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Abstract

Measurements at the Large Hadron Collider (LHC) have so far been remarkably compati-
ble with the Standard Model (SM). Standard Model effective field theory (SMEFT) global
analyses are an established framework to re-interpret combinations of measurements
as constraints on physics beyond the Standard Model (BSM). But the power of these
analyses is that they can also act as springboard to constrain ultraviolet (UV) models.
We present this bottom-up approach to setting limits on BSM physics in two steps.

First, we upgrade an existing SMEFT global analysis for Higgs and electroweak (EW)
processes, adding over 30 new measurements and constraining two additional operators.
We compare the results obtained through profile likelihood and Bayesian marginalization
frameworks. We find that the results have a good level of agreement. Differences are
observed when a distribution with an under-fluctuation in the high kinematic region
leads to volume effects in the marginalization treatment.

Second, we show how to extend the previous SMEFT analysis with a matching procedure
to derive constraints on the parameters of a UV model. We then perform a global analysis
for the heavy vector triplet (HVT) model. Our results highlight the importance of theory
uncertainties arising from the matching. We discuss the complementarity of constraints
from SMEFT analyses and model-specific searches.

Zusammenfassung

Die Messungen am LHC waren bisher bemerkenswert gut mit dem Standardmodell (SM)
vereinbar. Globale Analysen der effektiven Feldtheorie des Standardmodells (SMEFT)
sind ein etablierter Rahmen für die Neuinterpretation von Messkombinationen als Ein-
schränkung der Physik jenseits des Standardmodells (BSM). Die Stärke dieser Analysen
liegt jedoch darin, dass sie auch als Sprungbrett für die Einschränkung von Ultraviolett-
Modellen dienen können. Wir präsentieren diesen Bottom-up-Ansatz zur Festlegung der
Grenzen für die BSM-Physik in zwei Schritten.

Als Erstes aktualisieren wir eine bestehende, globale SMEFT-Analyse für Higgs- und
elektroschwache (EW) Prozesse, indem wir über 30 neue Messungen hinzufügen und
zwei zusätzliche Operatoren einschränken. Wir vergleichen die Ergebnisse, die durch
das Profil-Likelihood- und Bayes’sche Marginalisierungsverfahren erzielt wurden. Damit
wird fest gestellt, dass die Ergebnisse ein gutes Maß an Übereinstimmung aufweisen.
Unterschiede werden beobachtet, wenn eine Verteilung mit einer Unterfluktuation in der
hohen kinematischen Region zu Volumeneffekten bei dem Marginalisieren führt.

Zweitens zeigen wir, wie die vorangegangene SMEFT-Analyse mit einem Matching-
Verfahren erweitert werden kann, um Beschränkungen für die Parameter eines UV-
Modells abzuleiten. Anschließend führen wir eine globale Analyse für das Modell des
schweren Vektortripletts (HVT) durch. Unsere Ergebnisse unterstreichen die Bedeutung
der theoretischen Unsicherheiten, die sich aus dem Matching ergeben. Wir diskutieren
die Komplementarität von Beschränkungen aus SMEFT-Analysen und modellspezifischen
Suchen.
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Chapter 1
Introduction

Ten years after the Higgs discovery [4, 5], there is still no definite sign of physics beyond
the Standard Model (BSM) at the LHC. The Standard Model (SM) of particle physics has
been extensively tested and the discovery of the Higgs boson represented its resounding
success. However, many questions echo in the ensuing detector silence: what is the
nature of dark matter and dark energy? How come neutrinos have mass? Why is the
Higgs mass so light? How was the matter-antimatter asymmetry generated? Why is
CP-symmetry conserved by QCD interactions? Some of these problems are motivated
by other areas of physics. For example, astrophysics and cosmology reveal the presence
of weakly coupled dark matter [6–17] . However, most attempts at solving them entail
UV models describing new particles and new interactions, which would lead to distinct
signatures at colliders. Despite all the measurements performed by the LHC, no trace of
new physics has been observed so far [18–29].

New particles might still be hiding in plain sight and revealed by increasing the statistics
and precision of some distributions. It is also a distinct possibility that BSM physics is
either too weakly coupled or too heavy to be discovered at the LHC. A plethora of dark
matter experiments have been (and continue to be) developed to address the problem of
a feeble coupling strength [9]. The Standard Model effective field theory (SMEFT), on
the other hand, aims to tackle the second problem: what if new physics is too heavy?

If new physics is too heavy and every measurement at the LHC (and other experiments)
is ultimately compatible with its SM prediction, the only way to learn from this scenario
is to set limits. Constraints can be set either in a model dependent or independent way.
The first case derives limits on one UV model at a time. The second one uses the SMEFT
to derive general constraints on many types of new physics (within a few assumptions).
The SMEFT is a low energy theory describing high energy physics as deviations from
the SM, expressed in terms of local operators. It presents itself as an expansion in terms
of these local operators and the new physics scale Λ which is parametrized by the Wilson
coefficients (WCs). It is considered a model independent way to look for new physics,
because its formulation is agnostic to the particular UV completion realized by nature.
This theory is well-defined and is able to describe any new physics signature for which
the new particles are heavy and sufficiently separated from the SM ones.

Many LHC measurements have been recast into limits on the SMEFT and various UV
models over the past few years [19–26, 28–34]. However, most models affect several
processes at once and several experiments may constrain a given model. Additionally,
the LHC has produced—and will continue to produce in the next 15 years [35]—a wealth
of interconnected data. This means limits set through individual measurements are far
from convincing. In this context, the need for a global approach to limit setting becomes
apparent, which takes into account all the relevant measurements and model parameters.
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1 Introduction

Global analyses have been performed for the SMEFT and UV models [1, 2, 30–33,36–50].
Although they give limits which are much more robust than those derived from individual
measurements for a limited number of parameters, they also require a lot of time to
implement. Meanwhile, new UV models are being invented every week. Computing the
predictions to recast all the relevant measurements and derive constraints for each of
them would amount to an incredible number of PhD lifetimes.

Thankfully, the SMEFT can also be used as a bottom-up approach to constrain BSM
physics. This means SMEFT global analyses can not only set limits on the WCs of the
SMEFT expansion, but also on UV model parameters. To explain how this works, we need
to come back to our previous statement: the SMEFT can describe any type of new physics,
as long as it is sufficiently heavy. This is ensured by the decoupling theorem [51]. This
theorem states that, given sufficient scale separation between two physical phenomena,
the high energy physics can be expressed in terms of local interactions described by an
effective field theory (EFT). As we said previously, this means the SMEFT can be used
to look for new physics while remaining agnostic to its specific realization. On the other
hand, it also means that matching relations can be derived, which express the WCs as
functions of the hypothetical UV parameters. This is the missing piece of the bottom-up
approach to limit setting.

EFTs in general and the SMEFT in particular can be seen as swiss knives in the limit-
setter’s toolbox. They are suitable for any problem where the full theory is unknown
or too complicated for the task at hand. Our situation fits both of these requirements.
We do not know what kind of BSM physics is realized by nature, how complex or how
heavy it is. We especially do not want to set-up a global analysis from scratch for every
UV model ever created. However, using a SMEFT global analysis as a stepping stone,
the only ingredient missing to set constraints on a given UV model are the matching
equations. UV global analyses become more accessible and less time-consuming when
building from the SMEFT up.

This work illustrates this approach in two parts. The first goal is to perform an updated
SMEFT global analysis for Higgs and EW processes. In particular, we will study how
various assumptions and measurements can affect the final constraints. The second
objective is to extend the SMEFT framework already in place to carry out a global
analysis for a UV model instead. Once again, this is made possible because UV models
can be matched onto the SMEFT, which leads to matching equations relating the WCs
in the SMEFT to the UV model parameters. In this way, a SMEFT framework (which
is UV model independent) can be simply re-purposed to set limits on any relevant UV
model.

The thesis is organized as follows: in Chap. 2 we review the SMEFT, its assumptions
and our choice of basis for Higgs and EW processes. In Chap. 3, we present the SFitter
framework we will use to perform global analyses. Chapter 4 shows the updated SFitter
SMEFT global analysis in Higgs and EW sector, which includes over 30 new measurements
and two additional SMEFT operators. In particular, we investigate the impact of using
profiled or marginal likelihoods and discuss the consequences of volume effects on the
marginal results. In Chap. 5, we expand upon the SMEFT global analysis to set limits
on a specific UV model—the HVT model—by simply adding a matching interface to
SFitter. We focus on the impact of the matching scale on the constraints and compare
the results obtained through our SMEFT framework with limits from direct searches.
Finally, we conclude and discuss potential avenues for future research in Chap. 6.
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Chapter 2
Standard Model effective field theory
(SMEFT)

2.1 What are effective field theories (EFTs)?

From the well known multipole expansion of electrodynamics, through BCS theory of
superconductivity, all the way to an EFT of gravity which extends General Relativity
[52–56], there are many examples of effective theories being used in physics. EFTs
in particular are quantum field theories (QFTs) and commonly used in the fields of
condensed matter and particle physics.

Examples in condensed matter usually involve low-energy EFTs which spontaneously
break spacetime symmetries, such as EFTs for superfluids [57–65], for solids [3,59,66,67],
and for many other condensed matter systems [59, 68–71]. While examples in particle
physics include both low and high energy EFTs. The low energy EFTs are obtained
by integrating out heavy particles, such as for the weak effective field theory (WET)
(sometimes also called low-energy effective field theory (LEFT)) which describes the
interactions of SM particles below 80 GeV, i.e. integrating out the W and Z bosons as
well as the top quark and the Higgs boson [72–74]. On the other hand, high energy EFTs
are used to parametrize potential new physics above the top mass. Examples include
the Standard Model effective field theory (SMEFT) [75,76] and the Higgs effective field
theory (HEFT) [77–80].

Why are EFTs integral to so many areas of physics? What makes them so useful? The
main reason is that EFTs can describe deviations from physics at a given energy scale E,
without knowing the details of the (often more complex) physics that goes on at a higher
energy scale Λ� E.

There are two ways to harness this property. The first use case assumes one knows the
details at the high energy scale Λ, but does not want to carry the cumbersome high energy
theory framework because only a small fraction of it is useful to describe the low energy
phenomena. Then an EFT can be used with a top-down approach: starting from the
full high energy theory, one can match the high energy theory onto the low energy EFT
by integrating out heavy particles—also called degrees of freedom (DOF)—and running
the couplings between heavy particles’ mass scales. This results in WCs as functions of
the high energy theory parameters. This is for example the approach used to derive the
weak effective field theory (WET), where one starts from the SM then integrates out the
top quark, as well as the Higgs, W and Z bosons [72–74].

3



2 Standard Model effective field theory (SMEFT)

The reverse situation considers the bottom-up approach: starting from the low energy
theory, we want to extend it systematically and parametrize any new physics in terms of
the low energy degrees of freedom and symmetries we already know. This view assumes
that some unknown heavy particles mediate new interactions. Within the EFT, these
heavy particles can not be produced and these new interactions appear as point-like
interactions, which require new higher order operators to describe them. These new
operators are associated to effective coefficients: the Wilson coefficients (WCs). The
result is an effective theory which provides a UV model independent way to investigate
new physics. This is the way the SMEFT is built and used.

We will go into more details on the specific case of the SMEFT in Sec. 2.2. But first,
we want to discuss an assumption inherent in choosing to work with EFTs and how to
generally construct an EFT from bottom-up.

The inevitable assumption when using an EFT framework is a separation of scales. One
assumes new physics results in small deviations that can be described by an expansion in
E/Λ, where E is the low energy scale and Λ is the new physics scale. This assumption
breaks down if Λ is not sufficiently separated from E, and the EFT expansion starts
diverging and ultimately breaks unitarity.

To build an EFT from bottom-up, the starting point is always to consider the symmetries
and particle content of the low energy theory. Note that for the EFT to be general, one
should only impose the non-accidental symmetries of the low energy theory. From there,
one needs to find all the independent operators built using the low energy particles that
also abide by the symmetries. The number of operators is in principle infinite. Because
we assume a separation of scales Λ� E, we can order them in an expansion and only
consider the first few orders relevant to the specific phenomena we are studying. These
new operators and their associated Wilson coefficients (WCs) parametrize new physics
solely in terms of low energy degrees of freedom, i.e. in the terms of the particles that can
be observed and produced at the low energy E. Whilst the expansion in Λ−1 gives us a
way to classify new phenomena according to its complexity, i.e. the dimension of the EFT
operator, which is a function of the number of particles involved in the new interaction.

To sum up, EFTs describe high energy physics, even when we do not know what this
high energy physics is. Thus, they provide a UV model independent way to look for and
constrain new physics. They assume a separation of scales between low and high energy
phenomena. To construct an EFT, we start with the symmetries and particle content of
the low energy theory. Then we add higher order operators mediating new interactions
between those particles which respect the symmetries. Finally, we classify the operators
in an expansion in Λ−1, where Λ is the new physics scale, or equivalently according to
their dimension.

2.2 SMEFT basics

As for any EFT, the SMEFT is based on the assumption that new physics is much heavier
than the low energy theory it is based on—in this case the SM. Meaning it assumes there
is a separation of scales between the masses of SM particles and those of new physics
particles and, by extension, that there are no new light particles.

Starting with the non-accidental symmetries of the SM, presented in Tab. 2.1, and the
particle content of the SM, shown in Tab. 2.2, one can construct the SMEFT Lagrangian

4



2 Standard Model effective field theory (SMEFT)

Gauge
before SSB SU(3)C × SU(2)L × U(1)Y
after SSB SU(3)C × U(1)Q

Spacetime Poincaré ISO(3, 1)
Fundamental CPT

Table 2.1: Non-accidental symmetries of the SM before and after spontaneous
symmetry breaking (SSB).

by adding higher order operators which obey the symmetries. These operators Odx mediate
new interactions between the SM particles and their associated Wilson coefficients (WCs)
fx parametrize deviations from the SM. Ordering these operators in an expansion in
inverse powers of the new physics scale Λ, or equivalently according to their dimension d,
one obtains the following SMEFT Lagrangian before spontaneous symmetry breaking
(SSB):

LSMEFT = LSM +
∑
d>4

1
Λd−4

∑
x

fxOdx (2.1)

for

LSM = Lgauge + LHiggs + Lfermion + LYukawa , (2.2)

Lgauge = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν ,

LHiggs = (Dµφ)†Dµφ+ m2
h

2 φ†φ− λ

2
(
φ†φ

)2
,

Lfermion = i
∑

generations

(
l̄L /DlL + ēR /DeR + q̄L /DqL + d̄R /DdR + ūR /DuR

)
,

LYukawa = −
∑

generations

(
l̄LYl φ eR + q̄LYd φdR + q̄LYu φ̃ uR + h.c.

)
,

where Yl,d,u are the Yukawa matrices with indices in the generation space, φ̃ = iσ2φ?,
v2 = m2

h
λ and we neglect the gauge fixing and ghost contributions to the SM Lagrangian

[76,81]. In what follows we drop the L ,R indices for the fields before SSB as it is clear
which ones are left- or right-handed.

Next we discuss SMEFT operators at dimension five, six and beyond.

At dimension five, there is only one independent SMEFT operator allowed by the
symmetries, usually referred to as the Weinberg operator [82]. This operator violates
lepton number conservation. But since lepton number is an accidental symmetry of the
SM, the higher dimensional SMEFT operators do not have to preserve it. This operator
also generates masses and mixings for neutrinos.

From there, things get complicated really fast. At dimension six, there are already 63
independent SMEFT operators (59 are baryon number conserving and 4 are baryon
number violating) and that number is not even taking Hermitian conjugation or flavor
structure into account [76]. If one were to take all three flavor generations into account,
then the numbers of baryon number conserving operators grows from 59 to 2499 [83].
While counting all the Hermitian conjugate operators, the total number of operators goes
from 63 to 84.

5



2 Standard Model effective field theory (SMEFT)

Scalar Boson (spin 0) Gauge Bosons (spin 1)
Before SSB φ (SU(2)L doublet) g W 1 W 2 W 3 B

After SSB h g W+ W− Z γ

Fermions (spin 1/2)
of generation i = 1, 2, 3

Before SSB
uR, i dR, i qL, i

eR, i lL, i

After SSB
ui di

νi ei

Table 2.2: Particle content of the SM before and after spontaneous symmetry
breaking (SSB). In what follows we drop the L ,R indices for the fields before
SSB as it is clear which ones are left- or right-handed.

Once at dimension seven and eight, the problem only gets bigger with respectively 30 and
993 independent operators for the simplest flavor assumption (including baryon violating
operators and Hermitian conjugates) [84–87]. Clearly, there is no way for us to perform
a global SMEFT analysis taking all these parameters into account. So we have to make
assumptions to reduce the number of operators we consider.

2.3 Further assumptions

2.3.1 Minimal Flavor Violation (MFV)

For flavor, we start with the completely flavor symmetric assumption U(3)5. This means
the operators we consider, in this limit, appear in the Lagrangian summed over all
generations.

However, since we want to include measurements that are flavor sensitive, we also
break this symmetry for certain operators. This is called Minimal Flavor Violation
(MFV) [88–90]. With this flavor assumption, we consider terms which break the U(3)5

flavor symmetry only if they are proportional to the Yukawa matrices. Most importantly,
these symmetry breaking operators are in one to one correspondence with the processes
constraining them. So even though we break the symmetry in some instances where
measurements are highly flavor sensitive, this does not create inconsistencies.

2.3.2 Tree level WCs with one exception

We only consider Wilson coefficients (WCs) that appear as tree level SMEFT corrections
to the SM processes we include in the analysis, and assume that SMEFT corrections
from higher loop orders are sub-leading.

However, we make one exception for gluon fusion production. As we will discuss further
in Sec. 3.3.2, gluon fusion is the dominant Higgs boson production channel at the LHC
and a 1-loop process. Thus, for gluon fusion production we consider SMEFT corrections
up to 1-loop order.

6



2 Standard Model effective field theory (SMEFT)

2.3.3 Truncation at dimension six, but where?

As already mentioned, the number of operators to consider grows rapidly with each order
of the expansion. Since the higher order operators are suppressed by higher orders of the
new physics scale inverse, it is generally assumed that they can be neglected. Thus, for
our SMEFT analysis, we have to decide where to cut the expansion, making sure that
this choice is well motivated.

Sometimes, the dimension six operators are so well constrained by some processes that
their contribution to another becomes negligible. In that case, it makes sense to move
beyond leading order. Weak boson fusion (WBS) is an example, see Ref. [91], where
the dimension six WCs are much better probed by diboson processes. This means
the operators best constrained by Weak boson fusion (WBS) will be dimension eight.
However, this is not the case for the processes we include in our analysis. So we consider
only the leading order dimension six corrections.

In the physical observable (usually a cross-section or signal strength), these dimension six
SMEFT operators appear in linear and quadratic terms, with respective powers of Λ−2

and Λ−4. So there is another choice to be made: should one keep only the linear terms
or both linear and quadratic terms? Implementing both leads to more complexity in
deriving the SMEFT predictions and with interpreting of the analysis results. However,
in our analysis we prefer to include them whenever possible for two reasons.

First, because this ensures the predictions of the physical observables (cross-section or
signal strength) in the SMEFT always remain positive. Whereas, including only the
linear terms allows for these predictions to be negative for certain values of the WCs.
This is not desirable because it makes the prediction unphysical, which is quite a hard
constraint that most global analyses codes are ill equipped to handle. This can result in
bad numerical responses that are hard to control.

Second, the quadratic terms introduce interference between the WCs, and this helps the
analysis converge by preventing flat directions. The authors of Ref. [38] explain it best:

For rate observables that are positive-definite, the n− 1-dimensional hyper-
surface in the parameter space of n Wilson coefficients is always a compact
manifold, like a hyper-ellipsoid. Including the quadratic terms does not reduce
the dimension of the parameter space, it merely changes the topology of the
likelihood function describing the combinations of Wilson coefficients that
provide a certain level of agreement between predictions and data.

Some argue that one should not truncate the EFT expansion at the level of the Lagrangian,
but at the level of the physical observable. For cross-sections and signal strengths, this
would mean keeping all terms up to order Λ−4, which include the dimension six quadratic
terms, but also the dimension eight linear terms. Although this argument makes perfect
sense from a mathematical standpoint, it leads to the same fitting problems we already
discussed for the dimension six linear terms. So for our SMEFT analyses, we have decided
to truncate at dimension six at the level of the Lagrangian.

For our SMEFT predictions, we include dimension six operators up to quadratic terms
in the physical observables, wherever this is possible. The only predictions for which we
stop at the linear level are electroweak precision observables (EWPO) measured by LEP,
as the quadratic contributions have not yet been derived.

To sum up, as already stated in Ref. [1]:
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2 Standard Model effective field theory (SMEFT)

The hypothesis based on a truncated Lagrangian is, strictly speaking, not
well defined once we include higher multiplicities of the dimension-6 operators
in the amplitude. Therefore, the SMEFT analysis should be interpreted
as representing classes of models [92, 93], and the validity of the SMEFT
approach rests on the process-dependent assumption that in the corresponding
models no new particle is produced on its mass shell [94]. While SMEFT is
an excellent framework to interpret a global LHC analysis, possible anomalies
need to be interpreted by matching it to UV-complete models [95–98], where
for instance WBS signatures of corresponding models might eventually require
us to go beyond dimension six operators [91].

2.3.4 Restricting to process classes

Even taking into account the SMEFT operators only up to dimension six, and making
simplifying assumptions regarding flavor, there remain too many of them to perform a
global analysis with a reasonable amount of time and computing power.

This is where the classification of SMEFT operators and their corresponding Wilson
coefficients (WCs), according to the processes they contribute to, comes in. These process
classes group together operators that give corrections to a group of phenomenological
processes. Examples include Higgs production and decay processes, electroweak (EW)
processes and processes involving a top quark, which we will respectively call Higgs, EW,
and top process classes.

We usually call a global analysis an attempt to constrain all—or at least the main—
operators entering one process class or more. These global analyses are essential to
determine bounds on the SMEFT WCs because many operators can influence a given
process. So looking at the limits one process sets on a single WC makes little sense as
one can only derive limits on one WC at a time by assuming values for the other WCs
involved. When performing global analyses however, we are looking at how an entire
class of processes constrains all WCs relevant to this class.

Ultimately, we also want to extend our global analyses to multiple process classes to
determine the amount of cross-talk between them. Especially given that SMEFT operators
can—and often will—contribute to more than one class of processes, which means there
is no way to separate them into hermetic groups. In fact, 12 operators out of the 20
in our basis, defined in Tab. 2.4, contribute to more than one process class. For these
operators at the frontier between classes, constraints may come mainly from one process
class or a combination of them. This will be illustrated in more details in section Sec. 2.4.

Different groups have performed analyses for different combinations of process classes, as
shown in Tab. 2.3.

Now that we have reviewed the main assumptions in our SMEFT analysis, we will define
the basis for our analysis which will focus on Higgs and EW processes.
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Groups
Process classes

Higgs Electroweak Top Flavor

SFitter [1, 2, 36,37] [38]

SMEFiT [39]

Fitmaker [40]

Dawson et al.. [41]

Electroweak Legacy [42,43]

EFTfitter [44]

TopFitter [45]

HEPfit [46]

ATLAS [32]

Table 2.3: List of SMEFT global analyses performed by different groups classified
by the combination of process classes considered.

2.4 Dimension six operator basis for Higgs and electroweak
(EW) processes

The content of this section has been published in Refs. [1, 2]. A big part of the text
and a table is identical to the content of these publications. We also supplement it with
additional information.

Our dimension six SMEFT Lagrangian is then defined as

Leff = LSM −
αs
8π

fGG
Λ2 OGG + fBW

Λ2 OBW + fBB
Λ2 OBB + fWW

Λ2 OWW

+ fB
Λ2OB + fW

Λ2 OW + f3W
Λ2 O3W + fφ1

Λ2 Oφ1 + fφ2
Λ2 Oφ2

+ fµmµ

vΛ2 Oeφ,22 + fτmτ

vΛ2 Oeφ,33 + fbmb

vΛ2 Odφ,33 + ftmt

vΛ2 Ouφ,33

+ f4L
Λ2 O4L +

f
(1)
φe

Λ2 O
(1)
φe +

f
(1)
φd

Λ2 O
(1)
φd +

f
(1)
φu

Λ2 O
(1)
φu +

f
(1)
φQ

Λ2 O
(1)
φQ +

f
(3)
φQ

Λ2 O
(3)
φQ

+ ftG
Λ2 OtG + invisible decays . (2.3)

It contains 20 independent WCs and is based on the HISZ basis [99] expanded with
additional relevant operators. The branching ratio of the Higgs to invisible final states,
BRinv, is treated as a free parameter, to account for potential Higgs decays to a dark
matter agent.

The operators are given in Tab. 2.4, where the field strengths are normalized as
B̂µν = ig′Bµν/2 and Ŵµν = igσaW a

µν/2. The covariant derivative acting on the Higgs dou-
blet is Dµ = ∂µ + ig′Bµ/2 + igσaW

a
µ/2, where we adopt the ‘+’ convention. We have also

9



2 Standard Model effective field theory (SMEFT)

OGG = φ†φ GaµνG
aµν OBW = φ†B̂µνŴ

µνφ

OBB = φ†B̂µνB̂
µνφ OWW = φ†ŴµνŴ

µνφ

OB = (Dµφ)† B̂µν (Dνφ) OW = (Dµφ)† Ŵµν (Dνφ)

O3W = Tr
(
ŴµνŴ

νρŴ µ
ρ

)
Oφ1 = (Dµφ)† φφ† (Dµφ) Oφ2 = 1

2∂
µ
(
φ†φ

)
∂µ
(
φ†φ

)
Oeφ,22 = (φ†φ) l̄2φ e2 Oeφ,33 = (φ†φ) l̄3φ e3

Odφ,33 = (φ†φ) q̄3φd3 Ouφ,33 = (φ†φ) q̄3φ̃ u3

O4L =
(
l̄1γµl2

) (
l̄2γ

µl1
)

O(1)
φe = (φ†i←→D µφ) (ēiγµej) δij

O(1)
φd = (φ†i←→D µφ)

(
d̄iγ

µdj
)
δij O(1)

φu = (φ†i←→D µφ) (ūiγµuj) δij

O(1)
φQ = (φ†i←→D µφ) (q̄iγµqj) δij O(3)

φQ = (φ†i
←→
DA
µ φ)

(
q̄iγ

µtAqj
)
δij

OtG = igs(Q̄3σ
µνTAuR,3) φ̃ GAµν

Table 2.4: Basis of dimension-6 SMEFT operators adopted in our global analysis.
Flavor indices are denoted by i, j and are implicitly contracted when repeated.

defined (φ†i←→D µφ) = iφ†(Dµφ)− i(Dµφ
†)φ , (φ†i←→D I

µφ) = iφ†σA(Dµφ)/2− i(Dµφ
†)σAφ/2

and the dual Higgs field φ̃ = iσ2φ?.

To construct the Lagrangian of Eq. (2.3), we use the operator basis of Refs. [36, 100],
starting with a set of P -even and C-even operators and then using the equations of motion
to define a basis without blind directions in the electroweak precision data. We neglect
operators that can not be studied at the LHC yet, like those changing the triple-Higgs
vertex [101–105]. We also neglect operators which are too strongly constrained from
other LHC measurements to affect the Higgs-electroweak analysis, like the ubiquitous
triple-gluon operator

OG = fABCG
ρ
AνG

ν
BλG

λ
Cρ , (2.4)

which is strongly constrained from multi-jet production [106]. Thus, in the bosonic sector
the relevant operators are OGG , OBW , OBB , OWW , OB , OW , O3W , Oφ1 , and Oφ2 .

In addition to the purely bosonic operators, we also need to include single-current
operators modifying the Yukawa couplings, Oeφ,22 , Oeφ,33 , Ouφ,33 , and Odφ,33 . These
terms break the U(3)5 completely flavor symmetric assumption. However, they always
appear in the Lagrangian of Eq. (2.3) with a factor of the fermion mass, which is
proportional to the Yukawa. So they abide by our Minimal Flavor Violation (MFV)
assumption.

The main difference to earlier SFitter analyses is that we treat the correction to the
muon Yukawa fµ as an independent parameter, while previously it was tied to fτ via an
approximate flavor symmetry. As LHC Run 2 found experimental evidence for the Higgs
coupling to muons, this approximation can now be dropped. However, when including
the observed branching ratio to muons, we will not be sensitive to the sign of the muon
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2 Standard Model effective field theory (SMEFT)

Yukawa, except for the fact that such a sign flip is not consistent with the SMEFT
assumptions.

The four-lepton operator O4L, for which we only retain the (1221) contraction, induces a
shift in the Fermi constant.

Other single-current operators modify gauge and gauge-Higgs (HV ff) couplings [42,
107–113] O(1)

φe , O
(1)
φd , O

(1)
φu , O

(1)
φQ , and O(3)

φQ . For these operators, we maintain for
simplicity a U(3)5-invariant flavor structure, and all currents are implicitly defined with
diagonal flavor indices. In this limit, the operators O(1)

φL,O
(3)
φL, analogous to O

(1)
φQ,O

(3)
φQ,

are redundant with the bosonic set via equations of motion [36,100].

Dipole operators and O(1)
φud,ij = φ̃†(iDµφ)(ūR,iγµdR,j) are neglected for two reasons: the

approximate flavor symmetry requires them to scale with the SM Yukawa couplings
and their interference with the SM is always proportional to the fermion masses. Both
factors suppress their effects except for the top quark. The three dipole moments of
the top quark—electric, magnetic and chromomagnetic—are not suppressed, so in this
work we choose to retain the chromomagnetic operator [42, 114–116] OtG . It affects
the Higgs observables at the LHC significantly through the loop-induced production
process [39,40,117–119].

Table 2.5 shows which of the operators defined in Tab. 2.4 belong to which sector. Note
that we take into account all the operators which yield SMEFT corrections to Higgs
processes only (7), the single operator which affects EW processes only (O3W ) and all
the operators at the intersection between these two sectors (10). To this we add two
operators at the intersection between the Higgs and the top sectors: Ot and OtG. The
first one because it is expected to be well constrained by Higgs processes. The second one,
however, even though constrained by Higgs processes, would lead to a blind direction
with OGG unless one adds in constraints from the top sector, which is what we do in
Sec. 4.3.5.

What we do not include in our basis are operators affecting only top processes and those
contributing to EW and top processes, but not Higgs processes. This is because we
expect these operators to be primarily constrained by top processes, which we do not
include in the analysis. We also exclude the third operator at the intersection between
the top and Higgs processes: the triple-gluon operator OG defined in Eq. (2.4). The
reason being that this operator is much better constrained by non-Gauge and non-top
processes, as we already mentioned.

Additionally, for the global analysis it is convenient to work with the two orthogonal
combinations

O± = OWW ±OBB
2 ⇒ f± = fWW ± fBB . (2.5)

The rotation is defined such that only O+ contributes to the Hγγ vertex.

If we base our calculation on the Lagrangian given in Eq.(2.3), we strictly speaking need
to supplement it with a renormalization scheme or a renormalization condition. For
each process, a reasonable assumption is that all Lagrangian parameters, including the
WCs, are evaluated at the same renormalization scale µR. For the processes entering our
global analysis, an appropriate central scale choice is µR ∈ [mH/2,mH ]. To improve the
precision beyond leading order, one should eventually account for the renormalization
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2 Standard Model effective field theory (SMEFT)

Operators
Process classes

Higgs Electroweak Top

OGG 3

OBW 3 3 3

OBB 3

OWW 3

OB 3 3

OW 3 3

O3W 3

Oφ1 3 3 3

Oφ2 3

Oeφ,22 3

Oeφ,33 3

Odφ,33 3

Ouφ,33 3 3

O4L 3 3 3

O(1)
φe 3 3

O(1)
φd 3 3 3

O(1)
φu 3 3 3

O(1)
φQ 3 3 3

O(3)
φQ 3 3 3

OtG 3 3

Table 2.5: Process classes of the dimension six SMEFT operators in our basis.

group evolution [83], and evaluate the SMEFT predictions at the energy scale appropriate
for each process. This scale can vary for instance across bins of a kinematic distribution.
In this work, all SMEFT predictions are calculated at leading order, so we postpone
an in-depth analysis of renormalization group effects to a future work, together with a
systematic study of the impact of higher-order corrections to inclusive Higgs production
and decay rates.

Now that we have established the basis for our global SMEFT analyses, we will give
more technical details regarding how the analyses are performed using the SFitter tool.
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Chapter 3
SFitter: a tool for SMEFT global analyses
and beyond

SFitter [120] is a multi-purpose analysis tool used for SMEFT [1, 36–38, 50, 104]
and UV model analyses [2], but also SUSY dark matter [121–126], as well as Higgs
searches [127–129].

The basic principle behind a likelihood analysis is to compare the prediction of a given
process with a measurement of that process in order to determine the likelihood. The
prediction is computed for one point in the parameter space of a chosen model. The
measurement is implemented with its corresponding uncertainties, which follow certain
probability distributions. Through the link between probability distributions and likeli-
hoods, which we will establish again in Sec. 3.1, one obtains the value of the likelihood at
the model parameter point given the measured value and uncertainties of the process. If
one wants to take more than one measurement into account, one then needs to combine
the individual likelihoods.

Then this likelihood computation has to be repeated for many points until a map of the
likelihood as a function of the model parameters is obtained. This means one needs an
efficient way to sample the likelihood function around the region of interest, i.e. around
the maximum likelihood point. In our case we will use Monte Carlo Markov chains
(MCMC). Using the likelihood map, we can finally determine the limits on the model
parameters.

In what follows, we will first explain how likelihoods are computed within SFitter in
Sec. 3.1. Then we will describe the method used to map the likelihood over the relevant
parameter region in Sec. 3.2. These first two components will be general to any model.
After that we specialize to SMEFT global analyses and discuss the implementation of the
measurements and SMEFT predictions for Higgs and EW processes, in Sec. 3.3. Finally,
we will show how one can make the results of the global SMEFT analysis work double
time by constraining UV models. Sec. 3.4 will describe this UV interface in more details.

3.1 Computing the likelihood at a point

We start from the conditional probability density function (PDF) p(d|m) to measure
the data d given the model m. We know that repeating the measurement enough times
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will yield the density function p(d|m) and that it is normalised if we integrate over the
random variable d: ∫

d
p(d|m) = 1 , (3.1)

However, there is another way to view this conditional PDF once the measurement
has already been performed. Indeed if the data d is fixed, p(d|m) can be recast as the
likelihood of the model m:

L(m) = L(m|d) = p(d|m) . (3.2)

The likelihood is a function of the model m and is not normalised to 1. Computing the
likelihood is a way to measure the level of agreement between the measured data d and
the model m.

In what follows, we will go into more details regarding likelihoods. We will first see, in
Sec. 3.1.1, the different likelihood function which stem from Gaussian, flat and Poisson
distributions. Then in Sec. 3.1.2, we will present how likelihoods should be combined for
the profiling and marginalization treatments.

3.1.1 Different probability density functions (PDFs), different likelihoods

It is particularly important to treat uncertainties on the measurement correctly. For this
reason, in SFitter we take into account different types of PDFs. It is easy to understand
that each one will, in turn, correspond to a different likelihood function. Concretely, we
consider three types of PDFs: Gaussian, flat and Poisson distributions. We will present
each one here, following [9].

Depending on the PDF, the data d will be best described either by a continuous random
variable −∞ < x <∞, measured with expected value µ and additional parameter σ, or
by a discontinuous random variable n = 0, 1, 2, ..., measured with expected value ν.

The likelihood derived from a Gaussian PDF is given by

L(µ, σ|x) = p(x|µ, σ) = Nµ,σ(x) = 1√
2πσ

exp −(x− µ)2

2σ2 . (3.3)

The likelihood which stems from a flat PDF is given by

L(µ, σ|x) = p(x|µ, σ) = Fµ,σ(x) = 1
2σΘ(x− (µ− σ))Θ((µ+ σ)− x) . (3.4)

Finally, we consider the likelihood generated by a Poisson PDF

L(ν|n) = p(n|ν) = Pois(n|ν) = νne−ν

n! , ν > 0 . (3.5)

3.1.2 Combining likelihoods: profiling versus marginalization

Both the profiling and marginalization treatments start from the same exclusive likelihood,
which is a function of the model parameters fx, the nuisance parameters for systematic
θsyst and theory θtheo uncertainties, and the expected background b. First, we will show
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how this exclusive likelihood is constructed for a single channel. Then we generalize it to
multiple channels.

The exclusive likelihood for one channel is constructed by taking the product of the
individual likelihoods that constrain the parameters:

Lexcl(fx, θsyst, θtheo, b) = Pois(d|m(fx, θsyst, θtheo, b))
× Pois(bCR|b k)

∏
i

Nθsyst,i, σi(0)
∏
j

Fθtheo,j ,σj (0) . (3.6)

The first factor on the r.h.s. of Eq. (3.6) represent the likelihood expected from the
model as a function of the parameters m(fx, θsyst, θtheo, b) given the observed data d. The
second gives the likelihood of the expected background b, given the observed value for
this background in a control region (CR) bCR and the interpolation factor k between the
CR and the signal region (SR). Both of these likelihoods are well described by a Poisson
distribution. The last two factors represent the likelihoods of the nuisance parameters
for systematic θsyst and theory θtheo uncertainties given that they should be centered
around zero with given half-widths σ. In SFitter, these likelihoods are assumed to
follow Gaussian distributions for systematic uncertainties and flat distributions for theory
uncertainties.

In the context of Bayesian marginalization, the second line of Eq. (3.6) can be understood
as priors encoding our prior knowledge or belief on the expected background b and the
nuisance parameters θsyst and θtheo. While for a profile likelihood, these should be under-
stood as PDFs constructed from auxiliary measurements (or imaginary measurements in
the case of the nuisance parameters θsyst and θtheo).

Likelihoods of a set of measurements can simply be multiplied. Thus, combining channels
to generalize Eq. (3.6) to a set of N channels simply is accomplished by replacing

Pois(d|m)Pois(bCR|b k) −→
∏
l

Pois(dl|ml)Pois(bCRl |bl kl)

Nθsyst,i,σi(0) −→ N~θsyst,i,Σi(~0)

Fθtheo,j ,σj (0) −→
∏
l

Fθtheo,lj ,σlj (0) . (3.7)

These replacements assume that the theory uncertainties are uncorrelated1, while the
systematics can be correlated. For this, we introduce an N -dimensional Gaussian with
the covariance matrices Σi encoding the correlations between uncertainties of category i
entering different channels l. We use either uncorrelated or fully correlated systematics.

From the exclusive likelihood given in Eq. (3.6) and generalized to multiple channels via
Eq. (3.7), one can then construct the marginal and profiled likelihoods. The marginal
likelihood is obtained by integrating over nuisance parameters θsyst and θtheo and the
expected background b

Lmarg(fx) =
∫ ∏

i

dθsyst,i

∫ ∏
j

dθtheo,j

∫
dbLexcl(fx, θsyst, θtheo, b) , (3.8)

1In past SFitter analyses, the theory uncertainties were sometimes taken to be fully correlated across
bins, see Ref. [37]. More recently in Refs. [1, 2, 36], this assumption was dropped because it lead to
a higher dimensionality of the analysis, which is computationally expansive. We checked that this
change did not impact the results significantly.
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while the profiled likelihood is obtained by taking the maximum over the same parameters.

Lprof(fx) = max
θsyst,θtheo,b

Lexcl(fx, θsyst, θtheo, b) . (3.9)

Although in theory the only difference between the profiling and marginalization treat-
ments resides in the profiling and marginalization procedures shown in Eqs. (3.8) and (3.9),
in practice we have to make additional assumptions to compute these profiled and marginal
likelihoods in a numerically efficient way. For example, although many of the integrals in
Eq. (3.8) can be solved analytically, marginalizing over an exclusive likelihood combining
N channels still requires the numerical integration of a N -dimensional integral. We
choose to perform this integral using the Laplace method. This and other assumptions
made in SFitter for the new marginalization treatment, will be presented in greater
details in Chap. 4. In what follows, we will briefly present what happens in SFitter
when profiling over the exclusive likelihood. More details can be found in Refs. [130,131].

Profiling: additional combining assumptions

The exclusive likelihood in Eq. (3.6) multiplies together two Poisson likelihoods for the
data and the background, as well as several flat and Gaussian likelihoods. The next step
is to profile over the expected background and all the nuisance parameters, following
Eq. (3.9). The problem is the profiling step can not be performed analytically, because the
two Poisson likelihoods can not be combined analytically with the Gaussian likelihoods.
Furthermore, profiling numerically over so many nuisance parameters (we usually consider
more than 30 systematic uncertainties and up to 15 theory uncertainties) would be too
computationally expensive.

This means we need to take an alternative approach that combines the likelihoods
analytically whenever possible, and uses heuristic formulae (which would be exact for
the fully Gaussian case) otherwise. What follows is a brief overview of this scheme and
the assumptions taken within SFitter.

Profiling over all but one systematic nuisance parameters In this scheme, the hardest
thing to deal with are the systematic Gaussian uncertainties. We first want to combine
all of them into a total Gaussian likelihood, neglecting the correlations between different
channels. The correlations will be re-introduced at a later point through a heuristic
formula.

For a single channel with data d, model prediction m and expected background b, we
first focus on the part of the likelihood made of all the Gaussian likelihoods. Profiling
this part of the likelihood over all but one of the systematic nuisance parameters also
yields a Gaussian likelihood, with a systematic nuisance parameter θsyst,tot. Because the
categories i are independent, the total systematic uncertainty on this channel is then
given by the sum squared of the individual uncertainties: σ2

syst,tot =
∑
i σ

2
i . However, the

individual uncertainty per category σi needs to be expressed in terms of the uncertainties
on the data and expected background for this category, σi,d and σi,b respectively. Taking
the data and expected background as fully correlated, the total systematic uncertainty
for a single channel is: σ2

syst,tot =
∑
i

(σi,d − σi,b)2. Such that the log-likelihood combining
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all the Gaussian systematic uncertainties on the signal (defined as d − b) for a single
channel is given by

−2 logL(m− b|d− b, σsyst,tot) = −2 log
N(m−b),σsyst,tot(d− b)
N0,σsyst,tot(0) = (d−m)2∑

i
(σi,d − σi,b)2 , (3.10)

where we normalize the likelihood L(m− b|m− b, σsyst,tot) = 1.

Next, we extend this formula to multiple channels following the prescriptions in Eq. (3.7),
still neglecting the correlations between channels. This amounts to considering only the
diagonal entries of the covariance matrices Σi,d and Σi,b for the uncertainties on the data
and expected background in each category i. For a given channel l, the total systematic
uncertainty is then Σll

syst,tot =
∑
i

(
√

Σll
i,d −

√
Σll
i,b)2 and the log-likelihood becomes

(d−m)2

σ2
syst,tot

= (d−m)2∑
i

(σi,d − σi,b)2 −→ (dl −ml)2

Σll
syst,tot

= (dl −ml)2∑
i

(
√

Σll
i,d −

√
Σll
i,b)2

. (3.11)

Profiling over the expected background b and the last systematic nuisance parameter
We then need to combine the two Poisson likelihoods together with the total Gaussian
likelihood derived previously. No analytical formula exist for this combination. So we rely
on a heuristic formula, which is exact in the limit where the two Poisson likelihoods can
be approximated by Gaussian likelihoods. This has also been shown to give reasonable
results when we are not in this fully Gaussian limit [130]. The heuristic formula is
obtained by summing the normalised inverse log-likelihoods together

1
logL(m) ≈

1
log Pois(d|m)

Pois(m|m)

+ 1
log Pois(bCR|(d−m)k+bCR)

Pois((d−m)k+bCR|(d−m)k+bCR)

+ 1

log
N(m−b),σsyst,tot (d−b)
N0,σsyst,tot (0)

,

(3.12)
instead of profiling over the expected background b and the total systematic nuisance
parameter θsyst,tot. Note that the value of the model m, which depends on the expected
background b, is evaluated at b = bCR

k .

Profiling over theory nuisance parameters The flat likelihoods and their nuisance
parameters θtheo representing theory uncertainties remain. For each channel, we first
combine all the flat likelihoods into one total flat likelihood (by profiling over all but one
of the theory nuisance parameters). The uncertainty for this total flat likelihood is then
given by the sum of the individual flat uncertainties σtheo,tot =

∑
j σj and we call the

remaining theory nuisance parameter θtheo,tot.

Finally, we need to combine the approximate formula for the likelihood of two Poisson
likelihoods and the total Gaussian likelihood given in Eq. (3.12) with the total flat
likelihood derived previously. This is done by profiling over the last theory nuisance
parameter θtheo,tot. The result of this step is simple: the final likelihood is flat and
normalized to 1 for |d −m| ≤ σtheo,tot, otherwise the likelihood is given by Eq. (3.12)
where the model m is shifted towards the data d by an amount σtheo,tot.

This part of the procedure is inspired by the RFit scheme [132].
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Re-introducing systematic correlations between channels The previous steps have
given us a profiled likelihood Ll for each individual channel l, which can also be converted
to a value of

χ2
l = −2 logLl . (3.13)

So far, we have neglected correlations between channels. It is time to re-introduce
them considering a correlation matrix C between channels and ~χ (such that χl =√
χ2
l sign (dl−ml) ) for individual channels. Similarly to Eq. (3.13), the profiled likelihood

correlating all channels is given by

− 2 logL = ~χTC−1~χ . (3.14)

Again, this is a heuristic formula which is exact in the limit where both Poisson likelihoods
can be approximated by Gaussian likelihoods. Considering the fully Gaussian limit, the
correlation matrix C is 1 for the diagonal entries and can be rewritten as a function of
the covariance matrices per category Σi for the off-diagonal entries

Cln =

∑
i

Σln
i

σl,exp σn,exp
=

∑
i

√
Σll
i

√
Σnn
i ρi,ln

σl,exp σn,exp
, (3.15)

where ρi,ln is 12 if the category i is fully correlated and the channels l and n were measured
by the same experiment, otherwise we assume no correlation and ρi,ln is 0. The quantity
σl,exp is also defined in terms of the covariance matrices per category Σi

σ2
l,exp = Σll

syst,tot + σ2
Pois,d + σ2

Pois,b

=
∑
i

(
√

Σll
i,d −

√
Σll
i,b)

2 + d+ bCR
k

. (3.16)

3.2 Mapping the likelihood

We are interested in mapping the profiled and marginal likelihoods in the region around
their respective best fit point, i.e. the point with the highest likelihood. This is because
we can extract information from these maps, such as 68% and 95% confidence level (CL)
limits, as we will explain in Sec. 3.2.3.

To get this map and constrain the analysis parameters, we need two essential ingredients.
The first is a way to compare two likelihood points, i.e. a statistical test. As we will see
in Sec. 3.2.1, the most efficient test is the likelihood ratio. Second, we require a way to
efficiently sample the parameter space around the maximum likelihood point. For this
we use Monte Carlo Markov chains (MCMC), presented in Sec. 3.2.2.

3.2.1 Statistical test: the likelihood ratio

In order to compare two models or hypotheses, we need a statistical test. This is a
measure of the goodness of fit of the test model mtest compared to a reference model m0
given the data d. In our case, we choose the likelihood ratio, which has been proven by

2In practice, we take ρi,ln = 0.99 because for ρ = 1 the correlation matrix C is not invertible.
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Neyman and Pearson [133] to be the most efficient statistical test to distinguish between
the zero hypothesis m0 and a test hypothesis mtest:

t(m) = L(mtest|d)
L(m0|d) . (3.17)

When setting limits, the zero hypothesis or reference model is taken as the best fit point
m0 = mbest, such that L(mbest|d) = maxm L(m|d). Whereas, when used in a MCMC
algorithm, the zero hypothesis is taken to be the model point the chain is currently at,
m0 = mcurrent.

3.2.2 Monte Carlo Markov chains (MCMC)

We want an efficient way to map the parameter space around the highest likelihood point.
We choose Monte Carlo Markov chains (MCMC): sequences of points in the parameter
space, such that the next point in a chain is determined through a statistical test against
the current point only.

More precisely, a test point mtest is sampled from a probability distribution—flat, Breit-
Wigner or Gaussian—centred on the current point mcurrent. Then, we compare the
likelihood of the current point L(mcurrent|d) with that of the test point L(mtest|d) through
the likelihood ratio defined in Eq. (3.17). If

L(mtest|d)
L(mcurrent|d) > 1 , (3.18)

the test point is accepted as the next point in the chain, mnext = mtest. If the likelihood
of the test point is smaller than the one of the current point, however, the test point is
accepted as next point only if

L(mtest|d)
L(mcurrent|d) ≥ r , (3.19)

with r ∈ [0, 1] a random number drawn from a uniform distribution. Otherwise, the test
point is rejected and the next point on the chain is chosen identical to the current point,
mnext = mcurrent.

This algorithm is called the Metropolis algorithm [134] and it ensures that the probability
of the test point to be selected is

min
(

1, L(mtest|d)
L(mcurrent|d)

)
. (3.20)

Since the test point is drawn randomly around the current point, and as the chain favors
points with higher likelihood, a MCMC is constructed to map the region of highest
likelihood well. On the other hand, it still provides the possibility to accept points with
lower likelihoods, which is essential when mapping regions with complex likelihood shapes
(such as likelihoods with multiple maxima). Additionally, this method scales linearly3
with the dimension of the parameter space, which makes it computationally less expensive
than other methods, e.g. using a grid.

3It scales linearly if the parameters of the random distribution used for sampling are appropriately
tuned.
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Our MCMC also requires a burn-in phase, which ensures that the influence of initial
conditions is suppressed. The way to do that is to simply delete the start of the chain up
to a certain percentage of points. We choose to cut out the first 1% of the chain when
mapping a profiled likelihood and the first 10% when mapping a marginal one. This
burn-in phase is especially important for the marginalization treatment. Indeed, because
this procedure requires integrating over parameters, an accurate representation of the
density of points in the parameter space is essential to compute the marginal likelihood.

3.2.3 Limits on the parameters

Once we have a map of the profiled and marginal likelihoods (defined in Eqs. (3.8)
and (3.9)), the goal is to extract limits on the Wilson coefficients (WCs). The first step
is to profile (i.e. maximize), respectively marginalize (i.e. integrate), over all WCs except
the one or two we want to constrain. The ways to derive the intervals from there is
different for each treatment.

First, we discuss the procedure for a profiled likelihood. The proper way to derive these
intervals is to use the Feldman-Cousins method, which is based on Neyman’s construction
with the likelihood ratio as an ordering rule or test statistics. However, this is a very
cumbersome approach that very few people use. Most people prefer likelihood-based
intervals, and that is how we construct our profiled intervals. These make use Wilks’
theorem [135], which states that −2 log t(m) (where t(m) is the likelihood ratio defined
in Eq. (3.17)) follows a χ2 distribution, if the data d has a large enough sample size.
Consequently, setting limits on a χ2 distribution is easy. One just has to look for
parameter values for which the χ2 value exceeds a certain threshold. The threshold
depends the number of degrees of freedom (DOF) and the confidence level (CL) limit
one is trying to set. The values we will use are given in Tab. 3.1.

The procedure is a bit different for a marginal likelihood. We first need to identify the
maximum, and integrate around that point keeping the likelihood values on the borders
of the integral the same. If additional peaks exists, we compute the integral for the part
of the curve above a given likelihood threshold. We stop the integral and read the limits
when the value of the integral (i.e. the area under the curve) exceeds 68% or 95% of the
full integral.

The first procedure results in confidence intervals and the second in credible intervals.
These two types of intervals have, in principle, different statistical interpretations and
are, therefore, not required to match. Note that we sometimes use this second procedure
to set limits on the profiled likelihood as well, for better comparison between the two
methods.

68%CL 95%CL

1 DOF 0.989 3.841

2 DOF 2.279 5.991

Table 3.1: χ2 value setting the 68% or 95%CL limits on a distribution with 1 or
2 DOF.
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3.3 Global SMEFT analysis for Higgs and EW processes

Up until this point, the computation and mapping of the likelihood were kept very general
and applicable to any model constrained by data from various counting experiments
considering Poisson, Gaussian or flat uncertainties. In this section, we specialize to
mapping the likelihood for a specific model—the SMEFT— given data from a few
relevant experiments—ATLAS, CMS, and LEP. As already discussed in Chap. 2, the
SMEFT parameter space is vast and we only consider a 21-dimensional subspace given
by the Lagrangian in Eq. (2.3). In Sec. 3.3.1 we present, the specific processes which
enter in our analysis and constrain the parameter space. Then in Sec. 3.3.2, we discuss
how the SMEFT predictions are implemented within SFitter.

3.3.1 Measurements implementation

Higgs processes

We consider processes involving the five main Higgs production channels (gluon-fusion
(ggF), vector boson fusion (VBF), as well as WH, ZH, and tt̄H associated production)
and decaying through the most prominent decay channels (bb̄, W+W−, gg, τ+τ−, ZZ
particularly ZZ(∗) → 4l, γγ, Zγ, and µ+µ−). Additionally, we consider the case where
the Higgs decays to invisible final states, such as dark matter particles.

We omit the decay into cc̄ because the constraints on this decay channel are poor. It is
not expected to be observed even at high-luminosity LHC (HL-LHC) [136]. We note that
a few measurements also constrain associated bb̄H production, but none in the latest
updates.

The values for (or constraints on) these processes mainly stem from rate or signal strengths
measurements by the ATLAS and CMS experiments, taken with partial or complete data
from Run 1 or Run 2 of the LHC. These are generally low-kinematic measurements in
the sense that they mainly constrain the bulk of the distribution of interest. This means
that in turn they mostly constrain non-kinematically enhanced operators and the better
constraints come from higher precision in the measurement.

We also include a few high-kinematic measurements for V H associated production. These
searches target the high-kinematic region of the relevant invariant mass distributions
and are used to constrain kinematically enhanced WCs, such as f (3)

φQ, f
(1)
φu , fW , fBB, etc.

We note that the best constraints on those kinematically enhanced operators might not
always come from the highest bin in the distribution, as precision in these highest bins
is often low. Instead, the best constraints might come from slightly less energetic bins,
that have both some kinematic enhancement in the SMEFT coefficients and a reasonable
precision.

EW processes

EW processes encompass diboson V V production at the LHC with electroweak precision
observables (EWPO) from LEP and a combined fit of the Particle Data Group.

The diboson measurements are always implemented as kinematic distributions. Some
target the low-kinematic regions and others the high-kinematic regions.
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The EWPO are a set of 15 observables. 12 Z-pole observables are taken from the final
LEP results [137]: the total width of the Z peak as well as partial width to leptons,
charm and bottom quarks, forward-backward asymmetries, the lepton neutral current
asymmetry from τ polarization and the hadronic pole cross-section. The remaining three
observables are W -pole observables from the Particle Data Group [138]: the mass, width
of the peak, and the branching ratio to leptons and neutrinos. These are low-kinematic
measurements which primarily constrain the following operators: fBW , fφ1, f4L, and
f

(1)
φe —although more coefficients contribute to these observables, they are usually better
constrained by other measurements.

Uncertainties

For the electroweak precision observables (EWPO), we consider only Gaussian uncer-
tainties: uncorrelated statistical Gaussian uncertainty on individual measurements and
Gaussian uncertainties correlating the 15 observables together.

For the LHC measurements (Higgs and diboson processes), we usually consider statistical
systematic and theory uncertainties. The statistical uncertainties on rate measurements
are implemented using Poisson distributions for both the data and background. While
for signal strengths measurements we assume the statistical uncertainty follows an
uncorrelated Gaussian distribution. For systematic uncertainties, we always use Gaussian
uncertainties and we assume either 100% correlation or no correlation between the
measurements of a given experiment. The categories of systematic uncertainties we
take as fully correlated correspond to uncertainties on the luminosity, detector effects
(such as pile-up or jet uncertainties), lepton or photon reconstruction, b- or τ -tagging,
and lepton isolation. We take as uncorrelated any systematic uncertainty cited by the
experiment which does not fit into the predefined correlated categories. Finally, the
theory uncertainties are assumed to follow flat uncorrelated distributions. These come
from both theory uncertainties on the measurement quoted by the experiment and theory
uncertainties on our SMEFT prediction.

3.3.2 SMEFT predictions

All our SMEFT predictions are implemented for the basis given in Eq. (2.3). Note that
when computing these predictions we make a big assumption: that the SMEFT only
affects the signal and not any of the backgrounds. This is clearly a big caveat that
most SMEFT global analyses have to adhere to, otherwise the predictions would become
incredibly complicated to derive.

Rates and signal strengths measurements of Higgs processes

Rates and signal strengths measurements of various Higgs production and decay channels
are used. For this type of measurement, the predictions were already implemented
in Refs. [36, 37] for Run 1 and 2 respectively (assuming standard cuts targeting the
bulk of the distribution) at quadratic order in our dimension six SMEFT basis. Exact
SMEFT predictions were used wherever available, and the rest were computed using
Madgraph5 [139].
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Distributions for V V and V H

Distributions are used for diboson V V measurements and for searches for high-kinematic
V H associated Higgs production, because we expect to extract relevant kinematic
information from them. For this type of measurement, the predictions have to be redone
every time for two reasons. First, the contribution of the kinematically enhanced operators
grows with energy and as such will vary bin by bin. Second, the cuts required to target
the high energy tails of distributions are significantly different from those of the rate
measurements and thus need to be adjusted for every analysis.

These predictions were also computed at quadractic order in the SMEFT using Madgraph5 [139],
Pythia8 [140], FastJet [141], and Delphes [142]. We go into more details regarding the
implementation of three new high-kinematic distributions in Secs. 4.3.1, 4.3.2 and 5.4.1,
but in general the predictions for these distributions are hard to obtain. We first need to
reproduce a background to make sure our calibration is good. Then, we have to reproduce
the signal (which is usually sub-leading and the reason why we can not calibrate with it)
and add the SMEFT contributions. We stress that going through these steps is required
because these searches are not designated SMEFT studies, which means the experimental
results are not recast in terms of SMEFT by the experiments themselves.

Electroweak precision observables (EWPO)

The EWPO are the processes for which the predictions are given at linear order in the
SMEFT within SFitter and were taken from Ref. [143].

3.4 Beyond SMEFT: UV global analyses

SMEFT analyses are interesting in and of themselves. Given the number of parameters,
measurements and assumptions (in the SMEFT predictions, the measurements’ imple-
mentation and the statistical frameworks) that go into them, the results are very likely
to vary from one analysis to the next. Studying how each factor impacts the constraints
is important in itself, and will be explored further in Chap. 4.

However, SMEFT analyses are not the end goal. The SMEFT must always be put into
the broader context of BSM physics. With this in mind, global SMEFT analyses can
also be used as a building block towards UV model analyses, see Refs. [2, 41]. In section
Sec. 3.4.1, we discuss the one missing ingredient to be able to perform a UV global
analysis using everything we already put in place for the SMEFT global analysis. Then,
in Sec. 3.4.2, we present the implementation of the matching interface within SFitter.

3.4.1 One missing ingredient: matching UV models onto the SMEFT

Implementing a global analysis is time intensive: one needs to build an analysis tool to
construct and map the likelihood, then to implement measurements and predictions for
relevant processes. Even though many ingredients of the SMEFT analysis can—to a large
extent—be re-used when changing the model under investigation, that is not the case for
the predictions. These need to be computed again for all relevant processes in the new
model. The predictions for distributions are particularly long and complicated to derive,
as we explain in more details in Secs. 4.3.1, 4.3.2 and 5.4.1. This begs the question: is
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there simpler way to derive limits on UV model parameters if one already has a SMEFT
global analysis in place? The answer is yes.

The idea is to use the predictions already implemented in terms of the WCs of the
SMEFT, but to have those WCs described as functions of the UV model coefficients:

fx
Λ2 (gx, Q) , (3.21)

where fx are the Wilson coefficients (WCs) of our SMEFT basis defined in Eq. (2.3), gx
are the UV model parameters, and Q is the matching scale. This way one can map the
likelihood over the UV model parameter space using the data already implemented

L(m(fx)|d) = L(m(gx)|d) . (3.22)

Expressions of the form of Eq. (3.21) are called matching equations and computed
through a matching procedure. This procedure has been made increasingly faster and
systematized in the past few years thanks to the development of functional matching
methods [144–157]. We go into more details regarding the matching of one particular
UV model—the heavy vector triplet model—onto the SMEFT in Chap. 5. For now, it is
enough to understand that implementing those matching formulae as an interface of the
SMEFT global analysis allows us to perform a UV global analysis instead.

Note that we need to map the likelihood directly in the UV model parameter space,
which means running new Monte Carlo Markov chains (MCMC) in that space. We can
not re-use previous mappings performed in the SMEFT parameter space. This is because
the matching equations essentially define a very particular lower dimensional slice inside
the higher dimensional SMEFT volume. Thus, the mapping in the SMEFT parameter
space will not be optimal for the UV subspace. In fact, as we will show in Chap. 5, the
constraints in the UV model space considered are far from the usual Gaussian shapes of
the SMEFT analysis. Thus, they require to map with great precision certain areas that
are very small within the higher dimensional SMEFT volume.

3.4.2 New SFitter matching interface

To implement this within SFitter, we simply need to define a new model where the
parameters of interest are those of the UV model, then add a matching interface which
computes the value of the WCs given those of the UV model parameters. This matching
interface is implemented very simply using the ability within SFitter to define new
parameters of interest as functions the parameters used in the prediction. This feature
had already been used in other contexts. A simple example is shown in Chap. 4, where
the analysis was performed using the parameters f± defined in Eq. (2.5), because those
parameters ensure better convergence. We simply make use of this property using the
more complex matching functions for the first time.

There is an additional difficulty to consider. The matching equations were derived in the
more commonly used Warsaw basis, which differs slightly from the basis presented in ??.
This means we also need to rotate the matching equations from the Warsaw basis into
our own basis.
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Rotation from Warsaw basis

The content of this section has been published in Ref. [2]. A big part of the text is
identical to the content of this publication. We have updated the equations to include
two additional operators.

The matching to the heavy vector triplet (HVT) model (described in Sec. 5.2.1) is
automated for the Warsaw basis of SMEFT operators [76], in the general flavor case.
The results obtained are provided on github at [158] and we give explicit expressions
for the tree-level matching in Sec. 5.2.3. In order to interface them with SFitter, the
matching results are mapped onto the basis of Tab. 2.4, to which we need to add the
following operator

Oφ =
(
φ†φ

)3
(3.23)

to match the number of operators needed in the Warsaw basis. In the following we denote
the operators in the Warsaw basis, defined as in Ref. [76], by Qk and the associated WCs
by Ck, such that the dimension six SMEFT Lagrangian in this basis has the form

LWarsaw ⊃
1

Λ2

∑
k

∑
ij

Ck,ij Qk,ij , (3.24)

where k runs over the operators labels and i, j are flavor indices, that are present for
fermionic operators. The relations between the two operator bases are

OGG = QφG , O3W = g3

4 QW ,

OBB = −g
′2

4 QφB , OWW = −g
2

4 QφW , OBW = −gg
′

4 QφWB ,

Oφ1 = QφD , Oφ2 = −1
2Qφ� , Oφ = Qφ ,

Oτ = Qeφ,33 , Ot = Quφ,33 , Ob = Qdφ,33 ,

Oµ = Qeφ,22 , O(1)
φe = Qφe,ij δ

ij , O(1)
φu = Qφu,ij δ

ij ,

O(1)
φd = Qφd,ij δ

ij , O(1)
φQ = Q

(1)
φq,ij δ

ij , O(3)
φQ = 1

4Q
(3)
φq,ij δ

ij ,

O4L = Qll,1221 , OtG = igsQuG,33 , , (3.25)

and

OW = g2

8 QφW + g′g

8 QφWB −
3g2

8 Qφ� + g2m2
h

4 (φ†φ)2 − g2λ

2 Qφ

− g2

4 [(Ye)ijQeφ,ij + (Yu)ijQuφ,ij + (Yd)ijQdφ,ij + h.c.]− g2

8
(
Q

(3)
φq,ij +Q

(3)
φl,ij

)
δij

OB = g′2

8 QφB + gg′

8 QφWB −
g′2

2 QφD −
g′2

8 Qφ�

− g′2

4

(1
6Q

(1)
φq,ij −

1
2Q

(1)
φl,ij + 2

3Qφu,ij −
1
3Qφd,ij −Qφe,ij

)
δij , (3.26)

where all repeated flavor indices are implicitly summed over, and λ is the quartic coupling
in the Higgs potential, normalised such that

V (φ) = −m
2
h

2 φ†φ+ λ

2 (φ†φ)2 . (3.27)
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As the vector triplet model we are interested in is defined in a flavor-symmetric limit, after
the matching procedure the Wilson coefficients of the Warsaw basis operators Qφe,φu,φd
and Q(1),(3)

φl,φq will have the form

Cφψ,ij = C̄φψ δij , (3.28)

while

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj . (3.29)

Using this notation, the mapping in terms of Wilson coefficients is

fB = 8
g′2
C̄

(1)
φl −αs8πfGG = CφG

fW = − 8
g2 C̄

(3)
φl f3W = 4

g3CW

fBB = − 4
g′2

[
CφB − C̄

(1)
φl

]
fφ1 = CφD + 4C̄(1)

φl

fWW = − 4
g2

[
CφW + C̄

(3)
φl

]
fφ2 = −2Cφ� − 2C̄(1)

φl + 6C̄(3)
φl

fBW = 4

−CφWB

gg′
−
C̄

(3)
φl

g2 +
C̄

(1)
φl

g′2

 fφ = Cφ − 4λC̄(3)
φl (3.30)

and for the fermionic ones
mτ

v
fτ = Ceφ,33 − 2(Ye)33C̄

(3)
φl f

(1)
φe = C̄φe − 2C̄(1)

φl

mt

v
ft = Cuφ,33 − 2(Yu)33C̄

(3)
φl f

(1)
φu = C̄φu + 4

3 C̄
(1)
φl

mb

v
fb = Cdφ,33 − 2(Yd)33C̄

(3)
φl f

(1)
φd = C̄φd −

2
3 C̄

(1)
φl

mµ

v
fµ = Ceφ,22 − 2(Ye)22C̄

(3)
φl f

(1)
φQ = C̄

(1)
φq + 1

3 C̄
(1)
φl

f4L = C̄ ′ll f
(3)
φQ = 4

[
C̄

(3)
φq − C̄

(3)
φl

]
ftG = − i

gs
CuG,33 . (3.31)

In addition, the Higgs quartic coupling gets redefined as

λHISZ = λWarsaw + 4m2
h

Λ2 C̄
(3)
φl . (3.32)

This translates into corrections to the cubic and quartic Higgs self-couplings, which do
not contribute to any of the observables in our analysis.
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Chapter 4
To profile or to marginalize: a SMEFT case
study

Studying the variables which impact SMEFT global analyses is the first step in a
bottom-up approach to constrain new physics.

In this chapter, we perform a SMEFT global analysis for Higgs and electroweak (EW)
processes. Our goal is to use the SFitter framework established in Chap. 3 and present
a new Bayesian marginalization treatment for the likelihood computation. We validate
this treatment for the old dataset of Ref. [36], then extend the dataset with over 30 new
measurements. Finally, we will show the results of the profiled and marginal likelihood
treatments for the extended dataset and discuss the differences.

The research presented in this chapter has been published in Ref. [1]. The work was
conducted in collaboration with Ilaria Brivio, Sebastian Bruggisser, Nina Elmer, Michel
Luchmann, and Tilman Plehn. All figures and tables as well as a significant part of the
text are identical to the content of this publication.

4.1 Introduction

Higgs physics at the LHC [159] perfectly illustrates a deep tension in contemporary
particle physics: on the one hand, the existence of a fundamental Higgs boson is a direct
consequence of describing the electroweak gauge sector in terms of a quantum field theory,
specifically a renormalizable gauge theory. It looks like Nature chose the simplest possible
realization of the Higgs mechanism, with one light scalar particle and an electroweak
vacuum expectation value (VEV) of unknown origin. On the other hand, puzzles like
dark matter or baryogenesis seem to point to non-minimal Higgs sectors for convincing
solutions based on renormalizable quantum field theory, but without any LHC hint in
these directions. The main goal of the LHC Higgs program is to understand if Nature
really took the opportunity of a minimal electroweak and Higgs sector solving as many
problems as possible, or why she skipped this opportunity in favor of theoretically less
attractive alternatives. Or, more practically speaking, we need to study as many Higgs
properties as precisely as possible.

Given the vast LHC dataset already after Run 2 and our fundamental ignorance of the
correct UV-completion of the SM, we need to measure Higgs-related observables and
express them in a consistent, fundamental, and comprehensive theory framework. To
provide the necessary precision, this framework has to be defined beyond leading order in
perturbation theory, it needs to incorporate kinematic information, and it should allow
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us to combine as many LHC observables as possible. The EFT extension of the Standard
Model (SMEFT) [160] fulfills precisely these three requirements and defines a theoretical
path to understanding the entire LHC dataset in terms of a fundamental Lagrangian.
Its main shortcoming is the necessary truncation in the operator dimensionality. The
truncated SMEFT approximation will hardly describe new physics appropriately, so
SMEFT should really be viewed as a systematic, conservative limit-setting tool. Of course,
this practical aspect does not cut into the fundamental attractiveness of an effective
quantum field theory description of all LHC data.

There exists a range of phenomenological Higgs-gauge analyses [30–32,36,41–43,47,48],
top analyses [33, 38, 45, 49], combinations of the two [39, 40], and combinations with
parton densities [161]. These analyses are typically based on experimentally preprocessed
information, including the full range of uncertainties. Given that by assumption any
SMEFT analysis will be centered around the renormalizable SM-Lagrangian, the main
focus of all global analyses is the uncertainty treatment and the correlations between
the different operators. Technically, these two tasks tend to collide. We can choose a
conservative uncertainty treatment based on profile likelihoods and nuisance parameters,
but it is much more computing-efficient to treat correlations through covariance matrices
of marginalized Gaussian likelihoods [162]. The SFitter framework [36–38,50, 127,128]
is unique in the sense that it has mostly been used for profile likelihood analyses, but
can provide marginalized limits equally well [121,127].

We make use of this flexibility and study, for the first time, the difference between profiled
and marginalized likelihoods of the same global Run 2 dataset. In Sec. 4.2 we find that for
the Higgs-electroweak dimension-6 operators and the given dataset the two approaches
agree well, so we can use the marginalized setup to treat correlated measurements and
uncertainties efficiently. Based on these results, we include a range of recent Run 2
measurements from Higgs studies as well as from exotics resonance searches, again with a
focus on a comprehensive and conservative uncertainty treatment, in Sec. 4.3. Finally, we
study the impact of these new measurements and the inputs from a global top analysis
in Sec. 4.4 and find interesting differences between the profiling and marginalization
methods.

4.2 Bayesian SFitter setup

Global SMEFT analyses are a key ingredient to a more general analysis strategy at the
LHC, which is to test theory predictions based on perturbative quantum field theory using
the full kinematic range of the complete set of LHC measurements. It is worth stressing
that SMEFT analyses are currently the only way to systematically probe kinematic
LHC measurements beyond resonance searches. They come with two assumptions which
greatly simplify the actual analyses

1. experimentally, we know that our SMEFT analysis is not confronted with established
anomalies; those should be discussed using properly defined BSM models;

2. theoretically, SMEFT can only describe small deviations from the Standard model,
otherwise the dimensional expansion in Eq. (2.1) is not valid.

While global SMEFT analyses with a truncated Lagrangian can translate kinematic
measurements into fundamental parameters, these two aspects imply that their outcome
will be limit-setting. For our analysis this means that we already know that the global
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maximum of the SMEFT likelihood lies around the SM-limit fx/Λ2 → 0. The exact
position of the most likely parameter point is of limited interest, the main task of the
global analysis is to determine the uncertainty on the values of the WCs or, more in
general, the finite preferred region in the multi-dimensional SMEFT parameter space.

In this spirit, the goal of the SFitter framework is to enable an independent interpretation
of experimental inputs, without relying on pre-processed information and including a
comprehensive treatment of statistical, systematic, and theory uncertainties [50,127,128].
The SFitter methodology relies on the construction of a likelihood function in which
these uncertainties can be described by nuisance parameters. In all previous SFitter
analyses, nuisance parameters are profiled over. The resulting profile likelihood is
then profiled over the parameters of interest, to extract one- and two-dimensional
limits on the WCs. An alternative, Bayesian treatment is based on marginalising over
nuisance parameters and parameters of interest. It has been adopted in several SMEFT
analyses [162–166] and simplifies greatly the treatment of correlated uncertainties. The
goal of this work is to perform an apples-to-apples comparison between a profiled and
a marginalised likelihood, employing exactly the same data and uncertainties inputs in
both cases.

Marginal likelihood

Since marginalization is new in SFitter, we provide a brief description of the main
features. The corresponding profile likelihood treatment is discussed in detail in Refs. [36–
38,127,128]. The first step of a global analysis is the construction of the fully exclusive
likelihood Lexcl, which is a function of the parameters of interest fx and of a set of nuisance
parameters θi. This Lexcl is defined with the following uncertainty treatment: (i) statistical
uncertainties are included via a Poisson distribution, in some cases approximated using a
Gaussian whenever this stabilizes the numerical evaluation; (ii) systematic uncertainties
are assumed to be Gaussian, organized in 31 categories, such that uncertainties within
the same category are fully correlated through a covariance matrix or through nuisance
parameters. Systematics which do not fit into any of the 31 categories are assumed to
be uncorrelated; (iii) theory uncertainties are modelled as flat distributions. Whenever
theory uncertainties need to be correlated we use an explicit nuisance parameter.

For a Bayesian analysis we first marginalize over or integrate out the nuisance parame-
ters. This yields the marginal likelihood Lmarg, for one counting measurement and one
parameter illustrated by

Lmarg(fx) =
∫
dθLexcl(fx, θ) =

∫
dθ Pois(d|m(fx, θ)) p(θ) . (4.1)

Here d stands for the measured number of events, m is the model (theory) prediction,
θ is a nuisance parameter and p(θ) the distribution over the nuisance parameter which, in
the Bayesian context, defines the prior. In SFitter, nuisance priors are either Gaussian
or flat. Computing Lmarg in SFitter starts with the marginalisation procedure over the
nuisance parameters, so we omit the dependence on fx for now.

SFitter provides several options to define the statistical model of a measurement,
including a simplified Gaussian likelihood where uncertainties add in quadrature. A
more sophisticated and reliable framework starts with a typical LHC measurement
as an independent counting experiment, which is modelled by a Poisson distribution.
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Systematic uncertainties or theory uncertainties then define the completely exclusive
likelihood for one measurement

Lexcl(θ) = Pois(d|m(θ1, θ2, ..., b)) p(b)
∏
i

p(θi) . (4.2)

Here d is the measured number of events, b the background estimate, and m the model
prediction, that is a function of the nuisance parameters θi. The distributions p(b) and
p(θi) incorporate our knowledge about these quantities. In general, they can be extracted
from auxiliary measurements, simulations, or other possible sources. However, because
tracking hundreds of different reference measurements is beyond the scope of SFitter,
we simply assume p(θi) to be Gaussian for systematic uncertainties and flat or uniform
for theory uncertainties,

p(θi) =
{
Nθsyst,i,σi(0) systematics
Fθtheo,i,σi(0) theory .

(4.3)

In this step we assume that all prior distributions for θsyst and θtheo are centered around
zero, with given half-widths σ.

For p(b), SFitter provides several choices: for measurements where b is extracted from
a single control region (CR) measurement we use

p(b) = Pois(bCR|bk) , (4.4)

where k is an interpolation factor between control region (CR) and signal region, bCR is
the measured number of events in the control region, and b is the expected number of
background events in the signal region. For measurements with several control regions or
with simulated backgrounds we assume the combined p(b) to be a Gaussian. Systematic
uncertainties on the background measurement can also be included, and are assumed to
be fully correlated with the uncertainties on the signal region within the same category.

Typically, the dependence of the theory prediction m on the nuisance parameters in
Eq. (4.2) is not spelled out or extremely complex to determine. To simplify this task, we
assume a leading linear dependence on assumed-to-be small uncertainties

m ≈ s+ b+ θtheo,1 + θtheo,2 + · · ·+ θsyst,1 + θsyst,2 + · · · ≡ s+ b+ θtot . (4.5)

where s is the expected number of signal events. The exclusive likelihood of Eq. (4.2)
can then be written as

Lexcl(θ) ≈ Pois(d|s+ b+ Σθtheo,j + Σθsyst,i) p(b)
∏
j

Fθtheo,j ,σj (0)
∏
i

Nθsyst,i,σi(0) ,

(4.6)

The marginal likelihood for a single measurement is then constructed by integrating over
all nuisance parameters,

Lmarg =
∫ ∏

j

dθtheo,j

∫ ∏
i

dθsyst,i

∫
db Lexcl(θ)

=
∫ ∏

j

dθtheo,jFθtheo,j ,σj (0)
∫ ∏

i

dθsyst,iNθsyst,i,σi(0)
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×
∫
db Pois(d|s+ b+ Σθtheo,j + Σθsyst,i) p(b) . (4.7)

The integration over b can be performed analytically if p(b) is a Poisson distribution. In
this case, the convolution P(d|s+ θtot) of p(b) and Pois(d|m) gives a so-called Poisson-
Gamma model, as Eq. (4.4) is a special case of the Gamma distribution,

Lmarg =
∫ ∏

j

dθtheo,jFθtheo,j ,σj (0)
∫ ∏

i

dθsyst,iNθsyst,i,σi(0)× P(d|s+ θtot) . (4.8)

We use θtot as defined in Eq. (4.5). To solve the remaining integrals over the nuisance
parameters we replace one of the integrals, for instance θsyst,1 with (θtot − Σi 6=1θsyst,i),

Lmarg =
∫
dθtot P(d|s+ θtot)

×
∫ ∏

j

dθtheo,jFθtheo,j ,σj (0)
∫ ∏

i 6=1
dθsyst,iNθsyst,i,σi(0)Nθsyst,1,σ1(0)

︸ ︷︷ ︸
solved analytically

.

(4.9)

Assuming only Gaussian plus at most three flat priors, all θ-convolutions except for one
can be performed analytically. The corresponding closed formulas are implemented in
SFitter, speeding up the marginalisation. The remaining 1-dimensional integral in
Eq. (4.9) is solved numerically with Simpson’s method.

Marginalizing over nuisance parameters and profiling over them will not give the same
marginalized likelihood. Only for statistical uncertainties described by Poisson statistics
and Gaussian systematics, the two lead to the same marginalized result in the limit of
large enough statistics. Differences appear when we use flat theory uncertainties. For a
Bayesian marginalization the central limit theorem ensures that the final posterior will
be approximately Gaussian. Using a profile likelihood, two uncorrelated flat uncertainties
add linearly, while a combination of flat and Gaussian uncertainties give the well-known
RFit prescription [132]. Figure 4.1 shows, as an illustration, the distributions obtained
combining one Gaussian with one (left) or three (right) flat nuisance parameters. We see
that the profile likelihood or RFit result maintains a flat core and is independent of the
number of theory nuisances, while the marginalised result varies and is very close to a
Gaussian in the right panel.

Combining channels

Unlike probabilities, likelihoods of a set of measurements can simply be multiplied. This
means we can generalize Eq. (4.2) and (4.6) to a set of N measurements by replacing

Pois(d|m)p(b) −→
∏
k

Pois(dk|mk)p(bk)

Nθsyst,i,σi(0) −→ N~θsyst,i,Σi(~0)

Fθtheo,j ,σj (0) −→
∏
k

Fθtheo,kj ,σkj (0) , (4.10)
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Figure 4.1: Marginalized and profiled likelihoods from the convolution of a
Gaussian distribution with one (left) and three (right) flat ones. The orange
curve shows, for comparison, the Gaussian obtained adding half-widths in
quadrature.

with

mk ≈ sk + bk +
∑
i

θsyst,ki +
∑
j

θtheo,kj ≡ sk + bk + θtot,k . (4.11)

Here we assume that the theory uncertainties are uncorrelated, while the systematics can
be correlated, so we need to introduce an N -dimensional Gaussian with the covariance
matrices Σi encoding the correlations between uncertainties of category i entering different
measurements k. We use either uncorrelated or fully correlated systematics.

When we compute the marginal likelihood in analogy to Eq. (4.7) the only non-trivial as-
pect are the correlated systematic uncertainties including the covariance matrix. However,
the convolution of N -dimensional Gaussians still leads to one N -dimensional Gaussian,
where the combined covariance matrix is the sum of the individual covariance matrices.
This means, in the last step of Eq. (4.9) we are now left with an N -dimensional integral
over θtot,k, correlated through the covariance matrix appearing in the distribution of the
systematic nuisance parameters.

In SFitter, this integral is solved by approximating it with the Laplace method. This
is computationally efficient and works well for cases where most of the probability is
concentrated around one mode. This is the case when the nuisance parameters are
Gaussians or flat. We can then write∫

dxnf(x) =
∫
dxnelog f(x) , (4.12)

and assume that f(x) has a maximum at x = x0. Then one can expand log f(x) up to
second order around x0 as

log f(x) ≈ log f(x0) + ∂

∂x
log f(x0)︸ ︷︷ ︸

=0

(x− x0) + ∂2

∂xixj
log f(x0)︸ ︷︷ ︸

=Fij(x0)

(x− x0)i (x− x0)j + ...

(4.13)
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Figure 4.2: 68% and 95% confidence intervals from profile likelihoods and
Bayesian marginalization. The dataset is the same as in Ref. [36].

such that the integral is approximated by

∫
dxnf(x) ≈ f(x0)

√
(2π)n

detF (x0) . (4.14)

Note that f(x) is given by the exclusive likelihood, with the maximum at f(x0) kept
through profiling but not through marginalization. The matrix F (x0) is the Hessian
of the log-likelihood at the maximum, i.e. the Fisher information matrix in the space
of the nuisance parameters. In SFitter, x0 is extracted with an analytic expression,
approximating the Poisson distribution in Eq. (4.2) with a Gaussian. The resulting error
is compensated by keeping a finite first derivative in Eq. (4.13), which in turn requires us
to modify Eq. (4.14) by introducing an additional term depending on the first derivative
of the log-likelihood. Both the first and second derivatives can be computed numerically.
All these approximations in evaluating the exclusive and marginal likelihoods have been
checked by evaluating the exclusive likelihood using Markov chains.

Validation

We can validate the implementation of the Bayesian marginalization over nuisance
parameters and WCs starting from the fully exclusive likelihood using the operator basis
and dataset of Ref. [36]. The SMEFT Lagrangian is given in Eq. (2.3), but without
the muon Yukawa, the top-gluon coupling OtG, and the invisible branching ratio of the
Higgs. For the direct comparison we construct the marginal likelihood by profiling or
marginalizing over all nuisance parameters and Wilson coefficients. We then extract the
posterior probability and 68% and 95% confidence intervals. Unless otherwise specified,
we assume flat, wide priors for all WCs. This choice minimizes the impact of the prior
on the final result, and we have verified that our priors on the WCs indeed fulfill this
condition. In Fig. 4.2, we show the 68% and 95%CL limits from the corresponding
18-dimensional operator analysis. We see that the results of the two methods are in
excellent agreement.

Going beyond confidence intervals, we can look at the distributions of the 1-dimensional
profile likelihoods or marginalized probabilities. We show three examples in Fig. 4.3.
Because the analysis relies on actual LHC data, the central values are not at zero Wilson
coefficients. The well-measured WC fW shows no difference between the profile and the
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Figure 4.3: Profile likelihoods vs marginalized likelihood for a set of WCs. The
two curves are scaled such that the maximum values are at Lscaled = 1.

marginalized results. For fGG, we see a slight deviation in the central values, within
one standard deviation and therefore not statistically significant. This effect points
to the theory and pdf uncertainties, which we assume to be flat, and which therefore
allow the central value to move freely for the profile likelihood approach, while the
marginalization leads to a well-defined maximum when combining two individually flat
likelihood distributions. In Fig. 4.2 we see that this difference only has a slight effect
on the lower boundary when we extract 95%CL limits on fGG. Finally, we see a similar
effect for f−, even though this measurement depends on several different LHC channels.
According to Fig. 4.2 this is one of the largest and still not significant differences between
the two methods.

The source of the differences in Fig. 4.3 can be traced back to whether the uncertainty-
related nuisance parameters are marginalised or profiled. Fig. 4.4 shows that, once the
uncertainty treatment is fixed, the results are independent of whether the WCs are
marginalized or profiled over.

Next, we check 2-dimensional profiled and marginalised likelihoods. Figure 4.5 shows
three examples involving the same WCs as in Fig. 4.3. First, we see that there exists an
anti-correlation between fGG and ft, the modified top Yukawa also affecting the loop-
induced production process gg → H. This suggests that a slightly high rate measurement
can be accommodated by adjusting either of the two Wilson coefficients. Because the
uncertainty on this measurement includes sizeable theory and pdf contributions, the same
difference between the two methods can be seen for each of the two WCs individually
and for their correlation. Another instructive example is the correlation between fW ,
determined from kinematic distributions, and fφ2 leading to a shift in the Higgs wave
function. Here the difference only appears in fφ2, the parameter extracted from total
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Figure 4.4: Likelihoods profiled vs marginalized over the Wilson coefficients fx,
but always marginalized over all nuisance parameters θ. We show the same WCs
as in Fig. 4.3.
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Figure 4.5: Comparison of 2-dimensional correlations of profiled and marginalized
likelihoods.

rates and especially sensitive to theory uncertainties. Finally, we show the correlation
between f− and f (3)

φQ and observe the usual correlation from the sizeable range of kinematic
di-boson measurements [167].

Finally, we can check for alternative maxima in the likelihood and find that f+ is the
only WC exhibiting a non-trivial second mode. This can be understood from the f+ vs
f− plane. By a numerical accident, the SMEFT corrections to all Higgs production and
decay processes vanish in the SM-maximum and also close to the point f−/Λ2 = −3 and
f+/Λ2 = 2.7. The only measurement which breaks this degeneracy is H → Zγ, with
limited statistical power. In the f+ axis, the position of the maximum is fully determined
by H → γγ, which is measured precisely enough to resolve the two modes, while in the
f− axis the constraints can not distinguish the second maximum from the SM point.

Given the consistency condition of the SMEFT approach, we should not compare the two
modes at face value, even though the Bayesian setup would allow for this. On the other
hand, we need to confirm that this choice of modes does not affect other parameters in a
significant manner once it is embedded in the 18-dimensional space. In Fig. 4.6 we show
what happens if we restrict our parameter analysis to either the SM-mode or the second
mode. To this end we run Markov chains mapping out both modes and then separate
the samples through the condition f+/Λ2 ≶ 2. We see that choosing the second mode in
f+ has a small effect on f−, pushing the best-fit closer to f− = −3, but none of the other
Wilson coefficients is affected. We also confirmed that both modes are of equal height by
choosing a Breit-Wigner proposal function, which ensures that the Markov chains can
move large distances, helping each individual chain to jump between both modes.
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Figure 4.6: Marginalized likelihoods for the SM-like and the second mode in f+,
again for the 18-dimensional analysis.
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Figure 4.7: Marginalized likelihoods for different uncertainty modeling. The
SFitter default is a Poisson likelihood with flat theory uncertainties and
Gaussian systematics (blue dot-dashed).

Uncertainties and correlations

After confirming that the slight differences between the profile and marginalization
approaches are related to the treatment of uncertainties, we can check the impact of
the SFitter-specific uncertainty treatment. By default, and as explained earlier, we
construct the exclusive likelihood with flat theory uncertainties and Gaussian systematics.
By switching all uncertainties to Gaussian distributions we construct the completely
Gaussian likelihood shown in Fig. 4.7. If we marginalize over the different uncertainties,
the central limit theorem guarantees that for enough different uncertainties the results will
be identical. The exact level of agreement between different uncertainty models depends
on the dataset and the size of the individual uncertainties and can not be generalized.
For instance, sizeable differences will appear when an outlier measurement generates a
tension in the global analysis. Such a tension can be accommodated more easily using a
single flat uncertainty with its reduced cost in the likelihood value.

Because the main difference between profiling and marginalizing over uncertainties appears
for the flat theory uncertainties, the results from Fig. 4.7 motivate the question how
relevant the theory uncertainties really are for the Run 2 dataset analyzed in Ref. [36]. We
show three 1-dimensional likelihoods in Fig. 4.8 and indeed find that after marginalizing
over all nuisance parameters and over all other Wilson coefficients the theory uncertainties
do not play any visible role. Obviously, this statement is dependent on a given dataset,
on the operators we are looking at, and on the assumed uncertainties, and it clearly does
not generalize to all global Run 2 analyses.

The last effect we need to study is the impact of correlations between the different
uncertainties. In Fig. 4.9 we show what happens with the 1-dimensional marginalized
likelihoods when we switch off all correlations between systematic uncertainties of the
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Figure 4.8: Marginalized likelihoods with and without theory uncertainties.
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Figure 4.9: Marginalized likelihoods with and without correlations between
systematic uncertainties of the same category.

same kind. We see that the correlations have a much larger impact than anything else we
have studied in this section. While the size of the uncertainties do not change much, the
central values essentially vary freely within one standard deviation. An analogous effect
was observed in Ref. [162]. We can not emphasize enough that all statements about the
validity of different approximations do not generalize to new, incoming measurements, as
we will see in the following section. However, something that will not change is the key
relevance of correlations as indicated by Fig. 4.9.

4.3 Updated dataset

After the detailed comparison of a profile likelihood and Bayesian SFitter approach
we can, in principle, apply the numerically simpler Bayesian approach to update the
SMEFT analysis of the Higgs-electroweak sector with a series of new Run 2 results. As
a first step, we introduce the set of new kinematic measurements entering the updated
SFitter analysis. We focus on an improved treatment of correlated uncertainties.

4.3.1 WW resonance search

Once we notice that especially boosted kinematics with large momentum transfer through
Higgs interactions play a key role in SMEFT analyses [167, 169], it is clear that the
reinterpretation of V H and V V resonance searches should be extremely useful for a
global SMEFT analysis [36, 37]. To the best of our knowledge, SFitter is currently the
only global analysis framework which includes these kinds of signatures.

First, we add the ATLAS search for resonances in the semi-leptonic V V final state [168],
as briefly discussed in Ref. [2]. We only use the WW 1-lepton category in the merged
Drell-Yan and gluon-fusion high-purity signal region,

pp→W+W− → `+ν` jj + `−ν̄` jj . (4.15)
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Figure 4.10: Left: measured mV V distribution [168]. Right: comparison between
ATLAS results and our SM background estimate. The orange band shows the
statistical uncertainty from the Monte Carlo generation.

Our signal consists of W+W− production modified by SMEFT operators. We neglect
SMEFT effects in the leading W+jets and tt̄ backgrounds. We include all other W`νVjj
and Z``Vjj channels as SM-backgrounds and verified that SMEFT corrections to the
other di-boson channels are sufficiently suppressed by the analysis setup.

The signal is simulated using Madgraph5 [139], Pythia8 [140], FastJet [141], and
Delphes [142] with the standard ATLAS card at leading order and in the SM and
requiring the lepton pair to come from an intermediate on-shell W±. The hadronic
W -decay is simulated using Pythia8. Fat jets are identified using the default catego-
rization in Delphes and ignoring the cut on the D2 variable. The complete SM-rate is
compared to the left panel of Fig. 4.10, taken from Ref. [168]. We reproduce the event
selection based on the analysis cuts listed in Tab. 2 of Ref. [168]. No re-calibration of
energy scales or fat-jet invariant mass windows is required, but we adjust the histogram
entries by a factor 1.606 to match the ATLAS normalization of the di-boson background
and accommodate efficiencies and higher-order corrections [170]. In the right panel of
Fig. 4.10 we show the final mWW distribution obtained with this procedure. Finally, we
extract the statistical and systematic uncertainty from the ATLAS analysis, as shown in
the lower panel in Fig. 4.10. Whenever backgrounds are estimated from control regions,
the Gaussian systematic uncertainties are smaller than the Poisson-shaped statistical
uncertainties in the signal region.

To include the V V channel in our SMEFT analysis we re-bin the original distribution such
that we have a minimum of five observed events per bin. The kinematic distribution we
use in SFitter is shown in the left panel of Fig. 4.11. Here all statistical uncertainties are
treated as uncorrelated and added in quadrature, the same for the systematic background
uncertainties linked to Monte Carlo statistics, while other systematic uncertainties are
conservatively treated as fully correlated and consequently added linearly. Finally, we
add a 80% theory uncertainty on the signal predictions in all bins and assuming no

38



4 To profile or to marginalize: a SMEFT case study

500 1000 1500 2000 2500 3000 3500 4000
mV V [TeV]

101

102

103

104
E

ve
n
ts

bg

f
(3)
φQ = +0.25

f
(3)
φQ = −0.25

data +/- stat

−0.4 −0.2 0.0 0.2 0.4

f
(3)
φQ (TeV/Λ)2

0

1

2

3

4

5

6

7

8

∆
χ

2

σtheo = 70%

only last bin

2 highest mV V bins

3 highest mV V bins

4 highest mV V bins

Figure 4.11: Left: re-binned mWW distribution for the semi-leptonic WW
analysis implemented in SFitter. We show the complete continuum background,
including statistical and systematic uncertainties, and the effect of a finite Wilson
coefficient f (3)

φQ. Right: toy analysis for the same WC using different numbers of
bins.

correlation among them. Of this 70% account for the uncertainties in our SMEFT Monte
Carlo predictions and 10% for V+jets and single-top modeling.

In the right panel of Fig. 4.11 we show the limit in terms of the Gauss-equivalent

∆χ2 = χ2 − χ2
min = −2 logL+ 2 logLmax , (4.16)

extracted from different bins of the measured mWW distribution. We see that the
likelihood maximum slightly deviates from the SM point f (3)

φQ = 0, and the last bin
completely dominates the likelihood distribution. This is expected for momentum-
enhanced operators which modify the tails of momentum distributions, as systematically
analyzed in Ref. [167]. We will discuss the effect of the under-fluctuation in the last bin
in more detail in Sec. 4.4.1.

4.3.2 WH resonance search

Complementing the dataset of Ref. [36] we include two new resonance searches, one
described in Ref. [2] and another ATLAS analysis looking for

pp→WH → `ν̄` bb̄ (4.17)

at high invariant masses [171]. We focus on WH production with one b-tag, because it
includes the best kinematic measurement at high mV H . This analysis applies cuts on the
WH topology and requires exactly one single-b-tagged fat jet. In the merged category
the b-tags are part of a fat jet.

We generate di-boson events for the combined di-boson channels with lepton-hadron
decays

pp→W`νWjj , W`νZjj , Z``Wjj , Z``Zjj , (4.18)

again using the Madgraph5-Pythia8-FastJet-Delphes chain with the standard ATLAS
card at leading order. They can be compared to the grey di-boson background in the
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Figure 4.12: Left: measured mWH distribution [171]. Right: comparison between
the the ATLAS results and our SM background estimate. The orange band
shows the statistical uncertainty from the Monte Carlo generation.

left panel of Fig. 4.12, including the b-tagging and corresponding mis-tagging. After
adjusting the mWH-independent efficiency factor we find the agreement illustrated in
the right panel of Fig. 4.12. We apply the same efficiency factor for the WH signal
and then use the reweighting module in Madgraph5 to estimate the SMEFT rates. The
W -decay to electrons or muons is included through Madgraph5, while the Higgs decay to
bb̄ pairs is simulated by Pythia8. We neglect SMEFT corrections to the tt̄ andW/Z+jets
backgrounds, assuming that the targeted phase space region favors the Higgs signal.
Having to make this assumption is unfortunate, but we emphasize that the number
of experimental measurements should prevent us from falling for SMEFT corrections
canceling between the different signals and backgrounds.

To define a meaningful measurement for our global analysis we have to merge bins of the
original distribution such that at least three observed events appear per bin. In Fig. 4.13,
we show the actually implemented distribution for the complete SM background and
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Figure 4.13: Re-binned mWH distribution implemented in SFitter, including
statistical and systematic uncertainties. We show the complete continuum
background and the effect of a finite Wilson coefficient f (3)

φQ.
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1-dimensional analysis (center), and the treatment of under-fluctuations (right).

including a finite WC f
(3)
φQ. For each bin we include a statistical uncertainty following a

Poisson distribution and a Gaussian systematic uncertainty, as reported by ATLAS. In
addition, we include a 13% theory uncertainty also reported by ATLAS and a theory
uncertainty between 1% and 4% per bin from our SMEFT predictions, but neglecting
correlation between various bins.

We can check some of our assumptions on the way we model theory uncertainties from
a three-parameter analysis with f (3)

φQ, fW and fWW . Neglecting the correlations in the
theory uncertainties is justified by the left panel of Fig. 4.14. It shows the Gauss-equivalent
∆χ2 for varying the theory uncertainties with different correlations; the orange and green
lines represent a 10% and 30% theory uncertainty, fully correlated. The green line
shows results without theory uncertainty, and the red line assumes our SMEFT theory
uncertainty without correlations. These results are very close to each other, so we can
ignore correlations in the theory uncertainties from the EFT prediction.

The central panel compares constraints from the 3-parameter analysis from the entire
mWH distribution and only including one bin at a time. The limit improves sharply when
the 4th and 5th bins are included. This can be understood from Fig. 4.13, where both of
these bins show significant under-fluctuations. In the right panel of Fig. 4.14 we show
that by removing under-fluctuations from the global analysis by setting all measured
values to the number of events expected from the SM we lose constraining power. Again,
demonstrating that our analysis strongly benefits from under-fluctuations.

4.3.3 ZH resonance search

The second boosted V H analysis we re-interpret in terms of SMEFT is a CMS resonance
search in the process [172]

pp→ ZH → e+e− bb̄ . (4.19)

We include the non-vector boson fusion (VBF) category with ≤1 b-tags and with two
b-tags. We find that the two-b category is more constraining than the ≤ 1b category.
This can happens because the relative size of the SMEFT correction prefers this category.
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Figure 4.15: Left: measured mZH distributions for the two b-tagging cate-
gories [172]. Right: comparison between the Z ′ signal quoted by CMS and our
estimate. The orange bands show the statistical uncertainty from the Monte
Carlo generation.

To determine the number of b-tags in an event, we look at the corresponding fat jet and
the number of b-quarks inside the jet.

We validate our analysis simulating events for Z ′ peak in the heavy vector triplet (HVT),
that is used by CMS to illustrate a possible signal,

pp→ Z ′ → Z``Hbb . (4.20)

This signal has the advantage that it is localized in mZH and simulated at leading order
using Madgraph5, which means it is easier to use for calibration than a continuum back-
ground. Again, we use Madgraph5, Pythia8, FastJet, and Delphes with the standard
CMS card at leading order. The combined sample is then compared to the HVT peak
shown in Fig. 4.15. We extract the experimental efficiencies after scaling the invariant
mass by the same factor 1.05 for both categories. The right panels in Fig. 4.15 show the
simulated Z ′ signal for the two categories, compared with the quoted CMS distributions.

The SMEFT signal in the ZH channels is then computed using the same efficiencies
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Figure 4.16: Re-binned mZH distributions for the 2b category (left) and the
≤ 1b category implemented in SFitter, including statistical and systematic
uncertainties. We show the complete continuum background and the effect of a
finite Wilson coefficient f (3)

φQ.

and the reweighting module in Madgraph5. The Z-decays are included in the Madgraph5
simulation, while the Higgs decays are simulated in Pythia8. As before, we ignore
SMEFT effects on the tt̄ background.

Also for the CMS ZH channel we need to re-bin the mZH distribution to define a
meaningful set of measurements, now with at least two events per bin and separately
for the two categories. The results are shown in Fig. 4.16. For each bin we include
the systematic and statistical uncertainties from Ref. [172]. In addition, we include
different theory uncertainties per bin from the SMEFT prediction and event generation
in Madgraph5. As discussed in detail for the ATLAS WH analysis, we neglect the
correlation between bins.

4.3.4 Boosted Higgs production

Boosted Higgs production, in association with one or more hard jets,

pp→ Hj(j) , (4.21)

has been known to distinguish between a top-induced Higgs-gluon-gluon coupling and
the corresponding dimension-6 operator for a long time [174,175]. It has therefore been
suggested as a channel to measure the dimension-6 WC fGG in the presence of a modified
top Yukawa coupling ft [176–179], where it competes with channels like the off-shell
Higgs production [180,181]. In the SFitter Higgs analysis it can be added to the set of
measurements to provide complementary information to the total Higgs production rate.
We take the measurement of the Higgs pT distribution in the γγ channel by ATLAS [173].

The main contribution to boosted Higgs production comes from the partonic channel
gg → Hg, with subleading corrections from gg → Hgg. This allows us to include SMEFT
corrections to gg → Hg only. They can be separated into rescalings of the top Yukawa
coupling, for instance via Ouφ,33, corrections to the top-gluon coupling from OtG, and
the effective Higgs-gluon interaction induced by OGG.
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Figure 4.17: Left: measured dσfid/dpγγT distribution [173]. Right: comparison
between the the ATLAS distribution and our SM estimate summing contributions
from gg → Hg and gg → Hgg.

Because these effective vertices enter also tt̄H production, these operators lead to a
non-trivial interplay in the global analysis. Moreover, as discussed in Sec. 4.3.5 below,
ftG is well-constrained by top pair production pp→ tt̄. In fact, it constitutes the most
significant contact between global top and Higgs analyses [39,40].

We calibrate the boosted Higgs analysis simulating the SM signal for the partonic sub-
channels gg → Hg and gg → Hgg using Madgraph5. The gluon-initiated channels
are simulated at 1-loop, while the quark-initiated one at tree level. For the one-loop
simulation we use a fixed renormalization scale µR = mH . This setup is also used for
the SMEFT simulations. Figure 4.17 shows the comparison between our simulation and
the SM signal estimate provided by ATLAS. We use the same binning as in the original
distribution, but omit the bins with pT,γγ < 45 GeV.

The simulation of SMEFT effects is tackled with different methods. The effect of a shifted
top Yukawa is just a rescaling of the SM cross section, that can be easily computed
analytically,

σSMEFT
σSM

=
(

1− ft√
2
v2

Λ2

)2

. (4.22)

Second, OtG also enters the top loops, but induces a different Lorentz structure com-
pared to the SM amplitude. Its contributions are simulated independently using
SMEFT@NLO [182] in Madgraph5. In the event generation, the EFT operator is renor-
malized at µEFT = µR = mH .

Finally, OGG enters at the tree level. Because the pure interference between tree and
loop diagrams can not be generated directly in Madgraph5, we choose to simulate both
the linear and the squared term with a modified loop_sm universal FeynRules output
(UFO) model, where the point-like Higgs-gluon vertices are mimicked by sending the
bottom quark mass and Yukawa coupling to 15 TeV. We verified that any value larger
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Figure 4.18: Reconstructed pT,H distribution implemented in SFitter, including
statistical and systematic uncertainties as well as additional uncertainties on our
prediction. We show the complete continuum of signal and background and the
effect of three finite WCs ft, ftG and fGG. The negative values are represented
by dashed lines and the positive values by solid lines.

than 10 TeV gives equivalent results. This way the simulation is formally at one loop
for all terms. The results of this approximation were cross-checked against the analytic
results in Refs. [174,175] for the interference and against the tree-level simulation for the
pure square.

The mixed quadratic terms, i.e. the interferences between two operators, can be computed
analytically for the combination of OtG or OGG with a shifted Yukawa coupling. The
combination of ftG and fGG needs to be simulated independently, in our case using using
SMEFT@NLO and the reweighting module in Madgraph5.

In Fig. 4.18 we show the impact of four relevant SMEFT coefficients on the kinematic
distribution we implement in SFitter. For each bin we include the systematic and
statistical uncertainties from Ref. [173], as well as an additional 20% theory uncertainty
reflecting the scale uncertainty on the SMEFT prediction.

4.3.5 From the top

From the combined top-Higgs analyses [39, 40] we know that the Higgs-gauge sector and
the top sector can not be treated completely independently. The two operators

Ouφ,33 = φ†φ Q̄3φ̃uR,3 and OtG = igs(Q̄3σ
µνTAuR,3) φ̃GAµν (4.23)

contribute to top pair and associated tt̄H production and are, at the same time, crucial
to interpret gluon-fusion Higgs production, together with the Higgs-related operator OGG,
as discussed above. By the definition of top-sector and Higgs-sector SMEFT analyses
in SFitter, OtG is covered by the top analysis, while we keep Ouφ,33 as part of the
Higgs analysis, together with a complete treatment of tt̄H production. This means we
can include the limits on ftG from the dedicated SFitter analysis of the top sector [38]
using its 1-dimensional profile likelihood. We implement these constraints as an external
measurement or prior. The corresponding profile likelihood is shown in Fig. 4.19. It
consists of 100 data points which are dense enough that we can linearly interpolate
between them.
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We choose the range in ftG to cover extremely small log-likelihoods, to avoid numerical
issues in the combined analysis. Still, while it is very unlikely to occur, we also want to
describe points outside of this range, so we extrapolate the log-likelihood further with
two quadratic fits; one fitted to negative WCs and one fitted to positive WC. A quadratic
fit in this context means exponentially suppressed Gaussian tails.

4.3.6 Rates and signal strengths

In addition to the new kinematic measurements above, we update the set of Higgs rate
measurements of Ref. [36], adding those listed in Tab. 4.1. The two H → ττ and three out
of four H → inv measurements are completely new constraints, while the others update
results included in our previous analysis. The first column indicates which production
channels were implemented in SFitter. We do not always use all the channels covered
in a given ATLAS or CMS paper, if some of them are clearly subleading or some of
them appear impossible to implement in the necessary details. Production channels in
parentheses are numerically subleading, but were retained nevertheless.

The systematic and statistical uncertainties of the new measurements are typically smaller
compared to the older ones. On the other hand, we attempt a more comprehensive
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Figure 4.19: Profile likelihood for ftG from the SFitter top-sector analysis [38].

Production Decay ATLAS CMS

All H → γγ [183] [184]
ZH H → inv [185] [186]

VBF (ggF, V H) H → inv [187]
VBF (ggF, ZH, tt̄H) H → inv [188]

All H → ττ [189]
V H H → ττ [190]

ggF, VBF H →WW [171]
ggF, VBF, V H H →WW [191]
WH, ZH H → bb̄ [192]

ggF, VBF (V H, ttH) H → µµ [193]

Table 4.1: List of the new Run 2 Higgs measurements included in this analysis,
we denote V = W,Z.
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and conservative estimate of the theory uncertainties, given the available information.
In Ref. [36] we typically discarded many theory uncertainties on the signal quoted in
the actual papers and replaced them with the leading uncertainty on the complete
signal prediction from the Higgs cross section working group (HXSWG) [194–196], added
linearly as expected for uncorrelated flat uncertainties combined by profiling. In our new,
comprehensive treatment, all theory uncertainties quoted by the analyses are retained.
We include them separately and combine them. In addition, we include the uncertainties
reported by the HXSWG [194–196] as the uncertainty on our SFitter prediction, again
split by contribution and ready to be profiled over or marginalized.

We illustrate the implementation procedure in some more detail only for the recent Run-2
H → WW analysis by CMS [191]. Among the results presented, we implement the
four signal strength measurements. Because they are reported for individual production
modes (and not only in the simplified template cross sections (STXS) binning), they can
be directly compared to the known expressions for Higgs production rates in the SMEFT,
without re-deriving. These have been long implemented in SFitter for the main Higgs
production channels (ggF, VBF, WH, ZH, ttH) and decays (bb̄, WW , gg, ττ , ZZ, γγ,
Zγ, µµ). A re-derivation of the SMEFT expression can also be avoided in cases where
the final results are not given for specific production channels, but the expected signal
contribution from each production channel is provided.

The key ingredient to SFitter is a detailed breakdown of all uncertainties. This is crucial
in order to obtain the best possible approximation of the full experimental likelihood.
For Ref. [191] we consider different uncertainties for each production channel, that are
reported in the paper and in the corresponding HepData entry.

The statistical uncertainty is taken from the experimental paper, symmetrized and im-
plemented as Poisson or Gaussian distribution. For experimental systematics, SFitter
provides 31 predefined categories of Gaussian uncertainties, correlated across measure-
ments and, where appropriate, across experiments. All uncertainties belonging to the
same category are added in quadrature. The categories used to implement the CMS
analysis cover luminosity, detector effects, lepton reconstruction, and b-tagging. De-
tector effects combine the jet energy scale and resolution uncertainties, as well as the
missing transverse momentum scale uncertainty. Whenever the experimental papers
quote significant uncertainties that do not fit any predefined category, we add them as
an uncorrelated Gaussians, but this is not the case for the analysis of Ref. [191].

Theoretical uncertainties are typically implemented with flat uncorrelated likelihoods.
One exception is the Monte Carlo statistics uncertainty, which we usually treat as an
uncorrelated Gaussian. The CMS analysis quotes five theoretical uncertainties, that are
all introduced independently. In addition, we have six theoretical uncertainties on the
SFitter prediction: three on the production rate and three on the decay branching
ratio, following the HXSWG prescription [194–196].

As a final step we compare the systematic uncertainties quoted on the final result with
the sum of the uncertainties implemented in SFitter. If we are missing information
for example on the correlations, our implementation might not be conservative, so we
introduce an additional uncorrelated Gaussian uncertainty to compensate. This happens
for the CMS reference analysis in the ZH channel. For this measurement we implement
two uncorrelated Gaussian uncertainties, three correlated Gaussian uncertainties, plus
the eleven flat uncertainties.
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Figure 4.20: SFitter analysis with different SMEFT models describing the full
Run 2 dataset, including the boosted WW production.

4.4 Global SFitter analysis

After validating the marginalization technique in SFitter and introducing a set of
promising new observables, we can provide the final global analysis of the Higgs and
electroweak sector after Run 2, including the leading link to the top sector. To be
conservative, we will compare all our results with a profile likelihood treatment. We will
find and explain differences of the two methods facing the same extended dataset.

4.4.1 Marginalization vs profiling complications

While in Sec. 4.2 we have found that for the dataset of Ref. [36] the marginalization and
profiling approaches lead to, essentially, identical results, one analysis implemented in
SFitter as part of Ref. [2] actually leads to significant differences. The data driving
this separation of profiling and marginalization is the mWW distribution measured by
ATLAS [197], shown in the left panel of Fig. 4.11. It has the unique feature of a sizeable
under-fluctuation in the last bin.

Such an under-fluctuation is challenging to accommodate in the SMEFT. First, under-
fluctuations can only be explained by operators with large interference terms, where the
WCs have to be carefully tuned to be large enough to explain a sizeable effect and small
enough to not be dominated by dimension-6 squared contributions. Second, a localized
under-fluctuation in only one bin of one kinematic distribution requires a subtle balance
of several WCs, to control all other bins in all other di-boson and V H channels.

In Fig. 4.20 we show low-dimensional analyses of the full Run 2 dataset including the
WW kinematics shown in Fig. 4.11, constraining three, five and seven Wilson coefficients.
For the three parameters {fB, f (1)

φu , fW } we see that the maximum of the likelihood is
perfectly compatible with the SM. The reason is that the SMEFT model is not flexible
enough to accommodate the under-fluctuation, so we only encounter the issue when
we look at the value of the likelihood in the maximum. Adding first {f (1)

φQ, f
(3)
φQ} and

then {f (1)
φd , f3W } to the SMEFT model allows us to accommodate the under-fluctuation,

leading to a second likelihood maximum.

When we compare the two likelihood maxima, differences between the profiling and the
marginalization appear. This is not surprising, given that the two methods ask different
questions. By definition, the profile likelihood identifies the most likely parameter point,
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Figure 4.21: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis including the full set of measurements.

which according to Fig. 4.20 is close to the SM point, fB ≈ 0 ≈ f
(1)
φu . This does

not change when we increase the operator basis or expressivity of the SMEFT model.
The marginalization adds volume effects in the space of Wilson coefficients, and they
increasingly prefer the non-SM maximum once the SMEFT model is flexible enough
to explain the under-fluctuation. Consequently, the marginalized analysis proceeds to
challenge the SM in favor of an alternative SMEFT parameter point.

4.4.2 Full analysis

After identifying and understanding the issue with marginalized likelihoods for the
updated dataset we now perform the full, 21-dimensional parameters analysis on all
available data. The theory framework is defined by the Lagrangian in Eq. (2.3). The
dataset consists of all measurements from Ref. [36], combined with the new and updated
channels described in Sec. 4.3. We will discuss the standard profile likelihood results
below, in a first step we focus on the marginalization. In Fig. 4.21 we show a set of
1-dimensional marginalized likelihoods. In the first row we show three WCs affected by the
under-fluctuation inmWW , as discussed in the previous Sec. 4.4.1. While the marginalized
likelihood for fW follows a standard single-mode distribution, those for fB and f (1)

φu , for
example, show two distinct modes accommodating the observed under-fluctuation.

In the second row we show the alternative maximum in f+ we already observed for
the dataset from Ref. [36] and which we discuss in Fig. 4.6 of Sec. 4.2. For the final
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SFitter result we will remove the second maximum as an expansion around the wrong
SMEFT limit. We also see that the invisible Higgs width is strongly constrained, even
after we account for a modified Higgs production process rather than assuming SM Higgs
production combined with the exotic invisible Higgs decay.

In the last row we show the effect of including OtG in the Higgs analysis. Comparing the
limit on ftG to its prior in Fig. 4.19 we see that this parameter gains essentially nothing
from the Higgs measurements, but it will broaden the limits on the correlated parameter
fGG affecting gluon-fusion Higgs production.

To follow up on the discussion of Fig. 4.20 we show a more complete set of 2-dimensional
marginalized likelihoods related to the mWW under-fluctuation in Fig. 4.22. In the full
analysis the correlation does not just affect f (1)

φu , but the full range of gauge-fermion
operators. This is expected from the argument that we need to carefully tune many
WCs to accommodate a deviation in a single di-boson process in a single bin of the
high-invariant-mass distribution. As mentioned before, the apparent signal for physics
beyond the Standard Model is an artifact of the marginalization and its volume effects,
and can not be reproduced with the profile likelihood. Note that this does not mean the
marginalization is wrong or wrongly done, this difference just reflects the two methods
asking different questions.

To study the impact of the critical WW -resonance analysis on our global analysis we
show a set of marginalized likelihoods with and without this analysis, i.e. with and
without the entire mWW distribution. Obviously, removing this distribution also removes
the secondary maximum structure, as we immediately see in Fig. 4.23. Removing the
entire distribution replaces the marginalized likelihoods for fB and f (1)

φu by their broad
envelopes, still correlated, but without the distinctive maxima. For fW the additional
observable has limited impact, for f (1)

φd is leads to a smaller uncertainties combined with
a shifted maximum, and for f3W the WW -analysis provides key information.

Finally, in Fig. 4.24 we compare the 1-dimensional marginalized likelihoods with the
corresponding profile likelihoods for a set of WCs. For fB and f (1)

φu we see the difference
in the treatment of the secondary likelihood maximum, while fW serves as an example
for the many parameters where the two methods give the same results, as discussed in
detail in Sec. 4.2 and Fig. 4.2. Indeed, the results from the two methods only disagree
when the likelihoods develop secondary maxima.
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Figure 4.22: Set of marginalized correlations for the 21-dimensional SFitter
analysis including the full set of measurements. The solid and dashed lines show
∆χ2 = 2 and 7 respectively.
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Figure 4.23: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis with and without the ATLAS WW resonance search altogether.

Moving on with the effects observed in Fig. 4.21 we can look at the top-Higgs sector with
fGG, ft, and the added ftG. These three WCs are constrained by the Higgs production in
gluon fusion, associated top-Higgs production, and top pair production through the prior
shown in Fig. 4.19. We have already seen that this prior is practically identical to the
final outcome in Fig. 4.21. Nevertheless, we can ask what the impact of the boosted Higgs
production process is, given that it should provide a second measurement of the three
WCs with different relative weights. In Fig. 4.25 we show the results of the 21-dimensional
SFitter analysis with and without the new boosted Higgs measurement introduced in
Sec. 4.3.4. Unfortunately, the likelihood distributions are similar, corresponding to our
expectation from the limited statistics of this measurement and the limited range in pT,H ,
where significant differences can only be expected for pT,H > 250 GeV [180], and even for
this kinematic range it is not clear how well the measurement separates effects from fGG
and ftG, while the ft measurement is completely dominated by tt̄H production.

Even though completely justified, the only visible effect of including ftG in the Higgs
analysis is to wash out the limit on fGG. In Fig. 4.26 we first show the change on the
1-dimensional marginalized likelihood of fGG when we remove ftG from the SFitter
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Figure 4.24: Set of marginalized and profiled likelihoods for the 21-dimensional
SFitter analysis with the ATLAS WW resonance search.
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Figure 4.25: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis with and without the boosted Higgs analysis.

analysis. Indeed, the measurement of fGG becomes much better. This is explained by
the strong correlation between fGG and ftG shown in the right panel.

After the in-depth discussion of all features we show the 68% and 95%CL limits from the
21-dimensional SFitter analysis with the full updated dataset in Fig. 4.27. To extract
these limits we start with the respective 1-dimensional marginal or profile likelihood,
identify the maximum, and move outward keeping the likelihood values on the left and the
right border of the integral the same. If there exists an additional peak, we compute the
integral under the likelihood for the part of the curve above a given likelihood threshold.
The 68% and 95%CL error bars are then defined the same way for the marginal and
profile likelihood.

The profile likelihood results in Fig. 4.27 provide an update of the limits shown in
Fig. 4.2 [36]. We emphasize that this update does not automatically mean an improvement
of the limits, because of our more comprehensive uncertainty treatment, the added
operator OtG, and the now measured Yukawa coupling fµ. Computing the uncertainties
on the Wilson coefficients which are all in agreement with the Standard Model at least
for the profile likelihood approach, we remove modes around non-SM likelihood maxima.
Those appear through sign flips in Yukawa couplings and in f+ and would require order-
one effects from new physics. We safely assume that new physics with this kind of effects
would have been observed somewhere already.

In Fig. 4.27 we see that all results from the marginalization and profiling approach are
consistent with each other. The only kind-of-significant deviation appears in fB and
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Figure 4.26: Left: marginalized likelihoods for the SFitter analysis with and
without ftG, using the same dataset; Right: marginalized correlation for the
21-dimensional SFitter analysis.
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Figure 4.27: Comparison of 21-dimensional SFitter analysis with all updated
measurements included. We show the 68% and 95%CL error bars from consistent
marginalization and profile likelihood treatments of all nuisance parameters and
WCs.

the correlated gauge-fermion operators like f (1)
φu . The reason for this discrepancy can be

traced back to an under-fluctuation in the mWW measurement and actual differences
between the likelihood and Bayesian approaches.

Projected limits for the high-luminosity LHC (HL-LHC) are shown in Appendix A.
Appendix B gives the numerical values of the intervals presented in Fig. 4.27.

4.5 Outlook

Global SMEFT analyses are the first step into the direction of interpreting all LHC data
on hard scattering process in a common framework. They allow us to combine rate and
kinematic measurements from the Higgs-gauge sector, the top sector, jet production, ex-
otics searches, even including parton densities and flavor physics. They can be considered
improved bin-wise analyses of LHC measurements, but with a consistent effective theory
framework. This framework allows us to provide precision predictions matching the
precision of the data we analyze, and it ensures that their result is relevant fundamental
physics. Because any realistic effective theory description involves a truncation in dimen-
sionality, SMEFT results always have to be considered in relation to the fundamental
physics models they represent.

From a brief look at the analyzed data we know that our SMEFT analysis of the
electroweak gauge and Higgs sector will not describe established anomalies, but serve as
a consistent, global limit-setting tool. This makes it even more important to treat all
uncertainties, statistical, systematic, and theory, completely and consistently. Technically,
this leads us directly to the question if we want to use a profile likelihood or a Bayesian
marginalization treatment. Because the two methods ask different questions, it is not
at all clear that technically correct analyses following the two approaches lead to the
same results. We have shown, for a first time, what the current challenges in global LHC
analyses are and how the two methods do turn up slight differences.

We have started with an in-depth discussion of the current challenges in the Higgs and
electroweak data and the corresponding validation of the marginalization in SFitter, in

53



4 To profile or to marginalize: a SMEFT case study

comparison to our classic profile likelihoods. Using the established dataset of Ref. [36] we
have shown that the two methods give extremely similar results. We have also found that
for this dataset the exact treatment of the theory uncertainties is not a leading problem,
while a correct treatment of correlations of the measurements and the uncertainties is
crucial.

Next, we have updated this dataset, including a set of kinematic di-boson measurements
and boosted Higgs production. These measurements allow us to constrain operators
with a modified Lorentz structure especially well. Kinematic distributions from di-boson
resonance searches probe the largest momentum transfers of our SFitter dataset, but
their interpretation in terms of SMEFT operators requires significant effort. A systematic
publication of the corresponding likelihood by ATLAS and CMS would fundamentally
change the appreciation for these analyses, from failed resonance searches to the most
exciting SMEFT results.

Accidentally, the updated dataset also leads to differences in the marginalization and
profiling treatments of the same exclusive likelihood. The measurement driving this
difference is an under-fluctuation in the tail of the kinematic mWW distribution. Under-
fluctuations are difficult to reconcile with SMEFT analyses, because they require a balance
between linear and squared operator contributions. To complicate things, a sizeable
number of kinematic distributions probes large momentum transfer, all consistent with
the Standard Model. For a small number of WCs one under-fluctuation will just lead to
a poor log-likelihood value in the SM-like likelihood maximum. A larger number of WCs
defines a powerful model which accommodated this deviation. For the final result, the
complex correlations between WCs lead to volume effects in the marginalization, which,
expectedly, separated the final profile likelihood and marginalized results.
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Chapter 5
From UV models to SMEFT and back?

The SMEFT global analysis framework established in Chaps. 3 and 4 can be extended to
perform UV model analyses.

In this chapter, we perform a global analysis for the heavy vector triplet (HVT) model
through a SMEFT framework. The essential piece that makes this possible is the matching
of the model onto the SMEFT at one-loop level, which is derived using functional methods.
The matching at one-loop level introduces an unphysical matching scale, which we argue
should be treated as a theory uncertainty, i.e. varied within a range and profiled over.
This matching uncertainty is shown to have a great impact on the limits set on one of
the UV model parameters. Finally, we present the results of our global analysis in the
HVT model space obtained through a SMEFT framework. We discuss the impact of high
kinematic distributions and the complementarity between limits from direct searches and
those set through a SMEFT framework.

Note that, because this study was technically published before the one in Chap. 4, the
basis is reduced (ftG = fµ = 0) and all the results use the profiling treatment.

The research presented in this chapter has been published in Ref. [2]. The work was
conducted in collaboration with Ilaria Brivio, Sebastian Bruggisser, Wolfgang Kilian,
Michael Krämer, Michel Luchmann, Tilman Plehn, and Benjamin Summ. All figures
and tables as well as a significant part of the text are identical to the content of this
publication.

5.1 Introduction

The Higgs discovery [4,5] and many measurements of the Higgs Lagrangian [159] indicate
that the SM with its single, weakly interacting Higgs boson might well be the correct
effective theory around the electroweak scale. However, the SM is extremely unlikely to
be the full story. Many theoretical considerations, including electroweak baryogenesis,
dark matter, or neutrino mass generation, point to an extended electroweak or scalar
sector. To avoid a bias through a specific, pre-selected signal hypothesis, modern LHC
searches for BSM physics are often conducted in the SMEFT [160]. Because of its
vast operator landscape, the corresponding experimental searches [198,199] and global
analyses [36, 40–42, 47, 48, 107] provide a comprehensive probe of rates and kinematic
patterns in LHC processes.

One of the complications of SMEFT analyses of LHC data is that the effective theory
truncated at dimension six has a limited validity range, and that LHC measurements span
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a large energy range. Moreover, even if we assume the SMEFT to be generally valid, it is
not clear how much information on a full BSM model is lost when we confront it with LHC
data via a truncated SMEFT Lagrangian rather than the original full model. Combining
these questions, it is instructive to consider concrete, albeit simplified, BSM models and
examine the limits extracted through a SMEFT interpretation matched to these models
in comparison with the constraints obtained from direct searches [41,94–97,200–203].

The naive expectation behind SMEFT analyses is that we can use the complete, correlated
information on the Wilson coefficients (WCs) from a global analysis and derive limits
on any BSM model through matching. However, if the BSM scale is not sufficiently
well-separated from the electroweak (EW) scale, an interpretation based on the SMEFT
Lagrangian truncated at dimension six will likely give inaccurate results [204,205]. The
theory uncertainties related to the matching to full models are usually not accounted
for in global analyses, which instead take their Lagrangian as a fixed interpretation
framework. In general, limits derived on BSM models through a SMEFT framework using
the same data and with all uncertainties accounted for will differ from limits derived on
the full model directly, where the former can be significantly weaker or stronger than the
latter.

This work aims at exploring the complementarity of the two analysis strategies and
at highlighting general aspects that emerge when the SMEFT results are related to a
concrete BSM scenario. We address this question for a global analysis of electroweak,
di-boson and Higgs measurements, matching the relevant WCs to the UV-model at one
loop, using functional matching methods. We use the SFitter framework and include a
proper estimate of a new and non-negligible theory uncertainty from the variation of the
matching scale. As a UV-model we use a triplet-extended gauge sector [200,206–209] a
standard scenario when it comes to motivating the SMEFT approach to the Higgs and
electroweak sector. Such a triplet model can be linked for instance to the weakly coupled
gauge group SU(3)×SU(2)×SU(2)×U(1) [210] or deconstructed extra dimensions [211].

The chapter is organized as follows: in Sec. 5.2 we review the basics of functional one-loop
matching, we define the gauge triplet model under study, and we provide details about the
SFitter setup. In Sec. 5.3 we discuss the decoupling limit of the new heavy states and
the relevance of the matching scale choice. The impact of these two aspects on the global
analysis is illustrated via simplified fits. In Sec. 5.4 we present the results of a global
fit to the full vector triplet model, based on the dimension-6 SMEFT Lagrangian, and
compare our results with limits obtained from direct searches. We conclude in Sec. 5.5.

5.2 Basics

In this section, we briefly review the one-loop matching procedure, the UV-model, as
well as the SFitter setup.

5.2.1 One-loop matching: generic approach

The methods of constructing and matching effective-field theories [51, 212] have been
in use for more than four decades [213–216]. Generic expressions for the low-energy
effective action of a gauge theory at the one-loop order were derived in the 80s [217].
More recently, the approach has been further explored, particularly within the context of
SMEFT [144–157].
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We consider a UV model which can be defined in terms of light fields ψ and heavy fields Ψ,
and which supports a perturbative expansion based on a local Lagrangian. Heavy fields
are characterized by the condition that the support of their spectral functions vanishes
below a certain threshold. We may identify the threshold with a mass M , typically the
lightest mass that belongs to the heavy spectrum. The remaining fields are understood
as light fields.

The UV model is expressible in terms of an effective action ΓUV[ψ,Ψ], the generating
functional of its one-particle irreducible (1PI) vertex functions. If fields of spin higher
than 1/2 are involved, or if global symmetries are present, it is constrained to be a solution
of a Slavnov-Taylor identity. By assumption, ΓUV is calculable in a loop expansion from
a local Lagrangian LUV(ψ(x),Ψ(x)) with a finite number of fields and parameters. The
parameters depend on the choice of a regularization and renormalization scheme and are
redefined order by order by suitable renormalization conditions. This includes resolving
inherent ambiguities associated with field reparameterizations, such as wave-function
renormalization and terms vanishing by equations of motion.

The EFT is likewise expressible in terms of an effective action ΓEFT[ψ], a functional of
the light fields only. Again, we assume that a perturbative loop expansion is possible, and
that it can be computed from a local Lagrangian LEFT(ψ(x)). The number of parameters
of LEFT is intended to be finite, but it increases without bounds with the accuracy that we
want to implement via matching conditions. To keep the EFT parameter set manageable,
we have to define an organizing principle which amounts to a series of approximations,
and a prescription to truncate this series at a certain order.

To find the EFT Lagrangian iteratively, one introduces the one-light-particle irreducible
(1LPI) effective action ΓL,UV[ψ]. Formally, this is a double Legendre transform of
ΓUV[ψ,Ψ]; in practice, it amounts to absorbing a maximal set of independent heavy-field
propagators in the skeleton expansion of S-matrix elements. This results in redefined
light-field effective vertices. By contrast, the light-field propagators are kept explicit.
In general they still carry a mixture of light and residual heavy degrees of freedom,
depending on the precise definition of the original UV model. Like the original effective
action, ΓL,UV[ψ] depends on conventions regarding renormalization and handling the
equations of motion. In terms of this entity, the matching condition reads

ΓL,UV[ψ] = ΓEFT[ψ] + ∆Γ[ψ] . (5.1)

The matching error ∆Γ[ψ] describes a set of vertex-function corrections ∆Γi(x) that
are not calculable from a local Lagrangian involving light fields only. The matching
procedure succeeds if, in momentum space, all contributions to this error are sufficiently
power-suppressed at low energy,

∆Γi(p) < c|p|k , (5.2)

where p is any light-particle mass or momentum component.

At the tree level, the 1LPI effective action Γ(0)
L,UV[ψ] of the UV model can be derived by

simple variable changes, applying the equations of motion. Unless the ψ multiplets are
incomplete under a symmetry, the result satisfies the tree-level Slavnov-Taylor identity
with only light fields taken into account. The tree-level effective action SEFT[ψ] = Γ(0)

EFT[ψ]
is evaluated, to arbitrary order, by means of a momentum-space Taylor expansion of the
1LPI effective action on the l.h.s. of Eq. (5.1). In this expansion, residual heavy degrees
of freedom are naturally removed from the tree-level light-field propagators. The latter
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assume their canonical tree-level form while any extra terms are shifted to the interaction
part of SEFT[ψ].

The operator content of the tree-level effective action SEFT[ψ] can be determined indepen-
dently by algebraic methods. Their coefficients are fixed by a term-by-term comparison
with the vertices of Γ(0)

L,UV. The symmetries are preserved in this expansion if covariant
derivatives are used consistently. At one loop, new contributions to the UV effective
action arise which are generically non-local, and can be formally summarized as

Γ1`
UV[ψ,Ψ] = ics Tr log

(
−δ

2SUV[ψ,Ψ]
δ2(ψ,Ψ)

)
, (5.3)

where the trace is integrated over all field components at all space-time points and cs
accounts for the statistics of the fields that are integrated over. This evaluates to the sum
of all one-loop Feynman graphs with external fields attached. In expressions of this kind,
the external field insertions act as bookkeeping devices, or background fields [218–226].
This allows for employing gauges and conventions that distinguish between internal
and external lines, a generic feature of working with 1PI vertex functions. This means
in particular that, with respect to the background fields, a manifestly gauge-invariant
effective action can be computed [227, 228]. The trace is in general UV divergent and
requires the application of a regularization scheme and the addition of local counterterms,
such as dimensional regularization and minimal subtraction.

To match the UV model to the EFT at the one-loop order, we have to evaluate Eq. (5.1)
again. Initially,

∆Γ1`[ψ] = ics Tr
[
log

(
−δ

2SUV[ψ,Ψ]
δ2(ψ,Ψ)

)
− log

(
−δ

2S
(0)
EFT[ψ]
δ2ψ

)]∣∣∣∣∣
Ψ=0

, (5.4)

where the formal trace includes the integral over all one-loop diagrams which are 1LPI
and do not contain open external Ψ lines. Because S(0)

EFT = Γ(0)
EFT = Γ(0)

L,UV +O(|p|k), the
difference is well-behaved in the infrared (IR). Loops of canonical light propagators only
would exactly cancel between the two terms, but since the light-field propagators need
not coincide between the two Lagrangians, we have to be careful to take all terms into
account. In any case, due to the IR cancellation the one-loop functional Eq. (5.4) again
admits a Taylor expansion up to the order of the previous tree-level truncation. The
result can be expressed as a finite set of local terms that modify the coefficients of terms
which are already present in the generic effective Lagrangian of the tree-level EFT. They
are absorbed in SEFT[ψ],

S1`
EFT[ψ] = −∆Γ1`[ψ]

∣∣∣
local, truncated

, (5.5)

and disappear from Eq. (5.4). In effect, the remainder still contains all non-local parts of
the matching error but satisfies Eq. (5.2), to one-loop order.

By the same reasoning, the difference in Eq. (5.4) is not well-behaved but divergent in
the UV, and therefore requires regularization and renormalization. The renormalization
conditions are given by the matching conditions themselves and thus indirectly refer to
the renormalization conditions of the UV model. All free parameters of the EFT are
fixed, order by order, in terms of the original parameters of the UV model. Nevertheless,
a practical scheme such as dimensional regularization with minimal subtraction may

58



5 From UV models to SMEFT and back?

introduce an intermediate renormalization which depends on an arbitrary scale µR. The
implications of this additional mass scale will be discussed in detail below.

In analogy with the tree-level matching procedure, in order to manifestly preserve the
symmetries of the theory one should consistently work with covariant derivatives in the
one-loop matching calculation, as discussed in the following subsection. However, due to
the presence of UV divergences in the matching conditions the Slavnov-Taylor identity
need not be compatible with a local Taylor expansion of the one-loop vertex functions,
and the separation of the UV effective action into a gauge-invariant low-energy effective
action and a remainder like in Eq. (5.1) may fail [217,229,230]. In the current chapter,
we assume that such an obstruction does not critically affect our argument.

5.2.2 One-loop matching: implementation

Instead of constructing the difference in Eq. (5.4) in terms of Feynman graphs explicitly,
the subtraction may be accounted for in the integrand by employing the method of
regions [231–233]. The matching correction (Eqs. (5.4) and (5.5)) is replaced by

S1`
EFT[ψ] = ics Tr log

(
−δ

2SUV[Ψ, ψ]
δ(Ψ, ψ)2

)∣∣∣∣∣
hard

. (5.6)

The label ‘hard’ has to be understood in the following way: the functional trace is
computed in momentum space. Two different regions are of interest in the matching, the
hard and the soft region. If q denotes the typical size of a loop momentum, the hard
region is defined by q ∼ M � m, whereas the soft region is defined by q ∼ m � M .
Here m stands for the typical mass scale of the light sector. As discussed above, only the
hard region is relevant while in the soft region the matching integral is well behaved. It
has been shown that the tree-level induced EFT contribution to the matching cancels
the soft region contributions from the UV-theory in the difference in Eq. (5.4) [149, 234].
Therefore, the integrands of the loop integrals in Eq. (5.6) are expanded only in the hard
region. The evaluation of the functional trace then reduces to computing integrals of the
form ∫ ddq

(2π)d
qµ1 . . . qµ2nc

(q2 −M2
i1

)n1 . . . (q2 −M2
im

)nm(q2)n0
. (5.7)

Here, all masses Mi1 , . . . ,Mim are of the order of M . This implies that the dependence
of Eq. (5.6) on any external momentum or mass |p| is analytic, and no logarithms of the
form log(m/|p|) or log(|p|/M) can appear. The only logarithm possible is log(M/µR),
and to avoid large logarithms in the relation between EFT and UV parameters we need
to choose µR ∼M .

Apart from the prescription ‘hard’, the second derivatives of the UV-action evaluated
at the background field configurations appear in the matching. To derive a universal
result these derivatives are split into a part that contains the gauge-kinetic term of the
field and its mass term, generating the propagator of the field, and a pure interaction
contribution that appears in the final result. For the field ψ this latter piece is given by

Xψψ = −δ
2SUV,int.
δψ2 , (5.8)
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where only the interaction part of the action excluding the interactions with gauge
bosons through the covariant derivative appears. The interactions with the gauge bosons
are included in the propagator part of the functional derivative, which allows for an
evaluation in which only gauge covariant objects appear at every step and the final result
is manifestly gauge invariant. The price to be paid for this manifest gauge covariance is
that every occurrence of a covariant derivative has to be shifted by a loop momentum in
the evaluation of the functional trace in Eq. (5.6). We therefore have to parameterize
Eq. (5.8) as

Xψψ = Uψψ + iDµZ
µ
ψψ + iZ†µψψDµ + . . . , (5.9)

where Dµ is the covariant derivative of the UV-model. The quantities Uψψ, Zµψψ and
Z†µψψ only depend on covariant derivatives through commutators whereas the explicit
covariant derivatives appearing in Eq. (5.9) are so-called open covariant derivatives
that act on everything to their right. The ellipsis denotes terms with further open
covariant derivatives. Importantly, contributions with one open covariant derivative
arise at dimension six whenever there is a scalar field charged under the gauge group
and therefore they contribute to the matching through the presence of the Higgs field.
Consequently, for our matching computations we use an extension of the results of
Ref. [151], adding gauge bosons and the heavy resonance of our model. Since the gauge
boson fluctuations appear in loops they have to be gauge fixed. This gauge fixing does
not disturb the manifest gauge invariance at the level of the background fields and the
gauge-fixing parameter can be chosen at convenience. Choosing Feynman gauge allows
for easy incorporation of these operators into the results of Ref. [151], since we can treat
gauge bosons like scalar fields with an extra index. Care has to be taken to account for
the overall sign in the propagator. For the resonance this choice is not available since it
does not have a gauge-fixing term and some operators with up to two open covariant
derivatives have to be computed for the matching.

5.2.3 Heavy vector triplet (HVT)

The UV model we study in this chapter is a gauge-triplet extension of the Standard
Model [200,206–209]. In the unbroken electroweak phase, the Lagrangian reads

L = LSM −
1
4 Ṽ

µνAṼ A
µν −

g̃M
2 Ṽ µνAW̃A

µν + m̃2
V

2 Ṽ µAṼ A
µ

+
∑
f

g̃f Ṽ
µAJfAµ + g̃H Ṽ µAJHAµ + g̃V H

2 |φ|2Ṽ µAṼ A
µ , (5.10)

where Ṽ A
µ is a new, massive vector field transforming as a triplet of SU(2)L, W̃A

µ are the
SM weak gauge bosons, and φ is the SM Higgs doublet. The kinetic term of the vector
field includes a covariant derivative,

Ṽ A
µν = D̃µṼ

A
ν − D̃ν Ṽ

A
µ with D̃µṼ

A
ν = ∂µṼ

A
ν − g2f

ABCW̃B
µ Ṽ

C
ν . (5.11)

where A,B,C are SU(2)L indices and the covariant derivative carries a tilde to indicate
that it contains the fields W̃A

µ . The currents coupling the heavy vector to the SM-fields
are given by

J lAµ = l̄iγµt
Alj δ

ij , JqAµ = q̄iγµt
Aqj δ

ij , JHAµ = φ†i
←→
D A

µφ , (5.12)
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with l, q being the SM lepton and quark doublets, tA = σA/2 the SU(2) generators
and σA the Pauli matrices. i, j are flavor indices and the Lagrangian is defined in a
flavor-symmetric limit. In the Higgs current, (φ†i←→D A

µφ) = iφ†tA(Dµφ)− i(Dµφ
†)tAφ. As

pointed out in [234], the theory can not be quantized in a self-consistent way for g̃V H < 0.

The gauge mixing described by the triplet model is familiar from the general case of
extra-U(1) bosons [235]. A special feature is the explicit Ṽ -mass term, which would have
to be generated by some kind of symmetry breaking and likely involve additional fields;
we ignore these additional fields, for instance in their effect on g̃M . The Higgs doublet φ
is yet to develop a vacuum expectation value (VEV), which means we are working in the
unbroken electroweak phase. Underlying this choice is the assumption that a SMEFT
expansion for the EFT exists. This is the case unless there are additional sources of
electroweak symmetry breaking, or a heavy particle obtains all of its mass from the Higgs
VEV [236]. Even in the weakly coupled UV-completion of the triplet model there are
no additional sources of electroweak symmetry breaking, because the additional scalar
breaks SU(2)×SU(2) to SU(2)L and leaves the electroweak symmetry completely intact.

To remove the kinetic mixing, we can re-define the SM-gauge field as [207,208]

WµνA = W̃µνA + g̃M Ṽ
µνA = ∂µ(W̃ νA + g̃M Ṽ

νA)− ∂ν(W̃µA + g̃M Ṽ
µA) + · · · (5.13)

For the triplet field we only allow for a re-scaling, Ṽ µA = αV µA, so that the triplet
mass does not get transferred into the SM-gauge sector. The triplet mass also fixes the
phase of the real vector field Ṽ A

µ , such that α has to be real. Requiring a canonical
normalization of the new kinetic term V µνAV A

µν we find α2 = 1/(1− g̃2
M ). This relation

requires g̃M 6= ±1, to ensure a valid model with a propagating heavy vector. Furthermore,
as we will see in Sec. 5.3, we need to require |g̃M | < 1 for the squared pole mass of the
resonance to be positive. The final form of the gauge field re-definition in Eq. (5.13)
becomes

W̃µA = WµA − g̃M√
1− g̃2

M

V µA and Ṽ µA = 1√
1− g̃2

M

V µA , (5.14)

and brings the Lagrangian into the form

L = LSM −
1
4V

µνAV A
µν + m2

V

2 V µAV A
µ

+
∑
f

gf V
µAJfAµ + gHV

µAJHAµ + gV H
2 |H|2V µAV A

µ

+ g3V
2 fABC V µAV νBV C

µν −
g2VW

2 fABC V µBV νCWA
µν , (5.15)

which has the same structure as Eq. (5.10), but additional triple and quartic gauge
couplings between the weak and triplet sectors. The Lagrangian parameters are related
through

m2
V = m̃2

V

1− g̃2
M

, gH = g̃H + g2g̃M√
1− g̃2

M

, gf = g̃f + g2g̃M√
1− g̃2

M

,

gV H = 2g̃V H + g2
2 g̃

2
M + 2g2g̃H g̃M

2(1− g̃2
M )

, g3V = − 2g2g̃M
(1− g̃2

M )1/2 , g2VW = g2g̃
2
M

1− g̃2
M

,

(5.16)
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where g2 denotes the SU(2)L gauge coupling. The heavy vector triplet couples to the
weak gauge bosons not only via the g−couplings in Eq. (5.15), but also through the
non-abelian component of the covariant derivative Eq. (5.11), that leads to interaction
terms of the form (∂V )VW and V VWW . These interactions are weighted by the weak
gauge coupling, and therefore are present even if gi (g̃i) ≡ 0.

Matching expressions at tree-level

Matching the heavy vector triplet model defined in Eq. (5.10) at tree level onto the
Warsaw basis, we obtain

Cφ� = −3
8

(g̃H + g2g̃M )2

m̃2
V

C
(3)
φl,ij = C̄

(3)
φl δij = −1

4
(g̃l + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

C
(3)
φQ,ij = C̄

(3)
φq δij = −1

4
(g̃q + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj = 1
8

(g̃l + g2g̃M )2

m̃2
V

(δijδkl − 2δilδkj)

Cfφ,ij = −(Yf )ij
4

(g̃H + g2g̃M )2

m̃2
V

(f = e, u, d). (5.17)

These results were also derived e.g. in Refs. [200,206,209,237]. The full expressions for
the one-loop matching were derived in [2] for the first time and are provided at Ref. [158].

5.2.4 SFitter setup

The SFitter framework [120] has been long employed for global analyses of LHC
measurements in the context of Higgs couplings and EFTs [36–38,50,128,238], including a
comprehensive study of an analysis in terms of Higgs couplings and its UV-completion [124].
The approach is unique in that it allows a comprehensive treatment of uncertainties:
SFitter uses a likelihood set up that includes a broad set of statistical, systematic, and
theory uncertainties. Statistical and most systematic ones are described by a Poisson- or
Gauss-shaped likelihood. Theoretical uncertainties lack a frequentist interpretation, and
are described by flat likelihoods in SFitter, corresponding to a range of equally likely
theory predictions. An important difference between employing a flat likelihood compared
to a Gaussian one is that the uncorrelated profile likelihood adds the uncertainties from
the flat distributions linearly, while Gaussian error bars are added in quadrature. The
profile likelihood combination of a flat and a Gaussian uncertainty gives the well-known
RFit prescription [132]. Correlations among certain classes of systematic uncertainties
are also included.

From the technical point of view, the new aspect of the SFitter analysis presented in this
chapter is the translation of the SMEFT likelihood into the parameter space of the UV
model. In the fit, all observables are parameterized in the SMEFT using the operator set
provided in Tab. 2.4, that is based on the Hagiwara, Ishihara, Szalapski, and Zeppenfeld
(HISZ) basis [99]. All SMEFT predictions are at LO in quantum chromodynamics (QCD)
and scaled by the same corrections as the SM-rates used for the actual experimental
analysis. Terms obtained from squaring amplitudes with one operator insertion, that
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are quadratic in the WCs, are retained. The WCs are then expressed in terms of g̃i
parameters of the UV model, Eq. (5.10), using the one-loop matching expressions onto
the Warsaw basis provided in Ref. [158] and the Warsaw-to-HISZ basis translation in
Sec. 3.4.2. In this way, the likelihood can be directly sampled in the parameter space of
the UV model.

In addition, we employ a new likelihood sampling method [1] compared to previous
SFitter analyses, that ensures a much more efficient sampling close to the SM point,
where all WCs vanish. By contrast, the previous sampling method was optimized for the
detection of potential secondary maxima in the likelihood, by giving higher weight to the
edges of the parameter space.

Dataset

The SMEFT analysis presented in this work builds directly on the dataset employed
in Ref. [36], which includes electroweak precision observables (EWPO) at LEP (14
measurements), Higgs measurements (275) and di-boson measurements at the LHC (43).
The latter contain results from both Run 1 and Run 2 [37]. In addition, we include
differential measurements from three resonance searches by ATLAS, that reach up to
invariant masses in the multi-TeV range and that we re-interpret within the SMEFT
framework. One of these [239] was already included in the analysis of Ref. [36]. The
other two [168,197] are more recent and have been added specifically for this work. These
measurements are not usually included in the SMEFT analyses and are not covered by
the simplified template cross section framework [167]. Nevertheless, it can be instructive
to explore their sensitivity, particularly to operators that induce momentum-enhanced
corrections. Moreover, all the resonance searches considered here target heavy vector
triplets decaying into WH or WW as a potential signal. Therefore they allow to compare
directly the constraining power of the SMEFT analysis to that of the direct search.

Theory uncertainties

In view of the upcoming LHC runs and their rapidly growing data sets, the treatment of
theory uncertainties in global analyses is becoming critical. In our analysis, we include
theory uncertainties associated to parton distribution functions, to missing higher orders
in the SM or SMEFT predictions, and to the matching scale to the EFT. The latter will
be discussed in more detail in Sec. 5.3.2.

For the time being, we do not include uncertainties associated to missing SMEFT operators
due to the truncation of the SMEFT Lagrangian [240] or to symmetry assumptions,
such as CP-conservation. Nevertheless, the impact of missing higher orders in the EFT
expansion becomes obviously manifest in the comparison between constraints extracted
from the SMEFT analysis and from direct searches.

Concerning higher orders in the loop expansion, Higgs analyses in SFitter currently
adopt the most accurate SM predictions available, which are implemented so as to match
the state-of-the art predictions reported in the experimental analyses. The corresponding
K-factors are then applied onto the tree-level SMEFT predictions as well, which is
tantamount to assuming that QCD corrections scale evenly for all SMEFT operators
and in the same way as in the SM. Although this assumption is, strictly speaking, not
correct [241], for the rate measurements considered here we do not expect large variations
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Figure 5.1: Decoupling pattern for the vector triplet model. Global fit with all
measurements at their SM values and to the 4 free parameters m̃V , g̃M , g̃H , g̃l,
and subsequently projected onto the 7 parameters of the unmixed Lagrangian
Eq. (5.15).

in the K-factors between different operators. For some kinematic distributions these
effects can be larger. We therefore assign conservative theory uncertainties in order to
reduce the numerical impact of these effects. A proper SMEFT simulation of Higgs and
di-boson production up to NLO in QCD is postponed to a future work.

5.3 Toy fits and matching uncertainty

In this section we discuss two aspects of the vector triplet model and of its matching
onto the SMEFT, that are preliminary to a correct SMEFT global analysis. The first
is the decoupling limit of the model, and the second is the numerical impact of varying
the scale at which the one-loop matching is performed. Both issues are analyzed via
simplified toy fits.

5.3.1 Decoupling

The decoupling limit of the vector triplet model considered in this work is most easily
identified starting from the Lagrangian of Eq. (5.15), where, as long as the EW symmetry
is unbroken, the heavy triplet and the SM gauge bosons do not mix. In this case, it is
easy to see that the BSM states decouple for large values of the physical mass, mV →∞.
This is directly reflected in the matching formulas, which give limmV→∞Ci ≡ 0 for all the
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Figure 5.2: Results of the same global analysis as in Fig. 5.1, but with measure-
ments set to their actual values.

dimension-6 WCs. At the level of a global fit, the decoupling limit can be visualized by
setting the central values of all the measurements included to match the corresponding
SM predictions. Figure 5.1 shows the results obtained in this way from SFitter: the
likelihood is first computed as a function of 4 free parameters in the Lagrangian of
Eq. (5.10)

{m̃V , g̃M , g̃H , g̃l} , (5.18)

setting other parameters g̃q, g̃V H to zero. We then project them onto the 7 parameters
for the rotated Lagrangian of Eq. (5.15),

{mV , gH , gl, gq, gV H , g3V , g2VW } . (5.19)

At this stage, we fix the matching scale to Q = mV = 4 TeV. For each of the couplings we
see that, as expected, the range of allowed values increases as m−1

V → 0. It is worth noting
that the rate at which this happens varies between the g-parameters. This is due to the
fact that the matching expressions do not scale homogeneously with g2

i /m
2
V , but generally

have a more complex polynomial structure. The degeneracy between gi and 1/mV in
these expressions is also broken by the V −W interactions proportional to the weak
gauge coupling. The homogeneity of the yellow regions indicates that there the likelihood
is flat and no point is preferred. Setting all measurements to their actual measured
values, which generally depart from the SM predictions, has the effect of introducing a
substructure in the likelihood, thereby identifying a more restricted preferred region. This
is shown, for a subset of panels, in Fig. 5.2. Here, for instance, the best fit point moves
to finite mV and prefers non-vanishing values of gH . Note that, to good approximation,
the entire region highlighted in green is allowed at 68%CL. The yellow points simply
identify a best-fit region and should not be interpreted as statistically significant. Finally,
the reduced number of parameters in the Lagrangian Eq. (5.10) as compared to the
setup without kinetic mixing induces strong correlations through g̃M , as illustrated in
the g2VW − g3V plane of Fig. 5.2.

As the matching procedure highlighted in Sec. 5.2.1 requires a separation between light
and heavy degrees of freedom, defining the decoupling limit in the notation of Eq. (5.10)
requires some more care, due to the explicit kinetic mixing between the heavy triplet
and the SM gauge fields.

From Eq. (5.16), we see that mV → ∞ can be achieved for m̃V → ∞ or for |g̃M | → 1.
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However, the condition |g̃M | = 1 does not lead to a well-defined decoupling condition,
because in this limit Ṽ A

µ become auxiliary fields, i.e. the theory loses three dynamical
degrees of freedom. This is not sufficient for a proper decoupling in the EFT sense
because even as an auxiliary field Ṽ A

µ still induces mass-suppressed vertices that enter
correlation functions and we enter a strongly interacting regime where our perturbative
approach fails.

To see the impact of g̃M we resum insertions of gauge mixing into the W̃A
µ and Ṽ A

µ

propagators. The corrected propagators of these fields become

D̂Ṽ
µν = − i

p2 − m̃2
V − g̃2

Mp
2

(
gµν − (1− g̃2

M )pµpν
m̃2
V

)

D̂W̃
µν = − i

p2

(
gµν − (1− ξ)pµpν

p2

)
− ig̃2

M

p2 − m̃2
V − g̃2

Mp
2

(
gµν −

pµpν
p2

)
. (5.20)

It is easy to see that for |g̃M | = 1 the resummed Ṽ A
µ propagator loses its momentum

dependence, which is indicative of the field becoming auxiliary. For |g̃M | > 1, Ṽ A
µ

becomes tachyonic while, for |g̃M | < 1, Ṽ A
µ is a dynamical degree of freedom. In this

case its propagator has a physical pole at p2 = m2
V as defined in Eq. (5.16), and it

can be expanded in p2/m2
V � 1. The resummed W̃A

µ propagator includes a term with
a pole at p2 = m2

V , contaminating W̃A
µ with a contribution from Ṽ A

µ . Therefore this
field can not be directly identified with the SM weak bosons. However, in the tree-level
matching procedure, once the 1LPI effective action is expanded in p2/m2

V , the component
associated with the Ṽ A

µ pole is shifted from the propagators to the interaction terms,
which are unambiguously fixed at this order by the matching condition of Eq. (5.2). At
one loop, the fact that the EFT is the low-energy limit of the UV model is manifest in the
fact that only the ‘hard’ region of the momentum integral contributes to the functional
trace in the matching formula of Eq. (5.6). As a consequence, the first term of the W̃A

µ

propagator cancels against the corresponding EFT contributions, while the second term
genuinely contributes to the matching in the hard region. Equivalently, one can match in
the shifted basis directly identifying WA

µ in the UV model with the corresponding weak
bosons in the SMEFT.

In the top (bottom) panels of Fig. 5.3 we again show the results of a global analysis
where all measurements are set to their SM prediction (to their actual values), this time
projected onto a subset of the g̃-parameters and onto the combination g̃M/

√
1− g̃2

M that
drives most g̃ − g relations, see Eq. (5.16). For reference, the right panels also show lines
of constant mV , such that the decoupling limit mV →∞ flows orthogonally to the lines.
Consistent with the results in the unmixed basis (Fig. 5.1), the expected likelihood is
mostly flat in the entire preferred region, while the observed one exhibits a substructure
that identifies a best-fit region where g̃H 6= 0 and both mV and m̃V are finite. The reason
can be identified in a few EWPO measurements that exhibit small (< 1σ) deviations
from the SM expectation: Al(SLD) and mW .

For |g̃M | → 1 the theory becomes strongly interacting and some perturbative unitarity
considerations are therefore pertinent. Requiring the couplings of the unmixed UV theory
to remain perturbative, the most stringent constraints on g̃M stem from g2VW

g2VW ≈
g2g̃

2
M

1− g̃2
M

< 4π ⇔ |g̃M | < 0.975 . (5.21)
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Figure 5.3: Results of the same global analyses as in Fig. 5.1 (upper) and 5.2
(lower), projected on m̃V , g̃H , g̃l and the combination g̃M/

√
1− g̃2

M .

Therefore for all our fits we require |g̃M | < 0.975.

5.3.2 Matching scale

In perturbative predictions of LHC observables, at least two unphysical scales are known
to reflect a theory uncertainty, the factorization scale and the renormalization scale. Both
arise from a separation of an observable into different regimes with different perturbative
expansions, and the scale dependence would vanish if we would include all orders in
all predictions. For a calculation at finite perturbative order we instead use the scale
variation as one measure of a theory uncertainty and treat it as an unphysical nuisance
parameter in theory predictions [38,127].

One unphysical scale is the renormalization scale, which in the context of dimensional
regularization appears as a free parameter. In more physical terms, the renormalization
scale is the energy scale associated with those observables that we select for defining
the numerical parameters of the theory, the renormalization conditions. Whenever
scale choices are arbitrary, we often identify them with each other and a typical energy
scale of the scattering process to avoid large logarithms. Clearly, this does not work if
renormalization conditions involve widely distinct energy scales, such as in the relation
of UV-model parameters to the low-energy observables of the SM.

The renormalization group equation apparently solves this problem. It relates observables
at different scales, properly resumming logarithms and absorbing them into running
parameters. However, it works only in the absence of mass thresholds. This strongly
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suggests to match a UV model with a heavy mass M to a low-energy EFT even if the
algebraic simplifications of the latter are not essential for a specific calculation.

In a one-loop matching calculation that uses dimensional regularization, the matching scale
enters as an additional parameter. However, in contrast to the original renormalization
scale this parameter is not entirely arbitrary. If we want to avoid large logarithms, its
reasonable range is bounded from above and below. In line with the generic discussion
of one-loop matching above, we illustrate this property in the following section. We
consider examples of increasing complexity, starting from the QCD coupling, turning
next to the SM extended by a scalar singlet and finally returning to the vector triplet
model of Sec. 5.2.3.

Running strong coupling

We can illustrate the appearance of the matching scale using the simple example of
the running strong coupling. It provides the key ingredients to understanding the EFT
matching scale: the separation of low-energy and UV regimes and contributions beyond
tree level. In general, the relation between the bare coupling and the renormalized
coupling in the MS scheme is

αbares = αs(p2)
[
1− αsb0

(
1
ε̄

+ log µ
2
R

p2

)]
with b

(nf )
0 = 1

4π

(11
3 Nc −

2
3nf

)
.

(5.22)

Here, p2 is the energy scale of the scattering, µ2
R is introduced by dimensional regulariza-

tion, and 1/ε̄ = 1/ε − γE + log 4π. We identify our UV-regime as momenta above the
top mass, with six propagating quark flavors, and the low-energy regime as described by
five propagating quark flavors. The running of αs in the two regimes is described by the
beta function with five or six flavors, respectively. The UV-divergences in the low-energy
and full UV-theories arise from five or six propagating flavors, so the renormalization
prescription Eq. (5.22) is different in the two regimes.

The low-energy and UV-regimes are separated by a matching scale Q, which we choose
to be of the order of the top mass to avoid large logarithms or inconsistent symmetry
structures. Matching conditions guarantee that the two predictions for any observable
are the same at least at this scale. Instead of looking at a full set of amplitudes or
correlation functions, we limit ourselves to the quasi-observable αs. Following Eq. (5.22),
the definitions of αs(p2) in relation to the bare parameter are different, but they have to
agree when evaluated at the matching scale. This defines a threshold correction

1− αsb
(6)
0

4π

(
1
ε̄

+ log µ
2
R

p2

) ∣∣∣∣∣
Q2

= 1− αsb
(5)
0

4π

(
1
ε̄

+ log µ
2
R

p2

) ∣∣∣∣∣
Q2

+ αs
6π log µ

2
R

Q2 . (5.23)

The relation of the threshold correction to loop effects is reflected in the logarithmic form
logµ2

R/Q
2. Together with the five-flavor MS counter term it defines αs in the low-energy

regime as

αbares = αs(p2)
[
1− αsb

(5)
0

4π

(
1
ε̄

+ log µ
2
R

p2

)
+ αs

6π log µ
2
R

Q2

]
. (5.24)
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This definition includes three scales for a given scattering process, the physical scale
p2, the renormalization scale µ2

R, and the matching scale Q2. In simple problems, the
renormalization scale and the physical scale can be identified to avoid potentially large
logarithms. The matching scale is usually set to the mass of the decoupled particle,
Q = m2

t , leading to a threshold correction that is non-zero in general.

From our toy example we can immediately see the role of the threshold correction at
the matching scale and the renormalization group running. If we start from the UV, all
parameters of the theory evolve based on the full particle spectrum. In the low-energy
theory part of the spectrum decouples also from the running, which can even break the
underlying symmetries [242], and we will follow a completely different renormalization
group flow. The matching corrections adjust for this effect. They move us to the same
flow line in the EFT, independent of the choice of matching scale and with all the caveats
of maintaining perturbative control, accounting for changes of the spectrum, changing
symmetries, etc.

Singlet extension

When we interpret a SMEFT calculation for an LHC process as a low-energy approxima-
tion to a UV-prediction, we again break the phase space of the scattering process into
two parts. We first illustrate SMEFT matching using the singlet-extended SM [243,244],

L ⊃ 1
2 (∂µS) (∂µS)− 1

2M
2S2 −A|φ|2S − κ

2 |φ|
2S2 − µ

3!S
3 − λS

4! S
4 . (5.25)

The singlet mass is given by M2
S = M2 +O(v2); we integrate it out under the condition

MS ∼M � v, ensuring a consistent expansion in v/M [236]. As a simplification, we also
assume A to be of the order of M . The leading term in v/M is defined by v = 0 and can
be obtained by matching in the unbroken phase. In the broken phase the Higgs VEV
enters via the masses of the SM-particles which properly belong to the EFT Lagrangian,
below the matching scale. Matching in the broken phase would allow us to include partial
higher-order corrections in the EFT expansion [205]. Since the mass scales in question
are not widely separated, it depends on the detailed numerics which setup yields a more
reliable approximation. The SMEFT Lagrangian reads

LSMEFT = LSM +
∑
i

fi(p/µR)Oi , (5.26)

where the WCs are scale dependent. Specifically, we want to define these coefficients
such that the SMEFT reproduces all low-energy observables of the UV-theory up to
O(v3/M3

S). As matching condition we use Eq. (5.1). In the functional approach we
compute this once and for all using functional traces. To illustrate some features related
to the matching scale, we compute some contributions to the WC fφ2 of the operator
Oφ2 = ∂µ(φ†φ)∂µ(φ†φ)/2 diagrammatically. As discussed in Sec. 3.4.2, it is related to
Qφ� = |φ|2�|φ|2 as cφ� ≈ −fφ2/2, modulo fermionic operators. The operator contributes
to the correlation function with two external fields φ and two external fields φ† and
depends on p2, so we fix it by requiring

∂p2ΓSMEFT(φ†, φ†, φ, φ)
∣∣∣∣∣
p2=0

= ∂p2ΓL,UV(φ†, φ†, φ, φ)
∣∣∣∣∣
p2=0

, (5.27)
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S

S

S

S

Figure 5.4: Feynman diagrams contributing to f (1)
φ2 . Left: Diagram yielding a

κ2-contribution. Right: Diagram yielding a A2λS/M
2-contribution. The dashed

line corresponds to the Higgs field, whereas the solid line corresponds to the
singlet.

order by order in the coupling. With some abuse of notation we also denote specific
correlation functions by Γ, arguments indicating the external fields. Since both sides of
the equation involve running parameters, the matching has to be imposed at a given
scale,

S
∂p2( + t-channel + SM)=∂p2( + SM) at p2 = 0 .

The SM-contributions contain the same diagrams on both sides, with appropriately
adjusted parameters through the matching conditions, so their contributions cancel. Only
diagrams with at least one heavy propagator actually contribute to the matching, so
Eq. (5.27) becomes

∂p2

(
8p2f

(0)
φ2

) ∣∣∣∣∣
p2=0

= ∂p2
2A2

4p2 −M2

∣∣∣∣∣
p2=0

⇒ f
(0)
φ2 = A2

M4 . (5.28)

At tree level, the scale dependence only appears implicitly for A and for f (0)
φ2 .

Next, we compute the κ2-contribution to f (1)
φ2 at one loop. This contribution is induced

by the diagram on the left in Fig. 5.4, where the external particles are as specified in
Eq. (5.27). We again set all external scales to p2 and find for the diagram

κ2µ4−d
R

∫
ddq

(2π)d
1

((2p+ q)2 −M2)(q2 −M2) = κ2 i

16π2B0(4p2,M,M)

with B0(4p2,M,M) = 1
ε̄
− log M

2

µ2
R

+ 2p2

3M2 +O
(
p4

M4

)
. (5.29)

In the full expression the renormalization scale appears, but taking the derivative in the
matching condition for this contribution to fφ2 removes it,

∂p2B0(4p2,M,M)
∣∣∣∣∣
p2=0

= 2
3M2 ⇒ f

(1)
φ2 ⊃

1
16π2

κ2

12M2 . (5.30)

Just as at tree level, the matching scale does not appear explicitly.

Finally, we compute the A2λS/M
2-contribution to f (1)

φ2 to illustrate the appearance of
matching scale logarithms. This contribution arises from the diagram on the right in
Fig. 5.4. The diagram is not 1PI, but is 1LPI and therefore has to be included in the
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Figure 5.5: WC fφ2 as a function of g̃H at different values of the matching scale
Q for fixed mV = 4 TeV and all other UV couplings set to zero. The dashed
lines include approximate renormalization group (RG) running.

matching. With all external scales again set to p2 this diagram gives

− λSA
2

(4p2 −M2)2µ
4−d
R

∫ ddq
(2π)d

1
q2 −M2 = −λSA

2

16π2
M2

(4p2 −M2)2

(
1
ε̄

+ 1− log M
2

µ2
R

)
.

(5.31)

Taking the derivative with respect to p2 and evaluating it at p2 = 0 we find the one-loop
matching condition

f
(1)
φ2 ⊃ −

1
16π2

λSA
2

M4

(
−1 + log M

2

Q2

)
, (5.32)

where the WC explicitly depends on the matching scale. This scale dependence is expected
since the corresponding correlation function is divergent. As mentioned before, in models
with one new mass scale, we can of course avoid these logarithms by identifying Q = M .

Heavy vector triplet (HVT)

Moving to the triplet model defined by the Lagrangian of Eq. (5.10), we will not attempt
to show analytic results and instead illustrate the matching scale dependence for one
finite coupling g̃H and a mass term m̃V numerically. In this simplified setup, mV = m̃V .
Among the various WCs, it is instructive to consider fφ2, as its dependence on the
matching scale exhibits interesting features. Including both tree and loop contributions,
the matching expression has the form

fφ,2
Λ2 '

1
m2
V

[
g4

2

(
c0 + c1 log mV

Q

)
+ g̃2

H

(
c2 + c3 log mV

Q

)
+ g̃4

H

(
c4 + c5 log mV

Q

)]
,

(5.33)
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Figure 5.6: The impact of the variation of the matching scale Q at a mass of
mV = 4 TeV for a reduced model with free g̃M , g̃H , g̃l, expressed in the unmixed
Lagrangian Eq. (5.15) with actual measurements.

where c0 = c1/2 emerges from one-loop diagrams inducing the operator structure
(DµW

µν)2, which maps to Oφ2 via the equations of motion. Of the additional con-
stants, the g̃2

H -coefficient is dominated by the tree-level contribution to c2, while the
g̃4
H -coefficient is completely determined by the one-loop matching. Numerically, we find

c0 = c1
2 = 3

128π2 = 0.0024 ,

c2 = 0.75 , c3 = 0.0069 , c4 = 0.019 , c5 = −0.045 . (5.34)

In Fig. 5.5 we show the numerical dependence of fφ,2 on g̃H for different choices of Q.
For Q = mV = 4 TeV the WC has a simple power dependence on g̃H driven by c4. For
Q ≈ 0.66mV = 2.6 TeV the g̃4

H -term cancels exactly. For Q below this threshold, the
coefficient in front of g̃4

H becomes negative, which flips the sign of fφ2 at g̃H � 1 and
allows a solution of fφ2 = 0 for g̃H 6= 0. For Q . 2.4 TeV the solution is within the range
|g̃H | < 4π and leads to visible effects in our global analysis.

Figure 5.6 shows the results of the same global analysis as in Sec. 5.3.1, where now we
fix mV = 4 TeV. The free parameters are

{g̃H , g̃l, g̃M , Q} , (5.35)

where the matching scale is varied in the range Q = 500 GeV ... 4 TeV. The left panel
shows a central allowed region for |g̃H | . 4 that is independent of Q. In addition, a
beautiful fleur-de-lis shape arises in g̃H vs Q for Q < 2.4 TeV. It roughly follows the
curves along which fφ2 = 0 marked in red. The WCs ft, fb, fτ have a similar behavior
and vanish approximately in the same region, because they are induced by the same or
similar loop contributions. As these are the operators that dominate the constraint on g̃H ,
the fleur-de-lis feature persists in the full global fit, see Sec. 5.4. When we profile over Q
as a nuisance parameter, this correlation broadens the 1-dimensional and 2-dimensional
profile likelihood in g̃H by roughly a factor 2. As shown in the second and third panels
of Fig. 5.6, the broadening affects significantly only the constraints in the g̃H direction,
while those on g̃l are essentially unchanged compared to when Q = mV . Although not
shown, this is also verified for g̃M .

We emphasize that the tree-loop cancellations that drive this effect are only very slightly
affected by the renormalization group evolution of fφ,2, as illustrated by the dashed
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lines including approximate renormalization group equations (RGE) contributions in
Fig. 5.5. They really correspond to a choice of the unphysical matching scale, which
can not be compensated by the well-defined change of renormalization scale of the low-
energy SMEFT description. Adding higher orders in the loop expansion to the matching
decreases the sensitivity to the matching scale. Similar effects, but with a much smaller
numerical impact have been observed in Ref. [243].

5.4 SMEFT global analysis

In this section we discuss the results of the SMEFT global analysis, mapped to the
parameter space of the heavy vector triplet model defined in Sec. 5.2.3 using one-loop
matching relations. We derive constraints on the UV-parameters {g̃H , g̃q, g̃l, g̃M , g̃V H}
defined by the Lagrangian in Eq. (5.10) for fixed values of the heavy vector triplet mass.
We consider two benchmark values: mV = 4 TeV, to be compared with direct resonance
searches by the ATLAS Collaboration, and mV = 8 TeV for a consistent SMEFT analysis
safely below any on-shell pole.

5.4.1 Resonance searches at high invariant masses

As mentioned in Sec. 5.2.4, in addition to more standard Higgs measurements, the global
analysis includes constraints from searches for exotic particles in the WH and WW
channels by the ATLAS Collaboration. In particular, two of these analyses [168, 197]
have been newly implemented in SFitter.

WH search

We consider the mWH invariant mass distribution measured in Ref. [197] in the WH
1-tag category, and we compare it to a WH signal including dimension-6 corrections.
This kinematic distribution extends up to mWH = 5 TeV and the strongest constraints on
BSM effects stem from the region around mWH = 2− 2.5 TeV, where the measurement
exhibits large under-fluctuations. A detailed description of the implementation of this
analysis will be provided in a future work [1].

For equal values of the WCs, the largest correction to the mWH spectrum is induced by
the operator O(3)

φQ [108–113,167], that contributes via corrections to the qqV vertex and
via a 4-point qqV H interaction. The latter exhibits an enhancement at large partonic
energies due to the missing s-channel propagator and is therefore dominant in the high-
invariant-mass regime. Further significant corrections, albeit less momentum-enhanced,
are induced by OW . All other SMEFT operators in the HISZ basis do not contribute
significantly to WH production in the high-energy regime.

Figure 5.7 shows the results from a 2D-analysis of the mWH distribution alone, fixing the
matching scale Q = mV = 4 TeV and considering only two g̃-couplings at a time. The
top row in Fig. 5.7 shows g̃f ≡ g̃q = g̃l vs g̃H , which matches the benchmark considered
in the ATLAS analysis [197]. In this limit, the matching contribution to f (3)

φQ cancels
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Figure 5.7: Two-dimensional (2D) fits of the WH resonance search of Ref. [197]
only. We fix mV = 4 TeV and g̃M = g̃V H = 0. Left: tree-level matching. Right:
Loop-level matching. Top: with g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top
(bottom) row, red contours indicate fW = ±4 (f (3)

φQ = ±0.8) with Λ = 1 TeV and
white contours indicate ∆χ2 = 5.991.

exactly, both at tree and loop levels. As a consequence, the constraints are driven by fW ,
whose matching expressions reduce to

fW
Λ2 = 4.76 g̃H g̃l

m2
V

(tree)

fW
Λ2 ' g̃lg̃H

4.71 + 0.019 g̃lg̃H − 0.023 g̃2
l − 0.057 g̃2

H

m2
V

(tree+loop). (5.36)

The red contours in the plots indicate fW /Λ2 = ±4 TeV−2, which is representative of
the 2σ boundariesfW /Λ2 ∈ [−3.6, 4.4] TeV−2 found in a one-dimensional (1D) fit to
the SMEFT parameters. In a slight abuse of language, here and in the following the
∆χ2 ≤ 1 (2.3) and ∆χ2 ≤ 3.841 (5.991) regions in 1D (2D) fits are sometimes referred
to as 1σ and 2σ intervals, respectively. The fact that these lines coincide to a very
good approximation with the 2σ contours (indicated in white) in Fig. 5.7 shows that the
constraint on fW is indeed the leading one. The bottom row shows g̃q vs g̃H for g̃l = 0.
In this case the cancellation in f (3)

φQ is spoiled and the constraints are dominated by this
WC. Numerically, the matching expression is

f
(3)
φQ

Λ2 = g̃H(g̃l − g̃q)
m2
V

(tree)
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f
(3)
φQ

Λ2 ' 0.99 g̃H(g̃l − g̃q)
m2
V

(tree+loop), (5.37)

and the bottom panels in Fig. 5.7 show contours for f (3)
φQ/Λ2 = ±0.8 TeV−2, which is

representative of the 2σ interval f (3)
φQ/Λ2 ∈ [−0.90, 0.76] TeV−2 obtained in a 1D fit.

Finally, comparing the left and right panels in Fig. 5.7, it is worth noting that the impact
of loop contributions to the matching is negligible in the case g̃l = 0, but significant
for g̃l = g̃q. This is a direct consequence of the form of the matching expression in the
particular model considered. Loop terms only induce a very minor overall rescaling in the
expression of f (3)

φQ, Eq. (5.37), but they introduce a series of new terms in the expression
of fW , Eq. (5.36). Although numerically subdominant, the latter have a strong impact
on the likelihood structure.

WW search

We consider the mWW distribution measured in Ref. [168] in the WW 1-lepton category
and ggF/Drell-Yan (DY) merged, high-purity signal region, that targets neutral resonances
decaying to W±W∓ pairs and covers invariant masses up to mWW = 4 TeV. We compare
the measured distribution to a W±W∓ production signal including SMEFT corrections.
A detailed discussion of the implementation can be found in Sec. 4.3.1.

TheW±W∓ production process exhibits a greater complexity in the SMEFT compared to
W±H in the high-energy limit. We find that, fixing all WCs to the same numerical value,
the largest corrections are induced by the operators Oφu,Oφd,O

(1)
φQ,O

(3)
φQ at quadratic level,

that exhibit a large enhancement ∝ m2
WW . The origin of this behavior can be identified as

a qqφφ contact interaction between two quarks and two Goldstone bosons induced by these
operators, that dominates at high energies due to the equivalence theorem [245]. Effects
induced by OW ,OB, and O3W have a weaker momentum-enhancement and are roughly
two orders of magnitude smaller. Nevertheless, they were retained in the fit, as they are
relevant for the global analysis in terms of both SMEFT and UV model parameters. In
the former case, this measurement contributes significantly to improving the constraints
on fW , by roughly a factor two [1]. In the latter, it is important to stress that the
matching expressions for a given UV model generally do not give homogeneous values for
the WCs. Therefore a suppression of two orders of magnitude in the SMEFT predictions
can be easily compensated in the matching, and the corresponding contributions to the
signal may lead to significant constraints on the UV model parameters. In fact, for the
WW analysis implemented here we find that the constraints projected on the g̃q − g̃H
and g̃f − g̃H planes are entirely dominated by the contributions of fW and f (3)

φQ, the same
two operators that lead in the WH case.

Figure 5.8 shows the results from a 2D-analysis of the mWW distribution alone, fixing
Q = mV = 4 TeV and considering the same benchmarks as in Fig. 5.7. The red curves in
Fig. 5.8 are again given by Eq. (5.36) and (5.37), but for different values of fW and f (3)

φQ,
namely fW /Λ2 = ±0.7 TeV−2 and f (3)

φQ/Λ2 = −0.27,+0.23 TeV−2. Again, these values
correspond to the 2σ-boundaries identified in 1D fits.

This analysis yields stronger bounds compared to WH because in this particular case
the constraints are dominated by the tail of the distribution, in the region around
mWW = 2.5− 4 TeV, which exhibits under-fluctuations. Again, the effect of introducing
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Figure 5.8: 2D fits of the WW resonance search of Ref. [168] only. We fix
mV = 4 TeV and g̃M = g̃V H = 0. Left: tree-level matching. Right: Loop-level
matching. Top: with g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top (bottom)
row, red contours indicate fW = ±0.7 (f (3)

φQ = 0.2 or f (3)
φQ = −0.3) with Λ = 1 TeV

and white contours indicate ∆χ2 = 5.991.

loop contributions to the matching expressions is only visible in the scenario dominated
by fW , for the same reasons as described above.

5.4.2 Global analysis results

Figure 5.9 shows the results of our global analysis, including the full data set described in
Sec. 5.2.4 as well as the resonance searches discussed in Sec. 5.4.1, for a fixed value of the
heavy vector triplet mass mV = 4 TeV. The analysis is performed varying g̃M and g̃V H
within the physical region g̃M = −1 ... 1, g̃V H > 0 and all other coupling parameters in
the perturbative range g̃ = −4π ... 4π.

Fixed matching scale

For a fixed matching scale Q = mV (red and orange lines in Fig. 5.9), we find that the
SMEFT fit constrains significantly g̃l and g̃H , while g̃M , g̃q, and g̃V H are essentially
unconstrained. The striking difference between the constraints on the vector triplet
couplings to leptons and to quarks is largely due to the fact that the SMEFT fit is
dominated by EWPO constraints extracted at LEP, on which the leptonic interactions

76



5 From UV models to SMEFT and back?

°10 °5 0 5 10
egq

°10

°5

0

5

10
e g H

°1.0°0.5 0.0 0.5 1.0
egl

°10

°5

0

5

10

e g H

°0.5 0.0 0.5
egM

°10

°5

0

5

10

e g H

2.5 5.0 7.5 10.0
egV H

°10

°5

0

5

10

e g H

°1.0°0.5 0.0 0.5 1.0
egl

°10

°5

0

5

10

e g q

°0.5 0.0 0.5
egM

°10

°5

0

5

10

e g q

2.5 5.0 7.5 10.0
egV H

°10

°5

0

5

10

e g q

°0.5 0.0 0.5
egM

°1.0

°0.5

0.0

0.5

1.0
e g l

2.5 5.0 7.5 10.0
egV H

°1.0

°0.5

0.0

0.5

1.0

e g l

2.5 5.0 7.5 10.0
egV H

°0.5

0.0

0.5
e g M

Figure 5.9: 5-parameter global fit of the full data set to the model parameters
from Eq. (5.10) for fixed mV = 4 TeV. Profiled ∆χ2 = 2.3 (∆χ2 = 5.991)
contours are shown as solid (dashed) lines. Red (orange) curves indicate the
results obtained with tree (one-loop) matching onto the SMEFT and a fixed
matching scale Q = mV . The light blue region shows the results from one-loop
matching, profiled over Q = 500 GeV ... mV .

have a much stronger impact. We have verified that, indeed, removing EWPO constraints
from the fit relaxes significantly the constraint on g̃l.

The 2D projections show that g̃l is also anti-correlated to g̃M . The reason is that, at
tree-level, g̃l enters the matching expressions only in the combination g̃l + g2g̃M , where g2
is the SU(2) coupling constant. Specifically, we find that the constraints in the g̃M − g̃l
plane are dominated by the constraint on f4L, whose tree-level matching expression is
quadratic in the relevant combination

f4L
Λ2 = −(g̃l + g2g̃M )2

4m̃2
V

. (5.38)

Therefore, for most values of g̃M and g̃l, the constraints are driven by the limit for
negative values of this WC. At one-loop, the matching expression is more complex and
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Figure 5.10: Heat map of the profiled ∆χ2 distribution from the same fit as in
Fig. 5.9, with one-loop matching and profiling over the matching scale. The
red contours indicate f4L/Λ2 = −0.014,+0.017 TeV−2 and the white contours
indicate ∆χ2 = 5.991.

allows for positive values of f4L in a region close to |g̃M | ' 1 and |g̃l| ' 1. The right
panel in Fig. 5.10 shows that the 2σ boundary from the 5D likelihood (in white) matches
very well the contours for f4L/Λ2 = −0.014,+0.017 TeV−2 (in red), corresponding to the
2σ interval derived from a 2D fit of f4L and fBW . Here a 2D fit is necessary owing to
the strong correlation between f4L and fBW . A 1D fit would lead to an over-estimation
of the constraints.

There are no major differences between tree and loop level matching when keeping the
matching scale fixed Q = mV . Only slight differences can be observed in the limits
on g̃M and g̃H . The effect on g̃H is completely washed out once the matching scale is
allowed to vary, as we discuss below. Although less visible due to the different scales, an
analogous anti-correlation is present in the g̃M − g̃H plane, as g̃H also enters tree-level
matching expressions exclusively in the combination g̃H + g2g̃M . Because g̃H enters many
WCs, both at tree and loop level, in this case it is not possible to identify one particular
SMEFT parameter, or combination thereof, that drives the global bounds.

The constraint on g̃q, on the other hand, is driven by that on f
(3)
φQ, whose matching

expression is given in Eq. (5.37). This is consistent with the fact that g̃q only shows a
non-trivial interplay with g̃H . The cross-like shape emerging in the (g̃q, g̃H) panel results
from the superposition of the hyperbola-like shape expected from the f3

φQ matching
expression, and of additional constraints on g̃H that introduce extra suppressions away
from the two axes. Finally, g̃V H does not contribute to any dimension-6 operator at
tree-level, so, in this limit, the likelihood is exactly flat in the corresponding direction.
At one-loop g̃V H gives contributions to fW , fWW , fφ2, ft,b,τ and f (3)

φQ. Among these, the
dominant constraint stems from fφ2, leading to the orange contours in the g̃V H − g̃M and
g̃V H − g̃H planes.

Variable matching scale

Varying the matching scale as Q = 500 GeV ... mV = 4 TeV, as shown as light blue region
in Fig. 5.9, affects the constraints on g̃H , while for the other parameters the dependence
is negligible. This is what we expect from the toy results in Sec. 5.3.2 and Fig. 5.6, and
we have verified that extending the range to Q & mV does not add any significant feature
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Figure 5.11: Impact of the high-energy kinematic distributions [168, 197, 239]
on the global 5-parameter SMEFT fit for fixed mV = 4 TeV. The solid regions
include the full data set (same as Fig. 5.9), while the dark blue lines exclude the
high-energy kinematic distributions. Solid (dashed) lines mark the ∆χ2 = 2.3
(∆χ2 = 5.991) contours.

to the results. As for the 5-parameter fit, the main consequence of variable Q is that,
for Q . 2.4 TeV, the matching expressions of fφ2 and ft,b,τ acquire a new zero. Because
these operators are the dominant source of constraints on g̃H , this results in a broader
allowed region for this parameter, which is largest close to the Q ' 2.4 TeV threshold.
This effect washes out the correlation between g̃H and g̃M mentioned above.

At Q ' 2.4 TeV, the most constraining WC is fφ2, which is responsible for the outermost
region of the 2σ contours for g̃H in Fig. 5.9. The inner structure of the likelihood,
including the 1σ contour, can not be explained in terms of a single WC. It is the result
of a non-trivial interplay between several effects, including g̃H entering a large number of
WCs and profiling over the matching scale.

It is also interesting to look at the finer structure of the profiled likelihood. In Fig. 5.10
we show ∆χ2 for the same 2D projections as before. We can see that the best-fit points
are focused in regions where |g̃M | > 0.5. This effect emerges in the 5-parameter fit
with one-loop matching, irrespective of whether the matching scale is fixed or varied.
It is the same effect as observed for the 3-parameter fit varying the heavy vector mass
in Fig. 5.3, and it is due to the EWPO preferring a best-fit point away from the SM.
In particular, we have checked that the observed substructures are entirely dominated
by less than 1σ deviations in Al(SLD) and mW . In addition, the measurements of
σ0
h, R

0
l , A

0,l
FB, Ac reinforce the deviation through correlations. If future measurements

with reduced uncertainties confirmed the present deviations from the SM, this would
lead to exclusion limits with intricate patterns.

Impact of high energy measurements

It is well known [36] that kinematic distributions probing high invariant masses have
significant impact on global fits to the SMEFT parameters. In our analysis, we confirm
this behavior for the two analyses described in Sec. 5.4.1, which are found to constrain
significantly fW , f (1)

φd and f3W . Unfortunately, once the SMEFT is mapped onto the
heavy vector triplet model, the constraining power of these measurements is diminished.
This is shown in Fig. 5.11, where the results of Fig. 5.9 are compared to those from a
5-parameter fit where the three analyses of Refs. [168,197,239] are removed (dark blue
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Figure 5.12: Left: Z ′ prediction for mV = 4 TeV, g̃H = 2, g̃f = 0.5 (shown by
a star in the right panel) for the WW search [168], compared to the SMEFT
prediction. Right: SMEFT limits (∆χ2 = 5.991) for mV = 4 TeV and profiled
over the matching scale, for the WW and WH distributions alone and the full
dataset. We also show the 95%CL exclusion from theWH resonance search [197].
The gray box marks the ATLAS search region, the narrow-width is shaded in
pink.

line). The lack of visible impact of the high-energy kinematic distributions is very much
due to the specific model and the corresponding numerical behaviour of the matching
formulae. As discussed above, the main constraints on the vector triplet parameter
space are dominantly associated to those on f4L, fφ2 and f (3)

φQ, which are only marginally
improved by these searches.

SMEFT vs direct searches

A key question we would like to address in this work is whether a global SMEFT
analysis can be competitive with direct searches in constraining a given UV model.
Figure 5.12 compares the constraints in the (g̃f , g̃H) plane obtained in the direct search
of WH resonances by ATLAS, Ref. [197], and from 2D SMEFT fits to different sets of
observables. In particular, the light green line indicates the SMEFT constraints obtained
from the same distribution as in the direct search. For all lines in this plot, the heavy
triplet mass is fixed to mV = 4 TeV, the maximum value accessible by the resonance
search. Strictly speaking, the direct and indirect constraints extracted from the same
measurement apply to complementary regions of the parameter space: the former are
valid for masses mV . 4 TeV and for narrow vector triplets within the pink-shaded region
of Fig. 5.12, while the latter hold for mV � 4 TeV irrespective of the resonance width.
Obviously, a comparison should be taken with a grain of salt.

Nevertheless, it can be instructive to examine the interplay between the signals produced
by a heavy resonance and by its corresponding SMEFT approximation. The left panel
of Fig. 5.12 shows the mWW resonant distribution obtained for a benchmark point at
mV = 4 TeV, g̃H = 2, g̃f ≡ g̃l = g̃q = 0.5, compared to the ATLAS measurement [197]
(black data points) and the SMEFT signal matched to this benchmark model at dimension
six. This point is indicated by a cross in Fig. 5.12 (right), and it is excluded at 95%CL
by both the ATLAS WH and WW searches, but falls within the 2σ-allowed region of
our SMEFT global analysis. This discrepancy is obvious from the high-energy mWW
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tail, where aside from the mass peak the dimension-6 SMEFT also misses the initial
rise of the distribution. Among the WCs that contribute to WW production, only
fW /Λ2 = 0.28 TeV−2 takes a value above the permille level, while f (3)

φQ = 0 because
g̃q = g̃l. This results in SMEFT signals of only a few percent across the entire mWW

distribution, which are always well within the uncertainties. It is worth pointing out that
in such a situation the best place to look for the SMEFT signal might not just be the
bins where the energy enhancement is largest, but rather those where the uncertainties
are smallest.

While not surprising, these conclusions do not extend to arbitrary BSM scenarios.
One characteristic of the case examined here is that the resonance is narrow. As a
consequence, the effect in mWW is only visible close to mV , where the SMEFT expansion
immediately breaks down. The situation improves when we include higher-dimensional
operators [204, 246]. At dimension six, the matching to our specific model suppresses
all energy-enhanced SMEFT contributions to WW production, so the signal is under-
estimated across the emWW distribution. This does not have to be the case in other BSM
models. For instance, it is possible that the dimension-6 approximation over-estimates
the model predictions, in which case the dimension-8 contributions need to be large and
negative, and the truncated SMEFT constraints appear more stringent than those from
direct searches.

Going beyond the comparison of resonance searches and SMEFT analyses for one
measurement, the true power of the SMEFT approach is that it allows to combine a
large number of different measurements. This will always improve the sensitivity of the
SMEFT analyses and, on the other hand, it allows to derive more general conclusions, by
constraining all model parameters simultaneously, as shown in Fig. 5.9. The light blue
lines in Fig. 5.12 show the constraints from a 2-parameter SMEFT fit to the entire dataset
employed in this work. Consistent with the discussions above, these limits are dominated
by EWPO, for which the SMEFT expansion is valid. In particular, the constraint on g̃f
is dominated by the leptonic component g̃l, which in turn is mostly associated to the
f4L WC. Comparing these limits to those from the ATLAS WH-search, we find that the
latter are slightly stronger for |g̃H | & 1 (with the caveat that they are only valid in the
narrow width regime), while the former dominate for |g̃H | . 1. Here, the WH search
has an unconstrained direction along the g̃H = 0 axis, that is broken by the EWPO in
the SMEFT fit [207].

Heavy vector triplet (HVT) results

One of the main motivations for the SMEFT formalism is that it allows us to derive
constraints on new particles with masses beyond the reach of direct searches. In this
spirit, we can extend our SMEFT constraints on the g̃ parameters for a heavy triplet
mass to mV = 8 TeV. Now, the dimension-6 SMEFT approximation is valid all over the
kinematic measurements discussed above. The corresponding results in Fig. 5.13 can be
directly compared to those in Fig. 5.9 for mV = 4 TeV. As expected, all the bounds on
the model parameters are weaker for heavier values of mV (see also Fig. 5.3). However, a
notable feature is that the limits do not simply scale with a factor proportional to mV ,
as one would naively expect from the SMEFT analysis at dimension six. The reason is
that the matching expressions that relate the WCs to the model parameters are generally
non-trivial and do not scale universally with (g̃i/mV ), as can be seen for instance in
Eq. (5.33). Moreover, as we are considering a BSM state that is not a singlet under
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Figure 5.13: 5-parameter fit to the full data set for the model parameters in
Eq. (5.10) for fixedmV = 8 TeV. Each panel shows profiled ∆χ2 = 2.3 (solid) and
∆χ2 = 5.991 (dashed) contours. Red curves correspond to tree-level matching,
the light blue region to one-loop matching, profiled over three g̃ parameters plus
the matching scale Q = 500 GeV ... mV . The panels for g̃M − g̃q g̃V H − g̃q and
g̃V H − g̃M are not shown as they are unconstrained in the explored ranges.

SU(2), the EW gauge coupling g2 contributes to the matching independently of the g̃
parameters. The result is that the degeneracy between g̃i and mV is largely broken in the
matching, leading to a complex likelihood structure that changes significantly with mV .

5.5 Conclusions

We have presented a global analysis of a SM extension with a gauge-triplet vector
resonance in terms of the dimension-6 SMEFT Lagrangian. We have performed a
global SFitter analysis including electroweak precision observables, Higgs and di-boson
measurements as well as resonance searches at the LHC, and have compared our results
with limits obtained from direct searches. To relate the full model and the SMEFT we
have employed one-loop matching with a focus on the theory uncertainties from the
choice of the matching scale.

First, we have shown that the theory uncertainty due to the choice of the matching scale
can have a large effect on the global analysis. In particular, the bounds on the coupling of
the new vector to the SM-Higgs are significantly weakened once we profile over a variable
matching scale, illustrating how all theory uncertainties need to be taken into account at
least once we translate SMEFT results back into models.

Comparing the SMEFT results with direct searches reveals an intriguing complementarity.
Direct and SMEFT searches are reliable in different parameter regions; while direct
searches are sensitive to narrow resonances with kinematically accessible masses, SMEFT
searches apply to energies sufficiently below the resonance mass. The SMEFT analysis
can be sensitive to the onset of the resonance, but a reliable description of this region
requires a tower of higher-dimensional operators. Specifically for the vector-triplet model,
the SMEFT model for the high-energy tail of kinematic distributions turned out less
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sensitive than the resonance search, and therefore provided conservative constraints.
On the other hand, the SMEFT analysis can probe vector masses beyond the reach of
resonance searches. Here, we found that the one-loop matching dampens the sensitivity
decrease of the SMEFT analysis compared to the naively expected scaling.

While SMEFT analyses can not replace model-specific searches for new physics, they
add valuable constraints from a large variety of measurements and are sensitive to new
physics scales beyond the reach of resonance searches. Only this complementarity of
direct and indirect searches allows us to make best use of current and future LHC data.
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Chapter 6
Summary and outlook

In this work, we motivated a bottom-up approach to set limits on BSM physics. We
demonstrated how SMEFT global analyses can be used as a stepping stone to derive
limits on UV models.

First, we extended our SMEFT global analysis for Higgs and electroweak (EW) processes.
We included and tested over 30 new measurements in SFitter, among them new high
kinematic searches for V H and V V production from both ATLAS and CMS, as well as
a boosted Higgs production measurement by ATLAS. We expanded our basis with two
operators, which could now be constrained thanks to the new measurements. Additionally,
because the newly added chromomagnetic operator was previously observed to be the
main link between the top and Higgs sectors [39, 40], the constraints on this operator
from a separate SFitter analysis in the top sector we introduced.

We were able to compare the profiled and marginalized results of a global SMEFT analysis
starting from the same set of measurements. We found that, using the old dataset from
Ref. [36], the two methods yielded very similar results. The only visible difference being
small shifts in the central value of some likelihood distributions. Whereas for the new
dataset, the constraints on the WCs were very different for two operators in particular
fB and f (1)

φu . The main reason for the discrepancy can be attributed to drastic volume
effects when marginalizing.

Specifically, this discrepancy can be traced back to a particular measurement, a high
kinematic WW search by ATLAS with an under-fluctuation in the highest kinematic bin.
The SM point and the region close to it are slightly disfavoured by this under-fluctuation.
Indeed, the only way to accommodate it is to have a combination of non-zero WCs
that lead to large interference terms with the SM. It also turns out that the volume of
parameter space allowed around the SM point is small compared to the one around the
combination of non-zero WCs. Thus, when marginalizing, the region with the bigger
volume blows up in importance. However, this is not the case for profiling because only
the highest likelihood point is relevant in that case and not the density of point around
it. This does not mean that one method is wrong, but that they ask different questions
which means they might yield different answers.

In the second part of this work, we implemented a new matching interface in SFitter.
This allowed us to perform an analysis in the heavy vector triplet (HVT) model space,
using all the data, predictions and statistical tools already in place for the SMEFT global
analysis.
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6 Summary and outlook

The main takeaway here is that constraints from direct searches and SMEFT global
analyses are highly complementary. For our specific example, where direct searches existed,
they were more powerful than constraints from the same measurement set through a
SMEFT framework. However, the SMEFT global analysis still provides constraints
beyond the reach of direct searches and it also combines many measurements, which
put together yield competitive constraints. Another upside of a global analysis is that,
because it combines a big number of measurements, it can constrain all the UV model
parameters at once, which reveals potential correlations between them.

We have also shown that, because of the specific numerics of the matching, heavy resonance
searches for V H and V V production, when used as high kinematic distributions, do
not have as significant an impact on the HVT model analysis as they do on the regular
SMEFT analysis. For this particular model, a lot of the constraints are dominated by
the EWPO, because the WCs constrained by these measurements are enhanced in the
matching equations.

Finally, when setting constraints through matching a UV model to the SMEFT, one
should match at least at 1-loop level and treat the matching scale as a nuisance parameter,
i.e. an additional theory uncertainty. We showed that this can affect the limits for some
parameters quite significantly.

Now that this bottom-up pathway to UV models is implemented in SFitter, many other
opportunities are open. New UV models ought to be explored using the same framework.
Scalar singlet extensions of the SM have already been studied in Ref. [41] and heavy
vector triplet (HVT) extensions were presented in this work (or equivalently Ref. [2]).
Many other interesting models remain: the two-Higgs-doublet model (2HDM), vector-like
leptons, or the minimal supersymmetric Standard Model (MSSM) in the decoupling limit.

As we have seen the UV model analysis is only as strong as the SMEFT analysis behind
it. Thus, implementing new and precise measurements remains a priority. For now, the
accuracy of our measurements’ implementation is limited to broad predefined uncertainty
categories, for which we assume some correlations. Being able to use likelihoods provided
by the experiments would greatly improve this accuracy, thanks in particular to the
added information on correlations between uncertainties. Additionally, it could help
resolve the tension that exists between the desire to implement measurements quicker,
whilst still taking into account the full breakdown of the uncertainties. Implementing
new measurements in SFitter from experimental likelihoods will be explored in an
upcoming work.

Additionally, extending the SMEFT analysis to include more operators and processes, will
not just improve the SMEFT study itself, but the potential UV models to be explored.
To this end, an important step will be to combine the SFitter analyses in the Higgs
and top sectors. Beyond that, other processes affecting the flavor sector at the LHC and
other experiments such as Belle II or neutrino experiments [247] may provide competitive
constraints on current and new operators alike.
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Appendix A
High-luminosity LHC (HL-LHC)

Figure A.1 shows the projected limits obtained with a marginalized treatment for the
high-luminosity LHC (HL-LHC) on the 21 SMEFT Wilson coefficients (WCs) presented
in Eq. (2.3). We use the full set of measurements presented in Sec. 4.4, where all the
LHC measurements were set to their background values and their luminosity scaled to
4 ab−1. The electroweak precision observables (EWPO) from LEP are kept the same as
in the previous analyses. We also derive the projected high-luminosity limits assuming
halved theory and systematic uncertainties.

A significant gain is expected on the invisible branching ratio BRinv as well as the Yukawa
corrections ft, fb and fτ . The constraints improve for most of the other WCs, with a
few exceptions. Limits on ftG and fGG do not change because the main constraints on
these operators stem from the top analysis, which we did not update. f (1)

φe , fφ1, f4L and
fBW also exhibit stable constraints, because they are mostly set by the EWPO. Both the
top constraints and the EWPO are also the reason why the constraints are not always
centred around zero. Finally, the only operator for which the constraints worsen is f3W .
This particular operator is especially sensitive to high kinematic searches for V V . Thus,
the pure background assumption may lead to a reduced constraining power, as there are
no under-fluctuations in the higher bins of the distributions.

Once we also consider improved systematic and theoretical uncertainties, the limits
on all WCs improve—sometimes significantly, as for fµ or f−. In the case of fµ, this
can be understood considering that the one analysis constraining this coefficient has
a significance of only 3.0 standard deviations and is dominated by large experimental
uncertainties.

86



A High-luminosity LHC (HL-LHC)
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Figure A.1: Green: 21-dimensional SFitter analysis with all updated measure-
ments included, where all LHC measurements were scaled to a high-luminosity of
4 ab−1 and set to their background values. The electroweak precision observables
(EWPO) from LEP are kept the same as in the previous analyses. Purple: a
second set of limits is derived setting all systematic and theoretical uncertainties
to half their current values. We show the 68% and 95%CL error bars from a
consistent marginalization treatment of all the nuisance parameters and WCs.
Blue: current marginalized limits already presented in 4.27.
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Appendix B
Global SMEFT analysis: numerical results

Table B.1 reports the numerical values of the boundaries of the 68% and 95%CL intervals
shown in Fig. 4.27.

Marginalised Profiled
Coefficient 68% CL 95% CL 68% CL 95% CL

fGG [1.61, 7.49] [-2.17, 8.75] [3.79, 8.28] [-1.09, 9.50]

fB
[-5.49, -3.38] [-8.20, 10.05] [-6.49, 5.79] [-8.69, 10.08]
[0.74, 8,84]

fφ2 [-1.35, 2.95] [-3.51, 5.11] [-2.07, 3.68] [-4.59, 6.55]
fµ [-5.01, 8.43] [-7.45, 21.88] [-3.79, 9.66] [-8.68, 21.88]
ft [-0.01, 4.09] [-2.05, 6.47] [-0.80, 3.68] [-3.56, 5.75]
fb [-1.19, 2.28] [-3.06, 3.88] [-0.60, 3.44] [-3.03, 5.33]
fτ [-0.78, 1.66] [-2.11, 2.99] [-1.88, 1.00] [-3.66, 2.55]
f− [-6.16, -0.65] [-7.73, 2.89] [-5.34, 2.28] [-7.75, 5.09]

f+ × 10 [1.07, 8.21] [-3.21, 11.79] [0.36, 8.93] [-3.93, 13.93]
ftG × 10 [2.05, 6.82] [-0.93, 7.72] [3.53, 7.12] [-0.36, 8.02]
fW × 10 [2.64, 16.43] [-4.26, 24.47] [1.25, 21.80] [-8.35, 30.03]
fBW × 10 [0.86, 8.42] [-2.91, 12.19] [1.57, 9.82] [-2.83, 14.22]
f3W × 10 [-5.0, 3.62] [-8.7, 7.31] [-5.31, 6.89] [-10.19, 9.94]
f

(3)
φQ × 100 [-11.61, 12.38] [-18.01, 25.17] [-1.99, 23.60] [-13.19, 34.80]

f
(1)
φu × 100

[-14.22, -7.98] [-18.60, -2.17] [-15.70, -0.90] [-22.00, 15.80]
[4.25, 16.01] [0.14 18.87] [2.70, 10.20]

f
(1)
φd × 100 [-8.51, 3.04] [-13.84, 8.37] [-8.64, 6.07] [-14.69, 12.13]
fφ1 × 100 [-0.37, 7.32] [-4.22, 11.17] [-0.37, 7.88] [-4.22, 12.83]
f4L × 100 [-2.7, -0.46] [-3.82, 0.66] [-2.86, -0.46] [-4.14, 0.82]
f

(1)
φQ × 100 [1.2, 7.6] [-2.8, 9.2] [-1.20, 5.60] [-4.00, 8.40]
f

(1)
φe × 100 [-4.58, -1.22] [-6.5, 0.46] [-5.06, -1.46] [-6.98, 0.67]
BRinv [0, 3.04] [0, 6.88] [0, 4.64] [0, 9.44]

Table B.1: Numerical values for the results shown in Fig. 4.27.
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Table B.2 report the numerical values of the boundaries of the 68% and 95%CL intervals
shown in Fig. A.1.

L = 4 ab−1 L = 4 ab−1, σsyst+theo = half
Coefficient 68% CL 95% CL 68% CL 95% CL

fGG [0.42, 5.45] [-1.78, 7.02] [-0.18, 4.03] [-1.42, 6.01]
fB [-0.41, 3.68] [-3.04, 6.02] [-0.21, 2.2] [-1.74, 3.3]

fφ2 × 5 [-2.85, 4.64] [-9.09, 9.63] [-1.17, 3.89] [-4.2, 6.42]
fµ [-5.01, 5.99] [-9.9, 21.88] [-1.34, 2.32] [-3.79, 5.99]

ft × 5 [-4.77, 3.74] [-9.63, 8.61] [-3.09, 2.17] [-5.72, 4.8]
fb × 5 [-3.96, 2.57] [-9.19, 7.8] [-1.91, 2.11] [-4.32, 4.12]
fτ × 5 [-1.45, 3.3] [-6.2, 7.1] [-1.01, 1.88] [-2.75, 3.03]
f− × 5 [-14.31, 0.84] [-22.39, 5.89] [-4.88, 1.47] [-8.06, 4.12]
f+ × 10 [0.36, 7.5] [-3.93, 11.07] [-1.07, 3.93] [-3.93, 6.79]
ftG × 10 [-0.13, 4.13] [-1.46, 6.0] [-0.14, 3.39] [-1.18, 5.06]
fW × 10 [0.59, 7.28] [-2.75, 12.63] [0.29, 4.55] [-2.03, 6.48]
fBW × 10 [-0.05, 7.15] [-3.42, 11.0] [-1.5, 3.88] [-3.98, 7.19]
f3W × 10 [-4.44, 5.17] [-8.92, 7.09] [-3.03, 3.29] [-5.35, 4.62]
f

(3)
φQ × 100 [-0.9, 11.55] [-8.37, 19.01] [-1.44, 7.22] [-5.78, 11.55]
f

(1)
φu × 100 [-1.45, 6.44] [-6.3, 8.86] [-1.63, 3.64] [-4.5, 6.51]
f

(1)
φd × 100 [-4.21, 3.46] [-8.4, 7.65] [-2.89, 2.97] [-5.6, 6.13]
fφ1 × 100 [-1.1, 6.44] [-4.88, 11.3] [-2.51, 3.29] [-5.41, 6.67]
f4L × 100 [-2.37, 0.02] [-3.65, 1.14] [-1.46, 0.21] [-2.43, 1.04]
f

(1)
φQ × 100 [-0.21, 2.65] [-2.11, 4.32] [-0.32, 1.74] [-1.45, 2.86]
f

(1)
φe × 100 [-4.23, -0.69] [-5.89, 1.44] [-2.68, -0.24] [-4.1, 0.98]
BRinv [0, 1.05] [0, 2.26] [0, 0.85] [0, 1.75]

Table B.2: Numerical values for the results shown in Fig. A.1.
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