2
s ,

(3.17)
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where V = −L is the potential, yields the Lagrangians

−Lmass = λsv
2
sh

2
s + ηxvsvhhshh + λhv

2
hh

2
h ,

−Lint =
ηx
4
h2
sh

2
h +

ηx
2
vhh

2
shh +

ηx
2
vshsh

2
h ,

−Lself =
λs
4
h4
s + λsvsh

3
s +

λh
4
h4
h + λhvhh

3
h ,

−Lconst = −λs
4
v4
s −

ηx
4
v2
sv

2
h −

λh
4
v4
h .

(3.18)

At this point, the mass term looks interesting because of the second summand which is
proportional to the product of the two Higgs bosons. This indicates a mass mixing of the
two bosons. The next step is to calculate the mass eigenstates; this is done in App. C. The
mass mixing matrix is symmetric; therefore, it has real eigenvalues which are the masses of
the mass eigenstates m1 and m2. To the eigenvalues correspondsorthogonal eigenvectors.
Thus, the mass eigenstates h1 and h2 can be written as

(
h1

h2

)
=

(
cosχ sinχ
− sinχ cosχ

)(
hs
hh

)
, (3.19)

where χ is the mixing angle. For small mixing angles, h1 is a SM-like Higgs boson. Putting
the mass eigenstates into Eq. (3.18), we get the mass Lagrangian

−Lmass =
1

2

(
h1

h2

)T (
m2

1 0
0 m2

2

)(
h1

h2

)
=

1

2
m2

1h
2
1 +

1

2
m2

2h
2
2 (3.20)

and all the possible interaction terms

−Lint =
1

2
η112h

2
1h2 +

1

2
η122h1h

2
2 +

1

4
η1112h

3
1h2 +

1

4
η1222h1h

3
2

−Lself =
1

2
η111h

3
1 +

1

2
η222h

3
2 +

1

4
η1111h

4
1 +

1

4
η2222h

4
2 .

(3.21)

In this scenario a lot of possible interaction terms appear. The coupling constants η are
written down explicitly in App. D and all the Feynman rules are shown there as well.

To see how the mass eigenstates affect the couplings to the weak gauge bosons, we need to
put them into Eq. (3.8). Then, it follows
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|DµΦs|2 ∝
2m2

W

vs
cχh1W

+
µ W

−µ +
m2
Z

vs
cχh1ZµZ

µ +
m2
W

v2
s

c2
χh

2
1W

+
µ W

−µ +
m2
Z

2v2
s

c2
χh

2
1ZµZ

µ

−2m2
W

v2
s

cχsχh1h2W
+
µ W

−µ − m2
Z

v2
s

cχsχh1h2ZµZ
µ

−2m2
W

vs
sχh2W

+
µ W

−µ − m2
Z

vs
sχh2ZµZ

µ +
m2
W

v2
s

s2
χh

2
2W

+
µ W

−µ +
m2
Z

2v2
s

s2
χh

2
2ZµZ

µ

(3.22)

with cχ = cosχ and sχ = sinχ. From this equation, we can read off two things. First, the
couplings are affected by the mixing angle, and second, both Higgs bosons couple to the
weak gauge bosons. The kinetic terms of the Higgs bosons come from the sum of the two
covariant derivatives, one, Dµ, acting on the Standard Model doublet and and another,
D′µ, acting on the hidden Higgs field

|DµΦh|2 +
∣∣D′µΦh

∣∣2 ∝ 1

2
(∂µh1)2 +

1

2
(∂µh2)2 . (3.23)

From the Yukawa couplings to fermions in Eq. (3.13) results

LF = − 1√
2
λe (vs + cχh1 − sχh2) ēLeR + · · · . (3.24)

Only the coupling to electron is shown. The mass term is not influenced by the hidden
Higgs but the couplings are affected by the mixing angle, too. Because of the mass mixing,
the mass eigenstates are linear combinations of the two Higgs fields. Through the SM-
component, the mass eigenstates couple to the Standard Model particles. For this reason,
the couplings are affected by the mixing angle. But this modification of the couplings is
the same for every kind of particle. This means that the modification due to the mixing is
universal. Also the cross sections and decay widths are modified by this factor. Because of
decays to the hidden sector, additional invisible decay modes are possible which increase
the total decay width as well. We will have a closer look at this in Sec. 4.1.

The mass mixing makes it possible that both Higgs bosons can couple to both sectors.
Therefore, also the hidden Higgs field couples to the weak gauge bosons. This can affect
the Peskin-Takeuchi parameters which describe the electroweak radiative corrections. From
further investigations of this impact, probably any constraints to the parameters of the
hidden Higgs portal model can be derived.
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3.2. Minimal composite Higgs model

The general idea of a composite Higgs boson is several decades old. At the beginning,
people thought about a Higgs boson as a quark condensate in analogy to a meson or
baryon. In this case, the electroweak symmetry is broken by QCD. Because of the relation
to QCD, such kind of model is called technicolor. In contrary to an elementary scalar
particle, the composite Higgs boson does not have quadratic divergences, that means, it is
natural and therefore the hierarchy problem does not appear. In the most basic concept,
Technicolor can give a mass to the weak gauge bosons. But to give the fermions a mass an
extension is needed. In the extended version, additional gauge interactions are introduced.
Technicolor models that are based on QCD face a problem. They contradict electroweak
precision data, by predicting wrong masses for the gauge bosons, and constraints of neutral
flavor-changing current.

A solution to this problem is to introduce a new strong dynamic that breaks a global
symmetry. Then, the composite Higgs boson arises as a pseudo-Goldstone boson. In the
last decade, such an approach with the interplay of models with extra dimensions, like
the Randall-Sundrum model, became popular. In the Randall-Sundrum model [22], the
universe is a five dimensional anti de Sitter space. An anti de Sitter space is a space with
negative curvature, e.g. a hyperbolic space. Along the additional space dimension y, two
branes (3+1 dimensional subspace) are located at y = 0, that is the ultraviolet (UV) brane
where the fields of the Standard Model live, and at y = L, the infrared (IR) brane. The
empty space between this two branes along the extra dimension is the so-called bulk. The
new composite sector is located in the five dimensional bulk and IR brane. The AdS/CFT
correspondence [23] makes it possible to map a strongly-coupled four dimensional theory
to a weakly-coupled theory in five dimensions.

The minimal composite Higgs model (MCHM) that we also consider in our Higgs couplings
analysis in Sec. 4.2 is based on the strong-interacting light Higgs (SILH) model. The
effective Lagrangian of the SILH model includes higher dimensional operators [75]

LSILH =
cH
2f 2

(
∂µ |H|2

)2
+

cT
2f 2

(
H†DµH

)2 − c6λ

f 2
|H|6 +

(
cyyf
f 2
|H|2 f̄LHfR + h.c.

)
+

icwg

2m2
ρ

(
H†σiDµH

)
(DνWµν)

i +
icBg

′

2m2
ρ

(
H†DµH

)
(∂νBµν)

+
icHWg

16π2f 2
(DµH)† σi (DνH)W i

µν +
icHBg

′

16π2f 2
(DµH)† (DνH)Bµν

+
cγg
′2

16π2f 2

g2

g2
ρ

|H|2BµνB
µν +

cgg
2
S

16π2f 2

y2
t

g2
ρ

|H|2Ga
µνG

aµν ,

(3.25)
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where g, g′ and gS denote the Standard Model electroweak gauge couplings and the strong
coupling, yf is the SM Yukawa coupling to the fermions fL,R, λ is the SM quartic Higgs
coupling, cx are coefficients of order one unless protected by some symmetry, Wµν , Bµν and
Gµν are the field strength tensors of the Standard Model, f is the scale of the Goldstone
boson of the strong sector, mρ is the mass scale of the new resonances with their coupling
gρ, and D is the covariant derivative. The first line of Eq. (3.25) will affect the physics of
the Higgs boson and will cause a shift in the Higgs couplings. The first and fourth term of
that line give the major contribution to this effect. The second term leads to a correction
to the ρ-paramter, ∆ρ = cT ξ, which has a strong constraint from LEP precision data.
The last three lines of Eq. (3.25) will act as form factors. The second last line is one-loop
suppressed and the last line is more than one-loop suppressed. The last line affects directly
the gluon-fusion Higgs production and the Higgs decay to photons.

We assume that the bulk gauge symmetry is SO(5)× U(1)× SU(3) and that it is broken
down to the Standard Model gauge group on the UV brane and to SO(4)×U(1)× SU(3)
on the IR brane. The SO(5) has ten generators and the SO(4) has six generators. If the
SO(5) is broken down to an SO(4) then four Goldstone bosons appear. The Goldstone
bosons can be parameterized by the SO(5)/SO(4) coset [125]

Σ = 〈Σ〉 exp

(
Π

f

)
〈Σ〉 =

(
0, 0, 0, 0, 1

)
Π = −iT aha

√
2 =

(
04 H
−HT 0

)
, (3.26)

where T a are the four broken generators and ha the corresponding Goldstone bosons. In
the unitary gauge, Σ becomes

Σ =
(
sin h

f
, 0, 0, 0, cos h

f

)
. (3.27)

At this stage, we are able to derive the kinetic term of the Higgs boson and its interaction
with the weak gauge bosons. It reads

Lkin =
f 2

2
(DµΣ)2

=
1

2
(∂µh)2 +m2

W (h)

(
WµW

µ +
1

2 cos2 θW
ZµZ

µ

) (3.28)

with the W -boson mass

mW (h) =
gf

2
sin

h

f
. (3.29)
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In this model, the coupling constants from the Higgs boson are modified in comparison to
the minimal Standard Model

gHV V = gSMHV V
√

1− ξ gHHV V = gSMHHV V (1− 2ξ) , (3.30)

where ξ is the compositeness parameter that is given by

ξ =

(
v

f

)2

= sin2 〈h〉
f
. (3.31)

The compositeness parameter interpolate between two schemes, which are the Standard
Model (ξ = 0) and Technicolor (ξ = 1). In the last step, we have to figure out how the
fermion couplings are affected. The modification of the couplings to the fermions depends
on the embedding of the Standard Model fermions into the representation of the bulk
symmetry.

3.2.1. MCHM4

First, the fermions can transform under the spinorial representation of the SO(5) [125].
Then, the Yukawa couplings of the fermions to the Higgs boson has the form

Lyuk = −mf (h) f̄f , mf (h) = M sin
h

f
, (3.32)

This leads to a shift in the couplings

gHff = gSMHff
√

1− ξ . (3.33)

This realization of the fermions leads to the same modification in the couplings as to the
weak bosons.

3.2.2. MCHM5

Second, the fermions can transform under the fundamental representation of the SO(5)
[126]. The fermion Higgs boson interaction part then reads

Lyuk = −mf (h) f̄f , mf (h) = M sin
2h

f
. (3.34)
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This Lagrangian causes a different modification in the Yukawa couplings, which reads

gHff = gSMHff
1− 2ξ√

1− ξ . (3.35)

In this case, the Higgs boson couplings to the fermions and vector bosons are affected
differently and therefore the modifications are partially universal.

In both models the modifications to the vector bosons are the same. The couplings are
reduced in comparison to the Standard Model. While the MCHM4 shows the same behavior
for the fermions, the MCHM5 has some new features. For small values of ξ, MCHM5 shows
qualitatively a similar behavior. But for ξ = 0.5 the fermion couplings vanish and for large
ξ the couplings are getting bigger than the SM-couplings. This effect can significantly
effect the Higgs search.





4. Measuring hidden Higgs and
strongly-interacting Higgs scenarios

As we have seen in Chap. 3, there are models that extend the Standard Model (SM)
and have an impact on the Higgs couplings predicted from the minimal Higgs sector of
the Standard Model [54–61]. In this chapter we want to investigate these models with
the SFitter program and discuss the results. From measuring the Higgs couplings at the
LHC [62, 63], we can get a better understanding of potential scenarios beyond the Stan-
dard Model. Let us summarize the two well motivated models for which the analysis is
particularly transparent.

1. There are models beyond the Standard Model which can have a hidden sector. The
hidden sector can contain a Higgs that breaks a gauge group there. The Higgs boson
is a good candidate for a mediator to open the portal to the hidden sector [64–71]
because the Higgs boson is not observed yet. Therefore the hidden sector cannot
be observed so far. The coupling between the SM-singlet Higgs mass term and the
corresponding SM-neutral Higgs term in the hidden sector leads to an interaction
which transfer the renormalizability from the Standard Model to the entended theory.

2. In the minimal Higgs sector of the Standard Model, the Higgs boson is an elementary
particle like an electron and therefore pointlike. From the breaking of a global sym-
metry it is thinkable that the Higgs boson is a composite pseudo-Goldstone boson
caused by new strong interactions. These models are well motivated scenario [72–79]
as well.

If there is a hidden Higgs sector that is linked to the Standard Model via the Higgs boson,
the couplings to the Standard Models particles are modified because of the mixing of the
two Higgs bosons. These modification is the same to all particles and therefore universally.
This leads to a deviation in the decay width and cross sections. Because of the presence
of the hidden sector, in this model, further invisible decays are possible. Invisible decays
means, that the decay products cannot be measured in the detectors, like neutrinos in
the Standard Model, because of their weakly interacting behaviour. These additional
invisible decays also affect the total decay width. In strongly interacting models where
the Higgs boson emerges as a pseudo-Goldstone boson the modifications of the couplings
are dependent on the specific model. In the MCHM4 model the couplings and therefore
the cross sections and decay width are affected universally as well as the hidden Higgs
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model. In contrary, the MCHM5 model predicts differect modification of the couplings
depending on the type of particles. Couplings to fermions are affected in a different way
than bosons. For this reason the modification is partially universal. These kind of models
do not predict any new invisible decays. For this reason, the set of characteristics will allow
us to distinguish between the wo scenarios.

In general, depending on the operator basis chosen [80–94], some O(10) free parameters
may affect the measured production and decay rates at the LHC. A universal (or partially
universal) modification of the Higgs couplings tremendously simplifies the complexity of
any experimental analysis to the measurement of just one, or two, new parameters. Fur-
thermore, setting bounds on universal deviations from the Standard Model Higgs couplings
measures the degree of concordance between the observed Higgs boson and the Standard
Model in a particularly transparent form.

In the two scenarios introduced above, the twin width-ratios of the Higgs boson are modified
by a parameter κ:

ΓpΓd
Γtot

= κ

(
ΓpΓd
Γtot

)SM

. (4.1)

The partial widths refer to the production channel p and the decay mode d, either exclu-
sively or summing over sets of initial or final states. These ratios are measured, at the Born
level, directly by the product of production cross section times decay branching ratio of the
process p→ Higgs→ d in the narrow width approximation. That means the cross section
for the whole process splits into the production cross section times the branching ratio of
the decay mode, see Sec. 2.1.2 . In the hidden sector the parameter κ is universal; in the
strong interaction scenario we consider it may take different values for Higgs couplings to
vector bosons or fermions [79].

For a hidden sector the decay label d includes invisible Higgs decays, i.e. the partial width
Γhid. This second parameter can be measured via the invisible branching ratio BRinv. It is
well-known [95–99] that the determination of BRinv at hadron colliders is quite demanding,
even through it naturally appears in many extensions of the Standard Model, like four
lepton generations or supersymmetry [71]

In the present study we will show, adopting the tools of SFitter, at which level κ as well
as Γhid, if present, can be determined at the LHC.

The measurements of κ and BRinv do not require the estimate of the total width appearing
in the denominator of Eq. (4.1). Nevertheless, estimating Γtot will provide us with con-
sistency checks on our theoretical ansatz. One way is to simply identify the total Higgs
width with the sum of all partial widths, with or without invisible channels [63]. The
non-observed partial widths are fixed to the Standard Model value scaled by the same
global factor applied to the observed partial widths. This method relies strongly on the
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recent resurrection of the H → bb̄ channel based on fat jet searches [100–102]. An alter-
native way to construct an upper limit to the Higgs width — to be combined with the
lower limit from all observed partial widths — would be motivated by the unitarization of
WW → WW scattering. The Standard Model Higgs state saturates this unitarization, so
modulo quantum corrections the relation gWWH . gSM

WWH becomes an upper bound to the
Higgs width [62]. We cannot use such an additional constraint because the observed scalar
state in our models overlaps only partly with the state related to electroweak symmetry
breaking.

Extracting Higgs parameters from LHC data [62, 63] forces us to pay attention to the
different uncertainties affecting the rate measurements and their comparison to theory
predictions for Higgs production [103–117] and decay [118, 119]. For typical luminosities
around 30 fb−1 statistical uncertainties will be the limiting factor for example in weak-
boson-fusion or Higgs-strahlung channels. Simulating these statistical uncertainties we use
Poisson statistics. Experimental systematic errors, as long as they are related to measured
properties of the detector, are expected to be dominantly Gaussian. We include flat theory
errors based on the Rfit profile-likelihood construction [120, 121].

In part of our studies ratios of Higgs couplings will play a crucial role. Higher precision in
measuring these ratios may naively be expected compared with individual measurements
of couplings [62]. For such an improvement the analysis should not be statistics domi-
nated, which it largely is however for an integrated luminosity of 30 fb−1. Moreover, while
experimental systematic uncertainties tend to cancel between the same Higgs decays but
different production channels, the dominant theory errors are expected to cancel for iden-
tical production mechanisms. In line with these arguments we have found that using ratios
does not significantly improve the results of Higgs sector analyses [63].

In this study we will show how κ as well as Γhid can be determined using SFitter. Starting
from the completely exclusive likelihood map, SFitter determines the best-fitting point in
the Higgs-sector parameter space. While a Bayesian probability analysis of the entire Higgs
parameter space at the LHC is spoiled by noise, profile likelihoods can be studied in the
vicinity of the best-fitting points [63]. In this analysis we assume that we already know
the global structure of the likelihood map, so we can focus on the local properties around
the SM-like solution. As it will turn out, alternative solutions can be studied nevertheless,
for example with sign switches for some of the Higgs couplings.

Technically, the analysis presented in this thesis is based on the SFitter-Higgs setup. A
list of all measurements and their different errors are shown in Tab. 4.1. Compared to
previous analysis of the SFitter collaboration we have updated the numbers for the H → bb̄
channel in associated production with vector bosons from the recent ATLAS study [102],
which confirms the previously obtained significances. The event rates for weak-boson-fusion
production with decay into invisible states are adopted from Ref. [97]. The central data
set is smeared around the theory predictions according to the theoretical error and the
experimental errors, taking into account the correlations among the observables. For each
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production decay
ggH ZZ
qqH ZZ
ggH WW
qqH WW
WH WW (3l)
WH WW (2l)
tt̄H WW (3l)
tt̄H WW (2l)

inclusive γγ
qqH γγ
tt̄H γγ
WH γγ
ZH γγ
qqH ττ(2l)
qqH ττ(1l)
tt̄H bb̄
ZH bb̄
ZH llbb̄
ZH ννbb̄
qqH ii

luminosity measurement 5 %
detector efficiency 2 %
lepton reconstruction efficiency 2 %
photon 4 %
WBF tag-jets 5 %
b-tagging efficiency 6 %
τ -tagging efficiency 3 %
lepton isolation efficiency (H → 4l) 3 %
theory error 7 % / 14 %

Table 4.1.: On the left hand side, all channels that are taken into account for our analysis
are shown. ggH denotes the gluon-fusion process, qqH is the vector-boson-
fusion, tt̄H is the top-quark associated process, and ZH and WH are the
Higgs-strahlung processes. The last channel (qqH) is the optional channel for
additional invisible decays. On the right hand side, all errors considered in our
work are shown. The theory error depends on the production process. For the
gluon-fusion and the top-quark associated Higgs process, the error is 14% and
for the other two processes 7%.

of the toy-experiments we determine the best-fit values. This numerical determination of
the resulting parameter uncertainties is fitted to Gaussian distributions.

The new technical aspect of the present study is the more refined approach to the hy-
potheses tested: if we do not measure all Higgs couplings independently but instead test
a given model hypothesis, the limits on the extracted model parameters improve signifi-
cantly. Because this approach requires fewer measurements we now consider Higgs masses
between 110 and 200 GeV and find a significant enhancement of the determination power
for 30 fb−1 of LHC data at a collider energy of 14 TeV.
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4.1. Higgs portal to hidden sector

The Standard Model, or extensions of it, may be connected to a hidden sector. An inter-
esting realization of such a mechanism is provided by specifying the scalar Higgs domains
in both sectors as the link between the two sectors [64–69]. To explore the possibility
of detecting a hidden sector at the LHC we investigate a scenario in which the Standard
Model Higgs sector is coupled to the hidden Higgs sector through quartic interactions.
Such a scalar system is technically transparent and may therefore serve as paradigm for
generic experimental features that could signal a hidden sector. There are many variants
to this specific scenario, e.g. a hidden scalar sector without spontaneous symmetry break-
ing, large ensembles of scalar fields, etc. The scenarios can be disentangled by analyzing a
few characteristic observables of the Higgs particles, in particular Higgs couplings. In this
thesis we will concentrate on the simplest setup to quantify the potential of experimental
analyses at the LHC.

The scenario we will focus on for now is described in Sec. 3.1. If the Higgs boson in the
hidden sector acquires a vacuum expectation value then it leads to a mass mixing with the
Standard Model Higgs boson. The mass eigenstates are a linear combination of the two
Higgs bosons. The coefficients can be expressed by the mixing angle χ. It reads

h1 = cosχhs + sinχhh

h2 =− sinχhs + cosχhh . (4.2)

Both, h1 and h2 couple to Standard Model fields through their hs components and to the
hidden sector through the hh admixtures. To focus on generic features we assume the
potential parameters λj and vj to be of similar size and the mixing parameter ηχ to be
moderate. The properties of h1 then remain dominated by the Standard Model component,
while the properties of h2 are characterized primarily by the hidden Higgs component.

The phenomenology of a Higgs portal to the hidden sector depends on whether the standard
Higgs particle is lighter or heavier than the new companion. In this study we assume that
h1 is light and mainly decays into Standard Model particles, at a rate reduced by mixing,
and with an admixture of invisible decays to the hidden sector. The heavier h2 bosons
decay primarily into particles of the hidden sector, and only a small fraction by mixing
to Standard Model particles and to light h1 pairs. The production rate of h2, mediated
by mixing, is small. Since visible h2 channels are suppressed by production and decay, we
focus on the light Higgs boson h1 closely related to the Standard Model.

All h1 couplings to Standard Model particles are universally suppressed by the mixing
parameter cosχ. In addition, h1 may decay invisibly into the hidden sector. These two
features imply



40 4.1. Higgs portal to hidden sector

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

Γ h
i
d
/

ΓS
M

t
o
t

cos
2χ

κ

κ = 4/9
B
inv

 = 0.5

Figure 4.1.: Correlations between Γhid and cos2 χ as defined in Eqs.(4.3), based on measur-
ing κ and Binv. The two parameters are set to κ = 4/9 and Binv = 0.5, respec-
tively, for illustration. The square marks the final solution of cos2 χ = 2/3 and
Γhid/Γ

SM
tot = 1/3 for this parameter set. The estimated 95% CL error bands are

explained in the text.

σ = cos2 χσSM

Γvis = cos2 χΓSM
vis

Γinv = cos2 χΓSM
inv + Γhid . (4.3)

The two parameters cosχ and Γhid will be determined in our LHC analysis. ΓSM
inv is generated

by Higgs decays H → ZZ → 4ν with an invisible Z branching ratio of 4%. If invisible Higgs
decays will be observed, this 4ν rate can be predicted from observed decays H → ZZ → 4`
and can thus be subtracted from the new-physics signal. For the sake of simplicity we will
omit ΓSM

inv from now on.

If the invisible decay channel is open, the κ parameter in the twin ratio Eq. (4.1) reads in
terms of the parameters cosχ and BRinv (as generated by Γhid):

κ =
cos2 χ

1 + Binv

≤ 1 with Binv =
BRinv

BRvis

=
BRinv

1− BRinv

. (4.4)
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Binv can also be expressed as the ratio of invisible decays to just one visible decay channel
d, Binv = BRinv/(BRd/BRSM

d ). It can thus be observed without explicit reference to the
total width. For sinχ� 1 Binv simply approaches BRinv.

For the Higgs portal the parameters κ and Binv are independent of the analysis channels. As
a result, ratios of visible branching ratios are not modified BRd1/BRd2 = (BRd1/BRd2)

SM.
The observation of these identities provides a necessary consistency test for the hidden
Higgs scenario.

The detailed experimental analysis of such a scenario will proceed in two steps: As long as
only κ is measured but invisible Higgs decays are not, upper bounds on the mixing and, in
parallel, on the fraction of invisible h1 decays can be established,

sin2 χ ≤ 1− κ and BRinv ≤ 1− κ , (4.5)

constraining the potential impact of the hidden sector on the properties of the SM-type
Higgs boson. With κ measured, the hidden h1 partial width will be correlated with the
mixing parameter

Γhid

ΓSM
tot

= cos2 χ

(
cos2 χ

κ
− 1

)
, (4.6)

as illustrated in Fig. 4.1 for κ = 4/9. For illustration purposes, the error on κ in this figure
is chosen to be 10%.

Even though Binv can be in principle be determined experimentally, precise measurements
of the invisible decay mode are difficult at the LHC. To show the correlation of the two
parameters with the two observables we choose Binv = 0.5 with a relative error of 30%, as
expected for the final integrated luminosity of 300 fb−1 [95–99]. Combining Eq. (4.6) with
the definition Eq. (4.4),

Γhid

ΓSM
tot

= cos2 χBinv , (4.7)

allows us to determine both the mixing parameter cosχ and the h1 partial width to the
hidden sector Γhid individually, cf. Fig. 4.1:

cos2 χ =
κ

1− BRinv

and
Γhid

ΓSM
tot

=
κBRinv

(1− BRinv)2
. (4.8)
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Figure 4.2.: LHC sensitivity to modified Higgs couplings and no invisible decays Γhid = 0,
based on 30 fb−1 of data. Left: measurement errors as a function of the
Higgs mass for cos2 χth = 1.0 (top), cos2 χth = 0.8 (center) and cos2 χth = 0.6
(bottom). Right: resulting upper and lower bounds on the mixing parameter
sin2 χ, constrained to the physical range.
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mH cos χ 68% CL 95% CL
110 0.96 0.26 0.52
120 0.97 0.24 0.48
130 0.97 0.20 0.40
140 0.95 0.16 0.32
150 0.96 0.15 0.30
160 0.96 0.14 0.28
170 0.97 0.13 0.26
180 0.97 0.13 0.26
190 0.96 0.16 0.26
200 0.98 0.22 0.32

Table 4.2.: For the Standard Model hypothesis, the fitted results for cosχ together with
the 68% and 95% confidence level (CL), in this case the one and two standard
deviations, are shown for various Higgs masses with an integrated luminosity
of 30 fb−1.

The bands around the intersection point and their projections on the axes indicate the 95%
CL for the parameters cos2 χ and Γhid.

In a Higgs sector likelihood analysis we can ask three kinds of questions:

1. Can we determine a non-zero mixing κ 6= 1 from a sizable Higgs sample at all?

2. To shut a Higgs portal, what size of κ can we exclude if we observe Standard Model
couplings within given experimental and theory errors?

3. To verify the Higgs portal, which finite values of κ can we establish as a deviation
from the Standard Model within errors. How do invisible Higgs decays affect this
measurement?

To answer the first questions, the upper panels in Fig. 4.2 show the bounds on κ = cos2 χ
which we can set by analyzing a sample of Standard Model Higgs bosons with masses

MH [GeV] κ > sin2 χ,BRinv < Γhid/Γ
SM
tot <

120 0.50 0.76 0.50 0.24 1.0 0.32
160 0.70 0.82 0.30 0.18 0.43 0.22
200 0.54 0.73 0.46 0.27 0.85 0.37

Table 4.3.: Upper bounds (95% CL) on mixing and invisible decays expected to be set in a
Higgs sample within the Standard Model for integrated luminosities of 30 (left)
and 300 fb−1 (right).
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between 110 and 200 GeV. We neglect invisible Higgs decays in this first step, but all stan-
dard Higgs search channels are exploited based on an integrated luminosity of 30 fb−1 [63].
Starting with the Standard Model hypothesis at mH = 120 GeV we can measure cos2 χ =
1 ± 24%(48%) at the 68%(95%) CL. The results for the other Higgs masses are shown in
Tab. 4.1. For larger Higgs masses the error bar improves by a factor of two, due to an
increased statistics of the comparably clean WW and ZZ channels. For even larger Higgs
masses around 200 GeV the over-all event rate drops again, increasing the measurement er-
ror again. As shown in the lower panels of Fig. 4.2 we can also translate the minimal values
of κ into maximal values of the mixing parameter sin2 χ according to Eq. (4.5). In contrast
to the upper limits on cos2 χ the limits on sin2 χ include the constraint 0 ≤ sin2 χ ≤ 1. In
Tab. 4.3 we collect the bounds on a modified Higgs coupling, including the constraint, for
three Higgs masses, based on an integrated luminosity of 30 fb−1 as well as expectations for
an integrated luminosity of 300 fb−1. Even without observing invisible decays explicitly,
we can translate these results into upper bounds on the invisible decay width according to
Eq. (4.4). These bounds are shown in the right column of the table.

The error on the scaled Higgs couplings includes another square root, which translates into a
relative error (∆g)/g ∼ 10%(20%). These limits measure how well the Higgs mechanism in
the Standard Model can be established quantitatively, and they have to be compared to an
independent variation of all Higgs couplings, which for mH = 120 GeV are expected to be
measured to O(25%−50%) [63]. The sizable improvement of the constrained analysis arises
first of all because all experimental channels now contribute to the same measurement, and
secondly because they also determine the total Higgs width much more precisely than the
H → bb̄ fat-jet analysis.

Before moving away from Standard Model decays only, we show the results of a two-
parameter fit in the upper panels of Fig. 4.3, while keeping Γhid = 0. Compared to the
one-dimensional parameter extraction shown in Fig. 4.2 the error on the extracted value
of cos2 χ is now increased. This arises because we now have to perform a two-dimensional
parameter extraction and project the correlated uncertainty onto the two model parameters
cosχ and Γhid. Comparing the upper panels of Fig. 4.3 to Fig. 4.2 shows this effect on
the extracted parameters, just fitting two parameters without even introducing an invisible
Higgs decay. The error on cos2 χ becomes asymmetric due to the positivity constraint on
the Higgs width, fixing the upper error band of cos2 χ. On the other hand, fake invisible-
decay events from background fluctuations lead to a wide lower error bound. Moreover,
we observe a clear bias towards too large event numbers towards small values of cos2 χ.
This is in part due to the asymmetric Poisson distribution and in part due to the fact that
measurement channels where the number of background events from the control region
exceeds the number of events in the signal region, are explicitly excluded from the fit. A
more detailed discussion of this effect is presented in App. E. Finally, the error band for
the extracted Γhid ranges around 20% of the Standard Model width.

The impact of actual invisible decays is estimated by choosing Γhid = sin2 χΓSM
tot as il-

lustrative example for the parametrization of the non-zero invisible partial width. This



Chapter 4. Measuring hidden Higgs and strongly-interacting Higgs scenarios 45

parametrization accounts naturally for the suppression of Γhid by mixing, while a coeffi-
cient of size ΓSM

tot would be expected for structures in the hidden sector roughly parallel to
the standard sector [64–67]. Comparing the top left and top right panels of Figure 4.3, it
is evident that the effect of an actual invisible Higgs decay on the extraction of cos2 χ is
small. A measurement of the invisible Higgs width, beyond setting upper bounds, seems
challenging with only 30 fb−1 of integrated luminosity. The best discrimination power we
obtain for medium-sized values of cos2 χ, where we have a significant invisible branching
ratio and the production side is not strongly suppressed.

Finally, in the right panels we see a clear correlation between the two extracted parameters,
owed to the form of the observables shown in Eq. (4.4) and Fig. 4.1.

4.2. Strongly-interacting Higgs boson

Deviations of the Higgs couplings similar to the cosχ factor in Eq. (4.3) are expected
when a light Higgs boson is generated as a pseudo-Goldstone boson by global symmetry
breaking in a new strong interaction sector. Depending on the details of the model, the
Higgs couplings are modified either individually for different particle species, or universally
for all species [75–79]. In contrast to the hidden Higgs model, the light Higgs boson h1

does not decay into channels not present in the Standard Model.

Such a picture can be developed using Holographic Higgs Models, based on the AdS/CFT
correspondence, in which strongly coupled theories in four dimensions are identified with
weakly coupled theories in five dimensions [122–126]. For example, the spontaneous break-
ing of a global symmetry SO(5)→ SO(4) generates the adequate iso-doublet of Goldstone
bosons. Assigning the Standard Model fermions either to spinorial or fundamental SO(5)
representations changes the Higgs couplings either universally or separately for Standard
Model vectors and fermions. The modifications are determined by the parameter

ξ =

(
v

f

)2

(4.9)

which measures the magnitude of the Goldstone scale f in relation to the standard Higgs
vacuum expectation value v. The case where all Higgs couplings are suppressed universally
by a factor (1− ξ)1/2, is covered by the analysis in the preceding section identifying

κ ≡ 1− ξ . (4.10)
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All results from the Higgs portal can be transferred one-by-one to this universal strong
interaction model, identifying cos2 χ → 1 − ξ and setting Binv = 0. Hence, it can be con-
cluded from Fig. 4.2 that ξ can be measured with an uncertainty of 10%− 20%, depending
on the Higgs mass.

In a closely related scenario [79] universality is broken to the extent that the Higgs coupling
of vector particles is reduced, still, by (1− ξ)1/2 ≈ 1− ξ/2 but the coupling of fermions by
a different coefficient, (1 − 2ξ)/(1 − ξ)1/2 ≈ 1 − 3ξ/2. Now, the two κ parameters of the
twin width-ratios, at small ξ, read

κV = 1−
[
1(3)− 2 BRSM

f

]
ξ

κf = 1−
[
3(5)− 2 BRSM

f

]
ξ , (4.11)

The indices V, f distinguish vector and fermion Higgs decays, and the expression in brackets
corresponds to production either in Higgs-strahlung/electroweak boson fusion or — altered
to () — in gluon fusion; BRSM

f denotes the inclusive Higgs branching ratio to fermions in
the Standard Model which is close to one for light Higgs bosons.

The two κ parameters of this non-universal strong interaction model are characteristically
different from both the universal strong interaction model as well as the Higgs portal. First,
they are different for vector and fermion decays of the Higgs particle; second, in parameter
regions in which more than half of the Higgs decays are fermionic, κV is larger than unity
for Higgs-strahlung/electroweak fusion.

Results for this model are presented in Fig. 4.4 and in Tab. 4.4 for 30 and 300 fb−1. At low
luminosity two solutions emerge, while an increased luminosity eliminates the fake solution
in major parts of the parameter space, as long as the Higgs mass is small. The mathematical
evolution of the two solutions and their analytical form is discussed in App. F. Around
ξ ∼ 0.5 the observable rates at the LHC drop sharply, not allowing for a reliable extraction
of ξ simply based on too little statistics for the fit. Therefore, the Gray bands blind ranges
of parameter space in which the modified theory leads to too large a suppression. Only
when our fit finds χ2/d.o.f. & 1 (d.o.f. denotes degrees of freedom) the result becomes
statistically trustworthy again.

In contrast to 120 GeV, we observe that the situation hardly improves for a 200 GeV
Higgs boson once we go to higher luminosity. For this mass only four Higgs channels are
left. All include a decay into either W or Z bosons, and on the production side three of
them are proportional to gttH , either via gluon-fusion or top-quark associated production.
These three measurements are equivalent and exhibit an ambiguity because fermion-Higgs
couplings cannot distinguish between small and large values of ξ, see App. F. Only the
fourth measurement based on weak-boson fusion production can resolve the ambiguity.
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30 fb−1

MH [GeV] ξth ξ1 ∆ξ1 wξ1 ξ2 ∆ξ2 wξ2
120 0.0 -0.04 0.36 0.94 0.67 0.06 0.06

0.2 0.16 0.26 0.88 0.63 0.06 0.12
0.6 0.61 0.06 0.54 0.26 0.18 0.46

160 0.0 0.0 0.12 0.98 0.73 0.03 0.02
0.2 0.20 0.10 0.95 0.69 0.04 0.05
0.6 0.64 0.06 0.85 0.33 0.10 0.15

200 0.0 0.01 0.16 0.84 0.77 0.03 0.16
0.2 0.19 0.14 0.67 0.71 0.04 0.33
0.6 0.67 0.06 0.50 0.30 0.16 0.50

300 fb−1

MH [GeV] ξth ξ1 ∆ξ1 wξ1 ξ2 ∆ξ2 wξ2
120 0.0 0.0 0.14 0.99 0.67 0.08 0.01

0.2 0.20 0.08 0.99 0.63 0.02 0.01
0.6 0.60 0.02 0.96 0.31 0.04 0.04

160 0.0 0.0 0.08 1.0 — — 0
0.2 0.20 0.08 0.99 0.67 0.04 0.01
0.6 0.63 0.04 0.96 0.36 0.08 0.04

200 0.0 0.0 0.10 0.92 0.75 0.014 0.08
0.2 0.19 0.10 0.79 0.69 0.018 0.21
0.6 0.63 0.03 0.55 0.31 0.16 0.45

Table 4.4.: Errors ∆ξ (95% CL) on the pseudo-Goldstone parameter ξ for integrated lu-
minosities of 30 (top) and 300 fb−1 (botoom). Shown are the two solutions
together with their corresponding probability wξ of the best-fit, which are the
relative numbers of toy experiments ending up in the vicinity (as obtained by
a fit of two Gauss peaks) of this solution.

Even though this channel is comparably clean, it is systematics limited, i.e. it hardly
improves with higher luminosities.

The two solutions shown in Fig. 4.4 also represent a technical challenge. We need to know
not only the error ∆ξ on the individual solution, but also the probability wξ with which
this solution appears. A Minuit fit per toy-experiment alone cannot achieve this, because
there is no guarantee that it will find the global minimum of χ2. Indeed, we observe a
strong dependence on the starting point in Minuit. Therefore, we need to add a coarse grid
scan of the one-dimensional parameter space before the minimization. To obtain the 68%
and 95% confidence levels in Fig. 4.4 we first fit a sum of two Gaussians to the parameter
distribution. To extract a confidence level interval around each of the two peaks we define a
height which crosses both Gaussians such that the sum of the two central areas corresponds
to 68% or 95% of the entire integral under both Gaussians. The two intersections of this
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horizontal line with each Gaussian give us the confidence regions quoted for example in
Fig. 4.4.

First of all, in Fig. 4.4 we again see that the typical error bars shrink when we increase the
Higgs mass and with it the number of events from 120 GeV to 160 GeV. For even larger
Higgs masses some of the relevant channels rapidly vanish, so the error bars increase again.
The actual error bars for the different scenarios are listed in Tab. 4.4. In particular for
moderate luminosity the absolute error on ξ1, for assumed values of ξth < 0.2 range around
20% for a light Higgs boson and well below 10% towards larger mass. These numbers again
roughly compare to the typical values for ∆ξ in the universal strongly interacting model or√

∆κ for the Higgs portal. For larger values of ξ ≥ 0.6 the two strongly interacting models
start deviating significantly. In particular, the relative error ∆ξ1/ξ1 decreases dramatically.
The reason will be discussed in detail in App. F: due to the non-universal structure of the
fermion and vector couplings in this range the Higgs event rates vary much more strongly
than elsewhere. Therefore, the LHC will probe this region with high precision, with the
slight caveat that towards slightly smaller ξ the Higgs production and decay rates vanish
rapidly. These are precisely the dangerous Gray regions in Fig. 4.4 — as long as we observe
Higgs events at the LHC the sharp drop in rates towards ξ = 0.5 is a welcome feature to
analyze the model at colliders.

The improvement of the errors with increased statistics is also shown in Tab. 4.4. If the
measurement were statistics dominated, the error would be reduced by a factor

√
10 ' 3

when going from 30 to 300 fb−1. From the results we find that the improvement is smaller.
The reason is that all measurements determine only a single parameter, so unlike in the
unconstrained Higgs sector analysis [63] in the current setup even for 30 fb−1 the results
are not entirely statistics dominated.
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Figure 4.3.: LHC sensitivity to modified Higgs couplings and invisible decays, based on
30 fb−1 of data. Left column: Γhid = 0; right column Γhid = sin2 χΓSM

tot for
invisible decays. The Higgs mass is fixed to 120 GeV. Top row: extracted
cos2 χfit values as a function of cos2 χth; Center row: extracted bounds and
measurements of Γhid/Γ

SM
tot as a function of cos2 χth; Bottom row: illustration of

the correlation between mixing and invisible partial width using cos2 χth = 1.0
(left column) and 0.6 (right column).
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Figure 4.4.: LHC sensitivity to modified Higgs couplings based on 30 (left column) and
300 fb−1 (right column) for un-aligned boson and fermion couplings as a func-
tion of the assumed ξth for mH = 120 GeV (top), 160 GeV (center) and
200 GeV (bottom). ξ values close to 1/2, for which the rates are strongly
suppressed, are blinded by the gray bars.



5. Summary and discussion

In this thesis we have analyzed the LHC reach for deviations of Higgs couplings from their
Standard Model values. Two models can be linked to such signatures: First, we couple
the Standard Model Higgs field to a hidden Higgs sector, opening a renormalizable Higgs
portal between the two sectors. From the event rates for visible Higgs production and
decay channels we could derive upper bounds on non-SM admixtures in the wave-function
of the Higgs boson and on novel invisible decay channels. Since it is unclear if at the LHC
we will be able to quantitatively analyze invisible Higgs decays, given the experimental
errors, the question arises if we include the invisible Higgs decay rate in a two-dimensional
fit or only include modified visible couplings.

From the two-dimensional fit we find 95% CL limits on the two model parameters sin2 χ <
0.50 and Γhid/Γ

SM
tot < 1.0 (L = 30 fb−1 and mH = 120 GeV). Towards Higgs masses

around 160 GeV these limits slightly improve, while for even heavier masses the decreasing
production rates at the LHC take their toll. These numbers correspond to a 10% to
20% measurement of the modified Higgs couplings (∆g)/g. Such bounds also quantify
to what accuracy a Higgs boson discovered and studied at the LHC could be identified
as the Standard Model realization. They should be compared to limits on the individual
Higgs couplings from general Higgs sector analyses [62, 63] and they show a significant
improvement driven by the higher level of specification in the hypothesis tested.

Neglecting the invisible Higgs decay and hence trading the minimal amount of extra in-
formation for the advantage of a one-dimensional fit without additional noise in a small
region of parameter space (mH ∼ 160 GeV and cos2 χ ∼ 0.6) we might even be able to
establish a Higgs portal at the 5σ level based on an integrated luminosity of 30 fb−1.

If invisible decay channels of the Higgs boson are indeed measured, the mixing parameter
and the partial width for Higgs decays to the hidden sector can of course be determined
individually. However, such a measurement will likely require higher luminosities.

A related problem arises when a light Higgs boson is identified with a pseudo-Goldstone
boson associated with the spontaneous breaking of global symmetries in new strong in-
teractions. If fermion and vector couplings are scaled equally, the scaling analysis of the
hidden sector can be transcribed without change, assuming there are no Higgs decays into
non-SM channels. The bound on sin2 χ can simply be read as a bound on ξ.

51



52

More interestingly, if the Higgs couplings are modified separately for vectors and fermions,
various production/decay channels may be analyzed individually so that a unique picture
emerges. For small values of ξ the two kinds of couplings at least qualitatively scale
similarly, so our results for (∆ξ)/ξ follow the usual patterns. For larger values around
ξ ∼ 0.5 the Higgs-fermion couplings now vanish, leading to wells in the Higgs event rates.
In those regions the relative error on the determination of ξ can shrink to 5%, though being
dangerously close to parameter regions where the Higgs discovery would require larger LHC
luminosities.

The LHC will be able to probe scenarios with modified Higgs couplings as generally ana-
lyzed in Refs. [62, 63]. However, testing a specific one- or two-parameter model appears to
be a promising strategy to gain insight into the Higgs sector already based on an integrated
luminosity of 30 fb−1 at 14 TeV. Compared to the general analysis the typical error bars
on Higgs couplings are reduced by at least a factor 1/2, now ranging around 10% to 20%
for Higgs masses between 120 GeV and 200 GeV.



A. Passarino-Veltman reduction

In loop calculations involving fermions in the loop tensor integrals appear. Tensor integrals
have powers of the loop momentum in the nominator. Passarino and Veltman [44] found
a technique to get rid of these integrals and reduce them to scalar n-point functions.
The advantage of this reduction is that we only have to know some master integrals. The
Passarino-Veltman reduction method can be used in computer calculation, e.ġ., feyncalc
[45]. In this appendix, we want to show how the reduction works for two- and three-point
functions up to rank two tensors. A tensor integral in the most general form that has N
propagators in the loop reads

TNµ1...µM (p1, . . . , pN−1,m0, . . . ,mN−1) =

∫
d4q

iπ2

qµ1 . . . qµM
D0 . . . DN−1

. (A.1)

The propagators in the denominator and the external momenta are defined by

Di = (q + pi)
2 −m2

i , pi =
i∑

j=0

p′j, p0 = 0, i ∈ {0, . . . , N − 1} . (A.2)

The following two abbreviations are useful for the calculation

fi = p2
i −m2

i +m2
0, pij = pi − pj . (A.3)

With the definition in (A.2) follows

pi · q =
1

2
(Di −D0 − fi) . (A.4)

These relations will be used many times in the reduction. The loop momenta will be
integrated out, but the tensor structure remains. There are only the external momenta
and the metric that can keep the tensor structure. Thus, we can expand the two- and
three-point tensor function in the external momenta which is given by

53



54 A.1. Reduction of a two-point tensor integral of rank one

Bµ = pµ1B1

Bµν = pµ1p
ν
1B11 + ηµνB00

Cµ = pµ1C1 + pµ2C2

Cµν = pµ1p
ν
1C11 + (pµ1p

ν
2 + pµ2p

ν
1)C12 + pµ2p

ν
2C22 + ηµνC00 .

(A.5)

On the right hand side of the equations above, new functions are introduced. The next
task is to calculate them.

A.1. Reduction of a two-point tensor integral of rank one

Starting with the easiest case, we only need to determine one function B1 that means one
equation is enough. Contracting the first line of Eq. (A.5) with p1µ and using Eq. (A.4)
yields

p2
1B1 = p1µB

µ =

∫
d4q

iπ2

p1 · q
D0D1

=

∫
d4q

iπ2

1

2

(
1

D0

− 1

D1

− f1

D0D1

)
=

1

2
(A0(m0)− A0(m1)− f1B0(p1,m0,m1)) ,

(A.6)

and the final result is

B1(p1,m0,m1) =
1

2p2
1

(A0(m0)− A0(m1)− f1B0(p1,m0,m1)) . (A.7)

The tensor integral Bµ is determined by the one- and two-point scalar functions.

A.2. Reduction of a two-point tensor integral of rank two

Analogously to the previous section, we have to determine two functions. Thus, we need
at least two independent equations. Contracting Bµν in the second line of Eq. (A.5) with
p1µ and the metric tensor, it follows
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p1µB
µν =pν1

(
B00 + p2

1B11

)
ηµνB

µν =4B00 + p2
1B11 .

(A.8)

For the left hand side, we get

p1µB
µν =

∫
d4q

iπ2

p1 · qqν
D0D1

=

∫
d4q

iπ2

1

2

(
qν

D0

− qν

D1

− f1
qν

D0D1

)
=

1

2
pν1
(
A0(m1)− f1B1(p2

1,m0,m1)
)
.

(A.9)

The first integral in the second line vanishes because the nominator is odd and the denom-
inator of the integrand is even. For the second integral, I used the substitution q → q+ p1.
The result for the second equation is

ηµνB
µν =

∫
d4q

iπ2

q2

D0D1

=A0(m1) +m2
0B0(p1,m0,m1) .

(A.10)

We can put the equations together, cancel pν in the first equation, and get a system of
linear equations

B00 + p2
1B11 =

1

2
(A0(m1)− f1B1(p1,m0,m1))

4B00 + p2
1B11 =A0(m1) +m2

0B0(p1,m0,m1) ,
(A.11)

with the final result

B00 =
1

6

(
A0(m1) + 2m2

0B0(p2
1,m0,m1) + f1B1(p1,m0,m1)

)
B11 =

1

3p2
1

(
A0(m1)− 2f1B1(p1,m0,m1)−m2

0B0(p1,m0,m1)
)
.

(A.12)

As we have seen before, B1 is determined by one- and two-point scalar function.
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A.3. Reduction of a three-point tensor integral of rank
one

Contracting the third line of Eq. (A.5) n with p1µ and p2µ gives

p1µC
µ = p2

1C1 + p1 · p2C2

p2µC
µ = p1 · p2C1 + p2

2C2 .
(A.13)

For the left hand side follows for the first equation

p1µC
µ =

∫
d4q

iπ2

p1 · q
D0D1D2

=

∫
d4q

iπ2

1

2

(
1

D0D2

− 1

D1D2

− f1
1

D0D1D2

)
=

1

2
(B0(p2,m0,m2)−B0(p2 − p1,m1,m2)− f1C0(p1, p2,m0,m1,m2)) ,

(A.14)

and for the second equation

p2µC
µ =

1

2
(B0(p1,m0,m2)−B0(p2 − p1,m1,m2)− f2C0(p1, p2,m0,m1,m2)) . (A.15)

This yields the system of linear equations

p2
1C1 + p1 · p2C2 =

1

2
(B0(p2,m0,m2)−B0(p21,m1,m2)− f1C0(p1, p2,m0,m1,m2))

p1 · p2C1 + p2
2C2 =

1

2
(B0(p1,m0,m2)−B0(p21,m1,m2)− f2C0(p1, p2,m0,m1,m2)) .

(A.16)

In the case

p2
1 = 0, p1 · p2 =

m2
H

2
, p2

2 = m2
H (A.17)

the result is
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C1 =
1

m2
H

(B0(p1,m0,m2)−B0(p2,m0,m2)− (f2 − f1)C0(p1, p2,m0,m1,m2))

C2 =
1

m2
H

(B0(p2,m0,m2)−B0(p21,m1,m2)− f1C0(p1, p2,m0,m1,m2)) .
(A.18)

A.4. Reduction of a three-point tensor integral of rank
two

Contracting the fourth line of Eq. (A.5) with p1µ, p2µ and the metric tensor yields the right
hand sides

p1µC
µν = pν1C00 + pν1p

2
1C11 +

(
pν2p

2
1 + pν1p1 · p2

)
C12 + pν2p1 · p2C22

p2µC
µν = pν2C00 + pν1p1 · p2C11 +

(
pν1p

2
2 + pν2p1 · p2

)
C12 + pν2p

2
2C22

ηµνC
µν = 4C00 + p2

1C11 + 2p1 · p2C12 + p2
2C22 ,

(A.19)

and the left hand side of the first

p1µC
µν =

∫
d4q

iπ2

1

2

(
qν

D0D2

− qν

D1D2

− f1
qν

D0D1D2

)
=

1

2
(pν2B1(p2,m0,m2) + pν21B1(p21,m1,m2) + pν1B0(p21,m1,m2)

−1

2
pν1f1C1 −

1

2
pν2f1C2

)
,

(A.20)

second

p2µC
µν =

1

2
(pν1B1(p1,m0,m1) + pν21B1(p21,m1,m2) + pν1B(p21,m1,m2)

−1

2
pν1f2C1 −

1

2
pν2f2C2

)
,

(A.21)

and third equation
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ηµνC
µν = B0(p21,m1,m2) +m2

0C0(p1, p2,m0,m1,m2) . (A.22)

A comparison of the coefficients of pν1 and pν2 gives five of the three equations above.

C00 + p2
1C11 + p1 · p2C12 =

1

2
(B0(p21,m1,m2) +B1(p21,m1,m2)− f1C1)

p2
1C12 + p1 · p2C22 =

1

2
(B1(p2,m0,m2)−B1(p21,m1,m2)− f1C2)

p1 · p2C11 + p2
2C12 =

1

2
(B1(p1,m0,m1) +B1(p21,m1,m2) +B0(p21,m1,m2)− f2C1)

C00 + p1 · p2C12 + p2
2C22 =− 1

2
(B1(p21,m1,m2) + f2C2)

4C00 + p2
1C11 + 2p1 · p2C12 + p2

2C22 =B0(p21,m1,m2) +m2
0C0(p1, p2,m0,m1,m2) .

(A.23)

From this system of linear equations and with the previous result we have everything we
need for the gluon-fusion process.



B. Calculation of the three-point scalar
function

There are many ways to calculate a scalar loop integral, e.g., using the Cutkosky cutting
rule [47], Feynman parametrization, etc. In almost every quantum field theory textbook
[48], [49] the Feynman trick is taught. In this appendix, we give a brief review of it. The
first step is to introduce a further integral for every propagator, which yields

C0 =

∫
d4q

iπ2

1

((q + p1 + p2)2 −m2 + iε)(q2 −m2 + iε)((q + p1)2 −m2 + iε)

=

∫
d4q

iπ2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

2δ(x+ y + z − 1)

[x((q + p1 + p2)2 −m2 + iε) + y(q2 −m2 + iε) + z((q + p1)2 −m2 + iε)]3
.

(B.1)

Using the relations x + y + z = 1 which is a consequence of the Dirac delta function,
p2

1 = p2
2 = 0 according to massless gluons and 2p1 · p2 = m2

H is the center of mass energy.
The denominator of the loop integral can be expressed by

D = x((q + p1 + p2)2 −m2 + iε) + y(q2 −m2 + iε) + z((q + p1)2 −m2 + iε)

= q2 + 2q(xp1 + xp2 + zp1) + 2xp1 · p2 −m2 + iε

= l2 −∆ + iε .

(B.2)

In the last step, the variable l = q + xp1 + xp2 + zp1 is introduced as the result of a linear
variable tranformation, and ∆ = (xp1 + xp2 + zp1)2 − 2xp1 · p2 + m2 is the rest term.
Substituting this in Eq. (B.1) and performing the y integral, results in

C0 = 2

∫
d4l

2π2

∫ 1

0

dx

∫ 1−x

0

dz
1

(l2 −∆ + iε)3
. (B.3)
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There is another trick for getting rid of the ε-term: the so-called Wick-rotation. The
space components are rotated such that the integral becomes Euclidian. Using spherical
coordinates and performing the integrals, Ep. (B.3) reads

C0 =
2i

(−1)3

∫
dlE dΩ

iπ2

∫ 1

0

dx

∫ 1−x

0

dz
l3E

(l2E + ∆)3

=
2i

(−1)3

2π2

iπ2

∫ 1

0

dx

∫ 1−x

0

dz
1

4∆
.

(B.4)

At this stage, only the last two Feynman parameter integrals are left. The z integral is
pretty easy to calculate, but the general solution for the x integral is a dilogarithm. Taking
advantage of dilogarithms relations, the final result is [46]

C0 = −
∫ 1

0

dx

∫ 1−x

0

dz
1

m2
Hx(x+ z − 1) +m2

=

∫ 1

0

dx

m2
Hx

log

(
m2
Hx(1− x)−m2

−m2
Hx

2 −m2

)

=
1

2m2
H

log

−1 +
√

1− 4m2

m2
H

1−
√

1− 4m2

m2
H

 .

(B.5)



C. Mass eigenstates

In the mixing case, there appear terms that are proportional to the product of the two
Higgs fields which leads to a non diagonal mass mixing matrix. For this reason, this matrix
must be diagonalised to get the mass eigenstates. The mass mixing matrix

M2 =

(
2λsvs ηxvsvh
ηxvsvh 2λhvh

)
(C.1)

is symmetric. Thus, it has real eigenvalues and the corresponding eigenvectors are orthog-
onal to each other. A matrix S that transforms the mass mixing matrix M2 to a diagonal
matrix M2

D

M2 = STM2
DS , (C.2)

which matrix elements are the eigenvalues m1 and m2

M2
D =

(
m2

1 0
0 m2

2

)
, (C.3)

and vice versa, can be constructed from the eigenvectors. Hence, the first step is to calculate
the eigenvalues from Eq. (C.1). The equation that defines the eigenvalues is a homogenous
system of linear equation. By taking the determinant of this equation,

det(M2 −m2) = (2λsv
2
s −m2)(2λsv

2
s −m2)− (ηxvsvh)

2 = 0 , (C.4)

leads to the characteristic polynomial

m2 − 2m(λsv
2
s + λhv

2
h) + 4λsv

2
sλhv

2
h − (ηxvsvh)

2 = 0 . (C.5)

The roots of the equation are the eigenvalues

61



62

m2
1,2 = λsv

2
s + λhv

2
h ±

√
(λsv2

s + λhv2
h)

2 − 4λsv2
sλhv

2
h + (ηxvsvh)2

= λsv
2
s + λhv

2
h ±

√
(λsv2

s − λhv2
h)

2 + (ηxvsvh)2 .
(C.6)

With the help of mathematica and the abbreviation

x =
m2

1 − 2λhv
2
h

ηxvsvh
, (C.7)

the solution of S is given by

S =

(
x√

1+x2
1√

1+x2

− 1√
1+x2

x√
1+x2

)
=

(
cosχ sinχ
− sinχ cosχ

)
, (C.8)

where χ is the mixing angle of the two Higgs bosons. The matrix S rotates the fields hs
and hh to mass eigenstates h1 and h2. For the mixing angle χ, another equation can be
derived

tan 2χ =
sin 2χ

cos 2χ
=

2 sinχ cosχ

cos 2χ− sin 2χ
=

ηxvsvh
λsv2

s − λhv2
h

. (C.9)

Putting the mass eigenstates into Eq. (3.18) the Lagrangian for the self-interacting part
reads

L111 =
1

2
(cχsχηx(cχvh + sχvs) + 2s3

χλhvh + 2c3
χλsvs)h

3
1

L222 =
1

2
(cχsχηx(sχvh − cχvs) + 2c3

χλhvh − 2s3
χλsvs)h

3
2

L1111 =
1

4
(c2
χs

2
χηx + c4

χλs + s4
χλh)h

4
1

L2222 =
1

4
(c2
χs

2
χηx + s4

χλs + c4
χλh)h

4
2 .

(C.10)

And the interaction of the two fields can be written as
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L112 =
1

2
(sχηxvs(2c

2
χ − s2

χ) + cχηxvh(c
2
χ − 2s2

χ) + 6cχsχ(sχλhvh − cχλsvs))h2
1h2

L122 =
1

2
(cχηxvs(c

2
χ − 2s2

χ) + sχηxvh(s
2
χ − 2c2

χ) + 6cχsχ(sχλsvs + cχλhvh))h1h
2
2

L1122 =
1

4
(ηx(c

4
χ + s4

χ − 4c2
χs

2
χ) + 6c2

χs
2
χ(λs + λh))h

2
1h

2
2

L1112 =
1

2
cχsχ(ηx(c

2
χ − s2

χ) + 2s2
χλh − 2c2

χλs)h
3
1h2

L1222 =
1

4
cχsχ(ηx(s

2
χ − c2

χ) + 2c2
χλh − 2s2

χλs)h1h
3
2

(C.11)

with the abbreviation

cχ = cosχ , sχ = sinχ . (C.12)

Starting from these Lagrangians, the Feynman rules are shown in App. D.





D. Feynman rules for the hidden Higgs
portal model

In this appendix all Feynman rules of the hidden Higgs model are listed. By defining the
abbreviations for the coupling constants of the self-interaction vertices

η111 = cχsχηx(cχvh + sχvs) + 2s3
χλhvh + 2c3

χλsvs

η222 = cχsχηx(sχvh − cχvs) + 2c3
χλhvh − 2s3

χλsvs

η1111 = c2
χs

2
χηx + c4

χλs + s4
χλh

η2222 = c2
χs

2
χηx + s4

χλs + c4
χλh ,

(D.1)

and the interaction between the two fields

η112 = sχηxvs(2c
2
χ − s2

χ) + cχηxvh(c
2
χ − 2s2

χ) + 6cχsχ(sχλhvh − cχλsvs)
η122 = cχηxvs(c

2
χ − 2s2

χ) + sχηxvh(s
2
χ − 2c2

χ) + 6cχsχ(sχλsvs + cχλhvh)

η1122 = ηx(c
4
χ + s4

χ − 4c2
χs

2
χ) + 6c2

χs
2
χ(λs + λh)

η1112 = cχsχ(ηx(c
2
χ − s2

χ) + 2s2
χλh − 2c2

χλs)

η1222 = cχsχ(ηx(s
2
χ − c2

χ) + 2c2
χλh − 2s2

χλs) ,

(D.2)

the Feynman rules can be read off from Eqs. (C.10) and (C.11) without much afford except
of prefactors. In the limit when the sine of the mixing angle goes to zero, the mixing case
degenerates to the scalar case. If additionally h2 = 0, only the standard model is left.
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hs

hs

hs

i3!λsvs

hs

hs hs

hs hh

hh hh

hh

i3!λs i3!λh

hs

hh

hh
hs

hs hh

hh

iηxvh i3
2
ηx

Table D.1.: These are the Feynman rules in the scalar case. The minimal SM Higgs sector
is extended by only three further interactions. The vertices where only SM
Higgs appears are the same.

h1

h1

h1

h2

h2

h2i3η111 i3η222

h1

h1 h1

h1 h2

h2 h2

h2

i3!η1111 i3!η2222

h1

h1

h2 h1

h2

h2

iη112 iη122

h1

h1 h2

h1 h1

h2 h2

h2

i3η1112 i3
2
η1222

h1

h1 h2

h2

i3
2
η1122

Table D.2.: These are the Feynman rules in the mixing case where only Higgs bosons ap-
pear. In comparison to the scalar case, much more vertices are possible.
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f

f̄

H1

f

f̄

H2i
mf
vs
cχ −i

mf
vs
sχ

W+

W−

H1

W+

W−

H2−i
2m2

W

vs
cχ i

2m2
W

vs
sχ

W+

W− H1

H1 W+

W− H2

H2

−i
2m2

W

v2s
c2
χ −i

2m2
W

v2s
s2
χ

W+

W− H2

H1 Z0

Z0 H2

H1

i
2m2

W

v2s
cχsχ i

2m2
Z

v2s
cχsχ

Z0

Z0 H1

H1 Z0

Z0 H2

H2

−i
2m2

Z

v2s
c2
χ −i

2m2
Z

v2s
s2
χ

Z0

Z0

H1

Z0

Z0

H2−i
2m2

Z

vs
cχ i

2m2
Z

vs
sχ

Table D.3.: These are the Feynman rules in the mixing case where the Higgs bosons interact
with fermions and weak gauge bosons. Also the hidden Higgs boson interacts
with the SM particles because of the mass mixing.





E. Observational bias

Statistical fluctuations in the measurements can lead to situations which cannot be in-
terpreted in terms of physically meaningful parameters. One such example is a negative
number of signal events. At the LHC we first measure the sum of signal and background
events in the signal region. The number of background events we then determine either
from extrapolation from a signal-free control region, like sidebands, or from Monte Carlo
simulations. The difference gives us the number of signal events. At arbitrarily large statis-
tical significances the difference between the two measurements, i.e. the number of signal
events, is by definition much larger than the statistical error on each of them individually.
However, for significances between one and three standard deviations as we expect them
for the Higgs sector at the LHC a downward fluctuation in signal-plus-background and an
upward fluctuation in background-only can lead to a negative difference. This effect has to
be dealt with when we compose the sample of measurements which for example enter the
Higgs sector analysis presented in this paper. The question is, if solutions to this problem
will affect for example the central values and errors quoted for the Higgs couplings.

We present three alternative treatments in Figure E.1. On the left-hand side we only
take into account channels where we measure a positive number of signal events. This
prescription we use in our analysis. For couplings fairly close to their Standard Model
values we obtain the correct central value. For small couplings we observe a significant shift
to larger values. The reason is that if a measurement shows an upward signal fluctuation
we include it, while a downward fluctuation quickly reaches the negative-S threshold and
gets excluded.

In the central panel we only include measurements where the nominal number of signal and
background events yields a 2σ excess. We find good agreement between fitted and truth
values of χ, but for cos2 χ < 0.7 there are no measurements left which fulfill this condition.

For the right panel we only include channels where the measured numbers yield a 2σ
excess. Here, we observe a significant upward shift over the whole parameter range. Even
for Standard Model couplings the actual Standard Model is almost excluded at the 95% CL.
Therefore, it is important to take into account measurements which have a low observed
significance on their own. They can provide upper bounds on Higgs couplings and avoid a
bias generated by upward fluctuations of signal events in some of the channels included.
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Figure E.1.: Different treatment of channels, depending on the number of events in the
signal region S + B, compared to background events B from a signal-free
control region. Left: a measurement is included when S + B > B. Center:
only measurements corresponding to at least a 2σ excess for nominal signal
and background rates are included. Right: only measurements for which the
measured values of S + B and B give at least two standard deviations are
included.



F. Scaling of cross sections in a
strongly-interacting Higgs scenario

For the un-aligned shifts of Higgs-gauge and Yukawa couplings the scaling of the cross
sections with ξ does not follow a simple pattern. However, the main features can be
illustrated for two characteristic leading channels, Higgs-strahlung qq̄′ → WH,H → bb̄, and
gluon-fusion gg → H → γγ. Ignoring resummation effects in this qualitative discussion, the
corresponding scaling functions, normalized to unity at the Standard Model value ξ = 0,
can be approximated as

(
Nev

NSM
ev

)
WH,bb

=
1

NWH,bb

(1− ξ) (1− 2ξ)2

(1− ξ)
(1− 2ξ)2

(1− ξ) + γ(1− ξ)

(
Nev

NSM
ev

)
gg,γγ

=
1

Ngg,γγ

(1− 2ξ)2

(1− ξ)

[
(1− 2ξ)2

(1− ξ) + β1(1− 2ξ) + β2(1− ξ)
]

(1− 2ξ)2

(1− ξ) + γ(1− ξ)
. (F.1)

The parameter γ ∼ 0.05 accounts for the admixture of H → WW and ZZ decays compared
to H → bb̄ for Higgs masses close to 120 GeV while β1,2 ∼ −8.9, 19.8 parametrize top- and
W -loop contributions for Higgs decays to photons, including their destructive interference.

As shown in Fig. F.1 the scaling function for Higgs-strahlung plus bb̄ decays falls off straight,
apart from a narrow well close to ξ = 0.5. There, the rates for observing a Higgs boson
are driven to zero. The scaling function for gluon fusion and γγ decay behaves similarly,
except above the well, where the scaling function diverges for ξ → 1. The multiplicities of
the solutions are illustrated for ξ = 0.2 and ξ = 0.6 by the two dashed lines. Depending on
the value of ξ, either one or up to three solutions correspond to given values of the scaling
functions. By combining the two sets of the solutions for the two channels the individual
ambiguities are resolved: the fake solutions for ξ (open circles) are eliminated and only the
true value (full circle) remains.
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Figure F.1.: The scaling functions for Higgs-strahlung WH,H → bb̄ and gluon fusion
gg → H → γγ. The full circle on the straight lines marks the true unique
solution, while the open circles denote fake values which are different for the
two channels.

This theoretical picture is realized only for large event numbers. Otherwise, remnants of
the fake solutions cannot be eliminated completely. This is illustrated in Fig. F.2 where
we present the log-likelihood bands for ξ. In the upper panels we show the individual
Higgs-strahlung and gluon-fusion channels, including their individual fake solutions. In
the lower panels we first combine the two channels, strongly reducing the fake solutions.
In the bottom right panel we include all available channels, eliminating entirely the fake
solutions. Only the width around the true value in two preferred directions remains.
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Figure F.2.: Extracted values for ξ as a function of the assumed ξth for MH = 120 GeV and
30 fb−1. We show profile likelihoods, where we have neglected theory errors
for clarity. Upper: Higgs-strahlung plus bb̄ decay (left), and gluon fusion plus
γγ decay (right). Lower: Combination of the two channels (left) and including
all available channels (right).
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