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Abstract

Higgs to invisible decays are an important signature in the search for physics beyond
the Standard Model. Due to its tagging properties the weak boson fusion (WBF) Higgs
production is a promising channel for such searches. Hence, it is of great importance to
improve the separation of signal and background of this process. In this study we first
start by comparing the Monte Carlo event generators Sherpa, MadGraph+Pythia
and Herwig to each other with the aim of finding the one best suited to describe track
propterties in the respective signal and background processes. Afterwards, we apply
these findings to examine if analyzing tracks instead of jets can improve the sensitivity.
We find that Sherpa is best suited describing the track activity. Furthermore, using
tracks instead of jets for the analysis of events increases the sensitivity. Moreover, the
jet properties are complementary to track properties. Finally, we show that using tracks
to discriminate Higgs WBF from the Z WBF is possible and preferable for jets with
minimum jet transverse momenta of 30 GeV and higher.

Zusammenfassung

Higgs Zerfälle in unsichtbare Teilchen sind ein wichtiges Signal auf der Suche nach
Physik jenseits des Standardmodells. Aufgrund seiner Tagging-Eigenschaften ist die
Analyse der Higgs Produktion durch die Fusion schwacher Eichbosonen (WBF) vielver-
sprechend. Daher ist es von großer Bedeutung die Trennung von Signal und Unter-
grund in diesem Prozess zu optimieren. Wir beginnen diese Analyse damit die Monte
Carlo Event Generatoren Sherpa, MadGraph+Pythia und Herwig miteinander zu
vergleichen. Ziel ist es den Generator zu finden, der für die Beschreibung von gelade-
nen Teilchen (“Tracks”) in den jeweiligen Signal und Untergrundprozessen am besten
geeignet ist. Danach benutzen wir diese Ergebnisse um zu untersuchen, ob die Studie
von Tracks anstatt von Jets die Sensitivität erhöhen kann. Es stellt sich heraus, dass
Sherpa am besten geeignet ist die Aktivität von Tracks zu beschreiben. Außerdem
kann wenn Tracks an Stelle von Jets für die Analyse verwendet werden eine höhere
Sensitivität erreicht werden. Darüber hinaus, zeigt sich, dass Jets und Tracks einander
ergänzen. Abschließend zeigen wir, dass Tracks auch zur Trennung des Higgs WBF
Prozesses vom Z WBF Prozess verwendet werden können. Für Jets mit minimalem
transversalem Impuls über 30 GeV ist eine Track Analyse der von Jets vorzuziehen.
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1 Introduction
The Standard Model is one of the greatest achievements in particle physics of the last
decades. Its description of the strong and electroweak interactions predicts particles that
could be successfully observed at colliders.

However, there are still some missing pieces for a full description of our universe. Firstly,
the Standard Model does not describe the gravitational force at all. A complete theory,
however, would need to include these interactions.

Secondly, by now it is experimentally established that neutrinos do oscillate in flavor,
which means that in contrast to the Standard Model prediction, they are not massless.
Furthermore, cosmological findings suggest that there is matter in our universe, which
is not described by the Standard Model and seems to interact only gravitationally and
possibly weakly. This matter is referred to as dark matter.

These are only some of the open questions in particle physics that show that the
Standard Model is not the final answer.

Therefore, after the Higgs boson was found at the Large Hadron Collider (LHC), and
with it the last missing piece in the Standard Model, experimentalists are now searching
for these so-called “new physics”.

In these endeavors the Higgs boson, in particular, becomes interesting, since it could
serve as a portal to new particles. Such new particles would be invisible to current detectors
at colliders and could only be detected by accounting for the missing energy in the event
as for neutrinos. Such a signal could show up, for example, in an enhancement of the Higgs
to invisible branching ratio.

Since the weak boson fusion channel for Higgs production has some characteristic fea-
tures that allow for a neat separation of signal and background, this channel is favored
above the dominating gluon fusion production process in searches for Higgs invisible decays
at the LHC.

Hence, it is worthwhile to find ways to improve the separation of weak boson fusion
processes from the background. One way to do this might be using the track information,
i.e. the tracks charged particles leave in the detector, instead of the jet information. One
reason for this is that such tracks would be sensitive much to lower energies than jets
are. Whether this is really helpful can be simulated using Monte Carlo event generators.
However, to make accurate predictions, the event generator must describe the physics well.

The aim of this study is to first find the best Monte Carlo event generator to describe
the track activity in weak boson fusion and second analyzing if using tracks instead of jets
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can in fact improve the separation of signal and background.

We begin by introducing the theoretical background needed for our study. This can
be found in section 2. In section 3 the physics of colliders and some technicalities of our
study are described. This is followed by discussing Higgs invisible decays and weak boson
fusion in section 4. A comparison of the event generators Sherpa, MadGraph combined
with Pythia and Herwig is presented in section 5. Finally, in section 6 we study if the
discrimination of signal and background can be improved by using tracks instead of jets.
Furthermore, a summary of what we have done and how one could proceed from these
results can be found in section 7.
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2 The Standard Model

The Standard Model (SM) [1–3] reflects our current understanding of nature. It describes
three of the four fundamental forces, the electromagnetic force and the strong and weak
nuclear forces. Gravity has not yet been included in the SM. The SM is established
using the concepts provided by Quantum Field Theory (QFT). In the following we will
briefly introduce the basic concepts of this theory. For a deeper insight we refer to the
literature [9, 10].

Matter and their interactions are described in the SM by two kinds of particles, fermions
and bosons. Fermions carry half integer spin (for all known elementary particles we have
spin-1

2) and make up the matter part of our universe. Bosons carry integer spin. Spin-1
bosons like the photon and the gluons are force mediators, while the spin-0 Higgs boson is
responsible for the masses of the weak gauge bosons and the fermions.

We begin by studying the fermions. One distinguishes two kinds of fermions: Quarks,
which take part in the strong interaction and leptons, which do not. The lepton sector
consists of electron-like particles and respective neutral partner, the neutrino. Similarly
the quark sector is made up of up-type quarks with electrical charge 2

3 and down-type
quarks with electric charge −1

3 . There are three generations of such pairs. The full particle
content of the SM can be seen in Fig. 1.

In QFT fermions are described using Dirac spinor fields ψ. With the mass mψ of the
fermion field the Lagrangian becomes

L = iψγµ∂µψ −mψψψ , (2.1)

We are now considering fields that are invariant under a continuous SU(N) symmetry,

ψ(x) → Uψ , (2.2)

where U ∈ SU(N), i.e. U is a N ×N special unitary matrix and can be expressed by,

U(θ) = exp(iθaT a) , (2.3)

with the real coefficients θa and the hermitian and traceless generator matrices T a.
Index a runs from 1 to N2 − 1, i.e. the SU(N) is described by N2 − 1 generators.
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Figure 1: The elementary particles of the Standard Model. Taken from [8].

Furthermore, the generators fulfill the commutation relation

[T a, T b] = ifabcTc , (2.4)

where the fabc are the structure constants. For an abelian theory it is fabc = 0.

In general the introduced symmetry transformation can be local, i.e. depending on
spacetime. This is obtained by setting θa = θa(x).

It can be easily seen that such a local symmetry transformation would not be symmetric
under the Lagrangian in Eq. (2.1).

Therefore, we define the SU(N) gauge fields with the gauge transformation property

Aµ(x) = U(x)Aµ(x)U †(x) + i

g
U(x)∂µU †(x) . (2.5)

This allows us to construct the covariant derivative

Dµ = ∂µ − igAµaT
a . (2.6)

with Aµ = AµaT
a. The covariant derivative transforms as Dµ → UDµU † and therefore,

restores the gauge invariance of the Lagrangian.

To complete the Lagrangian we need to include a kinetic term for the gauge fields,
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which is found by introducing the field strength tensor

Fµν = i

g
[Dµ, Dν ] . (2.7)

Apparently it has the same gauge transformation behavior as the covariant derivative.
However, since this term is not gauge invariant by itself, the kinetic term is obtained

by taking the trace of the square of this tensor. Multiplying this by a factor of −1/2 the
final Lagrangian becomes

L = ψ(iγµDµ −mψ)ψ − 1
2

Tr(FµνF µν) . (2.8)

The full symmetry group of the SM is SU(3)C × SU(2)L × U(1)Y . In the following we
will briefly study these symmetry groups and the resulting interactions.

2.1 Quantum Chromodynamics

The interactions based on the SU(3)C group are the strong interactions of quantum chro-
modynamics (QCD). Leptons are singlets under this group, i.e. are not taking part in the
strong force. Quarks, on the other hand, come in three colors, which are the values of the
SU(3) index. That is, quarks are SU(3) triplets

q =


qR

qG

qB

 , (2.9)

where R, G, B denote the color charges red, green and blue, respectively.
There are eight SU(3)C generators ta. The covariant derivative is given by

Dµ = ∂µ − igsGµat
a , (2.10)

with the strong coupling gs and the eight gluon fields Ga
µ

The QCD Lagrangian then becomes

LQCD = q (iγµ∂µ −mu) q + gsGµat
aqγµq − 1

2
Tr (FµνF µν) , (2.11)

where q describes the quark fields. Note that gauge fixing terms and Fadeev-Popov ghost
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fields where neglected in this expression.

2.2 Electroweak Interactions

The weak interactions are peculiar in acting only on left handed fermions or right handed
antifermions, as experiments have shown [15]. From a Dirac field ψ we obtain the left
handed part L and the right handed part R using the projection operators:

L = PLψ = 1
2

(1 − γ5)ψ , R = PRψ = 1
2

(1 + γ5)ψ , (2.12)

with γ5 = iγ0γ1γ2γ3.
The electroweak interactions are based on the SU(2)L × U(1)Y group. Left-handed

fields are doublets and right-handed fields are singlets under the SU(2)L.
Therefore, the covariant derivatives for the left- and right-handed fermions are given

by

DLµ = ∂µ − ig2Wµaτ
a − ig1Y Bµ

DRµ = ∂µ − ig1Bµ ,
(2.13)

with τa = 1
2σa, σa being the Pauli matrices and the couplings g1 and g2 of the gauge

field Bµ corresponding to the U(1)Y symmetry and the gauge fields W a
µ corresponding to

the SU(2)L symmetry, respectively.
For left- and right-handed fermions denoted as L and R, respectively, the Lagrangian

becomes

Lfermions =
∑
L

LiγµDL
µL+

∑
R

RiγµDR
µR , (2.14)

Together with the Lagrangian of the electroweak gauge fields given by

Lgauge = −1
4
BµνBµν − 1

2
Tr
(
W µν
a W a

µν

)
, (2.15)

we obtain almost the complete electroweak Lagrangian. What’s still missing are the
mass terms for the fermion fields. However, since we split the fields into left- and righ-
handed ones, we cannot simply add a mass term for each field to the Lagrangian, since
such a term would not be invariant under the SU(2)L group. To solve this problem we
first need to introduce the mechanism of electroweak symmetry breaking.
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2.3 Electroweak Symmetry Breaking

In the SM interactions are included by imposing local gauge invariance. As we have seen
this introduces gauge fields to the Lagrangian. One can easily show that introducing a
mass term to a gauge boson in the Lagrangian, i.e. the term m2AµaA

a
µ breaks local gauge

invariance.

Therefore, gauge bosons are supposed to be massless. However, from experiment we
know that the gauge bosons of the weak interaction are massive.

To save local gauge invariance Peter Higgs [4, 5], Francois Englert and Robert Brout [6]
came up with the mechanism of electroweak symmetry breaking (EWSB). In the following,
we will describe this mechanism.

We begin by introducing the scalar Higgs field ϕ with the covariant derivative

(Dµφ)i = ∂µφi − i
[
g2W

a
µ τ

a + g1BµY
]j
i
φj , (2.16)

where the φi are the components of ϕ and Y = −1
2I is the hypercharge of the scalar

field.

Writing the term in the brackets in matrix form yields

g2W
a
µ τ

a + g1BµY = 1
2

 g2W
3
µ − g1Bµ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) −g2W
3
µ − g1Bµ

 . (2.17)

For the potential of ϕ we then take

V (φ) = 1
4
λ(φ†φ− 1

2
v2)2 , (2.18)

which will give us a nonzero vacuum expectation value (vev) as is shown in Fig. 2.
Applying a gauge transformation that brings this vev to the first component and makes it
real (unitary gauge) will give us

⟨0|φ(x)|0⟩ = 1√
2

 v

0

 . (2.19)

If we now compute the kinetic term −(Dµφ)†Dµφ and replace ϕ by its vev we will get
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Figure 2: Scalar SM potential, due to its shape commonly referred to as the Mexican hat
potential. The Goldstone (φ⃗) and Higgs (H) field describe excitations in the direction
indicated by their respective arrow. The Goldstone field corresponds to a phase shift,
which using the unitary gauge is set to unity. Taken from [14].

a mass term for the gauge fields,

Lmass = −1
8
v2(1, 0)

 g2W
3
µ − g1Bµ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) −g2W
3
µ − g1Bµ

2 1
0


= −1

8
v2
[
(g2W

3
µ − g1B

2
µ)2 + g2

2(W 1
µ + iW 2

µ)(W 1
µ − iW 2

µ)
]
.

(2.20)

Introducing the Weinberg angle θW = tan−1(g1/g2) we define the fields

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) , Zµ

Aµ

 ≡

cos θW − sin θW
sin θW cos θW

 W 3
µ

Bµ

 . (2.21)

Substituting these into Eq. (2.20) this will become

Lmass = −
(
g2v

2

)2
W+µW−

µ − 1
2

(
g2v

2 cos θW

)2
ZµZµ

= −m2
WW

+µW−
µ − 1

2
m2
ZZ

µZµ ,

(2.22)
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where we have introduced the mass terms

mW = g2v

2
= cos θWmZ . (2.23)

From experiment we know these masses to be mW = 80.4 GeV and mZ = 91.2 GeV [11],
from which we get sin2 θW = 0.223.

Apparently, by this symmetry breaking the Aµ field remains massless. Therefore, the
SU(2)L × U(1)Y symmetry is broken to a U(1) symmetry. This unbroken subgroup is the
gauge group of electromagnetism.

Since our complex scalar field ϕ consists of two components we will altogether have
four real scalar fields. Each weak gauge boson will “eat up” one of these scalar fields,
which then becomes its longitudinal component, leaving us with one remaining scalar field,
responsible for the shifts in the overall scale of ϕ.

In the unitary gauge, we then have

φ(x) = 1√
2

 v +H(x)
0

 , (2.24)

with the real scalar field H, whose corresponding particle is the Higgs boson. The
potential of this field is given by

V (φ) = 1
4
λv2H2 + 1

4
λvH3 + 1

16
λH4 . (2.25)

From this we can read off the Higgs mass term m2
H = 1

2λv
2. On July 4, 2012 the

ATLAS and CMS collaborations at CERN announced the discovery of this particle with a
mass m2

H = 125 GeV [12, 13].
Now, we want to see how the couplings g1 and g2 are related to the electrical charge e.

For this we consider the covariant derivative of the field W 3
µ

Dµ = ∂µ − ig2W
3
µ = ∂µ − ig2(sin θWAµ + cos θWZµ) . (2.26)

Since the coupling of Aµ has to be equal to e we can conclude that

e = g2 sin θW = g1 cos θW , (2.27)

where in the second part we used that sin θW = g1

/√
g2

1 + g2
2 and cos θW = g2

/√
g2

1 + g2
2 .
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Finally, we note that the masses for the fermions are also obtained by the Higgs mecha-
nism. This is shown in Appendix A. Here we only state the results for electron-like leptons
e with Yukawa coupling y, up-type quarks u with Yukawa coupling y1 and down-type
quarks d with Yukawa coupling y2:

me = yv√
2
, md = y1v√

2
, mu = y2v√

2
. (2.28)
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3 Collider phenomenology and Technicalities

Many tests of the SM and theories beyond it (BSM) are done by using colliders. To
relate the experimental results to the theoretical prediction we have to keep in mind,
that the outcoming particles are rarely what we are interested in, since the particles we
want to observe typically decay before reaching the detector. Furthermore, due to color
confinement, quarks are never observed freely and can only be resolved using jet algorithms.
Methods to describe these behaviors are what is usually called phenomenology.

There are certain colliders that one can build. The main differences are in shape (lin-
ear or circular), the colliding particles (leptons or hadrons) and the beam parameters like
the center-of-mass energy and the luminosity. The advantage of colliders using leptons as
colliding particles is, that the initial momentum of the particles is exactly known, while
for hadrons one only knows the momentum of the full hadron instead of the interacting
individual quarks. However, since quarks are color charged some processes are easier ob-
tained using hadron colliders. Also high energy losses in lepton colliders due to synchrotron
radiation favor the use of hadron colliders.

The Large Hadron Collider (LHC) is a proton-proton collider that currently works at
a center-of-mass energy of

√
s = 13 TeV.

To describe the kinematics in a hadron collider, we need variables that suit the geometry
of the detector and are invariant under longitudinal Lorentz boosts. We will consider the
z-axis to be the beam axis. Apparently the momentum transverse to the beam axis, defined
as

pT =
√
p2
x + p2

y = p sin θ (3.1)

fulfills these requirements. If one assumes that the transverse momentum of the beam
particles vanishes, which is justified for high energies, momentum conservation tells us, that
for the final state particles we have ∑ p⃗T = 0. This allows to resolve particles which are
invisible to the detector, like neutrinos, by computing the missing transverse momentum.
The azimuthal angle ϕ of the plane is apparently also invariant under longitudinal Lorentz
boost. The polar angle θ however does not have this property. Therefore, we use the
rapidity y, which is for a particle with momentum pµ and energy E, defined as

y ≡ 1
2

ln
(
E + pz
E − pz

)
. (3.2)
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In the limit of massless particles this becomes

η = lim
m→0

y = 1
2

ln
(

|p⃗| + pz
|p⃗| − pz

)
= artanh

(
pz
|p⃗|

)
= − ln

[
tan

(
θ

2

)]
. (3.3)

This new quantity η is called the pseudorapidity. As one can see it only depends on the
polar angle θ and is like the rapidity additive under longitudinal Lorentz boosts (as long
as m ∼ 0).

Together with the azimuthal angle ϕ, the pseudorapidity spans the η − ϕ-plane. This
allows the definition of a distance measure ∆Rij, defined as

∆Rij =
√

∆ϕ2
ij + ∆η2

ij =
√

(ϕj − ϕi)2 + (ηj − ηi)2 . (3.4)

When colliding particles, the resulting events will consist of signal events, i.e. the
processes we are interested in, and background events. To accurately test a theory we,
therefore, have to distinguish signal from background. To do this we first have to know
how many events N are expected for the respective process with cross section σ and collider
luminosity L, i.e. the number of particles crossing a unit area. This is given by

N = σL . (3.5)

When analyzing the events we get the signal events S = σsigL and the background
events B = σbgL with the signal and background cross sections σsig and σbg, respectively.
Therefore, for N events have N = S + B. The number of events obeys Poisson statistics,
which means for an expected number of events N the standard deviation will be

√
N =

√
S +B ∼

√
B, where in the last step we used that usually we have S ≪ B. To get the

significance of the signal we compute the number of signal events relative to one standard
deviation: S√

B
.

However, usually it is not possible to perfectly resolve signal and background. There-
fore, we have to include the efficiency of signal and background in our analysis. Effectively
we will measure εsigS signal events with the signal efficiency εsig and εbgB background
events with the background efficiency εbg. Substituting S and B by these values will give
us the actual significance.

12



Therefore, we get

S√
S +B

= εsigσsig√
εsigσsig + εbgσbg

·
√

L S≪B≈ εsigσsig√
εbgσbg

·
√

L = S√
B
. (3.6)

To claim a discovery the signal needs to exceed the background by at least 5σ, which
is equivalent to

S√
B
> 5 . (3.7)

assuming S ≪ B.

3.1 Jet Algorithms

Observing free quarks or gluons is impossible. Such final state particles will emit final state
radiation (FSR), hadronize and decay in several stages. Therefore for each such particle in
the final state a whole bunch of hadrons will arrive at the detector. To get the kinematic
properties of the quark we have to combine these hadrons into so-called jets, containing
all decay products of the final state particle. This is done using jet algorithms. One
distinguishes two kinds of jet algorithms: Cone algorithms and recombination algorithms.
The former are by now obsolete since it turned out they are not infrared save. Therefore,
we will only consider recombination algorithms. They use a certain distance measure to
decide if the hadron still belongs to the jet or not. This measure is given by

dij =
∆R2

ij

R2 min
(
p2n
T,i, p

2n
T,i

)
, diB = p2n

T,i , (3.8)

where diB is the beam distance and R is the size of the jet. Usually one chooses R ∈
[0.4, 0.7]. The ATLAS collaboration uses R = 0.4 and R = 0.6 for their analyses [21].
To recombine heavier particles like the top quark to jets one uses so-called fat jets with
R ∼ 1.5.

There are three kinds of recombination algorithms, which differ in the choice of the
parameter n: For n = 0 we have the purely geometric Cambridge/Aachen (C/A) algo-
rithm [18] and for n = ±1 we have the (anti-) kT algorithms, respectively [19, 20]. The
algorithm now proceeds in the following steps:

1. Find combinations of two jets with the minimal distance dmin = minij(dij, diB) for
all jets.
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Figure 3: Jet shapes for the different recombination algorithms in the y − ϕ plane. Taken
from [20].

2. (a) If dmin = dij < dcut join jets i and j together (usually by summing their four
momenta, which is called E-scheme) and return to step 1.

(b) If dmin = diB < dcut consider i to be beam radiation, disregard it and return to
step 1.

(c) If dmin > dcut keep all jets and stop.

Here the variable dcut was introduced, which serves as a cut of the jet separation. In
exclusive jet algorithms this number has to be put in, while in inclusive jet algorithms it
is dcut = diB, i.e. the jets in step 2 (b) are kept as jets.

Obviously, the shapes of these jets differ in their different distant measure. The kT
algorithm should yield the most accurate results, considering the physical aspects, since
it combines the soft constituents first. Conversely, the anti-kT algorithms starts with
combining the hard constituents and is physically ill-motivated. However, as one can see in
Fig. 3 the anti-kT algorithm achieves circular jet shapes, which is why the experimentalists
like to use it to easily remove the effects of underlying event. To be able to compare our
results with experimental data we will, therefore, use the anti-kT algorithm throughout
this study.

The jets might not only consist of the decay products but also other QCD effect con-
tribute to the jet’s quantities:

Initial and final state radiation
Each particle can emit radiation. Radiation emitted by the initial (final) particles
is called initial (final) state radiation, in short ISR (FSR). While we would like
to remove ISR in the clustering we want to keep FSR, since it contributes to the
particle’s momentum.
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Underlying Event (UE)
In hadron-hadron collisions it is possible that there are interactions of the particles
not contributing in the hard process. This is called underlying event and contributes
to the jet mass in the following manner

⟨δm2
j⟩ ≃ ΛUEpT,j

(
R4

4
+ R8

4608
+ O

(
R12

))
, (3.9)

where we introduced the parameter ΛUE. This equation shows why it is important
to keep the jet size as small as possible.

Pile-up
A proton beam at the LHC is made out of bunches of protons instead of single ones.
This allows for more than one collision per bunch crossing and makes it harder to
distinguish the individual events. This piling up of events is called pile-up and can
be removed using filtering methods.

3.2 Event Generation using Monte Carlo methods

To make predictions about the experimental results of colliders, Monte Carlo event gener-
ators are used. They use Monte Carlo methods, i.e. techniques that use (pseudo-) random
numbers to compute numerical results, to simulate events at a collider. This is possible
because the event can be separated into several stages, which are simulated separately.
There is the hard process, which one is usually interested in, the radiation of the incoming
and outgoing particles, which is covered by the parton shower, the hadronization of those
particles and the decays of the unstable hadrons. Additionally, there is as already men-
tioned the underlying event. A schematic of such an event can be seen in Fig. 4. In this
section, we will briefly describe these subprocesses in more detail.

3.2.1 Hard Process

Most interesting processes include the production of heavy particles and therefore large
momentum transfers. This is called the hard process. Thanks to the asymptotic freedom
of those particles the amplitude of this process can be computed perturbatively. The most
prominent method of doing this is using Feynman diagrams. The important quantity is
of course the cross section. In a hadron collider, the cross section for a scattering process
ab → X is computed using collinear factorization. For a partonic cross section σ̂ab→X this
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Figure 4: Schematic of an event at a collider. The hard process denoted by the big red blob
is apparently a tt̄H process as the decay products show (small red blobs). The underlying
event is shown in pink, the parton shower takes place in the outgoing particles in pink and
red. The light green blobs signify the hadronization and the dark green plots the decays
of these into stable hadrons. Taken from [23].

gives

σ =
∑
a,b

∫ 1

0
dxadxbfh1

a (xa, µF )fh2
b (xb, µF )σ̂ab→X(µF , µR) , (3.10)

where fh1
a (xa, µF ), fh2

b (xb, µF ) are the parton distribution functions (PDFs). fh1
a (xa, µF )

for example gives the probability that for a hadron h1 with momentum k, the parton a

in this hadron has the momentum fraction xak. µF and µR are the factorization and
renormalization scale, respectively. The partonic cross section for a hadronic center of
mass energy s is given by

σab→X = 1
2ŝ

∫
dΦX |Mab→X |2 , (3.11)

with the parton flux 1/(2ŝ) = 1/(2xaxbs)) and the matrix element squared |Mab→X |2,
averaged over initial spins and color degrees of freedom.

The differential phase space element dΦX of the final state X, consisting of n particles
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is given by

dΦX =
n∏
i=1

d3pi
(2π)32Ei

· (2π)4δ(4)(pa + pb −
n∑
i=1

pi) , (3.12)

with the initial state momenta pa and pb.

Since any summation over quantum numbers can be pulled outside the squared matrix
element this allows not only to sample the phase space using Monte Carlo methods, but
also the helicity and color states.

In most event generators a comprehensive list of leading order (LO) matrix elements
for 2 → 1, 2, 3 production channels for the SM framework and in some cases even for
some BSM frameworks are included. For processes with more final states matrix element
and phase space generators are used. Sherpa [23], for example, has built in two such
generators: Amegic++ [24] and Comix [25].

To fully specify the cross section in Eq. (3.10) we need to choose values for the renor-
malization and factorization scale as well as a parametrization of the PDFs. There is not
one correct value for these scales, but there is certainly a limited range of reasonable values.
For 2 → 2 and 2 → 1 processes one usually chooses the scale such that Q2 = µF = µR.
If one considers the production of a resonance of mass m one chooses Q2 = m2, where for
the production of two massless particles one takes their transverse momentum squared as
a scale, Q2 = p2

T . In event generators this scale Q2 plays also the role of a starting scale
for the parton shower. The PDFs can be chosen arbitrarily, as long as the parametrization
allows for an accurate calculation of the cross section. The “Les Houches Accord PDF”
(LHAPDF) [27] delivers an interface for commonly used PDF sets, that can be accessed
by event generators, where each generator has one default PDF set. Changing the default
PDF set might affect the predictions of parton shower, hadronization and underlying event.

Since most generators only include leading-order matrix elements one runs into trou-
ble, when comparing these predictions with experimental results. While the shape of the
distributions is accurately described by only considering leading-order (LO) effects, the
normalization will be affected by higher-order corrections. This is taken care of by multi-
plying the LO cross section with a so-called K-factor, obtained by the ratio of the NLO to
the LO cross section.
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3.2.2 Parton Shower

The hard process computation is well suited to describe the momenta of the outgoing jet,
however does not suffice to describe the internal structure of the jets and the distributions
of accompanying particles well, since it is calculated at a fixed order. Therefore, one uses
parton shower algorithms to simulate the behavior at higher orders. They are formulated
as an evolution on momentum transfer from the high scales of the hard process to the low
scales of order 1 GeV, where quark confinement begins to play a role.

To further describe how the parton shower works, let us illustrate this using the elec-
troweak e+e− → qq̄ process. The leading-order cross section σqq̄ is finite and can be
computed perturbatively. We are now interested in the NLO process e+e− → qq̄g, where
one of the outgoing quarks emits a gluon. If we parameterize the phase space with the
opening angle between quark and gluon θ, the energy fraction z of the gluon we get

dσqq̄g
d cos θdz

≈ σqq̄CF
αs
2π

2
sin2 θ

1 + (1 − z)2

z
, (3.13)

with CF = N2
c −1

2Nc
and neglecting non-divergent terms. Since σqq̄ appears in this equation

we can consider the remaining factors to be the probability of gluon emission. Apparently
this equation diverges in the collinear (θ → 0 and θ → π) and soft (z → 0) limit.

Even though this divergence can be handled and does not matter for the physical
description, we need to consider these regions, since there the emission distribution will be
large.

First we want to study the collinear limit. There we can approximate sin2 θ ∼ θ2 and
d cos θ ∼ d(1 + θ2) = dθ2 and therefore obtain

dσqq̄g ≈ σqq̄
∑

partons
CF

αs
2π

dθ2

θ2 dz1 + (1 − z)2

z
. (3.14)

This equation is completely general. Therefore, for any hard process with cross section
σ0 that has outgoing partons of flavor i the change in the cross section when emitting a
parton j with momentum fraction z is given by

dσ ≈ σ0
∑

partons,i

αs
2π

dθ2

θ2 dzPji(z, ϕ)dϕ , (3.15)

where Pji(z, ϕ) is a set of universal but flavor dependent functions and ϕ the azimuth
of j. As already stated, the factors beside the cross section describe the probability of

18



gluon emission. Therefore, we can compute the distribution of the total probability of all
branchings of a parton i between q2 and q2 + dq2 with the virtuality q2 since as one can
show we have dθ2

θ2 = dq2

q2 . This distribution is given by

dPi = αs
2π

dq2

q2

∫ 1−Q2
0/q

2

Q2
0/q

2
dzPji(z) , (3.16)

where the limits on the integral are required to make sure the partons are resolvable and
hence get rid of the divergence. Q0 therefore describes the point below which we cannot
distinguish the emitted parton from the emitting parton anymore.

We are now interested in the probability that there are no branchings for virtualities
greater than q2 given a maximum virtuality Q2. This function we define to be ∆i(Q2, q2)
given by the differential equation

d∆i(Q2, q2)
dq2 = ∆i(Q2, q2)dPi

dq2 . (3.17)

Apparently, the result of this differential equation is an exponential

∆i(Q2, q2) = exp
[
−
∫ Q2

q2

dk2

k2
αs
2π

∫ 1−Q2
0/k

2

Q2
0/k

2
dzPji(z)

]
q2=Q2

0≈ exp
[
−CF

αs
2π

log2 Q
2

Q2
0

]
,

(3.18)

where in the second line we set q2 = Q2
0, i.e. calculated the probability of no branching

happening at all. This is the so-called Sudakov form factor. Similar to the case of radioac-
tive decay ∆i(Q2, q2) it describes the probability of non-branching as e to the minus the
total inclusive branching probability over that region.

With these results we can now iteratively attach additional partons to the hard process
one after another. With these additional partons we then have to proceed in the same way
until no more branchings need to be applied. However, one needs to be careful to avoid
double-counting by requiring the q2 values of the child partons to be smaller than the ones
generated for this splitting.

The Monte Carlo implementation usually looks like this: Choose a random number
ρ ∈ [0, 1] and solve ∆i(Q2, q2) = ρ for q2. If the solution is aboveQ2

0 generate a branching at
q2 otherwise there is no resolvable branching and the evolution terminates. In principle Q2

0

can be chosen arbitrarily and is a lower cutoff at which two partons cannot be distinguished

19



anymore. However, since we have a running coupling one has to make sure to choose
Q2

0 ≫ ΛQCD to avoid the coupling to become of order 1.
Next to the collinear region the soft emission limit leads to dominant contributions

to the emission distribution. We will not go into the specifics of this case, however, one
can show that these soft gluon effects can be accurately described by a collinear parton
shower algorithm as described above. However, this only works if one uses the opening
angle θ instead of the virtuality q2 as evolution scale. Therefore, many parton showers are
angular-ordered as the one implemented in Herwig [48, 49].

3.2.3 Multi-jet Merging

Before we can start to hadronize the outgoing jets of the parton shower, we first have to
find a way to combine the hard matrix element calculation with the results of the parton
shower. Since both approaches have their advantages and shortcomings we would like to
find a way to combine them in a way, which maximizes the merits of both while keeping
the influence of their shortcomings as small as possible.

Fixed-order matrix elements work well in describing separated hard partons, however
they run into problems when describing collinear and soft partons. For the parton shower
it’s the other way around. Combining these two approaches is, however, not as trivial as
one might think. One reason for this is, that the matrix element calculation is inclusive
in giving the probability of at least n outgoing particles at lowest order while the parton
shower is exclusive in computing the probability of having exactly n outgoing particles
to all orders. Also if one would simply add the matrix element and the parton shower
together, it is possible that double counting or under counting will take place.

There are two main schemes to achieve a proper merging: the CKKW and the MLM
scheme. In the following we will briefly describe these two algorithms.

The CKKW scheme was developed by Catani, Kuhn, Krauss and Webber [28] and is
used as default in Sherpa. First we introduce a matching parameter ymatch. Two jets i
and j are considered to be best described by the parton shower if yij < ymatch, while for
yij > ymatch the hard matrix element might be the better fit. This can be translated into a
virtuality scale by assigning a typical energy/virtuality thard to the hard process yielding
tmatch = y2

matchthard. This parameter will serve as a lower jet radiation cut-off.
The CKKW scheme now aims at assigning a weight to given phase space points to

make sure that the processes will be chosen statistically in the correct way. We start by
generating events with n final states and compute the corresponding cross section σn,i,
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where the subscript i describes the different possible final states. After this, the algorithm
proceeds in the following way:

1. Compute the relative probability for each final state Pn,i = σn,i
/∑

k,j σk,j and select
one according to its probability.

2. assign the momenta from a phase space generator to the hard external particles and
calculate |M|2 adding the parton shower below tmatch.

3. Recover the shower history using a jet algorithm and check if the splittings are in
line with possible Feynman diagrams and do not disobey any symmetries.

4. Compute the Sudakov factors, giving the non-splitting probability, of each external
and internal line down to tmatch.

5. Modify the αs values of each splitting taking into account the kT scale from the
shower history.

6. Use the obtained matrix element, Sudakov factors and αs values to compute a weight
for the event.

This scheme achieves using tmatch a clear separation of the hard matrix element com-
putation and the parton shower algorithm.

Another method of for the merging of parton shower and hard matrix element computa-
tions is the MLM-scheme [29]. In this scheme also n-jet events are simulated including hard
and parton shower jets. Then we apply a jet algorithm on these events. For MadGraph
the kT -algorithm is used. Now we compare the showered events with the unshowered ones
and try to identify each parton with a parton shower jet. If we can identify a jet to each
parton without any jets remaining we know that the parton shower did not change the
structure of the event. However, if we observe significant differences between the parton
level event and the showered event it has to be dropped.

3.2.4 Hadronization

Usually, by hadronization we mean the model used to describe the transition from the
partonic final state to the actually measured hadronic final state. Since quarks carry color
charge, due to color confinement one will only be able to measure the hadrons containing
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the quarks. For this there up to now exist only models, which are, however, inspired by
QCD. The reason for this is, that at the energy scale where hadronization occurs QCD gets
non-perturbative and can only be described by lattice QCD, which since it is formulated
in Euclidian space-time is not suited for the Minkowskian time evolution of the partons.

There are two main kinds of hadronization models: string and clustering ones. In
Appendix B a brief introduction into the basics of these models is found. Let us just
mention here, that Sherpa and Herwig use the clustering model, while Pythia uses the
string model.

3.3 Boosted Decision Trees

The purpose of colliders like the LHC is to search for new physical processes, which are
considered signals. Each time such a process is successfully observed it is moved from being
a signal to being background. Apparently, over time this will lead to a large amount of
background making it harder to distinguish the desired signals from the huge backgrounds.

Therefore, sophisticated methods for separating the signal from the background have
been developed. Restricting the analysis on only one variable is only rarely sufficient and
multivariate analyses that take into account sets of variables at once have become common
practice by now.

One of these methods are boosted decision trees (BDT). We will first describe what a
decision tree is and after that consider the method of boosting.

A decision tree serves in our purposes to classify if the considered event is signal or
background using phase space variables. This is done by repeatedly applying binary splits,
where at each node the variable is used, which allows for the best discrimination between
signal and background at this stage. Therefore, some variables might be used several times,
while others aren’t considered at all. This is done until a minimum cut on the events in
one node is achieved. The resulting nodes at the bottom are called leaf nodes. A schematic
of such a tree is shown in Fig. 5.

In contrast to rectangular cuts, which select one hypercube in the phase space as a
separation of signal and background, the decision tree can split the phase space into many
hypercubes of arbitrary size each corresponding to signal or background. This will in
general improve the performance of decision trees compared to rectangular cuts. However,
one needs to be careful, since one in principle could split the phase space such that each
leave node consists of only one event. Such a tree would describe the data perfectly, but
since it describes also statistical fluctuations it would have less predictive power. This
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Figure 5: Schematic of a decision tree. Taken from [54].

is the problem of overtraining and is circumvented by imposing a minimum cut on the
number of events in the resulting leaves.

Training (building) a tree is done by starting at the root node and determine the variable
and cut, which achieves the best separation on the whole sample. Now, one proceeds to
checking the subsets at the splittings for the optimal variable and cut to split those on. This
is continued until the minimum amount of events is reached. A leaf is considered signal
(background) if the majority of the events in the leaf are signal (background) events.

This procedure makes it possible that the splitting goes on until each leaf node only
consists of signal or background. While this might seem worthwhile it is probable that in
such a case the tree is highly overtrained. Therefore, a so-called pruning that simplifies
the tree has to be applied.

Pruning is done by removing nodes that only achieve a small separation of signal and
background and, hence, are less significant. To first train the tree and apply the pruning
afterwards is better than prohibiting such nodes in the first place, since these nodes still
affect the splittings of the remaining nodes in the tree.

As mentioned, some variables might be used more than once and others not at all. This
allows for a measure in the importance of a variable. This importance is a function of the
number of times it is used in the tree, the number of events in each node it’s used and the
separation improvement it achieves in each node.

However, decision trees do have a weakness. If we have two variables which are similar
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in the amount of separation they can achieve, but due to a fluctuation in one variable it is
preferred towards the other one, this will possibly change the whole structure below this
node.

This can be solved by constructing several decision trees, so-called forests. The clas-
sification of an event is now given by a majority vote of the classification of each tree in
the forest instead of one single tree. The trees in the forest are generated using the same
training sample, but each time weighting the events differently. This is called boosting.
Through boosting the classifier becomes stable under statistical fluctuations and improves
in performance.

There are several boosting methods that have been developed over time. In our boosted
decision tree analyses we will use an algorithm called AdaBoost [55]. This adaptive boost-
ing algorithm is able to take a weak learning algorithm, i.e. one that achieves results that
are not significantly better than random guessing, and “boosts” it into a strong algorithm.
In Appendix C we show how the AdaBoost algorithm works.

Finally, to make sure that a BDT analysis is not suffering from overtraining one usually
applies an overtraining check. This check is done by splitting the sample into a training
and a test sample. That is, instead of using the whole sample for training we also use one
part to test the trained hypothesis. If no overtraining occurs both samples should yield
the same prediction except for statistical fluctuations. Most times overtraining hints that
we use too few statistics. Therefore, if the analysis suffers from overtraining increasing the
sample size will solve it most of the time.

There is no clear rule to how much of the sample should be used for training and how
much for testing. Both samples should be large enough to effectively rule out overtraining.
Throughout this study we will use 50% of the sample for testing and training, respectively.
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4 Higgs invisible decays in weak boson fusion

We know by now that the current description of particle physics, the SM, is incomplete.
This is due to cosmological findings that suggest that there is matter, which cannot be
described by any particles in the SM. This matter is at most weakly and gravitationally
interacting, and hence, invisible to todays detectors. Therefore, this matter is referred to
as dark matter (DM).

After the Higgs boson has been found, the main goal of the LHC is to search for new
physics, including dark matter. As we will see in Section 4.2, searches for invisible Higgs
decays in weak boson fusion Higgs production are particularly promising.

To describe dark matter properly the proposed dark matter particle has to recover
the relic density. The density parameter is given by the ratio of the observed density to
the critical density, where the critical density signifies the junction between an expanding
and a collapsing universe for a vanishing cosmological constant. The relic density Ωχ

was measured by the Planck satellite to be Ωχh
2 = 0.1198 ± 0.0015 [36], where h is the

dimensionless Hubble parameter.
In the following, we will outline why the Higgs might be a portal to observing dark

matter particles and how the properties of the weak boson fusion process can be used to
allow for a good separation from the backgrounds.

4.1 Higgs Portal

One possible candidate for a dark matter can be obtained by simply extending the SM
introducing a scalar field S, which will then be coupled to the Higgs. This is, particu-
larly, interesting, since the so-called Higgs portal interactions are renormalizeable, i.e. the
coupling constant two of these new scalars and two Higgs bosons will be of mass unit zero.

Before we will couple our new scalar to the SM, let us first discuss, which properties
the new scalar should have.

First, we need to clarify if we want the scalar to be real or complex, that is, if we want
to introduce two particles with a positive and negative charge or not. We decide for the
latter, giving us a real scalar field.

The second property we need to determine is, if we want the scalar, like the Higgs, to
have a nonzero vacuum expectation value (vev) or not. Since such a vev would contribute
to the masses of gauge bosons and fermions in the SM it would only overcomplicate the
underlying physics. Therefore, we will assume the new scalar to have no nonzero vev.
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If we were including the terms for the S in the potential of Eq. (2.25) there would be
terms ∝ H2S. This would allow for decays of the S particle into two Higgs bosons on-shell,
S → HH and off-shell, S → H∗H∗ → 4b. This is not what we want, since dark matter
should be stable or at least with a decay time comparable to the age of the universe.

This can be solved by imposing a so-called global Z2 symmetry

S → −S H → +H . (4.1)

Apparently, this gets rid of any terms of uneven powers in S.
Therefore, with the S the scalar potential of Eq. (2.25) becomes

V = m2
H

2
H2 + m2

H

2vH
H3 + m2

H

8v2
H

H4 − (µ2
S − λ3

vH
2

)S2 + λSS
4 + λ3vHHS

2 + λ3

2
H2S2 , (4.2)

where we expressed the λ of Eq. (2.25) in terms of the Higgs mass using m2
H = 1

2λv.
Furthermore, we added the subscript H to distinguish the Higgs from the S terms.

From this equation, we can read of the mass term and the couplings of the S:

mS =
√

2µ2
S − λ3v2

H , gSSH = −2λ3vH , gSSHH = −2λ3 . (4.3)

To detect the S particle at the LHC we want to observe the process pp → H∗ → SS.
The decay width of H → SS for mS < mH is given by

Γ(H → SS) = λ2
3v

2
H

32πmH

√√√√1 − 4m2
S

m2
H

≈mHλ3

8π

√√√√1 − 4m2
S

m2
H

<
λ3

8π
,

(4.4)

where we used that mH ≈ vH

2 . The SM prediction for the total width of the Higgs
boson is ΓH = 4 · 10−5mH .

So if we would have a invisible branching ratio BR(H → SS) of 10% for light scalars
mS ≪ mH/2 the portal coupling λ3 has to be

λ3

8π
= 4 · 10−6 ⇒ λ3 =

√
32π10−3 ≈ 10−2 . (4.5)

As is shown in Ref. [34] to be in agreement with the relic density, the light scalar dark
matter has to have a portal coupling of λ3 = 0.3 with mS ≲ 50 GeV.
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Figure 6: Feynman diagrams for the weak boson fusion Higgs production with the Higgs
decaying to the scalar S and a mediating W (left) and Z boson (right), respectively.

Currently, ATLAS and CMS searches at the LHC are, in particular, considering the
weak boson fusion Higgs production process to search for invisible Higgs decays [39, 40].
The LHC running at high luminosities (around 3000 fb−1) will be sensitive to invisible
branching ratios around

BR(H → invisible) = (2 . . . 3)% , (4.6)

if we assume that the SM Higgs production rate is essentially unchanged [37].
With the results from Eq. (4.5) and the bound on the portal coupling from the relic

density, we see that a branching ratio of 10% would be too small for the Higgs portal
to account for dark matter. Since the LHC at high luminosities will be sensitive to even
smaller branching ratios it will be possible to test this model for light scalar dark matter
in the near future.

4.2 Weak Boson Fusion and Tagging Jets

The Higgs boson can be produced in three main production channels: gluon fusion, weak
boson fusion and associated production with W and Z bosons or top quarks. While gluon
fusion is the dominating process at the LHC, the weak boson fusion (WBF) channel is
promising in the search for invisible Higgs decays.

The Feynman diagrams for this process are shown in Fig. 6. The WBF Higgs production
is interesting, because its kinematics allow for a efficient separation from QCD backgrounds.
This is due to the two forward jets in the hard process. These tend to be back-to-back
with large longitudinal momentum. This means that the invariant mass of these jets mjj

will be of order O(TeV) at the LHC. This is in stark contrast to the QCD backgrounds.
Therefore, these jets can be used for tagging the signal and are hence called tagging
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jets. This is a prime example of how the features of a specific production process can help
to reduce the background. This distinctive signature, however, comes at a prize: at the
LHC WBF production rate is roughly a factor of (1/10) below gluon fusion.

In Fig. 6, we can see that there is no color flow between the two quarks. This means
that non-collinear gluon radiation will not be possible in this process. That is, additional
jet activity will be restricted to collinear radiation along the two tagging jets. Therefore,
we expect the hadronic activity in general to be small between those jets. Since such a
behavior will not occur in most QCD background processes this is a further feature of
the WBF process that can be used to separate signal and background by looking at the
central jets. By central jets we mean jets that are between the two tagging jets, i.e. jets
with ηj1 < ηj < ηj2 , where ηj1 and ηj2 correspond to the pseudorapidities of the tagging
jets. This will be later referred to as the pseudorapidity- or η-gap. It can be shown that
most backgrounds can be reduced by vetoing central jets with transverse momenta above
pT,j > 30 GeV. This is what is usually called the central jet or minimal jet veto.

As we have seen using the WBF Higgs production process, allows for invisible Higgs
decay searches. However, there are still challenging backgrounds that have to be treated.
One of them is the Z → νν̄ QCD background. Since the Higgs boson decays invisibly,
it is only possible to use the tagging jet information for the reconstruction. Usually by
distinguishing the jet kinematics and multiplicities of these processes, a separation can be
achieved. In such an analysis one uses that in the QCD background there is usually more
jet activity.

Relying only on the jet properties of the process might not always be sufficient. There-
fore, it is interesting to see if using the information of tracks might improve the discrim-
ination of signal and background. By tracks we mean charged particles, that would be
detected in the tracker of a detector. Due to the higher multiplicity and being sensitive
to softer pT regions using track information might achieve higher significances than using
jets.

Furthermore, this might even allow to distinguish between the Higgs WBF production
and the Z WBF production. With the Z decaying to neutrinos these processes would
consist of almost the exact same properties, including the tagging jets feature. This makes
a discrimination of these processes a challenging task. Due to the different masses of the
Z and the Higgs, there might be some differences in the radiation pattern. Hence, using
the jet activity might still be useful to separate those processes. But, since we expect the
radiation differences to be small using tracks instead of jets might work even better.
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The aim of this study will be to examine if using tracks instead of jets for the separation
of the WBF processes to each other and to the Z QCD background will improve the
sensitivity.
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5 Comparison of Monte Carlo generators

Before we start our analysis of tracks and jets we want to find the Monte Carlo event
generator that serves our purposes best. As we have seen in Section 3.2 there are different
models simulating events used in event generators. Also there are different ways to tune
the parameters.

Therefore, to avoid predictions that depend rather on the subtleties of an event gener-
ator than actual physics we need to compare several generators and choose the one which
is best suited for our analysis. Event generators usually are in good agreement to with
data at high-pT . Therefore, especially the modelled physics of the generators at low-pT is
interesting, since this regime is highly model dependent.

This comparison will be divided into two parts: In the first part we will compare the
generators to a data using jets constructed from charged tracks. This serves to examine
the performance of the generators in simulating the tracks accurately. The second part will
focus on processes which is are important for the study of track properties in Section 6.
The used processes of Z production will later serve as signal and background. In both
parts we will compare our results to data. By checking which generator works best in
generating accurate tracks in the respective processes we should be able to determine the
ideal event generator for our purposes.

We will compare the three event generators Sherpa [23], Pythia [47] and Herwig [48,
49]. However, to circumvent the limited number of processes that Pythia provides we
will generate the matrix elements using MadGraph [50] and use Pythia for the parton
shower and hadronization of these events. This event generation method we will denote
as MadGraph+Pythia. In appendix D it is shown that both methods (using Pythia
directly and using MadGraph for the matrix elements) achieve the same results.

5.1 Jets from charged tracks

To see which generator serves our purposes the best a comparison to actual data is prefer-
able. Thanks to Rivet such a comparison is possible without further ado. The Rivet
toolkit serves to validate Monte Carlo generators by comparing their results to experimen-
tal data. The set of analyses contained in Rivet [51], however, is limited.

Since in our later study we will consider the properties of charged tracks, the generator
we will use should achieve a simulation of charged tracks that is in close agreement with
the data. Hence, the main goal of this analysis is to see which generator describes the
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charged tracks the best.
Rivet contains a pp → jets analysis provided by ATLAS [44], which we use in the first

part of this comparison analysis. In this analysis jets are constructed using charged tracks
with pT > 300 MeV with the anti-kT algorithm and cone size R = 0.4, at a c.o.m. energy
of

√
s = 7 TeV.

5.1.1 Analysis

We now use Sherpa, MadGraph+Pythia and Herwig to generate pp → jets events
and compare them to data using Rivet. Except for Herwig, where we generate pp → jj,
we generate a merged sample of two or three jets in the final state. We expect that each of
these generators to be in close agreement to data for high transverse momenta. However,
at low transverse momenta differences in the generators will become apparent since every
generator models the parton shower and hadronization differently. In all generators the
c.o.m. energy

√
s and minimum transverse momentum cut on the jets pjet

T is set to be

√
s = 7 TeV , pjet

T > 4 GeV . (5.1)

In the following we will give further details on the setup chosen for each generator.

Sherpa
For the Sherpa analysis we generate pp → jj(j), that is a merged sample of at least
two and up to three jets in the final state.

MadGraph+Pythia
To improve the statistics we split the phase space into three regions:

A: pT ∈ [4, 10] GeV , B: pT ∈ [10 , 40] GeV , C: pT > 40 GeV . (5.2)

Since we apply these cuts on the two hardest jets this gives altogether six phase
space regions, which we divide into three parts that are computed separately. Those
are: The region where the harder jet is not restricted (except for the lower cut of
pT > 4 GeV) and the softer jet is restricted to A, the region where both jets are
restricted to B and the region where the harder jet has a lower cut of pT > 40 GeV
and the softer jet has a lower cut of pT > 10 GeV. This covers the whole phase
space region we are considering. Additionally, we use the cuts put in MadGraph
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by default. Those are:

pjet
T > 20 GeV, pℓT > 10 GeV, |ηjet| < 5, |ηℓ| < 2.5,

∆Rjj > 0.4, ∆Rℓℓ > 0.4, ∆Rjℓ > 0.4 ,
(5.3)

where in this analysis the default cut on pjet
T is changed according to the phase space

region considered. In MadGraph we generated dijet and three jet events separately
and combined them in the final analysis, by merging them according to the ratio
of their respective cross sections to each other. This was done for each phase space
region separately.

Herwig
For Herwig, we only generate pp → jj without a possible third jet in the matrix
element. Again, we compute certain phase space regions separately. Not only to
improve the statistical accuracy but rather to deal with the much higher computation
time Herwig claims. With Herwig we part the phase space computation into three
parts different from those we use in MadGraph+Pythia: The region were both
jets are restricted to B and C, respectively and the region where the harder jet is
not restricted but the softer one is restricted to A. This way the region, where the
harder jet is not restricted and the softer jet is restricted to B is not included, since
including it results in negative cross sections. Since, as we will see later, Herwig
with these settings already highly overestimates the data, a complete computation
of these phase space regions would only have worsened these results even more.

5.1.2 Results

In Fig. 7 we show the cross sections of charged particle jets as a function of pT in four
rapidity intervals.

Apparently, Herwig highly overestimates the data. In its highest deviation Herwig’s
prediction more than a factor of two above the data. Agreements with data, appear to
be rather coincidental. The smallest deviation that doesn’t agree with data is about 40%
above the corresponding data point. On average Herwig deviates more than 50% from
data. And this despite the fact that in this analysis not the whole phase space region has
been covered. Therefore, we conclude that Herwig is not suited for our analysis.

MadGraph+Pythia, only twice deviates more than 80% from data.. For the most
part, especially in the intermediate transverse momentum region (40 GeV ≤ pT ≤ 80 GeV)
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Figure 7: Cross section of charged particle jets as a function of pT in different rapidity y
intervals at R = 0.4 using the anti-kT algorithm.

MadGraph+Pythia is in close agreement to data. In this region it is closer to data than
any other of the tested generators.

Sherpa seems to achieve the most reasonable results. Except for one data point it
never deviates more than 60% from data. Also the description of the low-pT regime is
closest to data using Sherpa. It is able to predict the data points accurately down to
pT = 15 GeV.

In conclusion we can say that, Sherpa and MadGraph+Pythia achieve reasonable
results, which agree with data for the most part. Herwig, however, is not at all suited
for our purposes. Despite describing most of the data points accurately both Sherpa and
MadGraph+Pythia suffer from deflexions at certain points in the pT spectrum. While
this occurs predominantly at low-pT it also happens at higher pT , sometimes even yielding
a large deviation. The generators failing to describe the process well at low-pT is due to
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the pT > 4 GeV cut and the fact that this regime is described in a highly model-dependent
way. Apparently none of the generators is suited to describe the behavior in this regime,
however, Sherpa seems to achieve the best description. If one looks at the individual
deflexions at high-pT and compares the data points to the neigboring ones, especially for
the excess at pT = 80 GeV for 1.0 ≤ y ≤ 1.5 it becomes apparent that those data points
deviate from the behavior one would expect by extrapolating the other data points to this
point. Therefore, we assume that the simulation deviating from these points is due to
statistical fluctuations in the data.

In summary, we state that Sherpa and MadGraph+Pythia seem to be viable can-
didates for the analysis of tracks. Therefore, in the next part of our comparison we will
focus on comparing these two generators.

5.2 Z production

In the last section we ruled Herwig out as a candidate to use for our analysis. In
this section we want to see, which of the two remaining generators, Sherpa or Mad-
Graph+Pythia, serves our purposes the best.

For this we will use processes similar to the signal and background process, which
we will use later in our analysis of tracks. Apparently, the best suited generator for our
purposes will be the one who is able to describe these processes the best.

The processes we intend to use are two kinds of Z production with two jets in the
final state. For the signal process we use the weak boson fusion Z production denoted as
“Z + jets WBF”. The background process is any other process with the same final state
of a Z and two jets. These processes we will refer to as “Z + jets QCD”. Additionally,
to compare our results to data, we will let the Z decay leptonically in this part of our
analysis. Corresponding Feynman diagrams are shown in Fig. 8.

As before, we expect the generators to achieve basically the same results in the matrix
element calculation, however, there will most likely be differences in the parton shower and
the hadronization. Therefore, besides the pT and η spectrum of the Z boson, especially
the (parton shower) jet variables will be interesting. Therefore, we will consider the jet
multiplicity as well as the pT distribution of the hardest parton shower jet, which will be
the third hardest one overall.

The comparison to data is done using again an analysis by ATLAS [45] where the
production cross section of a Z bosons decaying leptonically (electrons and muons) accom-
panied by up to seven jets. However, before we do this we want to study both processes
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Figure 8: From left to right: Feynman graphs for the WBF signal with mediating W and
Z boson and the QCD background. In each process the Z decays leptonically.

individually.

5.2.1 Z + jets WBF

We first start by considering the signal process Z + jets WBF. For both generators we
generate pp → ℓ+ℓ−jj with ℓ = e, µ, where the Z is produced via weak boson fusion.
For the center-of-mass energy we take

√
s = 13 TeV as it is the case for the LHC run II.

To make sure that the mediator is a Z we impose mℓℓ ∈ [80, 100] GeV. Furthermore, we
use the default cuts of MadGraph, Eq. (5.3), in both generators to allow for a proper
comparison between those two.

The events are analyzed as follows: First we read in the events from a HepMC [52] file
and stored the electrons, positrons, muons, antimuons as well as the neutrinos and hadrons
separately. Then we took the two leptons of the same flavor with the invariant mass closest
to the Z mass mZ = 91 GeV and used them for the Z boson reconstruction. In the next
step we took the rest of the leptons, photons and hadrons and clustered them into jets with
FastJet using the anti-kT algorithm with cone size R = 0.4 and a transverse momentum
cut of pjets

T > 10 GeV. The anti-kT algorithm with these setting was used following the
default ATLAS analyses.

In Fig. 9 one can see the distribution of the pT and η of the Z boson.
We see that in the plots normalized to the cross section the prediction of Sherpa is

above the one of MadGraph+Pythia for the most part. However, in the plots normal-
ized to one this is not the case. This is due to differences in the approach the generators
take on the computation. In contrast to Sherpa, MadGraph uses a fixed renormaliza-
tion and factorization scale at the Z mass. Furthermore, in Sherpa the simulation of the
underlying event is included and neglected in MadGraph+Pythia. Further differences
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Figure 9: Plots of the pT (left) and η (right) spectrum of the reconstructed Z boson,
normalized to the cross section (upper row) and normalized to one (lower row) in the weak
boson fusion process.

occur by the different modelling of the parton shower.

To see that these effects are actually responsible for these changes we generate the events
again, using a fixed scale at the Z mass also for Sherpa and neglecting the underlying
event in both samples. Additionally we forgo the parton shower in both cases.

In Fig. 10 the pT distribution of the Z boson can be seen after applying these changes.
This increases the agreement of the to generators significantly. Normalized to one the to
curves are almost in perfect agreement. However, when normalized to the cross section,
there are still large differences, especially at the maximum. This can be explained by scale
uncertainties, which are approximately 20%. Furthermore, the remaining differences might
be due to different PDFs being used by the respective generators. This, however, was not
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Figure 10: Plot of the pT spectrum of the Z boson in the weak boson fusion process, where
both generators use a fixed scale and neither simulate the underlying event nor the parton
shower nomalized to the cross section (left) and normalized to one (right).

investigated further.

Since our default minimum jet pT cut of pjets
T > 10 GeV is pretty generous we want

to see how this behavior changes if we increase this cut. Therefore, we plotted the jet
multiplicity and the pT spectrum of the hardest parton shower jet for different minimum
jet pT cuts as can be seen in Fig. 11. We see in that for pjets

T > 10 GeV Sherpa seems
to have more events with 10 jets and more than MadGraph+Pythia. However, the
jets of MadGraph+Pythia tend to be the harder. Furthermore, increasing the pjets

T cut
achieves a better agreement between those generators. Since the cut is imposed in the
analysis this cut does not change the behavior of the generator, but rather gets rid of
light jets that are due to radiation. Since, in the Sherpa sample the underlying event is
included it is understandable why more and softer jets would be present.

5.2.2 Z + jets QCD

For the background process Z + jets QCD we apply the same settings as in the case of
the Z WBF process. Again we generate pp → ℓ+ℓ−jj with ℓ = e, µ. We only include
those cases where the Z gets not produced by weak boson fusion. For the center-of-mass
energy we again use

√
s = 13 TeV. To make sure that the mediator is a Z we impose

mℓℓ ∈ [80, 100] GeV. Also, we use the default cuts of MadGraph, Eq. (5.3), in both
generators.

In Fig. 12 one can see the distributions for the pT and η of the Z. In these plots we
observe a similar behavior as before. The differences between the plots normalized the cross
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Figure 11: Plots of the jet multiplicity and the pT spectrum of the hardest parton shower
jet normalized to one for three different minimal jet pT cuts: pjets

T > 10 GeV (left), pjets
T >

20 GeV (center) and pjets
T > 30 GeV (right).

section and those normalized to one can be explained by the same reasons as in the weak
boson fusion case. However, there seem to be not only differences in the normalization, but
also in the shape of the pT spectrum of the Z boson. The transverse momentum spectrum
of the Z boson tends to be harder for MadGraph+Pythia. To a small extend this
can be also observed in the Z + jets WBF process, however is mostly removed after the
underlying event and the parton shower are turned off. Therefore, this effect might also
be explained by the different treatment of the parton shower. Furthermore, the already
mentioned different PDFs the generators use might have contributed to these differences.

As before, we would like to see how increasing the minimum jet pT cut changes the
distributions of the jet multiplicity and the hardest parton shower jet.

This can be seen in Fig. 13. Similar to the former case increasing this cut improves the
agreement of both generators with each other, however, in this case the best agreement
seems to be obtained already by a cut of pjets

T > 20 GeV. Apparently, for higher cuts Sherpa
tends to drop more jets than MadGraph+Pythia, which implies that the Sherpa parton
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Figure 12: Plots of the pT (left) and η (right) spectrum of the reconstructed Z boson,
normalized to the cross section (upper row) and normalized to one (lower row) in the
Z + jets QCD process.

shower generates softer jets than the one from MadGraph+Pythia.
We will keep the effects of this cut in mind in our later analysis and consider the changes

it has on our results.

5.2.3 Comparison to data

After studying both of these processes in detail we want to see, which of the generators
is better suited to describe the physics of those processes. For this we will use a study
done by ATLAS [45], where the production of a Z boson accompanied by up to seven
jets at

√
s = 13 TeV was studied. The data used corresponds to an integrated luminosity

of 3.16 fb−1 collected in 2015. The decay of the Z boson was restricted to electrons and
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Figure 13: Plots of the jet multiplicity and the pT spectrum of the hardest parton shower
jet normalized to one for three different minimal jet pT cuts: pjets

T > 10 GeV (left), pjets
T >

20 GeV (center) and pjets
T > 30 GeV (right).

muons and a minimum jet pT cut of pjets
T > 30 GeV and an rapidity cut of |yjets| < 2.5 was

imposed.

This study is well suited to compare to our generated samples. Since both processes
contribute to the result of the study we need to combine them and compare them to the
data.

In Fig. 14 the results of this comparison are shown. The plots on the upper left and
center, respectively, show the jet multiplicity and the distribution of events that are above a
lower jet number threshold. AtNjet < 2 both generators fail to describe the data accurately,
which is to be expected, since such events were not part of our analysis. That there is still
a small number of events that fall in that category, is probably due to one or both jets not
being resolved by the jet algorithm. However, the rest of the spectrum is in close agreement
to data for Sherpa, which has only one deflexion at Njet = 6. MadGraph+Pythia on
the other hand over- or underestimates the data for the most part and only at Njet ≥ 7
agrees with the data.
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Figure 14: Upper row: Jet multiplicity (left), cross section in dependence of the minimal
number of jet in the event (center), rapidity of the hardest jet (right). Lower row: Difference
in ϕ between the two hardest jets(left), pT distributions of the hardest jet if more than two
jets are in the event (center) and the distribution of the invariant mass of the two leading
jets (right).

The plot in the upper right shows the rapidity of the hardest jet. For the rapidity both
generators fail do describe the data well. While the shape is described correctly for both
generators, they fail to obtain the right normalization. This is because our samples do not
describe the whole cross section due to the absence of events with less than two jets. The
fact that Sherpa achieves a better description than MadGraph+Pythia for both Njet < 2
and the rapidity curve, confirms this reasoning.

In the lower left we show the distribution of the difference in ϕ of the two hardest
jets. We see that Sherpa is in agreement to data except for one deflexion, while Mad-
Graph+Pythia achieves reasonable results only in the region of 1 ≤ ∆ϕjj ≤ 2.25.

The plot in the lower center shows the pT distributions of the hardest jet if at least two
jets are present. Sherpa is in total agreement with data, but MadGraph+Pythia fails
to describe the data at low transverse momentum.

The last plot on the lower right shows the invariant mass of the two hardest jets. Both
generators are in close agreement to data, however, both suffer from deflexions. While
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Sherpa tends to overestimate the data MadGraph+Pythia tends to underestimate it.
Still, Sherpa is in the closest agreement to the data points, which is also due to its error
bars being larger than those of MadGraph+Pythia. This might again indicate that the
errors in MadGraph+Pythia are underestimated.

Finally, we see that Sherpa does a better job at achieving a close agreement with the
data than MadGraph+Pythia. Especially at low-pT Sherpa seems to achieve a better
description.

5.3 Conclusions

This part of our study was aimed at finding out which generator to use in our study of
track properties. We considered the three generators Sherpa, MadGraph+Pythia and
Herwig.

To be a good fit for our purposes those generators need to deliver a good description
of the processes we intend to simulate and especially the track and jet properties we will
focus our study on. Therefore, in the first part we compared the results of the generators
to data, where jets were constructed out of charged tracks. In the second part we focussed
on the Z + jets WBF and Z + jets QCD processes, which we will use in the next part as
signal and background in our study of track properties. In this part we also examined some
of the differences in the modelling of the generators further. Also the variation of certain
cuts was put to a test.

The first part showed that Sherpa and MadGraph+Pythia both describe the track
properties well. However, Sherpa achieves more accurate results. On the other hand we
could rule out Herwig as a candidate already in this part of the analysis, since it is not
suited to describe these properties well. Therefore, we spared to include Herwig in the
remaining part of this analysis.

In the second part it was apparent that Sherpa is the better fit for our purposes. While
MadGraph+Pythia still achieves reasonable results, in particular the low-pT regime is
better described using Sherpa.

Also a tuning of the Pythia parameters to the pT spectrum of the Z/γ boson was put
to a test. It was not included, since it achieved essentially the same results that the default
settings do.

We conclude from this study that since Sherpa well suited to describe tracks as well
as the Z production processes. Therefore, we intend to use it for the rest of our study.
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Using MadGraph+Pythia would also have been an adequate option, Herwig, on the
other hand, is not at all be suited for this study.
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Figure 15: From left to right: Feynman graphs of the WBF Z signal with mediating W
and Z boson and the QCD background process.

6 Using tracks to separate signal and background
In the following analysis we want to see if using track information for the separation of
signal and background can achieve better results than using jets.

We will start by considering the Z production processes as before, to make general
observations to see how far the track observables can distinguish between signal and back-
ground.

We will then continue by considering the Higgs to invisible process and also applying
our findings to this process. As was shown in Section 5, Sherpa is best suited for our
purposes. Therefore, we will use Sherpa for the generation of events throughout the
following study.

6.1 Track variables in Z production

The signal process Z+ jets WBF, is defined as the Z boson being produced via weak boson
fusion and is expected to have less jet and track activity than Z + jets QCD. Feynman
graphs of both processes are shown in Fig. 15. Therefore, we expect the signal process to
have fewer tracks than the background process.

6.1.1 Analysis

In contrast to before we consider the Z to be stable, i.e. we set the branching ratio of Z to
invisible to be 100%. Furthermore, in the hard process we allow up to one additional jet.
We impose the invariant mass of the tagging jets to be mjj > 500 GeV and the difference
in pseudorapidity to be ∆ηjj > 2.4. Again we use a c.o.m. energy of

√
s = 13 TeV as in

the current LHC run II.
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Figure 16: Plots of the number of tracks vs. the number of tracks for signal (left) and
background (center left) and the number of tracks per jet vs the number of jets for signal
(center right) and background (right).

We cluster the jets using the anti-kT algorithm with R = 0.4 as it is default for ATLAS
analyses. Furthermore, we use a minimum cut on the jets of pjets

T > 10 GeV. We restrict
our analysis on the central activity in the pseudorapidity gap spanned by the tagging jets.

Since, we’re only interested in the activity in this η-gap we only consider the tracks
and jets in this region. We impose a transverse momentum cut of ptracks

T > 300 MeV on
the tracks as in Ref. [44].

In Fig. 16 the two plots on the left show the number of tracks against the number of
jets for signal and background and the two plots on the right show the same but with the
number of tracks per jet. We can see that, for the signal, there are about 10 tracks per
jet, while in the background there are about 15 tracks per jet. Furthermore, the signal
tends to have 2-3 jets, while the background tends to have 3-4 jets in the η-gap. However,
in contrast to the signal, the number of tracks per jet in the background sample decreases
with an increasing number of jets.

This is a hint that we could use tracks to discriminate between signal and background.
Let us now consider the distributions of these variables.

In Fig. 17, one can see the track multiplicities for all tracks as well as just the negatively
and positively charged ones. As one can clearly see in all these distributions there are, as
expected, more tracks in the background QCD process. Cutting at 50 tracks for all charged
tracks, or at about 25 for the negatively and positively charged ones, seems to achieve the
best separation between signal and background.

Differences in the transverse momentum and pseudorapidity could also allow for a
separation between signal and background. Since we know that the background has more
jets with, on average, more tracks than the signal, we expect the background to have harder
jets and tracks.
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Figure 17: Track multiplicity distributions for all charged tracks (left), negatively charged
tracks (center) and positively charged tracks (right).
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Figure 18: Distributions of the transverse momentum and pseudorapidity of the jets (left)
and the tracks (right).

In Fig. 18 we plot the distributions of the transverse momentum and the pseudora-
pidity of the hardest track and the hardest jet in the η-gap. As expected the transverse
momentum of the jets and the tracks is higher for the background process. The pseudora-
pidity distributions, however, are pretty similar. Therefore, it seems that as an additional
variable to cut on we can use the the transverse momentum.

To examine if one can further use these variables to improve the significances we ran
the analysis again, each time applying a veto on the transverse momentum of the hardest
central jet and the number of tracks and jets, respectively. For N events we each time
compute the number of events v that survive the veto. From this we calculate the fraction
of the cross section, σ that corresponds to these events v

N
σ. Now, we are able to get the

respective significances using Eq. (3.6) with v
N

as efficiency.
In Fig. 19 the results of this analysis are shown. On the x-axis the veto on the trans-

verse momentum of the hardest central jet is shown, while the y-axis shows the veto on
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Figure 19: Upper row: Plots of the significances S√
B

and S√
S+B for the jet number veto

(left) and the track number veto (right) vs. the veto of the transverse momentum of the
hardest central jet, respectively. Lower row: Same plots, however, with a fixed scale. The
label “none” corresponds to the case, where no veto was imposed.

the number of jets and tracks, respectively. The z-axis indicated by the color shows the
significance. The plots are shown, twice, once with an arbitrary scale for each plot and
once fixed to allow for a comparison between the performance of vetoing the track number
vs. vetoing the jet number.

All plots show that vetoing on the transverse momentum of the hardest central jet
doesn’t improve the performance at all. This was to be expected, since the signal jets are
harder than the background jets for pjet, 1

T > 40 GeV as can be seen in Fig. 18. Placing a
minimum transverse momentum cut of 40 GeV might achieve an improvement.

However, placing a cut on the number of jets and tracks improves of the sensitivity.
When cutting on the number of jets it seems to be the best to force no jets in the gap,
while for the tracks achieve high significances also for higher vetoes.

Comparing the significances with and without the signal in the denominator we see that
for vetoes of 10 tracks and lower only few events survive and those are predominantly signal
events. Both signal and background will be of comparable size and, therefore, S ≪ B,
which S/

√
B assumes, is not valid anymore. Hence, including the signal in the denominator

of the significances is the better choice.
Despite this, we still see that using the number tracks for vetoing events is a good way
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to improve the significance, as can also be seen in the S/
√
S +B significance distribution,

where no veto is significantly worse than applying a veto on the tracks. Also, the improve-
ment achieved by using tracks surpasses the one using jets as one can see, when considering
the plots on a fixed scale (lower row of 19).

Therefore, we conclude that while vetoing on the transverse momentum does not im-
prove the significances, vetoing on the number of tracks and jets surely does. Furthermore,
using tracks instead of jets allows for a better separation of signal and background and,
hence, it is promising to use the track information for such analyses.

In this analysis we use only two variables to improve the significances. In the following
section we want to analyse this more quantitatively and see how much improvement can
be actually achieved using the track information.

6.1.2 Boosted Decision Tree analysis

In the last section we have seen that it is possible to improve the significance of the signal
by applying vetoes on the events. However, this was only done by considering the jet
transverse momentum and the number of tracks.

To investigate a possible improvement of the signal to background ratios we will in the
following apply a boosted decision tree (BDT) analysis including further track variables.
As before we will also do an analysis using only jet variables to see if the sensitivity of
the track analysis is in fact higher than the one using only jets. Additionally, we do an
analysis where both the track and jet variables are combined to see if the tracks behave as
a complement or rather a substitute, that is, if using the variables combined can improve
the performance even further.

For this analysis we generate events in the same manner as in the section before. Again,
we only consider the activity in the pseudorapidity gap spanned by the tagging jets. For
the jets we use the jet multiplicity as well as the pT and η of the hardest jet in the η-gap.
Since, in this sample, the third hardest jet is usually from the matrix element and the
softer ones from the parton shower, we do not consider softer jets in the η-gap, because
the parton shower simulates soft and collinear jets, while the matrix element jets are hard.
The pseudorapidity and the transverse momentum of the jet are highly correlated and both
of these variables are also expected to be correlated to the number of jets. This makes it
even harder to improve the signal only using these variables. Therefore, one advantage of
the track analysis is having variables that are less correlated.

In the track analysis we use the number of positively and negatively charged tracks,
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Figure 20: Plots of the signal efficiencies depending on the BDT cut variable for jets (left)
and tracks (center-left) and both combined (center-right) and the ROC curves for the three
analyses (right). For the jets the transverse momentum and pseudorapidity of the third
hardest jet and the number of jets were used as input variables. Similarly we used the
transverse momentum and pseudorapidity of the two hardest tracks and the number of
positively and negatively charged tracks as well as the angular differences ∆η,∆ϕ and ∆R
of the two hardest tracks as input variables for the track analysis.

background acceptance 1% 10% 30%
jet analysis 0.067 (0.066) 0.332 (0.329) 0.706 (0.703)
track analysis 0.202 (0.209) 0.537 (0.535) 0.780 (0.779)
combined analysis 0.228 (0.237) 0.589 (0.585) 0.811 (0.809)

Table 1: Overtraining check: Signal efficiency from the test sample (from the training
sample) for different background acceptances with Z WBF signal and Z QCD background.

respectively, the pT and η of the two hardest tracks as well as the difference in η, ϕ and R

between those two hardest tracks. While the number of positively and negatively charged
tracks are expected to be highly correlated, as well as the angular differences η, ϕ and R

we do not expect such a behavior for the other variables. Since the number of tracks is
much higher than the number of jets, the properties of individual tracks will be far less
correlated to the track multiplicities than it is the case for the jets.

The analysis is done using the TMVA [54] toolkit provided by ROOT [53].
In Fig. 20 the results of this analyses are shown. The three plots on the left show the

significance as a function of the BDT cut variable for the three analyses of the jets, tracks
and both combined. The plot on the right shows the ROC-curves of these analyses.

The discontinuous behavior in the curve of the jet analysis is due to the strong dis-
continuity of the input variables, since when there was no jet in the gap the transverse
momentum and pseudorapidity got assigned a negative value.

In Table 1 we show the overtraining check. In this test the signal efficiency from the
test sample is compared to the one from the training sample for different background
acceptances. The higher the differences between those to efficiencies is, the higher the
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analysis S√
S+B

S√
B

jet analysis 3.502 3.58
track analysis 4.892 5.523
combined analysis 5.467 6.211

Table 2: Significances for the jet, track and combined analysis for the Z WBF signal and
the Z QCD background with a luminosity of L = 100 pb−1.

overtraining is expected to be. As we can see in this analysis both efficiencies are small
and can be explained by statistical fluctuations.

Furthermore, the analysis output tells us that the the variables of the hardest jet (pT
and η) have a correlation of about 91% to each other and of about 68% to the jet multiplicity
for the signal and about 87% to each other and about 63% and 54%, respectively, to the
jet multiplicity for the background. These high correlations were expected. Hence, the
analysis considered them of a similar importance, however, the jet multiplicity was ranked
the highest.

In the track analysis, the correlation between the positively and negatively charged
tracks iss about 93% for signal and background. This high correlation was, also expected.
Additionally, as one would expect the angular differences are correlated to each other with
a correlation of about 70% for the signal. Lastly, the transverse momentum and pseudo-
rapidities of the two hardest tracks were correlated to each other and the pseudorapidities
also to the angular differences. However, altogether, the variables in the track analysis were
less correlated than the ones in the jet analysis, as we expected. The track multiplicities
were ranked to be of greatest importance, each by a similar factor. The remaining variables
were ranked in a similarly, however, the angular differences (except for the difference in η)
and the pseudorapidity of the tracks were ranked higher than the transverse momentum
of the tracks.

From the significance curves in Fig. 20 we can read off the efficiencies of the signal
and the background at the maximum. Using these we can compute the sensitivity possible
in this analysis. The results of this calculation are shown in Table 2. The signal can be
observed at a 5σ excess. For a luminosity of L = 100 pb−1 this is the case in the track
analysis. The luminosity is, for our purposes, just an arbitrary conversion factor and not
LHC-relevant, since we do not include statistical and systematic uncertainties in the S/

√
B

limits. However, we will stick with a luminosity of L = 100 pb−1 throughout this study,
to compare these significances to the ones we will yield in the following Higgs invisible
analysis.
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This study, is aimed at motivating the analysis of track observables as a means to
distinguish WBF processes from a QCD background. Therefore, we use these significances
only for a technical comparison between tracks and jets. Table 2 clearly shows that using
tracks for the separation of signal and background achieves better results than using only
jets. Furthermore, using both jet and track variables for the analysis achieves the best
result. Hence, we see that the track and jet variables serve as a complement. This can be
already seen in the ROC curves of Fig. 20.

Therefore, we can conclude that it is in fact possible to improve the significance of the
Z + jets WBF process by using tracks for the analysis. Furthermore, the results achieved
using tracks alone are better than when using jets alone. Both combined yield the best
results. Hence, it is recommended to use track variables in the separation of signal and
background for these processes alongside traditional jet observables.

To see if this is also the case for the Higgs invisible decay, we will apply the same
analysis for the Higgs invisible process in the following section.

52



W+

W−

H

q

q

q′

q′

Z

Z

H

q

q

q′

q′

Z

q

q̄

g

g

Figure 21: From left to right: Higgs WBF signal with mediating W and Z boson and the
Z QCD background.

6.2 Track variables in Higgs invisible decays

The last section showed that it is possible to use the track information to separate signal
from background in the Z+ jets WBF against the Z+ jets QCD process. In this section we
want to investigate if the same can be done for the Higgs invisible process. This process is,
very similar to the Z + jets WBF process. In Fig. 21 we show Feynman graphs for signal
and background.

Since the Higgs and the Z boson are, both weakly interacting we expect a similar
behavior to occur. Due to the higher mass of the Higgs the cross section of this process
is smaller than for the Z. Therefore, we expect the significances to be lower due to this
smaller cross section.

Furthermore, since the Higgs is heavier more energy will be required its production, i.e.
we expect more radiation, due to a higher partonic c.o.m. energy.

The differences between these two processes will examined further in the last part of
this analysis, where we use the Z + jets WBF process as background and try to separate
it from the Higgs invisible process. But first we will investigate if it is possible to separate
the Higgs invisible signal from the Z + jets QCD background. When trying to extract the
Higgs invisible from the background this process is the dominating one and, therefore, we
will neglect other possible backgrounds.

6.2.1 Analysis

We generate events in the Higgs invisible process, where we use the same settings as before
and just replace the Z in the Z + jets WBF process with a Higgs boson. As for the Z we
consider the Higgs to be stable and not decaying. This is equivalent to assuming a 100%
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Figure 22: Plots of the signal efficiencies depending on the BDT cut variable for jets (left)
and tracks (center-left) and both combined (center-right) and the ROC curves for the three
analyses (right). For the jets the transverse momentum and pseudorapidity of the third
hardest jet and the number of jets were used as input variables. Similarly we used the
transverse momentum and pseudorapidity of the two hardest tracks and the number of
positively and negatively charged tracks as well as the angular differences ∆η,∆ϕ and ∆R
of the two hardest tracks as input variables for the track analysis.

background acceptance 1% 10% 30%
jet analysis - - 0.819 (0.819)
track analysis 0.324 (0.327) 0.688 (0.691) 0.882 (0.885)
combined analysis 0.339 (0.344) 0.728 (0.732) 0.904 (0.905)

Table 3: Overtraining check: Signal efficiency from the test sample (from the training sam-
ple) for different background acceptances with Higgs WBF signal and Z QCD background.

branching ratio for Higgs to invisible decays. Since we want to find out, which fraction of
the Higgs could be invisibly decaying this is the starting point in such an analysis.

As before, we use
√
s = 13 TeV and mjj > 500 GeV and ∆ηjj > 2.4 for the tagging jets.

For the analysis of the events, we again use the anti-kT algorithm for the jet clustering
with R = 0.4 and pjets

T > 10 GeV and use the tagging jets to span the η-gap and will in the
following only consider the activity in this gap. The minimum transverse momentum cut
on the tracks is once again ptracks

T > 300 MeV.
We directly start with the BDT analysis. For the jet analysis we again use the transverse

momentum and pseudorapidity of the hardest central jet as well as the jet multiplicity. In
the track analysis once again the number of positively and negatively charged tracks, the
transverse momentum and pseudorapidity of the two hardest tracks in the gap as well as
the differences in η, ϕ and R between those tracks is used.

In Fig. 22, the result of these analyses are shown.
In Table 3 the overtraining check of these analyses is shown. Since, the jet analysis

could at most achieve a background acceptance of about 15% the first two columns could
not be filled. However, from the remaining results we can conclude that overtraining again
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analysis S√
S+B

S√
B

jet analysis 1.103 1.112
track analysis 2.274 3.026
combined analysis 2.363 3.08

Table 4: Significances for the jet, track and combined analysis for the Higgs signal and the
Z QCD background with a luminosity of L = 100 pb−1.

seems to not have been an issue in these analyses.
The reason why the jet analysis is not able to reject more than 85% of the background

might be that the H WBF process consists of fewer jets than the Z WBF process, which
decreases the number of variables to improve on in many events from three to one. While
we expected more activity in the H WBF process, we see in Fig. 23 that it is in fact such
that the Z WBF gap activity is slightly higher.

The ROC curves clearly show that the combined analysis achieves the best results,
followed closely by the track analysis.

Compared to the Z + jets process, the correlations in the jet analysis between the
transverse momentum and the pseudorapidity of the hardest jet are even higher at about
97% and the correlation to the jet multiplicity is at about 83%. for the signal. The
background is less correlated and the transverse momentum and pseudorapidity have a
correlation of about 89% and are correlated to the jet multiplicity with 63% and 55%,
respectively. However, this did not change anything to the ranking of the variables in the
BDT analysis and, while again the jet multiplicity is ranked the highest all variables are
ranked by a similar factor.

For the track analysis we observe a similar behavior. Compared to the Z+ jets process
the variables are correlated similarly, however, the percentages (especially in the signal)
are altogether higher than before. Hence, also in this track analysis the track multiplicities
are ranked the highest, followed by the angular differences and pseudorapidities and finally
the transverse momenta.

In Table 4 we show the significances each of the analyses has achieved. As can be seen
the track analysis achieves a significance that is more than double that of the jet analysis.
The combined analysis, as the ROC curve already indicated, improves the significance
compared to the track analysis only slightly. Furthermore, we see that when we neglect
the signal in the denominator we get significantly better result in the track and combined
analysis than it is the case for the jet analysis. This is because the track analysis allows for
a high background rejection, as one can also see in the steep slope of the respective ROC
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Z + jets H + jets
analysis S√

S+B
S√
B

S√
S+B

S√
B

jet analysis 3.502 3.58 3.622 3.721
track analysis 4.892 5.523 5.352 10.13
combined analysis 5.467 6.211 5.641 10.311

Table 5: Significances for the jet, track and combined analysis for the Z + jets and the
H + jets process, where we used σHjj = σZjj with a luminosity of L = 100 pb−1.

curves.
The luminosity of L = 100 pb−1 was used again to be able to compare these results

to the ones from the Z + jets process. However, to see which effects are due to the
different cross sections of these processes and which one are technical we will in the following
recompute these significances setting σHjj = σZjj.

The results of this calculation compared to the results obtained in the analysis of the
Z + jets process can be seen in Table 5. Even the jet analysis achieves better results in
the H + jets process. However, the greatest improvement compared to the former analysis
is achieved by the track analysis. Since the cross section of the signal was increased for
the H + jets process, the results for S

/√
B are extremely well in the track and combined

analysis. The jet analysis shows no such behaviour due to the lower background rejection.
Therefore, we can conclude that using the track information for the separation of signal

and background works even better in the H + jets process than in the Z + jets process.
The rejection of the background especially, is improved compared to before. To further
investigate these differences in the two processes and to see if this might make it possible
to differentiate both of them using the same techniques as before, we will, in the following
section, compare the signal of both processes to each other.

6.2.2 Separating the H + jets WBF from the Z + jets WBF process

In the last section we showed that the sensitivity using track variables for the separation
of signal and background is higher for the H + jets process than for Z + jets.

In this section we want to investigate how this comes about and check if this might
allow us to discriminate between the two weak boson fusion processes.

In Fig. 23 the multiplicities for the jets and the tracks as well as the transverse mo-
mentum and pseudorapidity distributions of the hardest jet and hardest track in the pseu-
dorapidity gap are shown.

Although the track multiplicities are pretty similar the curve for the Higgs is shifted
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Figure 23: Upper row: Plots of the jet and track multiplicity (left) as well as the multi-
plicities of the positively and negatively charged tracks (right). Lower row: Plots of the
transverse momentum and pseudorapidity of the hardest jet (left) and the hardest track
(right) in the pseudorapidity gap.

slightly to the left, i.e. there are fewer tracks in the Higgs weak boson fusion process. This
is also confirmed by the jet multiplicity, which clearly shows that there are fewer jets in the
Higgs WBF process than in the Z WBF process. Furthermore, the transverse momentum
distributions of the hardest jet and hardest track in the gap show that the activity in the
Z WBF process tends to be harder than for the Higgs WBF process.

The pseudorapidity distributions show that the hardest jet is more central in the
Z WBF process. The same holds for the pseudorapidity of the hardest track. This might
improve the discrimination of signal and background using the pseudorapidity variable
compared to before.

To see if these differences in the distribution allow for a discrimination between those
two processes, we performed a BDT analysis using the Higgs WBF process as the signal
and the Z WBF process as background. We examined the same variables as before.

The results of this BDT analyses are shown in Fig. 24. Table 6 demonstrates that these
results are not suffering from overtraining. The differences between the test and training
sample are small and can be explained by statistical fluctuations.

The ROC curves show again that the combined analysis works best, followed closely by
the track analysis, while the jet analysis achieves similar results at high signal efficiencies,
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Figure 24: Plots of the signal efficiencies depending on the BDT cut variable for jets (left)
and tracks (center-left) and both combined (center-right) and the ROC curves for the three
analyses (right). For the jets the transverse momentum and pseudorapidity of the third
hardest jet and the number of jets were used as input variables. Similarly we used the
transverse momentum and pseudorapidity of the two hardest tracks and the number of
positively and negatively charged tracks as well as the angular differences ∆η,∆ϕ and ∆R
of the two hardest tracks as input variables for the track analysis.

background acceptance 1% 10% 30%
jet analysis 0.020 (0.020) 0.182 (0.181) 0.542 (0.535)
track analysis 0.046 (0.049) 0.305 (0.305) 0.640 (0.636)
combined analysis 0.053 (0.053) 0.328 (0.328) 0.684 (0.679)

Table 6: Overtraining check: Signal efficiency from the test sample (from the training sam-
ple) for different background acceptances with Higgs WBF signal and Z WBF background.

however, turns linearly for higher background rejection rates.
In the jet analysis, the highest ranked variable is the pseudorapidity of the hardest jet

followed by the transverse momentum of the hardest jet and the lowest ranked variable is
the jet multiplicity. This behavior differs the results of the former analyses, however is to
be expected, considering Fig. 23. As was outlined in the discussion of these plots, the jet
multiplicities of the signal and background are very similar. However, in the pseudorapidity
distribution of the jets for the background are more central than for the signal. Also the
transverse momentum distributions, with the background jets being harder, is a good
variable for a separation of signal and background. Hence, the variables were ranked in
such a way in this analysis.

For the track analysis the variables were ranked in a similar way as before, putting
the track multiplicities on top. However, the transverse momentum of the second hardest
track was ranked on second place. As we can see in the distribution of the transverse
momentum of the hardest tracks, the signal tracks are softer than the ones from the
background. We also expect this to be the case for the second hardest track, probably
even more so, and, therefore, this could explain the high ranking of this variable. For the
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analysis S√
S+B

S√
B

jet analysis 5.116 6.006
track analysis 5.196 6.161
combined analysis 5.376 6.458

Table 7: Significances for the jet, track and combined analysis for the Higgs WBF signal
and the Z WBF background with a luminosity of L = 100 pb−1.

hardest track, however, the differences are not yet significant enough, which is why the
transverse momentum of the hardest track is, as before, ranked in last place

To see how this changes the results, we once more computed the significances. These
are shown in Table 7. As one can see, while the combined analysis achieves the best results
followed by the track analysis, all analyses achieve similar results. Since the maximum
sensitivity is for all analyses, at high signal efficiencies and high background acceptances
the differences in the ROC curves, which only occur at lower signal efficiencies, do not
play a role in this regime, resulting in similar significances. We see that the background
rejection for the analysis with the Z WBF background is worse than in the ones with the
Z QCD background. This is perfectly reasonable, since the signal and background are
almost equivalent and only change in the type of boson being produced.

In this case the tracks do not improve the separation between signal and background
significantly compared to the jets. However, the cut on the transverse momentum of the
jets of pjets

T > 10 GeV might be to small in an actual experiment. A higher transverse
momentum cut on the jets might might affect the significance of the jet analysis and,
therefore, in such a region the track analysis might have an even larger advantage.

To check this more quantitatively, we proceeded in the following way: We analyzed
the events once again. This time we took the events that only had two jets or if they
had an additional jet in the gap, we demanded this jet to have a transverse momentum
of pjet, 3

T > pcut
T , where pcut

T was varied from 10 to 100. Otherwise we removed the event.
For each of these ten analyses we calculated the significance and plotted the significance
in dependence of pcut

T .
The results of this analysis can be seen in Fig. 25. The significance curves on the

left clearly show that for an increasing cut on the transverse momentum in the gap the
performance of the jet analysis steadily decreases. The track analysis, however, is also
decreasing in performance up to pcut

T ∼ 40(50) GeV for the S/
√
B (S/

√
S +B) significance

but afterwards it stabilizes and remains constant for higher cuts on the transverse momen-
tum. This indicates that at high transverse momentum cuts the performance of the track
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Figure 25: Plots of the significances S/
√
B (left) and S/

√
S +B (center left) in dependence

of the jet cut variable pcut
T and the corresponding ROC curves for the analysis at several

cuts for the jets (center right) and the tracks (right).

analysis still achieves proper results, while the jet analysis struggles to do so. This can also
be seen in the ROC curves, where for the jet analysis with an increasing cut the amount of
background that cannot be rejected increases. For the track analysis, on the other hand,
the signal acceptance and background rejection rates are similar for each cut.

This is due to the tracks being sensitive to the softer particles, which the jets after such
cuts can no longer resolve. Therefore, especially in cases where a lot of soft activity is to
be expected, the track analysis is a better fit for the separation of signal and background.

Increasing the minimum transverse momentum cut on all the jets, would show a sim-
ilar behavior. But, in such a case events with central jets softer than the cut would be
considered two jet events and included in the analysis. However, in our case such events
would be removed. Still the track analysis would be the better choice, since for the jet
analysis this event only contributes the jet multiplicity, while the track analysis is able to
describe the softer activity and will have more variables.

Therefore, to simulate this behavior instead of dropping events, whose jets in the gap
do not pass the cut on the transverse momentum, they could be considered as two jet
events. Including this was beyond the scope of this study.

Finally, we see that for the Higgs to invisible process, using tracks for the separation of
signal and background is also promising, even more than for Z + jets. Also, to investigate
the behavior of soft activity, track observables are very useful and can separate the H +
jets WBF process from the Z + jets WBF process.

6.3 Conclusions

This main part of our study was aimed at determining whether using the track information
of events can improve the separation of signal and background more than using jets alone.
After showing, by vetoing on the number of tracks and jets and the transverse momentum
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of the hardest central jet that using tracks is promising for our purposes we proceeded with
a boosted decision tree analysis done, altogether, in three ways:

First we separated the Z + jets WBF from the Z + jets QCD process. It could be
seen that using the tracks in this process allows for a better separation of signal and
background than the jets. Furthermore, a combination of jet and track variables leads to
the best results.

The same was the case in our second analysis, where we considered the H + jets WBF
process as the signal and the Z + jets QCD process as the background. Compared to the
analysis of the Z WBF signal and the Z QCD background this achieved even better results
for each analysis. Particularly, the track analysis allowed for a large background rejection.
This can be explained by the observation that in the Higgs WBF process there is even less
radiation than in the Z WBF case.

In the third part we tried to use the differences in the activity of the Higgs WBF process
and the Z WBF process to differentiate them from each other. This is a lot harder than
in the cases before, since these processes are topologically similar as the distributions of
the jet and track variables have shown. The results we get indicate that using tracks or
jets for the separation of signal and background achieves similar results. Despite the ROC
curves showing that the track analysis performs better altogether, the maximum of the
significance lies in the region where both analyses work equally well. However, as we have
seen using a less generous cut on the minimum transverse momentum of the jets seems
to worsen the performance of the jet analysis, while the track analysis remains rather
constant. Therefore, for higher pT using tracks could provide a more significant separation
of signal and background.

The results we achieved are in this form not predictions for LHC searches, since we
ignore uncertainties on the significances. However, the treatment of jets and tracks is
consistent, which allows for a meaningful comparison of the different analyses.

It is possible to calculate the 95% CLs limit on the branching ratio of Higgs invisible
decays. Then one can use this limit as an prediction of what this analysis might achieve
when applied to experimental data. However, such an examination is beyond the scope of
this study.
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7 Conclusion and Outlook
In this thesis we compare Monte Carlo event generators to find the one best suited to
describe track properties in the weak boson fusion process as well as the corresponding
Z+jets QCD background. This was done comparing the results to data from ATLAS using
two studies. One studying the jets created from tracks, as a measure for the performance
in describing the track properties and the other studying the Z + jets process (WBF and
QCD) with the Z decaying leptonically. The latter was a good measure to analyze the
performance in generating the processes of interest. We compared the generators, Sherpa,
MadGraph+Pythia and Herwig.

Sherpa was best suited for our purposes. MadGraph+Pythia achieves reasonable
results and would have been also a good fit. Herwig, however, did not describe the data
well.

The main purpose of this was to determine the best generator and not analyze how these
differences come about. However, such a comparison study would be an interesting separate
study. Finding the event generators that describe the respective data well would not only
turn out to be useful in future analyses, but also improve our current understanding of the
fundamental physics.

We proceeded analyzing track properties and checking if using tracks instead of jets for
the separation of the Z and Higgs weak boson fusion signal from the Z QCD background
could improve the significance.

For the Z + jets WBF signal with Z + jets QCD background the significance increased
from 3.502 using jets to 4.892 using tracks. This shows that using tracks clearly achieves
an improvement compared to using jets. The combined analysis gave a significance 5.467,
i.e. both analyses complement each other.

The separation of the Higgs WBF signal from the Z + jets QCD background, confirms
this observation. From a significance of 1.112 in the jet analysis using tracks improved the
significance to 2.274. Compared to the former results, i.e. using the same cross sections,
the significance improved from 3.622 for jets to 5.352.

The next step was to see if it is also possible to distinguish both weak boson fusion
processes, Z + jets WBF as background and Higgs WBF as signal, from each other.

In this case the significance for the jets was 5.116 and for the track we got 5.196.
This shows that both analyses allow a discrimination of signal and background. However,
the tracks are only slightly more efficient than jets. The reason for this could be that the
minimum transverse momentum cut of pjets

T > 10 GeV is too generous. As was qualitatively
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shown, using a harder cut will decrease the significance for the jet analysis. This analysis
also hinted that the track study might be unaltered by such a cut for and preferable to
jets for pjets

T .
It would be interesting to use these results to calculate the 95% CLs limits on the

branching ratio of Higgs invisible decays. This would allow a prediction of results that can
be achieved when this analysis is applied to experimental data. But such considerations
were beyond the scope of this study.

Using the tracks instead of jets in the separation of the Higgs WBF signal and the
Z + jets QCD background improved the significance by a factor of 2, assuming a 100%
Higgs to invisible branching ratio. While this is no prediction for analyses at the LHC it
shows the potential that using tracks instead of jets would have.
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Appendix

A Fermion Masses

In Section 2.2 we saw that, since the electroweak interactions only affect left-handed fields
we cannot simply add a mass term to the Lagrangian.

However, this can be solved by obtaining the mass of the fermions via Yukawa couplings
to the Higgs scalar field. In the following, we consider this for leptons and quarks.

For the leptons with the left-handed SU(2)L doublet ℓ and the right-handed singlet e
we introduce the Yukawa coupling term

LYukawa = −yεijφiℓie+ h.c. , (A.1)

with the Yukawa coupling constant y and the Levi-Civita tensor ε. Using unitary gauge
only the φ1 component of the complex scalar field is nonzero and we obtain

LYukawa = − 1√
2
y(v +H)(ℓ2e+ h.c.) . (A.2)

Using

ℓ =

 ν

e

 . (A.3)

we finally get

LYukawa = − 1√
2
y(v +H)(ee+ e†e†) = − 1√

2
y(v +H)EE , (A.4)

where we have introduced a Dirac field for the electron E = (e , e†)T . Now we can read
off the mass term for the electron

me = yv√
2
, (A.5)

As we can see there is no mass term for the neutrinos, implying that they are massless.
However, experiments have shown that neutrinos oscillate in flavor [7], which is, as can be
proven mathematically, equivalent to neutrinos being massive.

For the quark sector, we have the left-handed quark doublet q = (u, d)T and the two
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Figure 26: Left: Time evolution and fragmentation in the string model. Right: Color
structure of a parton shower and fragmentation in the cluster model.Taken from [22, 42]

right handed doublets u and d, where in each case the u corresponds to the up-type quarks
and the d to the down-type quarks. Proceeding in the same way as for the leptons, however,
with an additional coupling term that is missing in the lepton sector due to the absence
of right-handed neutrinos, will give us the mass terms for the quarks. With the coupling
constants y1 for down-type quarks and y2 for up-type quarks the quark mass terms md and
mu are given as

md = y1v√
2
, mu = y2v√

2
. (A.6)

B Hadronization

B.1 String Model

In the string model one uses the fact that in QCD at large distances the confinement is
expected to be linear. That is, it can be described through an linearly rising potential
V (r) = κr with the string constant κ ≈ 1 GeV/fm. Additional to this there should be also
an Coloumb term, which following the Lund model [43] we will neglect. We now describe
these dynamics as massless, relativistic strings with no transversal degrees of freedom. If
we now consider a qq̄ pair moving apart along the z-axis the potential energy stored in the
string will increase until it breaks, creating an quark-antiquark pair at the breaking vertex.
This way at the end of the process the string will have broken into a set of new qiq̄i pairs
with i ∈ [1, n− 1] for a fragmentation into n hadrons. This evolution of the string can be
seen in Fig. 26 on the left.
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To describe this behavior kinematically we can make use of the fact that∣∣∣∣∣dEdz
∣∣∣∣∣ =

∣∣∣∣∣dpzdz

∣∣∣∣∣ = κ , (B.1)

and, therefore, E = κ∆z. Taking into account that two adjacent breaks are constrained
by the string piece having to be on the mass shell for the hadron being produced one can
compute the total probability of an event as the product of n − 1 breakup vertex proba-
bilities and n delta functions for the hadron masses. However, this can be simplified using
that, since the break vertices are causally disconnected they can be considered in arbitrary
order (“left-right symmetry”). From this we can derive the fragmentation function f(x)
with x being the momentum fraction of remaining momentum that the produced hadrons
receives.

f(x) ∝ 1
x

(1 − x)a exp
(

−bmT

x

)
, (B.2)

with free parameters a and b and the transverse mass mT =
√
m2 + p2

T . In the derivation
of this equation one also gets the probability distribution for the breakup vertices. With
this at hand one can simulate the hadronization following the string model, however there
are still some subtleties that have to be taken care of, which we will not discuss here. A
schematic of the fragmentation in the string model is shown in Fig. 26. The advantage
of the string model is that it offers a predictive framework of the space-time motion and
the translation into an energy-momentum distribution of the hadrons. However, there are
many parameters in this model, which have to be tuned by data. The string model is, for
example, implemented in Pythia.

B.2 Clustering Model

In the cluster model the preconfinement property of parton showers is exploited. It states
that the color structure of the shower is such that color singlet combinations of partons,
i.e. clusters, can be built irrespective of the evolution scale Q0 (see Fig. 26). The invariant
mass distribution of these clusters is universal and asymptotically that is it depends only
on Q0 and ΛQCD (universal) and we have Q ≫ Q0 (asymptotically). Furthermore, this
distribution is suppressed for large masses.

In the cluster model one splits gluons non-perturbatively into quark-antiquark pairs at
the cutoff scale Q0. This way using the preconfinement property adjacent color lines will
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become quark-antiquark pairs and form clusters and will then decay into pairs of hadrons.
A schematic of this fragmentation is shown in Fig. 26. This model suggests that due to
the g → qq̄ being enhanced at low scales the running of the coupling should be reduced
at these scales. This behavior is confirmed by hadronization studies suggesting a finite
value of αs at low scales (see e.g. Ref. [32]). Additionally this mechanism gives a possible
solution to the high yield of soft photons in hadronic Z decays, since it predicts many
charged particles created before hadronization.

Therefore, the cluster model seems to be a good description of the physics at low scales,
at least qualitatively. Although the description of data the cluster model delivers is usually
slightly less accurate than the string model its main advantage lies in having fewer param-
eters. Herwig and Sherpa are using this model for the hadronization, albeit differing in
their detailed description.

After having constructed the primary hadrons to finish the event generation one needs
to let them decay into stable hadrons. By stable one usually means able to reach the
detector. One might think that this can be simply done by implementing the decays using
the information of the Review of Particle Physics by the Particle Data Group (PDG) [41],
however, since the information in the PDG is often insufficient one also has to make
theoretic assumptions to fill in the gaps. For this up to now sophisticated models have
been developed, which will not be discussed here.

C AdaBoost
AdaBoost is a boosting algorithm that takes a weak learning algorithm and boosts it into
a strong algorithm. This is done by changing the weights of the test sample adaptively,
assigning higher weights to data points misclassified by previous classifiers. For a binary
classification it proceeds in the following way:

1. Take a sequence of N labeled samples [(x1, y1), . . . , (xN , yN)], a distribution D over
the N samples, a weak learning algorithm and the number T of iterations as input.

2. Initialize the weights for each event to be wi = D(i) with i ∈ [1, N ].

3. For each t ∈ [1, T ]

(a) Set pt = wt∑N

i=1 w
t
i
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(b) Execute the weak learning algorithm with the events weighted according to pt

and get the hypothesis ht(x⃗)

(c) Calculate the error of this hypothesis: εt = ∑N
i=1 p

t
i|ht(xi) − yi|.

(d) Set βt = εt

1−εt
and set the weights for the next iteration to wt+1

i = wtiβ
1−|ht(xi)−yi|
t

4. Return the output hypothesis hf (x⃗) =

 1 if ∑T
t=1(log 1

βt
)ht(x⃗) ≥ 1

2
∑T
t=1 log 1

βt

0 otherwise

D Pythia vs. MadGraph+Pythia
The analyses in Section 5 use MadGraph instead of Pythia for the computation of the
matrix elements. Since they are computed perturbatively and are not dependent on a spe-
cific model these computations should achieve the same results in each generator. The only
differences in event generators are expected to be due to differences in modelling the parton
shower and the hadronization. Therefore, we expect the methods of generating events with
Pythia directly and generating them by using MadGraph for the matrix elements and
Pythia for the parton shower and hadronization (denoted as MadGraph+Pythia) to
achieve the same results.

To confirm this we generate the Drell-Yan process qq̄ → Z → ℓ+ℓ− with ℓ = e, µ for
both tool chains and compare the results. We generate events with

√
s = 13 TeV and

impose the invariant mass of the leptons to be mℓℓ ∈ [80, 100] GeV to make sure that the
propagator is a Z. Except for those the MadGraph default cuts as given in Eq. (5.3)
have been used. We compare the kinematical distributions in Fig. 27.

As one can see, there are only minor differences in for Z of low pT and small pseudo-
rapidities, which are probably due to scale uncertainties as can be seen in the plots where
the distributions are normalized to one. Still, there are minor differences, which are due to
statistics. Clearly, both methods of event generation are in close agreement to each other.
It is justified to interface MadGraph and Pythia.
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Figure 27: From left to right: Plots of the pT and pseudorapidity of the Z and the number
of jets and the pT distribution of the hardest jet in the Z → ℓ+ℓ− process using Pythia
directly and MadGraph+Pythia, where MadGraph is used for the matrix element
computation and Pythia for the parton shower. The upper row shows the distributions
normalized to the cross section, while the lower row shows them normalized to one.
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