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Abstract

The task of this bachelor thesis is to work out and to understand the most important
properties of the event shape observables Fox-Wolfram moments (FWM) and to ap-
ply them to the weak boson fusion (WBF) production channel of a Standard Model
Higgs as well as corresponding background processes Z+jets and tt̄ production. It
is possible to show with the FWM that an extra QCD jet in the WBF process is
radiated only under a small angle while an extra jet is more randomly distributed
in case of the background processes.

Zusammenfassung

Das Ziel dieser Bachelorarbeit ist es die grundlegenden Eigenschaften der Observa-
blen ”Fox-Wolfram Momente”(FWM) zu erarbeiten und zu verstehen, sowie sie auf
den schwachen bosonischen Fusionskanal eines Higgs-Teilchens im Standardmodell
und zugehörige Hintergrundprozesse wie Z+Jets und tt̄ Produktion anzuwenden.
Mit Hilfe der FWM ist es möglich zu zeigen, dass ein zum Fusionsprozess hinzu-
gefügter QCD Jet nur unter kleinen Winkeln abgestrahlt wird, während ein extra
Jet im Falle der Hintergrundprozesse eher zufällig im Raum verteilt ist.
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1 Introduction and Motivation

In 2009 the CERN Large Hadron Collider (LHC) started its work and since then
the four main detector experiments ATLAS, CMS, ALICE and LHCb have been
performing measurements of proton-proton collisions. In order to gain information
about the elementary particles and their interactions in the Standard Model (and
theories beyond the Standard Model) it is necessary to understand the final states
(FS) of these collisions and their behaviour.

The LHC detectors can measure the four-momentum of particles created in such
a collision. Hence, one can observe that groups of these particles having nearly the
same momentum direction tend to be clustered into so-called jets. We are interested
in how these jets can provide information about the hard process that took place.

One issue is that some of the most interesting processes have only a small cross
section in comparison to other hard processes meaning that their probability to
appear is low. In this thesis we want to focus on the weak boson fusion (WBF) pro-
duction process of the Higgs. This is described in detail in Section 3. The advantage
of investigating this process in order to measure properties of the Higgs are the FS
particles. This is exploited to suppress the much more likely background processes.
This suppression via so-called WBF kinematic cuts is described in Section 5.

In our analysis, we use the Fox-Wolfram moments (FWM) event shape observables
[14] to gather information about the hard processes of the signal and background
from the kinematics and correlations of the FS jets. In Section 6 we will see the
definition and some of the important properties of this event shape observable.

In Section 7 we apply the FWM to Monte Carlo created events of the WBF
process as well as to the associated background processes. Technical details about
the generation of the events is described in Section 4. We study the final shape
of the distributions and draw some conclusions about jet correlations. Especially
correlations concerning QCD jets, which arise from parton radiation and subsequent
shower, are of interest.

5



2 Theoretical Background - the Standard Model

The Standard Model is a quantum field theory which describes all known particles
and their interactions. The Standard Model is well accepted because it is verified
by experiment. However, it is not a complete theory. The Standard Model does not
include any gravitational effects or dark matter but nevertheless reliable predictions
can be made about particle interactions.

The Standard Model includes numerous elementary particles which can be di-
vided into the two groups fermions and gauge bosons. All spin 1/2 particles are
fermions and we can differentiate between fermions which carries a color charge and
those which do not. Fermions with color charge are called quarks (q) and there exist
six different quarks together with their anti-particle, namely the up, down, strange,
charm, bottom and top quark, or in short notation u, d, s, c, b, and t quark. All
quarks additionally carry an electric charge.

Figure 1: Overview over elementary particles . This figure is taken from [1]

Fermions without color charge are the well known leptons (l): electrons (e), muons
(µ) and taus (τ) with their corresponding neutrinos (νl). Except neutrinos, leptons
are also carrying a electric charge.

While all fermions are spin 1/2 particles gauge bosons have spin one. They are the
photon (γ), the gluon (g) and the W± and Z0 bosons. Like all gauge bosons they are
known as force carriers. Recently, a new Higgs-like boson with as yet undetermined
spin has recently been detected at the LHC [9][10]. The Higgs (H) is one of the
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key building blocks in the Standard Model and is the only boson which not directly
follows from gauge symmetry. The Higgs field was added to the Standard Model
in order to maintain a proper mass term for fermions and gauge bosons otherwise
they would be massless. Such a Higgs field creates masses by interacting with these
particles. A summary about the existing elementary particles with the exception of
the Higgs boson can be found in Figure 1.

The Standard Model describes the electromagnetic, weak and strong force, i.e.
the interactions between the different group of particles. The electromagnetic force
describes the interaction between charged fermions and photons while the weak force
is based on the interaction with the W± and Z0 bosons. Both forces can be described
in the Standard Model by the electroweak force. The strong force is described by
quantum chromodynamics (QCD) and includes all interactions between quarks and
gluons thus describing color exchanges between particles. An overview between the
possible interactions can be found in Table 1 below.

l q g W± Z0 γ H
l × × × X X X X
q × × X X X X X
g × X X × × × ×
W± X X × X X X X
Z0 X X × X × × X
γ X X × X × × ×
H X X × X X × X

Table 1: Interactions between different particles of the Standard Model. See Figure
1 for the particle properties.

Color confinement states that particles with color cannot be isolated, i.e. only
color neutral hadrons can exists. If e.g. two quark are separated they will decay
immediately into color neutral hadrons in a process known as hadronisation. This
is a common effect of hadronic collisions like those of the LHC and can be observed
as a jet in the form of a spray of hadrons created by the colored particles of the hard
process.
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3 Particle Processes

3.1 Weak Boson Fusion Higgs Production

3.1.1 Tree Level

The signal process is that of WBF Higgs production. In this process a Standard
Model Higgs boson is created via a weak interaction as it can be seen in Figure
2. The carrier of the weak force is in our case a W± boson pair which are created
through weak boson bremsstrahlung from the incoming partons.

�W±
H

q

q

q

τ+

τ−

q

g

Figure 2: WBF and decay
to τ τ̄

�W+

W−

τ+

τ−

ν̄τ
µ+

νµ

ν̄e

e−
ντ

Figure 3: Leptonic τ± decay

The Higgs boson will decay afterwards before reaching the detector. There are
different decay channels possible like H → γγ or H → ZZ, but here we consider
the Higgs boson to decay leptonically into a τ± pair:

H → τ+τ−. (3.1)

Due to their short lifetimes, the created τ± pair is not stable and the τ ’s will
normally decay into quarks which hadronise or leptonically. Here we focus on the
leptonic decay as this will give rise to a clean characteristic signal in the detector:

τ+τ− → e±µ∓/pT . (3.2)

/pT denotes in this case missing energy in the form of the corresponding neutrinos
created in this decay, which are invisible in the detector because of their weak
interaction with matter.

Due to their stability, the muons and electrons they can be detected in the detec-
tor directly. However the outgoing partons which have radiated the W± bosons will
hadronise to jets and therefore can not be detected directly.

As mentioned in the Introduction, we are only interested in the jet kinematics and
therefore we can ignore the τ± decay because it will have no influence on the jets.
In the following analysis then, we will regard the τ ’s as stable. The cross section
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of the overall process is reproduced by multiplying the cross section of the process
without decaying τ ’s with the branching ratio of τ → lν̄l where l = e, µ.

σe±µ∓ =
B(τ− → l−ν̄lντ )B(τ+ → l+νlν̄τ )

2
στ± (3.3)

The numerical value of the branching ratios are 0.3524 [12] and so the conversion
factor is 0.35242

2
.

3.1.2 Considering an Additional QCD Jet

In addition to the process above, we also consider the possibility of one extra parton
radiated at any stage of this process via the strong interaction. This extra parton
will hadronise and, depending on how we characterise the jet, an additional jet may
be formed. A jet produced via this QCD radiation is referred to as a QCD jet. Just
how often a new jet is produced (given our jet definition) will be shown in Section
5.3. In case of such an extra jet, the WBF process could also have been gluon ini-
tiated. This can be illustrated by Figure 2 by switching the upper incoming quark
with a gluon which splits to a qq̄ pair with the (anti)quark participating in the hard
process and the other parton of the pair acting as the so-called QCD radiation.

How the topological structure of this process looks like is now the important
question. There are two leading jets created by the two outgoing quarks which
should be still boosted along the z-direction. We expect them to be close to the
beam axis. The Higgs boson instead will decay into two τ ’s which are more likely
perpendicular to the beam axis. In case of a QCD jet the extra parton will be more
likely radiated under a small angle close to the outgoing quarks and so will be the
jet. So we expect between two and three jets close to the beam axis.

3.2 Backgrounds

The WBF of the Higgs can be identified in the detector by the clean central e±µ∓

pair. Further, we do not expect any hadronic activity in this region. However, there
exist some other processes which will have the same characteristic signal in the form
of a central e±µ∓ pair. We wish to avoid misidentifying this with a WBF process.
In the following we will focus on two so called background processes, namely Z+jets
and tt̄ production.

3.2.1 Z+jets

In this background process the e±µ∓ pair is created via a decay of a Z boson into a
τ± pair where the τ ’s decay identically as in WBF:

qq → Z → τ+τ− (3.4)

As the two extra jets of Z+jets are produced by QCD radiation, we wish to
investigate how the jets of this process can mimic those of the WBF signal. These
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Figure 4: Example qq̄-, gq-, and gg-initiated process with the decay to a τ± pair

QCD jets will tend to be distributed more randomly (as will be shown) than those
of WBF, giving us a handle on how to suppress this background. If we have at least
one extra jet this process can also be gluon initiated as it can be seen in Figure 4.

3.2.2 tt̄ production

Another background is known as tt̄ production where the e±µ∓ pair is not created
with a τ decay but through multiple decays initiated by the hard process tt̄ pair.
The process for the production of the tt̄ is in general

pp→ tt̄ (3.5)

so it can be either gluon or quark initiated.

�
g

q

q̄

J

t

t̄

Figure 5: One of the possi-
ble tt̄ productions
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Figure 6: One possible de-
cay of the tt̄ pair

The decay channel for the tt̄ pair is a decay into b quarks and a W± pair

pp→ tt̄→ bb̄W+W− (3.6)

where the b quarks will hadronise and form a jet.
The W± bosons will decay leptonically into the e±µ∓ pair so finally:

pp→ tt̄→ bb̄W+W− → e±µ∓/pT + jj (3.7)

We will have then - like in the WBF process - two leading jets from the b quarks,
but the main difference is, that this two jets are expected to be more likely central.
As we have QCD radiation possibly giving rise to an extra (non-b) jet we will
expect also a randomly distributed jet. Again, we use this as a way to suppress this
background.
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4 Technical Details

4.1 Event Generation with SHERPA

In order to theoretically study event shape observables, we use a Monte-Carlo event
generator to generate events for the signal and background processes. We have used
the generator SHERPA [16].

SHERPA requires a control file which takes in different options for the hard pro-
cess. An example of the important parts of such a control file can be found in the
following. This code snippet contains the settings of the WBF process described in
the section above, including descriptive comments.

All particles are labeled following the Monte Carlo particle numbering scheme
[15]. The most important numbers are ±15 for τ∓, 25 for the Standard Model Higgs
and 23,±24 for Z,W±. 93 is an internal placeholder for partons.

// general information for SHERPA

(run){

EVENTS 50000; // number of events to be generated

MASS[25]=125. // set the mass of the Higgs boson to 125 GeV

MASSIVE[15]=1 // define the tau’s to be massive

ACTIVE[23]=0 // disable a WBF via a Z boson

STABLE[15]=1; // set the tau’s to stable

RANDOM_SEED1=10100; // some random seeds for ...

RANDOM_SEED2=10001; // ... the random number generator

HEPMC2_SHORT_OUTPUT=event_record ; // define the ...

EVENT_MODE=HepMC_Short; // ... event record output mode

EVT_FILE_PATH=/$path/

}(run);

// define the underlaying theory

(model){

MODEL=SM; // Standard Model is the theory ...

// ... we want to use for our analysis

CKMORDER=3; // we want to use the highest known order ...

// ...in the CKM matrix elements

}(model);

// definition of the hard process

(processes){

Process 93 93 -> 25[a] 93 93 93{1} // two incoming partons

// -> H + two partons + one extra QCD parton

Decay 25[a] -> -15 15 // define the Higgs to decay ...

// ... into a tau pair

CKKW sqrt(30/E_CMS) // set some accuracies

Integration_Error 0.02 {4,5};

ME_QED=Off; // avoid additional radiation of the tau’s
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YFS_MODE=0;

Order_EW 4; // number of weak interactions

End process;

}(processes);

(beam){

BEAM_1 2212; BEAM_ENERGY_1 7000; //input parameters for ...

// ... the collision:

BEAM_2 2212; BEAM_ENERGY_2 7000; // two protons with 7 TeV

}(beam);

The assumed mass for the Higgs boson is 125 GeV which is comparative close to
the latest results at the LHC detectors ATLAS [9] and CMS [10].

SHERPA will calculate the cross section of the given process and afterwards events
will be generated. These events will be stored in a file using HepMC2 [11]. The
HepMC2 output consists of a record of all particles produced during the event - the
so-called “event record”.

Especially for the background processes we have to generate a very large number
of events and in order to do so in appropriate amount of time we have used the
bwGRiD [2]. In this way, it was possible run over 160 instances of SHERPA at the
same time. The high number of events also led to a huge amount of data and we had
to convert the HepMC2 format into smaller files containing only the FS particles
produced in the event.

Approximately 1.3 million event of the WBF process, 110 million of Z+jets and
30 million of tt̄ production events were generated corresponding to a total of 488
GB of data.

4.2 Event Analysis - Technical Details

The analysis is written in C++ and because of the huge amount of data it was useful
to parallelize our written source code with OpenMP [4] so that multiple CPUs are
used.

The event records from HepMC2 consists of hundreds of individual FS particles.
For clustering the particles of an event into jets we have used FastJet [7] with the
anti-kT algorithm [6]. The anti-kT algorithm is a commonly used jet clustering
algorithm consisting of the following steps:

1. Define a list of so called preclusters which is a list of 4-momentum-vectors
ordered by their absolute value. At the beginning every particle of an event is
one precluster.

2. Calculate for each precluster

di = (piT )−2 (4.1)

and for each pair of preclusters

dij = min(di, dj)
(Rij)2

R
(4.2)
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with

• the transverse momentum pT =
√
p2x + p2y,

• the angular distance Rij =
√

(∆y)2 + (∆ϕ)2

• where ∆y = y1 − y2 is the difference in the rapidity y = 1
2

ln E+pz
E−pz

• and ∆ϕ as the difference in azimuthal angle ϕ of the preclusters in spher-
ical coordinates,

• and a free parameter R.

All of these parameters are explained in detail in the next section.

3. Determine the minimal values

dmin = min(di, dij) (4.3)

4. If dmin is one of the dij than both preclusters i and j are close enough to be
denoted as one single precluster. Both preclusters are merged by adding their
4-momentum and the procedure starts at point 2 again, otherwise continue
with the next step.

5. dmin is one of the di which we now define as a jet. We remove this precluster
from the list and continue with step 2 if preclusters are left. Otherwise all
particles are already clustered to jets and we have finished.

We have used in our analysis R = 0.4.
The results of the calculation of important parameters are again stored in files in

order to make plots afterwards. Unless otherwise noted, all plots were made with the
Root package [5]. The Feynman graphs are made with the LATEXpackage FeynMF
[18].
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5 Weak Boson Fusion Kinematic Cuts

The cross sections of the processes - calculated by SHERPA - are 17.2 fb for WBF,
116 pb for Z+jets and 16.9 pb for the tt̄ production with the already applied conver-
sion factor for the τ decay. In order to enhance the WBF signal the background is
normally reduced by numerous conditions on the FS jets, i.e. events which are not
fulfilling one of these conditions will not be taken into account for further analysis.

These cuts consider the kinematics of the jets and leptons and are optimized to
WBF processes and the geometric characteristics of the LHC detectors. The idea is
that most of the WBF events should fulfill the conditions but the background events
should not. The parameters which describe the important kinematic properties of
the jets are described in Section 5.1. In Section 5.2 the cuts are explained in detail.

5.1 Important Parameters

There exist two main parameters describing the kinematics of a FS object: The
transverse momentum pT and the rapidity y.

The transverse momentum pT is simply defined as the absolute value of the mo-
mentum relative to the beam axis, z,

pT =
√
p2x + p2y, (5.1)

if ~pjet = (px, py, pz)
T . For low values of pT the jet is close to the beam axis and/or it

is a jet with low total momentum. If the FS object is a jet, we will refer to this as
soft jet. A high pT instead indicated a very high total momentum and/or an object
nearly perpendicular to the beam axis. If a jet, it is named a hard jet.

The rapidity y describes how close a jet is to the beam axis and is defined by

y =
1

2
ln
E + pz
E − pz

, (5.2)

with E the energy. In the massless case, the rapidity is then called pseudorapidity
and can be shown to take the form η = − ln tan θ

2
, and is now only a function of

the polar angle θ. Rapidity y is zero for an object completely perpendicular to the
beam axis, whereas y goes to infinity for an object parallel to the beam axis. Objects
tending toward zero rapidity are called central while objects with very large positive
or negative rapidity are called forward or backward, respectively.

A third important parameter is the angular distance ∆Rj1j2 between two objects,

∆Rj1j2 =
√

(∆y)2 + (∆ϕ)2 (5.3)

where ∆ϕ = ϕj1 − ϕj2 is the difference in azimuthal angle of the two objects j1 and
j2, and ∆y = yj1 − yj2 . With the definition of the invariant mass

Mj1j2 =
√

(∆E)2 − (∆~p)2. (5.4)

the set of important parameters for kinematic cuts is complete.
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5.2 Description of Cuts

The specific cuts mainly follow the work of [19]. The first two cuts were applied
to the leptons, so either τ± for WBF and Z+jets or the e±µ∓ pair in case of tt̄
production:

pT,l ≤ 10 GeV and (5.5)

|yl| ≥ 2.5 (5.6)

The first cut claim the leptons to fulfill a quite minimal pT requirement, whereas
the second one ensures the leptons to be central. Both cuts mainly lead to a very
clean signal in the detector so that these processes can be identified easily.

The third cut is applied to the jets. The condition is that there must exist at
least two jets which fulfill

pT,j ≥ 20 GeV and (5.7)

|yj| ≤ 5.0. (5.8)

This rapidity cut has to be performed because of the geometry of the detector. As
long as it is not possible to build a detector in front of the beam tunnel, the jets close
to beam axis can’t be measured. This leads to the demand that the rapidity must
be lower than a certain value, in this case 5.0. The pT cut ensures that there are
at least two detectable jets. The following cuts are only applied to the two hardest
jets, j1 and j2, which fulfill the above condition. These are furthermore referred to
as ‘tagging jets’.

The next two cuts guarantee that these two jets are well separated, both from
each other and from the leptons.

∆Rj1j2 ≤ 0.7 and (5.9)

∆Rjl ≤ 0.7 (5.10)

This is due to resolution limits of the detector and to avoid incorrect identification
of the two leptons.

The up to now performed cuts are mainly done to get a clean characteristic de-
tector signal and to minimally isolated jets from each other and the leptons. The
following cuts are meant to distinguish between WBF and the background processes
with the aim of suppressing the background.

This next requirement ensures that both leptons are more central than the two
hardest jets and that the leptons are in between these two jets in reference to the θ
plane:

min(yj1 , yj2) + 0.7 < yl < max(yj1 , yj2)− 0.7 (5.11)

This condition is generally true for WBF, because we expect the leptons to be central
and the jets to be forward or backward but not necessarily for the tt̄ production
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process where the jets coming from the hadronised b-quarks tending to be more
central.

It is necessary that all events contain tagging jets in opposite hemispheres:

yj1 · yj2 < 0, (5.12)

Next, we require the tagging jets to have a minimal separation in rapidity of 4.4
units.

|yj1 − yj2 | ≥ 4.4. (5.13)

For forward and backward jets in different hemispheres, as it is the case in WBF, it
is easy to see that this condition is generally fulfilled. This will be shown explicitly
in the next section using a cut flow analysis.

The next to last cut claims the invariant mass of the two jets be higher than a
certain value:

Mj1j2 ≥ 600 GeV (5.14)

Additionally there is on more cut applied known as a b-veto. At the LHC it is
possible to tag jets which are coming from hadronised b quarks and therefore to
exclude tt̄ production events, see for example [8] for further information in case of
the ATLAS experiment. We can simulate such a b-veto by demanding a central b
quark

pT,b ≥ 20 GeV and (5.15)

yb ≤ 2.5 (5.16)

and ignore such an event with a possibility of 60%. These 60% refers to the success
rate of a b-tag.

5.3 Cut Flow Analysis

In Table 2 are the results of these cuts and we can see that the cross sections of the
background processes are much lower than before. Even though the cross section
of WBF is still lower than the cross sections of Z+jets and tt̄ production they now
span only two order of magnitude, rather than up to five initially. In total, 161 765
of WBF, 34 865 of Z+jets and 36 048 of tt̄ events survive the cuts and are used for
further analysis.

In Table 3 we can see how many events with a certain number of jets are existing
as well as the average. WBF and Z+jets are mainly consisting of 2-jet and 3-jet
events while in case of tt̄ production higher jet multiplicities are observed.
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Acceptance Criteria Non-Survival Probability [%] cross section [fb]
WBF Z+jets tt̄ WBF Z+jets tt̄

pT,l ≥ 10 GeV 2.9 6.1 9.4 16.7 109 000 15 400

|yl| ≤ 2.5 23.3 47.7 14.2 12.8 57 100 13 200

pT,j ≥ 20 GeV and 31.2 91.9 6.8 8.8 4 640 12 300
|yj| ≤ 5.0

∆Rj1j2 ≥ 0.7 3.2 4.5 2.4 8.5 4 430 12 000

∆Rjl ≥ 0.7 8.2 15.0 20.0 7.8 3 770 9 600

min(yj1 , yj2) + 0.7 < yl and 50.6 92.3 94.0 3.9 289 574
max(yj1 , yj2)− 0.7 > yl

yj1 · yj2 < 0 3.9 13.8 13.6 3.7 249 496

|yj1 − yj2| ≥ 4.4 26.9 63.9 78.7 2.7 90.0 105

Mj1j2 ≥ 600 GeV 19.1 58.7 32.4 2.2 37.2 71.3

pT,b ≥ 20 GeV and 70.6 20.9
yb ≤ 2.5

Table 2: Cut flow for WBF and its backgrounds with the resultant cross sections.
The cross section of the processes with stable τ ’s have been multiplied with
the conversion factor 0.35242

2
, so that they can be compared directly with

the tt̄ process.

number jets WBF Z+jets tt̄ production
2 85.0% 64.7% 25.4%
3 13.4% 24.5% 32.2%
4 1.5% 7.9% 23.2%
5 0.1% 2.2% 12.2%
>5 0.1% 0.7% 6.9%
Ø 2.2 jets 2.5 jets 3.5 jets

Table 3: Amount of jets in an event for the different processes after all acceptance
criteria are met.
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6 Fox-Wolfram moments

6.1 General Properties

6.1.1 Definition

The FWM are a set of event shape variables originally defined as

Hl =
4π

2l + 1

l∑
m=−l

∣∣∣∣∣∑
i

Y m
l (ϕi, θi)

|~pi|√
s

∣∣∣∣∣
2

(6.1)

and are first introduced by Geoffrey C.Fox and Stephen Wolfram for e± annihilations
in 1979 [14]. Y m

l denotes the spherical harmonics, |~pi| refers to the absolute value of
the momentum of the FS jets,

√
s =

∑
i

|~pi| is the total available momentum of the

jets and ϕi/θi are the azimuthal and polar angle, respectively, of the jets in common
spherical coordinates. Notice that s is in this case not the Madelstam variable which
would include the total four momentum.

A more useful expression is the above formula in terms of the Legendre polyno-
mials Pl:

Hl =
4π

(2l + 1) · s

l∑
m=−l

∣∣∣∣∣∑
i

Y m
l (ϕi, θi) |~pi|

∣∣∣∣∣
2

(6.2)

=
4π

(2l + 1) · s

l∑
m=−l

(∑
i

Y m
l (ϕi, θi) |~pi|

)(∑
j

Y ∗ml (ϕj, θj) |~pj|

)
(6.3)

=
∑
i,j

4π |~pi| |~pj|
(2l + 1) · s

l∑
m=−l

Y m
l (ϕi, θi)Y

∗m
l (ϕj, θj) (6.4)

=
∑
i,j

|~pi| |~pj|
s

Pl(cos Ωij) (6.5)

where in the last line the addition theorem for the spherical harmonics

Pl(cos Ωij) =
4π

(2l + 1)

l∑
m=−l

Y m
l (ϕi, θi) · Y ∗ml (ϕj, θj) (6.6)

is used with Ωij as the total angle between jet i and jet j.

6.1.2 Weight Factors

Deviating from the original definition it might be also interesting to define the FWM
with pT instead of |~p| as a weight factor in front of the Legendre polynomials [13]. For
this purpose we will write in the following Wi instead of |~pi| as a general placeholder
for the different definitions:

Hl =
∑
i,j

WiWj

s
Pl(cos Ωij) (6.7)
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Notice that in this case also the normalization factor s has to be varied in order
to be consistent, so

√
s =

∑
i

Wi.

6.1.3 Legendre Polynomials

The rewritten FWM depend on the Legendre polynomials so it is important to know
how they look like. In Figure 7 is a plot of the first six Legendre polynomials which
are defined as

Pl(x) =
1

2ll!

dl

dxl

[(
x2 − 1

)l]
(6.8)

P0(x) = 1 (6.9)

P1(x) = x (6.10)

P2(x) =
1

2

(
3x2 − 1

)
(6.11)

... (6.12)

P5(x) =
1

8

(
63x5 − 70x3 + 15x

)
(6.13)

In our calculations we have made use of the recursive relation, known as the
Bonnet’s recursive formula:

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x) (6.14)

Figure 7: The first Legendre polynomials. This figure is taken from [3]
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One can see that the Legendre polynomials for odd l are odd and even for even l.
For an angle of Ωij = 180◦ between two jets, cos Ωij = −1 and hence the Legendre
polynomials will take the value (−1)l. In the case of WBF the two tagging jets will
approach this case. As Ωij = Ωji and Pl(Ωii) = 1 will hold so we can split up the
sum of the FWM:

Hl =
1

s

(∑
i

W 2
i + 2

∑
i<j

WiWjPl(cos Ωij)

)
(6.15)

6.1.4 Boundaries

A important question concerning the FWM is whether they are bounded or not.
To calculate the upper bound we could assume Pl(cos Ωij) = 1 because that is the
highest possible value for the Legendre polynomials and all weight factors in front
are positive:

Hl,max =
∑
i,j

WiWj

s
=

∑
i,j

WiWj(∑
k

Wk

)2 =

∑
i,j

WiWj∑
k,m

WkWm

= 1 (6.16)

So this leads to the conclusion

Hl ≤ 1. (6.17)

Incidentally the above equation is also true for l = 0 because of P0(x) = 1, so
H0 = 1 will hold for all events.

The lower bound is more difficult. Pl(cos Ωij) = −1 is the lowest possible value
for the Legendre polynomials and Eq.(6.15) gets simplified to

Hl,min =
1

s

(∑
i

W 2
i − 2

∑
i<j

WiWj

)
(6.18)

which in general could be smaller than zero. For only two jets this formula becomes

Hl,min = (W1−W2)
2

s
which is always greater than or equal to zero. But already for

more than two jets the assumption Pl(cos Ωij) = −1 breaks down because it is not
possible that every angle Ωij between the jets is 180◦. So the Hl,min from above will
not be reached for more than two jets. We observe that also for more than two jets
the condition Hl ≥ 0 seems to hold. So finally we can state that:

0 ≤ Hl ≤ 1 (6.19)
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6.2 2-jet Events

6.2.1 Simplifications

The general definition of the FWM is quite unhandy because of its double sum over
the jets. Therefore, it was useful to come up with some simplifications in order to
get a better feeling for its properties.

First of all we will take only jets with pT ≥ 20 GeV and |y| ≥ 5.0 into account.
Due to the detector resolution and geometry this is a condition which we have to
introduce as we have seen in the section before. This reduces the number of jets
significantly, on average only 2.2 jets for WBF, 2.5 jets for Z+jets and 3.5 jets for
tt̄ production will go into the calculations of the FWM (see Table 3 of Section 5.3).

There are many events which consists only of the two tagged jets and hence the
sum has only two terms. While this greatly simplifies the analysis even for three
or more jet events this simplification can give an approximation because for every
softer jet the weight factor Wi gets per construction smaller. In the case of just two
tagging jets we can explicitly write out the sum:

H
(2-jets)
l =

W 2
1Pl(cos Ω11) +W 2

2Pl(cos Ω22) + 2W1W2Pl(cos Ω12)

s
(6.20)

=
W 2

1 +W 2
2 + 2W1W2Pl(cos Ω12)

(W1 +W2)2
(6.21)

where we have used that Pl(cos Ωii) = Pl(1) = 1. This equation can be even more
simplified by parameterize this formula using

W2 = r ·W1, Ω12 ≡ Ω (6.22)

where without loss of generality W1 ≥ W2 so that r ∈ (0, 1]:

H
(2-jets)
l =

1 + 2rPl(cos Ω) + r2

(1 + r)2
(6.23)

This equation effectively describes the dominant behaviour of the FWM for any
number of tagging jets, as will be seen. The formula finally depends only on two
parameters, namely the total angle Ω between the two jets and their ratio r in
either pT or |~p|, which makes it possible to draw an analytical 2-dimensional plot
of this function. One advantage of this parameterization is the fixed range for the
parameters because r ∈ (0, 1] and Ω ∈ [0, π] ≡ [0◦, 180◦] will always hold so we are
able to make this plot independent of the definition of the weight factor and with
dimensionless parameters:

H
(2-jets)
l : (0, 1]× [0, π]→ [0, 1] (6.24)

In Figure 8 we have done this 3-dimensional plot for several different ls and one
can observe the influence of the symmetry properties of the Legendre polynomials.
We can see that the influence of the parameter r is quite small in comparison to the
total angle Ω. r is only important at small values, or in other words when one jet is
comparatively hard. In the other cases we can reduce our focus to the angle Ω.
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Figure 8: A plot of the analytical expression of the FWM in the 2-jet case for several
values of l

6.2.2 Understanding the Shape

We now use the generated events to calculate distributions for the FWM in the limit
of 2-jet events. Figure 9 shows the H5 distribution for the signal and background
after the necessary minimal cuts of eq.(5.5)-(5.8) and pT as the weight factor. The
justification of this choice of weight factor is postponed to a later section. We
have applied only the minimal cuts so we expect a difference in shape between the
processes because the different topological structures are still present.

Independent of the process the FWM seems to have the same characteristic shape.
Each process does have two sharp cuts around 0.3 and two broad peaks around 0.7
which can be explained by looking at Figure 8:

Due to the Legendre polynomials, H5 has two local maxima and two minima.
Over a wide range of r the level of these maxima and minima are nearly the same
so that we can denote them as a stationary line. The value of this stationary line
can be approximated by setting r = 1 into eq.(6.23),

H
(2-jets)
5

r=1
=

1 + 2P5(cos Ω) + 1

22
(6.25)

=
1

2
(1 + P5(cos Ω)) (6.26)

and calculating the local extrema.
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Figure 9: FWM applied to WBF (black), Z+jets (red) and tt̄ (blue) with l=5 just
after the minimal kinematic cuts. Only events with two jets are taken into
account and pT is used as the weight factor. The graph is normalized such
that the sum over the bins is one.

The resultant extrema are:

Ω1 = 40◦ ⇒ H
(2-jets)
5 (r = 1,Ω1) = 0.29 (6.27)

Ω2 = 73◦ ⇒ H
(2-jets)
5 (r = 1,Ω2) = 0.67 (6.28)

Ω3 = 107◦ ⇒ H
(2-jets)
5 (r = 1,Ω3) = 0.33 (6.29)

Ω4 = 140◦ ⇒ H
(2-jets)
5 (r = 1,Ω4) = 0.71 (6.30)

We can see that these values correspond to the cuts and the peaks mentioned
above and the reason is quite plausible. Around such a stationary line the depen-
dence on the angle Ω and the ratio r is quite small in comparison to everything else
where the gradient is much higher. The reason why the minima give rise to a sharp
cut while the maxima have a broad peak is simply that the minima are a stable line
while the maxima are unstable: When we are at a minimum and vary the angle Ω
and r the value for the FWM will always grow to some approximation. Due to this
behaviour values below this minima can’t be reached in that local region of the r-Ω
space and so a sharp border will arise. However, at a maximum we can vary the
two parameters r and Ω and the FWM can get both larger and smaller depending
on the direction of the variation. A smeared peak at 0.71 and 0.67 is the result.

A similar behaviour can be observed also for other odd and even l than l = 5 and
the number and position of possible peaks and cuts depends obviously on the value
for l.

The visibility of the peaks and cuts can give information on how many events are
in the associated region. The higher the value for l the more minima and maxima
we have in the Legendre polynomials and this leads of course to more peaks and

23



cuts in the FWM. Because the position of the maxima and minima changes with
l it is in general possible to scan through the r-Ω space with varying l to see how
many events are in a region around such a stationary line.

6.2.3 Jet Correlations

Let us first define three different regions for H5: region 1 is the region with FWM
smaller than the first sharp cut at 0.29, region 3 is the region with Fox-Wolfram a
bit higher than the peak at 0.71 and region 2 is the intermediate region with FWM
in between; see Figure 9.
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Figure 10: Visualization of the three regions for l = 5.
left: pure Ω dependency. The accessible region due to r is colored.
right: r-Ω plane.

The motivation of this definition is that we can deduce from the region information
about the correlation between the two jets. Of course during the calculation of the
FWM information is lost because Hl maps two parameters onto one (see. eq.(6.24))
but it is possible to unite the jet correlations. Note that the border between region
2 and region 3 is only roughly defined due to the broad shape of the peak. This is
easily seen readily in the leftmost plot of Figure 10.

Region 1 refers to events where the two tagging jets are nearly back to back and
don’t have a small value for r as it can be seen in Figure 10. The WBF graph
in Figure 9 is higher than e.g Z+jets which is easy to understand concerning the
topological structure of the different processes: The two dominating jets of WBF
should be forward-backward and thus nearly back-to-back. There does not exist a
condition like this for the leading jets of Z+jets. The jets of Z+jets could be more
evenly distributed and so this leads to a lower line in this region in comparison to
WBF.

Events which will have a value for the FWM in region 3 have jets with nearly the
opposite correlation than the jets in region 1: the jets of events in region 3 have to
be nearly parallel and/or they have a small ratio r.
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All other events will lay in region 2. These events will have jets which are not
parallel and in addition the ratio r is not small.

We have defined these three regions for H5 but we can define these regions in the
same way also for other value of l. For odd values of l the only differences are the
numerical values of the borders, because the position of the maxima and minima
of the Legendre polynomials are different. In general, the sizes of region 1 and 3
will get smaller for higher odd values of l. However for even values of l there is
one additional change: As the Legendre polynomials are even functions there is no
difference between angles of 0◦ and 180◦. Due to this property, events which are
normally in region 1 are now overlaid with region 3. Thus, the Legendre polynomials
do not allow for even l any values below region 2. A summary of the properties of
this regions can be found in Table 4.

region jet correlation odd l jet correlation even l
1 nearly back to back, no small r not reachable
2 not parallel, no small r not parallel, not back to back, no small r
3 nearly parallel or small r back to back or parallel or small r

Table 4: Three defined regions in the FWM and the associated jet correlations

We know what to expect after applying all WBF kinematic cuts: The two leading
jets should be back to back to some approximation so we expect the events to be
mainly in region 1 for odd l and region 3 for even l. As a result we expect a peak
at zero for odd l and a peak at one for even l for the events with two jets.

Note that it is possible to gather information about the correlation between the
jets but the FWM can’t give any information about the position in space as long as
the only parameters are r and Ω. This means that we can’t differentiate between a
central jet pair and a forward-backward jet pair in case of only two jets.

6.2.4 Dependence on Spherical Coordinates

With the total angle Ω the FWM depend on a parameter which is independent of
the choice of a coordinate system, but many physical questions refer to the polar
and azimuthal angle of the two leading jets. Thus it might be useful to express Ω
in terms of spherical coordinates:

cos Ω =
~p1 · ~p2
|~p1| |~p2|

(6.31)

with

~pi = |~pi|

sin θi cosϕi
sin θi sinϕi

cos θi

 (6.32)
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eq. (6.31) reads:

cos Ω = sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2 (6.33)

= sin θ1 sin θ2 sin ∆ϕ+ cos θ1 cos θ2 (6.34)

=
1

2
[(cos ∆θ − cos�θ) sin ∆ϕ+ cos ∆θ + cos�θ] (6.35)

where we have used the trigonometric addition theorems and ∆θ := θ1 − θ2, �θ :=
θ1 + θ2. So it is possible to parameterize the total angle in terms of the difference
in azimuthal angle and in the sum and difference in polar angle.

However, in WBF we generally expect θ1 ≈ 0 and θ2 ≈ π thus ∆θ ≈ �θ which
means the pre-factor in front of sin ∆ϕ is comparatively small with respect to the
other terms. In other words, the dependence on ∆ϕ is low but still present because
due to the kinematic cuts none of the jets will be completely parallel to the beam
axis.

6.3 n-jet Events

After we have seen the properties of the FWM in the 2-jet case an obvious question
is how much influence a larger number of jets would have. As already mentioned,
the equation (6.23) for 2-jet events might give a good approximation for the FWM
in the three or more jet case because per construction the pT of the subsequent jets
is smaller and also is their contribution to the FWM. The 3-jet events are of interest
as this third jet most likely arises from the QCD radiation and we exactly wish to
investigate correlations between QCD jets and the tagging jets.

6.3.1 Small 3rd jet

The first obvious task is to parameterize the FWM for 3-jet events as follows:

H
(3-jets)
l =

1 + r22 + r23 + 2r2P
12
l + 2r3P

13
l + 2r2r3P

23
l

(1 + r2 + r3)2
(6.36)

with

r2W1 = W2 with r2 ∈ (0, 1] (6.37)

r3W1 = W3 with r3 ∈ [0, r2] (6.38)

P ij
l ≡ Pl(cos Ωij) (6.39)

Let us now assume a vanishing third jet so that we can make a Taylor expansion
around r3 = 0 up to the order O(r3):

H
(3-jets)
l = H

(3-jets)
l

∣∣∣∣
r3=0

+
∂H

(3-jets)
l

∂r3

∣∣∣∣
r3=0

· r3 +O(r23) (6.40)

≡ H
(2-jets)
l + δH

(3rd jet)
l (6.41)
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where

δH
(3rd jet)
l :=

∂H
(3-jets)
l

∂r3

∣∣∣∣
r3=0

· r3 +O(r23) (6.42)

= 2

(
P 13
l + r2P

23
l

(1 + r2)2
− 1 + r2 + 2r2P

12
l

(1 + r2)3

)
· r3 +O(r23) (6.43)

=
2r3

(1 + r2)2

(
P 13
l + r2P

23
l − (1 + r2)H

(2-jets)
l

)
+O(r23) (6.44)

= ∆ +O(r23) (6.45)

can denote a correction factor of H
(2-jets)
l in case of a small 3rd jet.

Due to the acceptance criteria of jets we expect no 3rd jet with r3 ≈ 0 thus the
Taylor expansion around r3 = 0 has to be justified. As long as r3 is not zero but
with an average of around 0.4 comparatively small, the only issue might be that we
have to take much higher orders in r3 into account to get sufficient results. Let us
take a look at δH

(3rd jet)
l including O(r23) which can be written as

δH
(3rd jet)
l =

(
1− 2r3

1 + r2

)
·∆ + 2

(
1− P 12

l

) r2r
2
3

(1 + r2)4
+O(r33). (6.46)

The correction up to the third order includes two terms whereas the second one is

due to the very small factor
r2r23

(r2+1)4
< 0.03 negligible. The first term is the correction

∆ of Eq. (6.45) but reduced by a factor which can not be discussed away. Even
higher orders will add more smaller corrections with changing signs to ∆. Thus
they are changing the scale of the correction factor δH

(3rd jet)
l , but independent of

the orientation in space of the third jet.
These corrections on ∆ aren’t small for the first orders in r3 thus a quantitative

analysis must include higher orders. But as long as we are not interested in the exact
values of δH

(3rd jet)
l and the scale does not depend on orientation of the third jet in

space, it is still possible to make statements about a third jet with the distribution
of Eq. (6.45). However, we have to keep in mind that we overestimate the value for

δH
(3rd jet)
l .

An interesting property of this correction factor δH
(3rd jet)
l is that it is a function

of the FWM of the two tagged jets. Thus the strength of this correction depends
on the parity of l because the FWM should peak around zero for odd l and around
one for even l as mentioned above.

An important remark is that in the 2-jet case there was a region for even l (region
1) which couldn’t be reached due to the symmetry of the Legendre polynomials.
However, in the 3-jet case it is possible that an event will be in this region.
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6.3.2 Events with n > 3

We can make the same Taylor expansion ansatz of a small 3rd jet also for more than
three jets because every additional jet is even softer. In general

H
(n-jets)
l = H

((n-1)-jets)
l + δH

(n-th jet)
l (6.47)

= H
((n-2)-jets)
l + δH

((n-1)-th jet)
l + δH

(n-th jet)
l (6.48)

= H
(2-jets)
l +

n∑
i=3

δH
(i-th jet)
l (6.49)

will hold with

δH
(i-th jet)
l := lim

mi→∞

mi∑
j=1

∂jH
(i-jets)
l

j! · ∂(ri)j

∣∣∣∣
ri=0

· rji . (6.50)

This formula means that we can reduce even an n-jet event to an 2-jet event
which is shifted by δH

(i-th jet)
l with every additional jet i. An interesting observation

is that the shift of the i-th jet depends only on the parameters of the harder jets
even if there are softer jets existing. These shifts can be approximated by choosing
an appropriate value for the order mi but we have to keep in mind not to screw
up with the order O(rmi

i ) because eq. (6.49) is not a proper Taylor expansion in
multiple variables.

Due to the shrinking influence of an additional jet we expect that in most cases

δH
(i-th jet)
l > δH

((i+1)-th jet)
l (6.51)

but note that this might not be generally true. Thus we have to choose the order
mi carefully.
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7 Distributions

7.1 Observations

In the last section we have discussed the most important properties of the FWM
construction up to n jets. With this knowledge it is easy to understand to shape of
the FWM in the 2-jet case and even in the 3-jet case. In the following we will see the
FWM applied to the signal and background processes after all described kinematic
cuts have been performed. We will discuss the shape of the event shape observable
with references to the previous sections.

7.1.1 Weak Boson Fusion and Background

In Figure 11 and Figure 12 we can see the result for several different values for l and
they show in general the properties which we have expected.

First of all the FWM peak basically around zero for odd l and around one for even
l which could be explained by the limit of the Legendre polynomials for an angle of
180◦ between the two tagged jets in the previously defined region 1. This property
gets nearly lost for higher l because region 1 shrinks and the events are more and
more pushed into region 2.

Due to growth of region 2 with higher l, the peaks and cuts by which the borders
between the regions were defined are more visible than before. Remarkable is that for
odd values of l the peak is more dominant than it is for the sharp cut characteristic
of even l. The reason is that the FWM in the 2-jet case for an angle of 180◦ for odd
l start at zero followed by a maxima while for even l they start at one followed by a
minima. So, with growing l the events will first see a maxima thus a peak for even
l and a minima thus a sharp cut for odd l.

We also can observe that there are events in region 1 for even l and we can state
that these events must be three or more jet events because in the 2-jet case this
region was not accessible.

A very important observation is that we can still see some differences between
WBF and background. Especially the tt̄ production process is much broader than
the WBF even if this process shows in general nearly the same behaviour after the
kinematic cuts than WBF.

For small values of l the differences between the processes are small and they
are getting bigger for growing values of l. However for even higher values of l the
processes are again more and more matching each other up to a point where they
are no longer distinguishable. For high l region 1 and 3 are small so that nearly all
events are in region 2. But this region is strongly oscillating due to the Legendre
polynomials and so the exact value of an event can’t give any information about the
jet correlations or about the process itself.
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Figure 11: Applied FWM after all kinematic cuts for several odd values of l and pT
as the weight factor for WBF (black), Z+jets (red) and tt̄ production
(blue)
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Figure 12: Applied FWM after all kinematic cuts for several even values of l and
pT as the weight factor for WBF (black), Z+jets (red) and tt̄ production
(blue)
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7.1.2 2-jet Versus 3-jet Events

Let us now focus on the differences between 2-jet and 3-jet events. In Figure 13
we can see in the 2-jet case the shape of the FWM of the background processes are
essentially the same as the shape of the WBF process. It’s no wonder that there is
no difference visible because the kinematic cuts are always applied to the tagging
jets thus the properties of the leading jets should be approximately the same.

This leads to the conclusion that the above mentioned differences in the FWM for
the different processes are mainly just due to the 3-jet events as we can see again in
Figure 13. Here the same distinction like in Figure 12 and Figure 11 between the
processes can be observed but are even stronger.

Notice that both backgrounds Z+jets and tt̄ production have the same shape in
2-jet and 3-jet events but that the composition is different. This can be explained
by the different amount of 2-jet and 3-jet events (see Table 3) and so they have
different weights. For this reason the composed FWM shape of tt̄ production shows
mainly the 3-jet event shape while Z+jets is dominated from the peak in the 2-jet
event shape.

7.2 QCD Jet Correlation

As we have seen the differences in FWM are mainly due to the 3rd jet which allows
us to draw conclusions regarding the extra QCD jet. In Figure 13 we can see that
the shift between a 3-jet and a 2-jet event is weak for odd l and much stronger in
case of an even l. This is quite plausible by remembering that this shift is exactly
the correction factor

δH
(3rd jet)
l =

2r3
(1 + r2)2

(
P 13
l + r2P

23
l − (1 + r2)H

(2-jets)
l

)
+O(r23) (7.1)

of eq.(6.45) and we have already mentioned this property. So let us focus on even l

and discuss the formula for δH
(3rd jet)
l .

On average the parameter r2 should be the same for all processes because of the
kinematic cuts and also the average value H

(2-jets)
l is the same, as we have seen

previously in Figure 13. So we have to explain the differences between the processes
with the angle of the QCD jet relative to the tagging jets which goes into the
calculation of P 13

l and P 23
l . We can state that like in the 2-jet case the influence of

the Legendre polynomials is stronger than the ratio r3.
The 3-jet Fox-Wolfram distribution of WBF has a peak not far away from the

maximum in the 2-jet event case. This lead to the conclusion that

δH
(3rd jet)
l ∝ P 13

l + r2P
23
l − (1 + r2)H

(2-jets)
l (7.2)

has to be more likely small thus the Legendre polynomials P 13
l and P 23

l have to be

high enough to cancel the H
(2-jets)
l factor which is mainly around one.

Both leading jets are nearly back to back and forward-backward so cos Ω13 ≈
− cos Ω23 thus P 13

l ≈ (−1)lP 23
l . This lead to the appoximation:

δH
(3rd jet)
l ∝ P i3

l −H
(2-jets)
l (7.3)
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Figure 13: Comparision between 2-jet (solid line) and 3-jet (dotted line) events for
WBF (black), Z+jets (red) and tt̄ production (blue).
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for even l and i either 1 or 2.
From δH

(3rd jet)
l ≈ 0 and H

(2-jets)
l ≈ 1 follows P i3

l ≈ 1 and so

cos Ωi3 ≈ ±1. (7.4)

We can deduce from eq.(7.4) that the 3rd jet must be close to one of the tagging
jets which means that the extra parton is radiated under small angle. Remembering
the topological structure of the WBF process this behaviour makes sense.
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Figure 14: r3-Ω13 plot for the different processes where the number of events is quan-
tified by color. We can see the small angle radiation in case of WBF and
the much more randomly distributed jet in case of the backgrounds

From the relatively broad distributions of the background processes in the 3-jet
distributions we can surmise that there is no clear pattern underlying the distribu-
tion of the relative angle of the QCD jet. Thus the extra jets are more randomly
distributed in space. Looking a bit closer, we can see a small bump at the same po-
sitions as in WBF. This leads to the conclusion that the 3rd jet is mainly distributed
randomly but the probability for a small angle radiation is a bit higher.

This information is gathered only from the FWM but we can perform a cross
check by plotting the real r3-Ω13 dependency of the extra QCD jet for the different
processes and compare it with our assumptions.

In Figure 14 we recieve confirmation of the information gathered from the FWM.
Indeed the QCD jet is as expected radiated only under a small angle while the
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background processes are more randomly distributed. But we can also see a small
enhancement for radiation under small angles in case of the background processes
which is possible to observe in the FWM.

7.3 Choice of Weight Factor

Now that we have finally analysed the FWM and explained the main origins of their
shape, let us now answer the question why transverse momentum pT was used as
the weight factor instead of the total momentum |~p| of the original definition.
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Figure 15: Comparision between the two different weight factors pT (left) and |~p|
(right) with l = 4

In Figure 15 a comparison between the different weight factors pT and |~p| can be
found. The general shape stays the same but the distinction between the processes
are smaller and in this application the reason is quite simple.

As we have seen before the major difference between the processes, which leads to
different shapes in FWM, is the 3rd jet. This 3rd jet can be in case of the background
processes central while this is suppressed in WBF and due to the higher pT of the
central jets they are weighted more in the calculation of the FWM than forward or
backward jets. So using pT is a possible way to carve out the differences in the 3rd
jet between the processes which is not as easy if using |~p| as a weight factor.

Notice that in case of pT as a weight factor we are losing the spherical symmetry
of the FWM which was given in case of |~p|.
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8 Conclusion

In the former sections we have seen the most important properties of the FWM.
We’ve found out that the they are bounded (0 ≤ Hl ≤ 1) and that in case of two
jets we can rewrite the FWM such they are depending only on two parameters, r and
Ω. By defining three different regions and taking a closer look to the maxima and
minima of the analytical expression it was possible to explain the dominant shape
of the FWM and their characteristic traits. Already at this stage it is possible to
make statements about the correlation between the two leading jets. In this way we
could predict the shape in the case of the two forward-backward jets of WBF. Any
additional jet can be regarded as a shift to this 2-jet FWM.

Applying the FWM to WBF events and backgrounds generated by SHERPA we
were able to observe this shift between 2-jet and 3-jet events directly. To some ap-
proximation it was possible to deduce that the 3rd jet must be close to the leading
jets in WBF while they are more randomly distributed in space in case of the back-
grounds. Due to the fact that the 3rd jet refers mainly to an extra QCD jet added
to the process this behaviour is quite reasonable because it is in conformation with
theory. By using pT instead of |~p| it is possible modify the FWM such that they
no longer as spherically symmetric. Hence the FWM become more sensitive to the
central QCD jets of the background and so to enhance the differences between the
processes.

We can state that the FWM are quite sensitive to the correlations between the
leading jets - specifically to their relative spacial angle. Because the FWM are a set
of event shape observables the choice of the parameter l allows it to make sophis-
ticated qualitative statements. A quantitative analysis is limited by the amount of
parameters inasmuch n new parameters for the n-th additional jet are going into
the calculations.

The fact that the FWM depend on the behaviour of the extra QCD parton can
be used to make some further distinction between the processes by cutting on the
FWM. However achieving a good enhancement is constricted by the overlay of the
distributions of the different processes.

In future projects one can take a closer look to FWM because even though it was
possible to explain the general shape many dependencies can be elaborated more
carefully. Some of these dependencies might offer some different applications than
gathering information about the 3rd jet, e.g. the ∆ϕ dependency is a interesting
candidate because of its importance for actual physical questions [17].
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