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Abstract

Parton showers are ubiquitous objects in collider events. In the soft-collinear limit,
they are described by QCD splitting functions. In this thesis, we introduce parame-
ters for the divergent, finite and pT -suppressed rest terms of these splitting functions,
the latter accounting for corrections beyond the soft-collinear approximation. We
show that conditional invertible neural networks can be used to extract posterior
distributions for these parameters from low-level sub-jet observables. We start with
jets from a toy shower generator and show that our approach based on low-level
observables improves the inference performance compared to established high-level
jet observables. Furthermore, we demonstrate the correct inverse square root scal-
ing of the estimated measurement uncertainties with the number of measured jets.
Finally, we discuss the effects of hadronization and detectors.

Zusammenfassung

Parton Showers sind allgegenwärtige Objekte in Kollisionen an Teilchenbeschleuni-
gern. Im Grenzfall kleiner Impulsüberträge und kleiner Abstrahlungswinkel werden
diese durch QCD-Splittingfunktionen beschrieben. In dieser Arbeit führen wir eine
Parametrisierung für die divergenten, endlichen und pT -unterdrückten Terme dieser
Splittingfunktionen ein, wobei letztere Korrekturen jenseits der kollinearen Nähe-
rung entsprechen. Wir zeigen, dass invertierbare neuronale Netze genutzt werden
können, um a-posteriori-Wahrscheinlichkeiten für diese Parameter aus hochdimen-
sionalen Sub-Jet-Observablen zu bestimmen. Desweiteren demonstrieren wir, dass
die Standardabweichungen der gemessenen Parameter das korrekte Skalierungsver-
halten mit der inversen Quadratwurzel der Anzahl gemessener Jets zeigen. Abschlie-
ßend diskutieren wir die Effekte von Hadronisierung und Detektoren.
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1 Introduction

In recent years, machine learning has been tremendously successful inside and out-
side of physics since large data sets have become common both in commercial and
scientific applications and more and more computational resources are available.
While simple machine learning techniques like boosted decision trees for event clas-
sification have been used in particle physics for a long time, the success of neural
networks and deep learning has led to various new applications for machine learn-
ing. This includes event classification, where especially top tagging is studied ex-
tensively [1], and anomaly detection [2] for searches for new physics. Futhermore,
the third run of the LHC and the High Luminosity LHC will provide vast amounts
of new data and excellent tools to perform precision measurements on this data can
be constructed using machine learning [3]. Also, faster event generation methods
will be required to keep up with the experimental data. Neural networks can help
to accelerate various parts of the event generation process [4].

Parton showers are ubiquitous objects in collider events, therefore understanding
their behavior and the underlying QCD splitting functions is an important task.
These splitting functions describe the kinematics of parton showers in the soft-
collinear limit. At leading order, the splittings are determined by the QCD casimirs
CA and CF that were measured at LEP [5, 6]. In this thesis, we want to expand
this LEP analysis by using a more general parameterization of the QCD splittings.
Using machine learning techniques, we want to base our analysis on low-level sub-
jet observables. Furthermore, more accurate describtions of parton showers were
studied in recent years [7–12]. By including a general term accounting for corrections
from these improved models in our parameterization, we want to examine whether
our method is capable of measuring such corrections.

Our approach to achieve these goals is based on normalizing flows. Normalizing
flows are a family of machine learning models that learn an invertible mapping
between probability distributions [13–15]. Invertible neural networks (INNs) are
one realization of such normalizing flows [14, 16]. Conditional INNs (cINNs) are
an extension of these networks where this transformation is conditioned on addi-
tional network inputs [17]. Normalizing flows and invertible networks have been
used for various particle physics applications, including event and phase space gen-
eration [18–22], detector and parton shower unfolding [23], density estimation [24]
and anomaly detection [25]. In this thesis, we will use the BayesFlow method [26]
to extract posterior distributions for QCD model parameters from low-level sub-jet
observables.
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Chapter 2 contains a short introduction to QCD and the Standard Model, and a
description of the physics behind parton showers. In chapter 3, we give an overview
over machine learning, neural networks and Bayesian statistics, followed by a de-
scription of normalizing flows, cINNs and the BayesFlow method. We then in-
troduce a parameterization of the QCD splitting functions and describe how we
implemented a toy parton shower generator based on this parameterization in chap-
ter 4, and discuss our results extracting these parameters using BayesFlow. In
chapter 5, we describe a more realistic simulation setup based on Sherpa [27] and
Delphes [28] that takes hadronization and detector effects in account, and present
our QCD parameter inference results.

The research in this thesis was carried out in close collaboration with Sebastian
Bieringer, so many of the figures and results can be also found in his master’s thesis
as well as in our paper published on the project [29].
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2 QCD, parton showers and jet physics

In this chapter, we will give a short overview over the Standard Model and quantum
chromodynamics (QCD). We will define the QCD color factors and review their
measurement at LEP. We will then derive the splitting functions and how they can
be used to construct a Monte Carlo parton shower generator. After briefly discussing
hadronization, detectors in collider experiments and jets, we will define six high-level
jet observables that we will use later to benchmark the performance of our inference
method.

2.1 The Standard Model of particle physics

The Standard Model of particle physics is a quantum field theory that describes our
current knowledge about the fundamental particles and their interactions except for
gravity. Extensive information on the Standard model and quantum field theory
can be found in the literature (e.g. [30] or [31]), so the aim of the following sections
is to give a brief overview over the topic, focusing on QCD.

The fundamental particles in the Standard Model are split into two groups according
to their spin: fermions with half-integer spin and bosons with integer spin. Bosons
act as mediators for the interactions. The massless photon mediates the electromag-
netic interaction, the massive W± and Z bosons mediate the weak interaction and
the massless gluon is the mediator of the strong interaction. Finally, there is the
Higgs boson that gives mass to the other bosons and the fermions. The fermions
are divided into quarks, charged leptons and neutrinos. The quarks can interact
through all three Standard Model interactions, the charged leptons interact electro-
magnetically and weakly, and the neutrinos only take part in the weak interaction.
There are three up-type quarks – up, charm and top – and three down-type quarks –
down, strange and bottom. With masses below 100 MeV, the up, down and strange
quark are referred to as the light quarks. Their masses can be neglected in many
cases, e.g. cross section calculations for processes at colliders. The three charged
leptons are the electron, muon and tau lepton, and there is a corresponding neutrino
for each of the charged leptons.

As the Standard Model is a quantum field theory, the particles listed above are
understood as excitations of a quantum field. Their dynamic is specified by the
Lagrangian L of the theory. Since it is not a classical field theory, it is not enough
to solve the Euler-Lagrange equation for L, instead quantum fluctuations have to
be taken into account, for example using the path integral method. Calculating
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observables like cross-sections can often be done perturbatively by drawing Feyn-
man diagrams of the studied processes and translating these into the corresponding
matrix element equations. The Standard Model is formulated in terms of gauge
theories. In a gauge theory, the Lagrangian is invariant under local transforma-
tions from a Lie group, called the gauge group of the theory. These transformations
act on the fermion fields, but also on the gauge boson fields corresponding to the
group. These are necessary to keep the Lagrangian invariant. The gauge group of
the Standard Model is SU(3)C × SU(2)L × U(1)Y . The group SU(3)C is responsible
for the strong interaction. SU(2)L × U(1)Y are the gauge groups of the electroweak
interaction, the symmetry U(1)Y is called hypercharge. A more detailed description
of gauge theories will be given in the following section, using QCD as an example.

It is not possible to make gauge bosons massive in a gauge-invariant way without
adding an additional field. Moreover, SU(2)L acts only on left-handed particles
and therefore prevents gauge invariant fermion mass terms in the Lagrangian. This
problem can be solved by introducing the Higgs field as a complex hypercharge dou-
blet that gets a non-zero vacuum expectation value through spontaneous symmetry
breaking. This results in new mass eigenstates of the electroweak gauge fields, the
massive W± and Z bosons and the massless photon, where the latter two are linear
combinations of the U(1)Y gauge field and one component of the SU(2)L gauge field.
Moreover, the Higgs boson arises as a new excitation after spontaneous symmetry
breaking. Fermion masses can be added by introducing Yukawa interactions with
the Higgs field.

The Standard Model was completed by the experimental confirmation of the Higgs
boson’s existence in 2012 at the LHC [32, 33] and it has been very successful in ex-
plaining the observations from collider experiments. However, there is cosmological
evidence for physics beyond the Standard Model since the behavior of dark matter
cannot be explained using only the Standard Model particles and interactions. Also,
since the Standard Model conserves the Baryon number it is not able to explain the
asymmetry between matter and anti-matter in our universe.

2.2 Quantum chromodynamics

2.2.1 Gauge theories

Gauge groups are continuous groups, called Lie groups. A representation R of a Lie
group is a mapping from the group to matrices acting on a vector space. In physics,
this vector space is often also reffered to as the representation. The dimension of
a representation is the dimension of this vector space. Each representation has a
set of generators {T a} that can be understood as a basis of infinitesimal group
transformations. Finite transformations can be obtained using

U = exp(iαaT aR) (2.1)

4



with parameters α. All representations of a Lie group have the same commutation
structure, given by

[T aR, T
b
R] = ifabcT cR , (2.2)

where fabc are group-specific structure constants. This is called the Lie algebra of
the group. The smallest non-trivial representation of a group is called the funda-
mental representation F . We can also define the adjoint representation A with the
generators

(T aA)
bc = −ifabc . (2.3)

The most important family of Lie groups are the special unitary groups SU(N).
Their fundamental representations are the SU(N) matrices with dimension N and
the adjoint representations have the dimension N2 − 1.

Quantum chromodynamics (QCD) is the quantum field theory that describes the
strong interaction. It is part of the Standard Model and is a SU(3) Yang-Mills the-
ory. Yang-Mills theories are a generalization of quantum electrodynamics (QED),
allowing for non-Abelian gauge groups. The elements of such groups do not com-
mute. Physically, this leads to tree-level interactions between gauge bosons. This
is the main difference to QED, where interactions between photons only occur in
suppressed loop processes. The QCD Lagrangian for a single quark flavor is

L = iψ̄(γµDµ −m)ψ − 1

4
Ga
µνG

a,µν (2.4)

with the gauge covariant derivative

Dµ = ∂µ − igsA
a
µT

a (2.5)

the gluon field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν , (2.6)

and the adjoint Dirac spinor

ψ̄ = ψ†γ0 . (2.7)

The four Dirac matrices γµ are defined by the Clifford algebra

{γµ, γν} = 2ηµν1 . (2.8)

Their numerical values depend on the choice of basis. The quark spinors ψ are from
the fundamental representation, hence there are three different colors of quarks. The
generators of the fundamental representation are called the Gell-Mann matrices λa.
The gluon fields live in the adjoint representation, resulting in eight gluons. Gauge
transformations act on the quark fields according to

ψ → Uψ and ψ̄ → ψ̄U † (2.9)
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with the local transformation

U(x) = exp (iαa(x)λa) (2.10)

and the gluon fields transform as

Aaµ(x) → Aaµ(x) +
1

gs
∂µα

a(x)− fabcαb(x)Acµ(x) . (2.11)

The third term in the gluon field strength tensor gives rise to three- and four-
gluon interaction vertices that are not present in Abelian gauge theories like QED.
This also means that the gluons themselves are not color-neutral in contrast to the
charge-neutral photons of QED. Hence, in contrast to the spread out field lines
in QED, the field of the strong interaction is concentrated to a narrow flux tube,
resulting in a linear potential between quarks with a slope on the order of 1 GeV/fm.
Consequently, we do not observe free quarks and gluons, instead we only find them
in color-neutral bound states. This is called confinement.

2.2.2 Color factors

To get a basis-independent characterization of a Lie group representation, we can
define the quadratic Casimir and the index. For a representation R, the quadratic
Casimir C(R) is defined as

T aRT
a
R = C(R)1 (2.12)

and the index T (R) is defined as

tr
{
T aRT

b
R

}
= T (R)δab . (2.13)

The most important representations are the fundamental (F ) and the adjoint (A)
representations. For those, we give the quadratic Casimirs the names CF and CA
and we name the indices TF and TA. For the SU(N) groups, their values are:

CF =
N2 + 1

2N
, CA = N , (2.14)

TF =
1

2
, TA = N . (2.15)

For the SU(3) gauge group of QCD, we get CF = 4/3, CA = 3 and CA/CF = 2.25.
These constants are also called the color factors. For CA, we can derive the identity

facdf bcd = CAδ
ab (2.16)

by substituting the generators of the adjoint group with the structure constants f
in Eq. 2.12. This relation and the two relations

tr
{
T aT b

}
= CF δ

ab (2.17)
(T aT a)ij = TF δij (2.18)

for the generators of the fundamental representation are used in almost every QCD
calculations, hence the color factors appear in most results in QCD [31].
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2.2.3 Measurements of the color factors

Figure 2.1: Results of the measurements of CA, CF and CA/CF at LEP [34–38] and
the combined result. The figure was taken from [5].

Because the color factors are group-specific, measuring them is a way to check
whether the gauge group of QCD is indeed SU(3). This was extensively studied at
LEP. Because of the omnipresence of the color factors in QCD, there are multiple
different ways to measure them.

At the OPAL detector, the charged particle multiplicities of two- and three-jet events
were measured and the ratio CA/CF was calculated from the energy dependence
of the multiplicity for quark- and gluon-jets. The result was CA/CF = 2.23 ±
0.14 [34]. Another measurement of the ratio of the color factors using 3-jet events
was performed by DELPHI where the fragmentation functions were measured and
the result CA/CF = 2.26 ± 0.27 was calculated from their scale-dependence using
the DGLAP equations [35]. At ALEPH and OPAL, the color factors were also
measured using the rate and angular corrections of four-jet events. The result from
ALEPH is CA = 2.93 ± 0.60 and CF = 1.35 ± 0.27 [36] and the result from OPAL
is CA = 3.02 ± 0.56 and CF = 1.34 ± 0.30 [37]. Using fits to the distributions of
the event shape observables [39–43], CA = 2.84 ± 0.24 and CF = 1.29 ± 0.18 was
measured [38].
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Combining all these measurements yields the following results for the color factors:[5,
6]

CA = 2.89± 0.21 and CF = 1.30± 0.09 . (2.19)

A plot summarizing the measurements mentioned above and the combined mea-
surement can be seen in Fig. 2.1. The results are in excellent agreement with the
predictions of SU(3) QCD. Also, it can be seen that the results for CA and CF are
strongly correlated. The uncertainties are dominated by systematics.

2.3 Splitting functions and parton showers

In hard processes with quarks or gluons in the initial or final state, infrared diver-
gences occur. This is caused by the collinear radiation of soft quarks and gluons
from the hard partons. These radiated partons can again radiate more soft quarks
and gluons, leading to higher-order processes with respect to αs. This results in
so-called parton showers. In this section, we will introduce the formalism behind
parton showers following the derivation given in [44], and describe how to generate
them using Monte Carlo methods.

2.3.1 Factorizing the phase space

To understand the infrared divergences, it is useful to factorize the (n+ 1)-particle
phase space into the n-particle phase space and an universal splitting kernel or split-
ting function that depends only one the kinematics of the splitting vertex. Consider
a mother parton, a, splitting into two daughter partons, b and c. One example is
the vertex q → qg. We define the energy fraction z of particle b and 1− z of particle
c with respect to the mother parton as

z =
Eb
Ea

, 1− z =
Ec
Ea

. (2.20)

We assume a collinear splitting, i.e. the opening angle θ between ~pb and ~pc is small.
Furthermore, we assume that the daughter partons are close to the mass shell, while
the mother parton has to have a finite mass due to momentum conservation. As our
convention for the momentum conservation, we will use

pa = −pb − pc . (2.21)

Consequently, we have to take absolute values to extract the energies, Ei = |pi,0|.
Using the momentum conservation equation and assuming small angles, we get

p2a = z(1− z)E2
aθ

2 +O(θ4) =⇒ θ ' 1

Ea

√
p2a

z(1− z)
(2.22)
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By introducing a free factor β, a unit four-vector n and a four-vector pT that is
orthogonal to pa and n, we can write

−pa = pb + pc = (−zpa + βn+ pT ) + (−(1− z)paβn− pT ) . (2.23)

This is called the Sudakov decomposition. In general, the (n+1)-particle phase space
is given by

dΦn+1 =
n+1∏
i=1

d3~pi
2(2π)3Ei

(2.24)

By setting pn = pb and pn+1 = pc and choosing a frame of reference where the mo-
mentum ~pa of the mother parton is oriented in the z direction, this can be rewritten
in terms of the n-particle phase space and the momentum of the third particle pc,
the splitting transverse momentum pT from the Sudakov decomposition and the
azimuthal splitting angle φ:

dΦn+1 = dΦn
dpc,3 dp2T dφ
4(2π)3Ec z

. (2.25)

In the collinear limit, it can be shown that

p2T = z(1− z)p2a =⇒ dp2T
p2T

=
dp2a
p2a

(2.26)

and
dpc,3
dz

=
Ec

1− z
+O(θ) . (2.27)

Those two results allow us to rewrite dΦn+1 again, this time in terms of z and pa,
as

dΦn+1 = dΦn
dz dp2a
4(2π)2

, (2.28)

where we additionally assumed an azimuthal symmetry. As our final steps, we
assume that the matrix element for the (n + 1)-particle process factorizes into the
matrix element of the n-particle process and a splitting kernel that only depends on
z,

|Mn+1|2 '
8παs
p2a

P (z)|Mn|2 , (2.29)

and use that assumption to write down the cross section of the process in the collinear
limit:

σn+1 '
∫
σn

dp2a
p2a

dz αs
2π
P (z) (2.30)

We can also write this expression as an integral over the splitting transverse mo-
mentum pT using Eq. 2.26. This will be useful later as it allows us to use p2T as an
ordering parameter when defining the parton shower algorithm.

9



Pqq Pgg Pgq

Figure 2.2: Feynman diagrams corresponding to the three QCD splitting functions

2.3.2 Splitting kernels

In the previous section, we introduced the splitting kernels P (z) and assumed that
they could be used to factorize the phase space. The specific form of the splitting
kernels depends on the splitting vertices. In this section, we will sketch the derivation
of the splitting function Pqq(z) for a quark radiating a gluon and will then give the
results for the other two splitting functions. Again, we follow the derivation given
in [44].

Since we are in the collinear limit and have small scattering angles, we can write
the spinors for the two spin states in the Dirac representation as

u+(p) =
√
E


1
θ/2
1
θ/2

 and u−(p) =
√
E


−θ/2
1
θ/2
−1

 . (2.31)

In this representation, the Dirac matrices have the form

γ0 =

(
1 0
0 1

)
and γj =

(
0 σj

−σj 0

)
(2.32)

where σj are the Pauli matrices. Using Feynman rules, we can write down the
matrix element

Mqq = −igsT aū±(pb)γµεµau±(pa) (2.33)

where pa and pb are the four-momenta of the incoming and outgoing quarks and pc
is the gluon four-momentum. The angles θa and θb in the Dirac spinors from Eq.
2.31 are given with respect to the gluon momentum ~pc such that θb is equal to the
scattering angle θ and in the the collinear limit, we can write θa = −zθ. The spin-,
color- and polarization-averaged matrix element can be calculated by going through
the matrix algebra, leaving us with the following result for the factorization of the
(n+ 1)-particle matrix element:

M2
n+1 =

(
1

p2a

)2

g2s
tr{T aT a}
NcNa

(
2(1− z) + 2

(1 + z)2

1− z

)
M2

n . (2.34)

Here, Nc = 3 is the number of colors and Na = 2 is the number of quark spin states.
This equation can be further simplified and the definition of CF for SU(Nc) from
Eq. 2.14 can be used. The simplified equation has the form

M2
n+1 =

2gs
p2a
CF

1 + z2

1− z
M2

n (2.35)
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Comparing this with our assumption from Eq. 2.29 gives us the result

Pqq(z) = CF
1 + z2

1− z
(2.36)

for the gluon-radiation splitting kernel. Hence, we have shown that the assumption
was correct in the collinear limit. This is also the case for the two other splitting
functions for the splitting of a gluon into two gluons and into two quarks. Figure
2.2 shows the vertices for all three splitting kernels. Evaluating the matrix elements
and deriving the splitting functions yield

Pgg(z) = CA

(
z

1− z
+

1

z
+ z(1− z)

)
(2.37)

for the three-gluon splitting and

Pgq(z) = TR
(
z2 + (1− z)2

)
(2.38)

for the gluon splitting into quarks. These are the Altarelli-Parisi splitting ker-
nels [45].

2.3.3 DGLAP equation and regularization

Beside parton showers for outgoing partons at colliders, splitting kernels have a sec-
ond important application. They can also be used to describe the scale dependence
of the parton distribution functions of the incoming hadrons via the DGLAP equa-
tion [45–47]. To get the DGLAP equation, the evolution of a parton confined in
a hadron with an energy fraction x that is initially on the mass shell is examined.
In the case of a quark radiating gluons, the splittings decrease x while simultane-
ously increasing the virtuality t of the quark. This leads to an integro-differential
equation for the parton density as a function of x and t that contains the splitting
functions.

For use in the DGLAP equation and in cross section calculations where the split-
ting kernels have to be integrated, the splitting kernels must be regularized for the
integrals to be finite. An example for such a regularization is the plus subtraction
scheme which is defined as

F (z)+ = F (z)− δ(1− z)

∫ 1

0

F (y)dy . (2.39)

It can be shown that the poles of splitting kernels regularized this way are in agree-
ment with results from dimensional regularization [44]. However, in parton shower
generation algorithms we do not need such a regularization scheme. Instead, the
integrals are finite because of the parton shower cut-off scale. This will be explained
in greater detail in section 2.4.4.
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p̃k pk

p̃ij

pi

pj

Figure 2.3: Feynman diagram for a q → qg Catani-Seymour dipole splitting. The
upper incoming quark is the spectator parton and the lower incoming
quark is the emitter parton.

2.4 Parton shower generators

So far, we looked at a single splitting process and derived the splitting kernels and
phase space factorization for that case. However, to build a Monte Carlo parton
shower generator, several splittings have to be generated in a randomized way, re-
sulting in a splitting tree. This poses three problems. The first problem is that
stricly speaking, we cannot look at the splittings in this tree as separate processes.
Instead we have to take interference terms between them into account. However,
it can be shown that using an ordered emission determined by the splitting kernels
is a reasonable approximation and the interference can be neglected [44]. Secondly,
in the derivation of the splitting kernels we assumed that the mother parton does
not have to be on the mass shell, while the daughter partons are. This is no longer
possible for multiple subsequent splittings. We can solve this problem with Catani-
Seymour dipoles. Lastly, we need a way to sample which splitting occurs next and
decide on the kinematics of that splitting. This problem is solved using Sudakov
form factors and the veto algorithm.

2.4.1 Catani-Seymour dipoles

The problem of keeping all the partons in a parton shower on the mass shell and
therefore allowing for multiple splittings can be solved by introducting a spectator
parton. For each splitting of an emitter parton, such a spectator parton is selected
and momentum is exchanged between the spectator and the emitter [48]. Fig. 2.3
shows a Feynman diagram for a q → qg splitting. The photon line denotes the
momentum exchange and is not to be understood as an electromagnetic interaction.
Here p̃k and pk are the momenta of the spectator before and after the splitting. p̃ij
is the emitter momentum before the splitting and pi and pj are the momenta of
the two partons created in the splitting. These three momenta correspond to the
momenta pa, pb and pc in the derivation of the splitting kernels in the sections above.
Then, the momentum conservation equation is

p̃ij + p̃k = pi + pj + pk . (2.40)
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It is now kinetically possible to impose on-shell conditions for all the incoming and
outgoing partons:

p̃2ij = p̃2k = p2i = p2j = p2k = 0 . (2.41)

As a new degree of freedom in the splitting process, we define the exchanged mo-
mentum fraction y such that

pk = (1− y)p̃k . (2.42)

Using Eqs. 2.40 and 2.41, it can be shown that y is given by

y =
pipj

pipj + pjpk + pkpi
. (2.43)

In analogy to the energy fraction z in the Altarelli-Parisi splitting functions (Eqs.
2.36 - 2.38), we define z̃i as the fraction of momentum transferred from the emitter
parton to the first parton created in the splitting, but with both momenta projected
on the incoming spectator momentum:

z̃i =
pip̃k
p̃ij p̃k

. (2.44)

The momentum fraction for the second parton is z̃j = 1− z̃i.

By replacing z with z̃i(1 − y), the divergent part of the gluon-radiation splitting
kernel has the form

1

1− z̃i(1− y)
=
pipj + pjpk + pkpi

(pi + pk)pj
. (2.45)

It can be shown that both in the soft and the collinear limit, this description is in
agreement with the results for splittings without Catani-Seymour dipoles [48]. Even
at LHC energies, the predictions from Catani-Seymour dipoles are still sufficiently
accurate, making them an ideal tool to describe parton showers at the LHC [44].

For the sake of readability, we will use z := z̃i for the rest of this thesis. In the
Catani-Seymour dipole form, the three splitting kernels are as follows:

Pqq(z, y) = CF

[
2z(1− y)

1− z(1− y)
+ (1− z)

]
(2.46)

Pgg(z, y) = 2CA

[
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)
+ z(1− z)

]
(2.47)

Pgq(z, y) = TR
[
z2 + (1− z)2

]
(2.48)

Here, we have written them in a form where both the divergent and the finite parts
are positive. This will become useful later when we introduce parameters for those
different parts of the splitting functions
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2.4.2 Sudakov form factor

Because ordered emission is used in parton shower generators, an ordering parameter
t has to be defined∗. A natural choice is the squared transverse momentum of the
splitting

t := p2T = 2p̃ij p̃kyz(1− z) (2.49)

because the phase space integration for the total cross section in Eq. 2.30 can be
expressed in terms of this variable. Also, it allows us to use a cut-off on the order
of ΛQCD because we cannot resolve multiple partons with lower transverse momenta
towards each other and instead find them only in bound hadronic states [49].

Using Eqs. 2.30 and 2.26, we can write the differential probability for a splitting as
a function of t as

dPij(t) =
dt
t

∫
dz αs

2π
Pij(z, y) . (2.50)

This equation can be used to derive an expression for the probability that no splitting
occurs when the ordering parameter goes from t to t′. Iteratively applying the
integral of the differential probability and summing up all the contributions results
in an exponential function. The non-splitting probability, also called the Sudakov
form factor, is then given by [44]

∆i(t
′, t) = exp

[
−
∑
j

∫ t2

t1

dt̃
t̃

∫
dz αs

2π
Pij(z, y)

]
, (2.51)

where the sum runs over all the possible splittings for the parton i ∈ {q, g}.

For the parton shower algorithm, we need to sample the t′ at which the next splitting
is generated, given the current t. That means that we need the probability P(1)

i (t′, t)
for a single splitting to occur at t′. It can be obtained from the probability that no
splitting occured until t′ (the Sudakov factor) by taking the t′-derivative [50], giving
us the result

P(1)
i (t′, t) = −d∆i(t

′, t)

dt′
. (2.52)

∗This t is not to be confused with the Mandelstam variable t, although the latter would be a
suitable ordering parameter as well.
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2.4.3 Rejection sampling

Typical pseudo-random number generators sample from a uniform distribution. For
many Monte Carlo algorithms however, we have to draw random numbers from more
complicated distributions. Consider a probability distribution p(x) in an interval
[xmin, xmax]. The cumulative distribution function is then

P (x) =

∫ x

xmin

dx′p(x′) (2.53)

with P (xmin) = 0 and P (xmax) = 1. If p(x) > 0, we can invert P . By applying P−1

to random numbers from the unit interval, we can draw random numbers distributed
according to p(x). While this approach theoretically works for all positive probability
distributions, it requires us to know P−1 for which we are not able to give an analytic
expression in many cases.

This problem can be solved using rejection sampling. Consider a distribution q(x)
with q(x) ≥ p(x) for which we know the inverse cumulative distribution Q−1. Let
u1 and u2 be uniformly distributed random numbers between 0 and 1. Then xr =
Q−1(u1) is distributed according to q(xr). We now reject xr when p(xr)/q(xr) < u2.
The accepted random numbers are now distributed as p(x). To make the algorithm
efficient, p(x)/q(x) should be as close to 1 as possible to keep the rejection rates
low.

2.4.4 Sudakov veto algorithm

After collecting all the ingredients of parton shower generators, we will now discuss
how a simple parton shower algorithm can be constructed. Starting from the center-
of-mass energy of the whole process, continuously softer splittings are generated until
a cut-off scale is reached. A typical value for the splitting transverse momentum
cut-off is 1 GeV. For splittings with z close to 0 or 1, pT goes to 0, so by introducing
the pT cut-off scale, we have also introduced upper and lower limits zmin and zmax
for the energy fraction. Hence, we can use the unregularized splitting kernels in the
parton shower algorithm [49].

Loosely speaking, in each evolution step in the parton shower algorithm we have to
choose a spectator parton, an emitter parton and a splitting function and sample the
transverse momentum for that splitting from the distribution given in Eq. 2.52. As
the second step, we need to sample z from the probability distribution given by the
splitting function. The form of the splitting kernels and the derivative of the Sudakov
factor is too complicated to sample from directly. Instead, we have to make use of
rejection sampling. For each splitting function Pab(z, y), an over-estimate P̃ab(z) has
to be found, that can be analytically integrated and then inverted. It is possible
to choose the overestimate such that it depends only on z. Let Iab(z1, z2) be the
integral of P̃ab(z) from z1 to z2.
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The algorithm starts by setting t = p2T = E2
CMS where ECMS is the center-of-mass

energy of the hard process and therefore the maximal transverse momentum. It
then iterates over all possible combinations of emitter and spectator partons and
all possible splittings for that emitter. In the case of the g → qq̄ splitting, this
also involves iterating over the quark flavors. By demanding t to be larger than the
cut-off t0,

t = 2p̃ij p̃kyz(1− z)
!
> t0 , (2.54)

we get

zmax,min =
1±

√
1− 2t0

p̃ij p̃k

2
. (2.55)

The t′ at which the new splitting will happen has to be drawn from the distribution
given in Eq. 2.52. As this distribution is too complicated to sample from directly, we
use the over-estimated splitting instead. Then, the estimated Sudakov form factor
can be written as

∆̃ab(t
′, t) = exp

(
−
∫ t′

t

dt̃
t̃

αs
2π
Iab(zmin, zmax)

)
. (2.56)

Because the estimated splitting functions are y-independent, the integral inside the
exponential function is easy to evaluate, resulting in

∆̃ab(t
′, t) = exp(gab log t− gab log t′) with gab =

αs
2π
Iab(zmin, zmax) . (2.57)

Since the Sudakov form factor is the cumulative distribution of the probability for
a splitting happening at t′, to sample t′ we have to invert ∆̃ab and apply it to a
random number. With a random number u1 from a uniform distribution between 0
and 1, we get

t′ = t exp
(

1

gab
logu1

)
. (2.58)

After calculating t′ for all combinations of spectators, emitters and splittings, the
largest t′ is chosen. For that splitting, z can be sampled using the inverse of Ĩab. y
can then be calculated with Eq. 2.49. The azimuthal angle φ of the splitting with
respect to the mother parton is the last kinematic degree of freedom of the splitting
and is drawn from a uniform distribution. For the parton shower to be consistent
with the splitting kernels even though we used the over-estimate P̃ab in the steps
above [50], another uniformly distributed random number u2 between 0 and 1 is
drawn and the generated splitting is only accepted if

u2 <
Pab(z, y)

P̃ab(z)
. (2.59)

Because of this step, the algorithm is called the Sudakov veto algorithm. Then, t′
is used as the new t and the steps above are repeated until the cut-off scale t0 is
reached.
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2.5 Jets, hadronization and detectors

So far, we looked at parton showers and how to generate them using Monte Carlo
methods. However, in an experimental setting, we cannot observe free quarks and
gluons due to confinement. Instead, the partons undergo hadronization such that all
quarks and gluons are in bound states. Moreover, detectors are needed to measure
those particles and add additional uncertainties.

2.5.1 Hadronization

Hadronization is a complex QCD process and is not yet fully understood, so one has
to resort to phenomenological models to describe and simulate it in event genera-
tors. As mentioned in section 2.2.1, for large distances there is a linearly increasing
potential with a slope of about 1 GeV/fm between free quarks. This can be used
to define a simple model of the hadronization process, the string model. In the
following, this model will be explained for the simple example of a quark and an
anti-quark propagating back-to-back. The linear potential is understood as a string
between the quarks, corresponding to the narrow flux-tube between them that is
formed because of the gluon self-interactions. As they move further apart the string
expands and at some point it “snaps”, creating a quark anti-quark pair. Now, there
are four quarks connected by two strings. This process repeats, leading to more and
more fragmentation of the string until the field energy is low enough that the quarks
form bound hadronic states. These hadrons may be unstable and decay [51]. After
hadronization, we are left with mesons like pions and kaons, baryons like protons
and neutrons, and decay products like photons from π0 decay and charged leptons
and neutrinos from weak decays.

2.5.2 Detectors

A typical “general-purpose” detector like ATLAS and CMS at the LHC is built from
four main components. Closest to the collision point is the tracker where the curved
trajectory of charged particles in a magnetic field is measured. The electromagnetic
calorimeter surrounds the tracker and measures the energy deposited by electrons,
photons, but also hadrons. It has enough stopping power to absorb the energy
of electrons and photons, but a hadronic calorimeter is needed to also absorb the
energy of the hadrons. Since muons are able to penetrate both calorimeters, there is
the muon spectrometer as a fourth layer. It is another tracking system to measure
the muon trajectories.

Using the information from these components, the types and charges but most
importantly, the four-momenta of the detected particles can be reconstructed. An
example for such a reconstruction method is the CMS particle flow algorithm [52].
Detectors introduce multiple kinds of uncertainties. Trackers and calorimeters have
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a limited spatial resolution. Furthermore, the measurement of the energy deposit
in the calorimeter has an energy-dependent uncertainty. For example, the energy
resolution of the ATLAS electromagnetic calorimeter is given by the expression

σ(E)

E
' 10.1

√
GeV√
E

⊕ 0.17 (2.60)

where ⊕ stands for quadratic addition [53]. Hence, for a complete Monte Carlo
event simulation setup, detector effects have to be simulated as well.

2.5.3 Jets

Starting from a hard quark or gluon, we saw that showering and hadronization create
a cone of particles. This cone is called a jet and is a common object in most LHC
analyses. However, in general the particles cannot be traced back to a single hard
parton unambiguously because the angular separation between two or more hard
partons can be small. Also, there are more sources for particles in collider events
like initial-state radiation. Instead, jets are defined through jet algorithms that take
a list of particles and assign them to jets. Important examples for jet algorithms are
the kT algorithm and the anti-kT algorithm. Both will be used later in this thesis.
The kT algorithm follows a bottom-up approach by combining soft and collinear
pairs of particles into sub-jets first. The algorithm aims to reconstruct the splitting
tree [54] and will be discussed in greater detail in section 4.3. In contrast, the
anti-kT algorithm has a top-down approach and starts with hard and well-separated
particles [55]. Typically, jet algorithms have a parameter R that determines the
angular jet radius.

2.6 Jet observables

To get a better understanding about jets, it is useful to define jet observables. Given
a list of four-momenta of the jet constituents, this allows us to get a low-dimensional
view on the high-dimensional data. This not only helps humans to get insight into
the data, it is also necessary for many inference methods to have a sufficiently low-
dimensional representation of the data. Here, we will use a set of six established jet
observables originally used for discriminating quark and gluon jets [56].

To define those observables, we have to first go from four-momenta in cartesian
coordinates to a better suited coordinate system. The beam axis is usually defined
to be the z axis. Given a four-vector (E, px, py, pz), the transverse momentum (with
respect to the beam axis) is given by

pT =
√
p2x + p2y . (2.61)
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Analogously, we can define the transverse energy

ET =
√
m2 + p2x + p2y =

√
m2 + p2T (2.62)

for a particle with mass m. As a measure for the angle between the momentum and
the beam axis, we define the pseudorapidity η as

η =
1

2
log
(
E + pz
E − pz

)
. (2.63)

As the third coordinate, the angle of the spatial momentum projected to the (x, y)-
plane is used:

φ = arctan2(y, x) . (2.64)

The azimuthal angle φ is a symmetry of collider events. Therefore, only differences
∆φ of the angles for multiple particles in one event are used. Using the last two
definitions, we can define the angular separation

∆R =

√
(∆η)2 + (∆φ)2 . (2.65)

We can now define the six jet-observables. Let ∆Rij be the angular separation
between two particles and ∆Ri,jet between one particle and the total jet momentum.
Also, we calculate the transverse momentum and energy for each individual particle
and the total jet momentum. The jet observables are then given as

nPF =
∑
i

1 (2.66)

C0.2 =

∑
i,j ET,iET,j(∆Rij)

0.2∑
iET,i

(2.67)

pTD =

√∑
i p

2
T,i∑

i pT,i
(2.68)

wPF =

∑
i pT,i∆Ri,jet∑

i pT,i
(2.69)

xmax = max
i

[
ET,i
ET,jet

]
(2.70)

N95 = arg min
n

{
p
∣∣∣ p = n∑

i=1

p
(sorted)
T,i , p ≥ 0.95pT,jet

}
(2.71)

where all sums run over the jet constituents.

nPF is the particle multiplicity [57]. In the case of measuring splitting functions, it
is especially useful as it tracks the splitting probability. C0.2 is a two-point energy
correlator. The power 0.2 of ∆Rij is optimized for the separation for quark and
gluon jets [58]. The observable pTD measures whether the momentum is carried
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by few hard particles or is spread among many soft particles [59]. wPF is the girth
(width of the radiation distribution) of the jet [60]. xmax is the maximal fraction of
transverse energy contained in one jet constituent and N95 is the minimal number of
jet constituents whose transverse momenta sum up to 95% of the total jet transverse
momentum [61].
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3 Machine learning and statistics

The aim of this thesis is to construct a machine-learning-based inference method
to extract the form of the QCD splitting functions from (simulated) collider data.
Machine learning is the process in which an algorithm builds a model from a data
set (the training dataset) which it can then use to generate new data or to analyze
other data, for instance by performing classification, inference or making predic-
tions. After giving short introductions to machine learning with neural networks
and Bayesian statistics, we will describe normalizing flows, how they can be im-
plemented with invertible neural networks and how these can be used to perform
Bayesian inference.

3.1 Neural networks

Artificial neural networks are one of the most important classes of machine learning
models. They are built from neurons, simple units that perform mathematical op-
erations on their inputs and have outputs that can be connected to other neurons.
These neurons are often arranged in layers, where the neurons in one layer receive
their input from the previous layer and send their output to neurons in the following
layer. There are no connections between neurons of the same layer. That strongly
simplifies the structure of the neural networks. The layers between the input and
output layer are called hidden layers. The operations performed by the neurons typ-
ically have parameters that are varied during the training process to fit the model
to the desired function.

Fully connected layers (also called dense layers) are a simple but important type
of layer. Given an input vector x with dimension N , their output vector y with
dimension M is given by

y = f(Wx+ b). (3.1)

Here, W is the M × N weight matrix and b is the bias vector with dimension N .
Both are trainable parameters. Often, all trainable parameters are referred to as
weights of the network. f is called activation function. Without the activation func-
tion, networks built from fully connected layers would only be linear functions and
therefore not expressive enough to approximate arbitrary functions. By introducing
non-linear activation functions and chaining multiple layers, approximating more
complex functions becomes possible.
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There are various commonly used activation functions. Most are applied element-
wise to their input vector, but there are exceptions like Softmax activation. The
following ones will be used in this thesis (if not stated otherwise, the function is to
be applied element-wise):

• Linear activation: The linear activation function is the identity function f(x) =
x. As discussed above, it cannot be used as the only activation function in
expressive neural networks. However, it can be useful in some situations, for
example as activation function for the last layer of a network.

• ReLU activation: The Rectified Linear Unit (ReLU) activation function is
defined as f(x) = max{0, x}. It is computationally cheap, yet usable in ex-
pressive networks. However, layers with ReLU activation often have a sparse
output, i.e., many components of the output vector are zero. This is not
always desirable, especially not for the output layer of a network.

• ELU activation: The Exponential Linear Unit (ELU) activation function is
defined as

f(x) =

{
α(ex − 1) if x < 0

x if x ≥ 0
. (3.2)

For positive x, it behaves similar to ReLU, but it saturates at −α for large
negative x. Therefore, contrary to ReLU, its output is not sparse. A common
choice for α is 1.

• Softmax activation: For an input vector with M components xi, the compo-
nents of the output vector are given by

yi =
exi∑M
j=1 e

xj
, (3.3)

such that
∑

i yi = 1. Common uses for this activation function include final
layers of classification networks, where the output components are interpreted
as probabilities for different categories, and calculating weights for weighted
averages.

3.2 Optimization

The training of the network is performed by an optimizer. The optimizer varies
the trainable parameters of a model to minimize a loss function that specifies the
objective of the training. Given a loss function L(X;α) where X is the training
data and α are the trainable parameters of the network, the optimizer in theory
performs the operation

αopt = arg min
α

L(X;α) (3.4)
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In practice however, the α found by the optimizer can differ from αopt due to insuf-
ficient convergence or local minima of the loss function. Most modern optimizers for
neural networks are based the gradient descent method which updates the weights
along the gradient of the loss function with respect to those weights. First, we ex-
press the total loss function L(X;α) as an average over the individual loss functions
for the N points in the training data set:

L(X,α) =
1

N

N∑
i=1

`(xi;α) . (3.5)

We can then define one gradient descent step as

αnew = α− η∇αL(X;α) = α− η

N

N∑
i=1

∇α`(xi;α) (3.6)

where the parameter η is the learning rate. For large data sets and complex models
like deep neural networks where the evaluation of the gradients is expensive, doing a
full gradient descent update is no longer feasible. Instead, the updates are performed
for smaller portions of the data set, so-called mini-batches. After going through all
mini-batches (this is called one epoch), the data set is shuffled and the optimization
is continued. This modification of the method is called stochastic gradient descent
(SGD). The backpropagation algorithm, a form of automatic differentiation, is used
to compute the weight gradients of neural networks.

The plain stochastic gradient descent method suffers from problems like the risk
to get stuck in local minima different from the global minimum and a slow rate
of convergence. These problems are addressed by more sophisticated optimizers.
One notable example is AdaGrad [62], which introduces individual learning rates
for the weights of the model and adapts them during training depending on their
gradients in previous iterations. In this thesis, we use the Adam [63] optimizer
which takes the gradients and second moments of gradients from previous iterations
into account with two decay constants (one for the gradients and one for the second
moments) governing their influence on the current update. Adding momentum in
this way makes it easier for the optimizer to escape local minima.

In addition, it is often advisable to introduce learning rate scheduling, i.e., decreas-
ing the learning rate over time or adapting it based on the current value of the loss
function. This way, fast convergence in the beginning of the training is possible with-
out introducing large amounts of noise when the network is already well-converged.
Another important aspect of a successful training is the initialization of the weights.
Throughout this thesis, Glorot uniform initialization [64] will be used as the initial-
ization method. In this initialization scheme, the weights of each layer are drawn
from a uniform distribution over the interval [−A,A], where A =

√
6/(nin + nout)

takes into account the numbers of inputs nin and outputs nout of the layers.
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3.3 Bayesian statistics

The Bayesian approach to statistics gets its name from Bayes’ theorem. In con-
trast to the frequentist approach which focuses on repeatable experiments to test
hypotheses, Bayesian statistics is formulated in terms of probability distributions
modeling our knowledge and how we can update this knowledge given new experi-
mental results.

Let θ and x be vectors of random variables, where θ stands for the parameters of
some theory and x stands for data that was measured to infer these parameters.
Using these definitions, we can write down Bayes’ theorem:

p(θ|x) = p(x|θ)p(θ)
p(x)

(3.7)

The probability distributions in this equation are given names in Bayesian statistics.
p(θ) is called the prior probability distribution, as it encodes our knowledge about
the theory parameters before conducting the measurement. p(x|θ) is called the
likelihood. It defines the probability of a measurement outcome given a vector of
parameters. p(θ|x) is called posterior probability distribution. It tells us our new
knowledge about the parameters θ after we updated our prior knowledge with the
information gained from the measurement. Lastly, p(x) can be understood as a
factor that ensures the proper normalization of the posterior probability distribution.
It can be calculated from the likelihood and the prior:

p(x) =

∫
p(x|θ′)p(θ′)dθ′ (3.8)

We can see that Bayes’ theorem enables us to update our knowledge about the
theory parameters θ if we know the likelihood for the theory. In practice however,
the analytic expression for the likelihood is often not tractable, but it can be sampled
from the likelihood using a Monte Carlo algorithm. In this case, the inference
process is also called likelihood-free inference or simulation-based inference. The
measurement of theory parameters in collider experiments is a good example for
such a situation as we do not have a tractable likelihood, but we can use event
generators to sample from it.

3.3.1 Approximate bayesian computation

Approximate Bayesian Computation (ABC) is a classical method for simulation-
based inference [65, 66]. The ABC method is based on a problem-specific distance
measure ρ(xsim, xobs) between simulated and observed data. A set of parameters {θi}
is sampled from the prior and the simulation is performed with these parameters,
yielding {xisim}. Only when the distance measure between a simulated point xisim is
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smaller than the threshold ε, the corresponding parameter θi is accepted. The set
of accepted parameters approximately is a sample from the posterior. The choice
of ε is a trade-off between the rate of acceptance and the accuracy of the posterior
estimate. For a small ε, the posterior is estimated very accurately but the inference
procedure is inefficient due to a high number of rejected samples.

ABC has two major problems. Firstly, whenever new data is processed, simulations
have to be performed. This makes it a costly operation. In contrast, there are
also amortized methods where the computation-heavy steps have to be performed
only once and adding new data becomes a cheaper operation. Secondly, to de-
fine the distance measure ρ, problem-specific low-dimensional summary statistics
are typically required when dealing with high-dimensional data. A poor choice of
summary statistics can be detrimental to the quality of inference. These problems
can be addressed using machine-learning techniques. In this thesis we will use the
BayesFlow method that will be discussed in section 3.6 and solves these two prob-
lems [26]. A review of different methods for simulation-based inference and their
advantages and disadvantages can be found in [67].

3.4 Normalizing flows

Normalizing flow models are a family of generative models that transform samples
from one distribution into samples from another distribution in an invertible way.
They were popularized by Rezende and Mohamed [13] and Dinh et al. [14]. The
review by Kobyzev et al. [15] provides a comprehensive overview over the current
landscape of normalizing flow models. Normalizing flows are built from smooth and
bijective mappings f : X → Y between the spaces X and Y , where smoothness
means that the Jacobian of the mapping is sufficiently well-behaved. When f is
evaluated with values x drawn from the probability distribution fX(x), the resulting
distribution can be obtained using the change of variables formula

pY (y) = pX(x = f(y))

∣∣∣∣det ∂f
−1

∂x

∣∣∣∣ . (3.9)

It is possible to chain multiple simple mappings fi : Xi → Xi+1 to get a more
complicated mapping f = fn ◦ · · · ◦ f1 between the spaces X1 → X2 → . . .→ Xn+1.
The resulting probability distribution pXn+1(xn+1) given pX1(x1) can be calculated
by iteratively applying equation 3.9.

To be used as a machine learning model, the mappings have to have trainable
weights. The invertibility implies that the transformations must have the same
input and output dimensions. Furthermore, there has to be an efficient way to cal-
culate the Jabobian determinant for the model to be tractable. Given a data set
with points x distributed according to a typically complicated probability distribu-
tion pX , the model is evaluated in forward direction and trained to yield a simple
output distribution pY like a (multivariate) Gaussian. This transformation towards
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a simpler distribution is the reason why these models are named “normalizing flows”.
It is then possible to sample from pX by drawing samples y from pY and evaluating
the model in backwards direction: x = f−1(y).

3.5 Invertible neural networks

Invertible neural networks (INNs) are a realization of normalizing flow models intro-
duced by Dinh et al. [14, 16]. They are built from a sequence of affine coupling blocks
(ACB). The coupling blocks split their input vector into two halves u = (u1,u2).
The minimal dimension of the input and output vectors is therefore two. The output
vector v = (v1,v2) is then calculated with

v1 = u1 � exp(s1(u2)) + t1(u2) (3.10)
v2 = u2 � exp(s2(v1)) + t2(v1) . (3.11)

Here s1, s2, t1 and t2 are trainable sub-networks that do not have to be invertible, and
� denotes element-wise multiplication. Typically, they are fully-connected networks.
The transformation given above can be easily inverted, resulting in the equations

u2 = (v2 − t2(v1))� exp(−s2(v1)) (3.12)
u1 = (v1 − t1(u2))� exp(−s1(u2)) (3.13)

for u as a function of v. Furthermore, by writing the transformation in Eq. 3.10 as
a vector operation performed in two steps, (u1,u2) → (v1,u2) → (v1,v2), we can
see that the resulting Jacobian has to be a product of two triangular matrices:

∂v

∂u
=

(
1 0

finite diag es1(u2)

)(
diag es2(v1) finite

0 1

)
. (3.14)

As the determinant of a triangular matrix is the product of its diagonal elements
and the determinant of the product of two matrices is equal to the product of their
determinants, calculating the Jacobian of the ACB is computationally cheap. Be-
cause of the fixed splitting of the vector, one coupling block by itself is not expressive
enough. To make the network more expressive, multiple coupling blocks have to be
chained together, each with individually trainable weights of the sub-networks. Be-
tween the coupling blocks, a random but fixed permutation is applied to allow every
INN input to have an effect on every output. An extension of this mechanism with
trainable permutations was proposed in [68]. With the Jacobian determinant of the
permutation layers being 1, the total Jacobian determinant is still easy to compute.
This property together with its expressivity due to the sub-networks and the vari-
able number of coupling blocks makes INNs a powerful realization of normalizing
flows.
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To improve the training stability by preventing diverging outputs, a bijective soft
clamping function is applied in the coupling blocks after the exponential function in
Eq. 3.10 is calculated [69]:

clamp(x) = 2α

π
arctan

(x
α

)
(3.15)

Here, α is the limit for the absolute values of the outputs.

Conditional invertible neural networks (cINNs) are an extension of INNs, where the
sub-networks s1, s2, t1 and t2 have an additional input x that is used to condition
the operation of the coupling blocks [17]. The transformation in Eq. 3.10 now has
the form

v1 = u1 � exp(s1(u2;x)) + t1(u2;x) (3.16)
v2 = u2 � exp(s2(v1;x)) + t1(v1;x) . (3.17)

The inverted equations change analogously.

3.6 BayesFlow method

BayesFlow is a method for simulation-based inference using normalizing flow net-
works [26]. It is based on conditional INNs and uses them to transform a Gaussian
latent distribution p(z) into the posterior distribution p(m|{x}) for theory param-
eters m given a set of measurements {x}. A notable feature of the BayesFlow
method is that it infers the parameters for the whole set of measurements at once.
This is achieved with a summary network, an additional neural network that is
trained along with the cINN, and that reduces the set of measurements to a fixed-
size vector of summary statistics h. This vector is then used to condition the cINN.
Given a suitable architecture of the summary network, this makes BayesFlow able
to cope with variable numbers of measurements, and it is able to learn the resulting
contraction of the posterior. Also, the summary network makes it possible to work
on high-dimensional data without having to construct summary statistics by hand.
A second interesting feature of BayesFlow is that in contrast to most other meth-
ods for simulation-based inference [67], after the network is trained, applying it to
new measurements is a very cheap operation and involves no further simulations.
This compensates for the costly training process, making the method amortized.

3.6.1 Network architecture

As described above, the BayesFlow network is built from a cINN and a summary
network. We write the forward direction of the cINN as fφ(m;h) where the second
parameter is the condition. In this thesis, we will be only working with independent
and identically distributed (i.i.d.) data, hence we will only discuss summary network
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architectures for permutation-invariant measurements. However, BayesFlow can
also be used for other types of data like time-series measurements, where a long
short-term memory network (LSTM) is an example for a suitable architecture [70].
For permutation-invariant data, the summary network consists of a first sub-network
fψ1(xi) operating on the individual measurements, a pooling layer that reduces the
result of the first sub-network to a single vector of summary statistics, and a second
sub-network fψ2 operating on the pooled vector. When the pooling is done by
averaging, the summary network can be written as

h = fψ({x}) = fψ2

(
1

M

M∑
i=1

fψ1(xi)

)
(3.18)

with M being the number of measurements in {x}. An alternative for pooling by
averaging is to use an attention mechanism where a third sub-network calculates
the pooling weights for the individual measurements:

w̃i = fψ3(xi) . (3.19)

An element-wise softmax operation is then performed to get normalized weights:

wi = exp(w̃i) �
M∑
i=1

exp(w̃i) . (3.20)

The summary network can then be written as

h = fψ({x}) = fψ2

(
M∑
i=1

wi � fψ1(xi)

)
. (3.21)

3.6.2 Loss function

The training objective for BayesFlow is to learn a mapping between the posterior
distribution p(m|{x}) and a multivariate standard normal distribution p(z) given
a set of measurements {x}. To implement this objective, we need a measure for the
difference between two probability distributions. The Kullback-Leibler divergence
is such a measure. For probability distributions p(x) and q(x), we can define it as

KL(p‖q) = Ex∼p(x) [log p(x)− log q(x)] (3.22)

where Ex∼p(x) denotes the expectation value with respect to the random variable x
distributed according to p(x). For the sake of a more readable notation, we will
notate sets of measurements {x} as x in this section. The probability distribution
p(x) is to be understood as a joint probability distribution over the number of
observations and the probability distributions for the individual measurements x
(that are all the same because we assume independent and identically distributed
observations here).
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With the KL divergence, we can write the training objective to find network weights
φ and ψ for the cINN and the summary network that minimize the difference between
the true posterior p(m|x) and the estimated posterior pφ,ψ(m|x) as

φ̂, ψ̂ = arg min
φ,ψ

Ex∼p(x)[KL(p(m|x)‖pφ,ψ(m|x))] (3.23)

= arg min
φ,ψ

Ex∼p(x)
[
Em∼p(m|x) [log p(m|x)− log pφ,ψ(m|x))]

]
(3.24)

= arg min
φ,ψ

Ex∼p(x)
[
Em∼p(m|x) [− log pφ,ψ(m|x))]

]
. (3.25)

In the last step, we used that log p(m|x) is an additive term that does not depend
on φ or ψ and can therefore be left out of the optimization. Using the change of
variables equation for normalizing flows (see Eq. 3.9) and writing the expectation
values as integrals, we can rewrite the equation as

φ̂, ψ̂ = arg min
φ,ψ

∫ ∫ (
− log p(fφ(m; fψ(x)))− log

∣∣detJfφ
∣∣) dx dm (3.26)

As we train on finite training data sets, we go from the exact equation to a Monte
Carlo estimate for a batch {xi}Ni=1 of N sets of observations:

φ̂, ψ̂ = arg min
φ,ψ

1

N

N∑
i=1

(
− log p(fφ(mi; fψ(x

i)))− log
∣∣∣detJ i

fφ

∣∣∣) . (3.27)

Finally we use that we want the distribution p(fφ(m
i; fψ(x

i))) to be Gaussian and
hence write the equation above as

φ̂, ψ̂ = arg min
φ,ψ

1

N

N∑
i=1

(
1

2

∥∥fφ(mi; fψ(x
i))
∥∥2
2
− log

∣∣∣detJ i
fφ

∣∣∣) (3.28)

=: arg min
φ,ψ

1

N

N∑
i=1

`((mi,xi); (φ, ψ)) (3.29)

and use ` as a loss function as defined in Eq. 3.6.

3.6.3 Training and inference procedure

In the BayesFlow method, we distinguish between the training phase and the in-
ference phase. In the training phase, we repeat the following steps until the network
weights are sufficiently converged: First, we generate a batch of N parameter points
by drawing the number of measurements M and the values of the parameters m
from their respective prior distributions. For each (mi,M i), we then run the sim-
ulator for the theory and get a set of measurements xi. Using the {(mi,xi)}Ni=1 as
inputs, we calculate the loss function given in Eq. 3.28 and then use backpropaga-
tion and optimization to update the weights φ and ψ for the cINN and the summary
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Figure 3.1: Overview of the flow of information in the BayesFlow method in our
use case of learning QCD theory parameters from jets.

network. The sampling from the prior and the simulation step can be done in ad-
vance, but also during training. Optionally, the steps above except for updating
the weights can be also repeated for a batch of testing data to get the loss function
for data that is statistically independent from the training data. This is a way to
detect over-fitting of the network. Over-fitting occurs when due to a lack of training
data, the network learns features of the training data that are not features of the
underlying model.

In the inference phase, we give the BayesFlow network a set of measurements x
and receive an estimate for the posterior distribution p(m|x) by sampling from it.
First, we draw G samples {zi}Gi=1 from a multivariate normal distribution with the
same number of dimensions as the number of theory parameters. For each of these
samples, we evaluate the network in backward direction and get a parameter vector
mi:

mi = f̄φ(z
i; fψ(x

i)) . (3.30)

The resulting list of points {mi}Gi=1 is a sample from the approximated posterior
distribution. As mentioned before, the inference procedure is computationally very
cheap compared to the traiing procedure and can be easily performed for multiple
sets of measurements.

Fig. 3.1 gives an overview of the BayesFlow network architecture and how it is
used during the training and inference phase.
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3.7 Simulation-based calibration

Simulation-based calibration (SBC) is a tool to check the self-consistency of results
from methods for simulation-based Bayesian inference [71]. It is based on the fact
that for a posterior distribution p(θ|x) that is consistent with the likelihood p(x|θ),
the following identity must hold:

p(θ) =

∫
p(θ|x)p(x)dx =

∫ ∫
p(θ|x)p(x|θ̃)p(θ̃)dx dθ̃ . (3.31)

The rank statistic R is introduced to measure the similarity between the prior dis-
tribution and the posterior distribution averaged over the prior. Let θ̃ be a vector
of parameters sampled from p(θ) and let x be the result of a simulation for these
parameters, i. e., a sample from the likelihood p(x|θ̃). Typical methods for simu-
lation based inference – with BayesFlow being no exception – give their result in
the form of a set of samples {θi}Gi=1 from the posterior p(θ̃|x). In the following, θij
will denote the j-th component of the i-th vector of parameters. The rank statistic
R(θ̃j; {θ1

j , . . . ,θ
G
j }) is defined as the position of θ̃j in a sorted list that contains θij

for all i = 1, . . . , n and θ̃j in ascending direction. If Eq. 3.31 holds, then the θij
must follow the same distribution as the θ̃j for a given j and therefore the latter
cannot have a preferred position in the sorted list. As a consequence, R is uniformly
distributed over the range of integers from 1 to G.

By drawing multiple parameter vectors from the prior and calculating the rank
statistic for all the components of the vector and plotting a histogram of the rank
statistic for each component, we can use this result to check the self-consistency of
the inference method. If the histograms significantly differ from a uniform distribu-
tion, we can conclude that the inference result is not well-calibrated. In addition,
we can get further information from the shape of the histograms in the case of
non-uniform histograms. The histograms have a ∩ shape when the approximate
posteriors on average over-estimating the width of the true posterior. Conversely,
if the posteriors on average under-estimate the width of the true posterior, the
histogram will have a ∪ shape. Asymmetric histograms are a sign for systematic
deviations of the estimated posteriors.

However, a uniform histogram does not allow us to draw the conclusion that the
inference method has found an optimal posterior estimator. Firstly, systematic de-
viations in one part of the prior can be compensated by deviations in the opposite
directions in another part of the prior. The same applies to local over- and under-
estimations of the posterior width. Secondly, in Eq. 3.31 we make no assumptions
about x except for the consistency of the posterior and likelihood for that x. This
is especially relevant if the inference method involves calculating summary statis-
tics that could be not sufficiently expressive. In this case, the calculation of these
statistics cannot be part of a consistent posterior estimation and would therefore
be wrongly considered as part of the likelihood by SBC. For BayesFlow, that
means that SBC is not able to detect poorly converged or not sufficiently expressive
summary networks.
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4 Extracting QCD splitting parameters from
toy parton showers

In this chapter, we will first introduce a parameterization of the QCD splitting ker-
nels and describe our implementation of a toy parton shower generator that allows
us to generate events for different values of the parameters. After discussing different
ways to order the four-momenta of a jet to make it easier for neural networks to ex-
tract the relevant information, we will give a detailed description of our BayesFlow
training setup and network architecture and the motivation behind it. Finally, we
will present our results for measurements of the QCD splitting parameters from the
toy shower data.

4.1 Parameterizing the splitting kernels

The splitting kernels in the Catani-Seymour dipole formalism were introduced in
section 2.4.1. In their Standard Model form, these contain the QCD color factors
CA, CF and TR. To get a model for measuring different contributions to the splitting
kernels, we introduce seperate parameters for the divergent and finite parts of the
splitting functions. This is done by first writing the splitting kernels in a form
in which both the divergent and finite parts of the splitting functions are non-
negative by themselves such that they can be separately understood as probability
distributions. Furthermore, we want to test if our method is capable of measuring
corrections to the splitting functions beyond the soft-collinear approximation. To
model these, we add a general rest term proportional to p2T , resulting in constant
corrections to the splitting probability according to Eq. 2.50. To get a dimensionless
quantity, we use yz(1−z) ∼ p2T (see Eq. 2.49). Our parameterization of the splitting
kernels is as follows:

Pqq(z, y) = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq(1− z) + Cqqyz(1− z)

]
(4.1)

Pgg(z, y) = 2CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fgg (z(1− z)) + Cggyz(1− z)

]
(4.2)

Pgq(z, y) = TR
[
Fqq
(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
(4.3)

The parameters Dqq,gg parameterize the divergent part of the splitting kernels, the
Fqq,gg parameters give the magnitude of the finite part and the Cqq,gg,gq parameters
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stand for higher-order contributions. As the divergent parts are the leading con-
tribution, measuring them approximates the measurement of the color factors CA
and CF . The Fqq parameter appears in both the Pqq and Pgq kernel because both
are derived from the gqq vertex. The parameters for leading order Standard Model
QCD are given by

Dqq,gg = 1, Fqq,gg = 1, Cqq,gg,gq = 0. (4.4)

To measure the C parameters, the prior distributions for them have to be chosen
such that the value 0 for the leading order Standard Model result is not at the
boundary of the distributions. To prevent negative splitting kernels for negative
C parameters, we set negative values to 0. For the D and F parameters, only
non-negative values should be included in the prior distribution.

The veto algorithm is used to generate parton showers with our modified splitting
kernels. Therefore, we need over-estimates of the splitting kernels that can be an-
alytically integrated and then inverted. Furthermore, the estimates should be as
close as possible to the actual splitting kernel to maximize the performance. We use
the estimates

P̃qq(z) = 2CF

(
Dqq +

Fqq
2

+

(
Cqq
8

)+
)

1

1− z
, (4.5)

P̃gg(z) = 2CA

(
Dgg +

Fgg
8

+

(
Cgg
8

)+
)(

1

1− z
+

1

1− (1− z)

)
, (4.6)

P̃gq(z) = TR

(
Fqq +

(
Cgq
4

)+
)

(4.7)

with (x)+ = max{x, 0}. Their correctness can be easily proven using the inequali-
ties

z(1− y)

1− z(1− y)
≤ 1

1− z
, (4.8)

(1− z)(1− y)

1− (1− z)(1− y)
≤ 1

1− (1− z)
, (4.9)

yz(1− z) ≤ z(1− z) ≤ 1 ≤ 1

4(1− z)

(
and ≤ 1

4(1− (1− z))

)
, (4.10)

z2 + (1− z)2 ≤ 1 . (4.11)

In implementations of parton shower generators, the Pgg splitting kernel is usually
split up into two parts that can be transformed into each other under the exchange
z ↔ 1− z. The two parts are given by

Pgg,1(z, y) = CA

[
Dgg

2z(1− y)

1− z(1− y)
+ Fgg (z(1− z)) + Cggyz(1− z)

]
, (4.12)

Pgg,2(z, y) = CA

[
Dgg

2(1− z)(1− y)

1− (1− z)(1− y)

+ Fgg (z(1− z)) + Cggyz(1− z)

]
(4.13)
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and their over-estimates are

P̃gg,1(z) = 2CA

(
Dgg +

Fgg
8

+

(
Cgg
8

)+
)

1

1− z
, (4.14)

P̃gg,2(z) = 2CA

(
Dgg +

Fgg
8

+

(
Cgg
8

)+
)

1

1− (1− z)
. (4.15)

Integrating the estimates from z1 to z2 gives us the following results:

Iqq(z1, z2) = 2CF

(
Dqq +

Fqq
2

+

(
Cqq
8

)+
)

log
(
1− z1
1− z2

)
, (4.16)

Igg,1(z1, z2) = 2CA

(
Dgg +

Fgg
8

+

(
Cgg
8

)+
)

log
(
1− z1
1− z2

)
, (4.17)

Igg,2(z1, z2) = 2CA

(
Dgg +

Fgg
8

+

(
Cgg
8

)+
)

log
(
z2
z1

)
, (4.18)

Igq(z1, z2) = TR

(
Fqq +

(
Cgq
4

)+
)
(z2 − z1) . (4.19)

From these integrals, we can derive functions that transform a uniformly distributed
u ∈ [0, 1] into zqq,gg,gq ∈ [z1, z2] distributed according to the estimates P̃qq,gg,gq(z).
We get

zqq(u) = zgg,1(u) = 1 + (z2 − 1)

(
1− z1
1− z2

)u
, (4.20)

zgg,2(u) = z1

(
z2
z1

)u
, (4.21)

zgq(u) = z1 + u(z2 − z1) . (4.22)

4.2 Parton shower generator

As our first step to measure the splitting function parameters, we implemented a
toy parton shower generator. It is based on a Python code provided by Stefan
Höche [72], but was rewritten in C for performance reasons. As our benchmark
scenario, we choose the process

e+e− → qq̄ at ECMS = mZ . (4.23)

All quarks are assumed to be massless. This leaves two degrees of freedom for the
process, the polar and azimuthal angle. In our toy event generator, they are drawn
from a uniform distribution over the unit sphere. Then, a parton shower with a
1 GeV lower pT cutoff is simulated using the veto algorithm described in section
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2.4.4. By only using the second quark from the hard process as a spectator in the
first splitting and excluding it from the shower generation afterwards, we generate
a single jet from the first quark. This simplifies the generation process because
less potential splittings have to be taken into account and no jet clustering step is
needed.

The output of the algorithm for each event is a list of the parton four-momenta of
the shower (excluding the second quark from the hard process). This list is created
by first initializing it with the hard quark. Each time a new splitting is generated,
the momentum of the mother parton in the list is replaced with the momentum of
one of the daughter partons, while the four-momentum of the other daughter parton
is appended at the end of the list. For a gluon-radiation splitting, the appended
parton is always the gluon. Therefore, the order of the four-momenta in the list
contains information about the splitting sequence.

4.3 Sorting the constituents

While the summary network is permutation invariant on the level of jets inside a
parameter point, i.e., the order of the jets has no effect on the network output,
it is not invariant on the constituent level. As described in section 4.2, the order
in which our toy parton shower generator emits the four-momenta of the jets con-
tains information about the order of the splittings and is therefore an information
backdoor. In the following, this order of constituents will be called truth sorting.
We found that a simple sorting scheme like pT sorting significantly decreased the
inference performance, so it is necessary to find a sorting scheme that more closely
resembles truth sorting.

We achieve that using the kT algorithm [54] as it not only gives us a reconstruction of
the splitting tree but also the order of the splittings. Because we are already dealing
with four-momenta of a single jet, we can simplify the algorithm by removing the
cut-off condition and we do not have to consider beam radiation.

Our simplified kT algorithm works by initializing a list of sub-jets with the four-
momenta of the jet constituents. Using ∆R as defined in Section 2.6, we calculate

yij = ∆Rij min{pT,i, pT,j} (4.24)

for all pairs (i, j) of sub-jets and find the pair with the minimal yij. These two
sub-jets are removed from the list and merged into a new subjet with momentum
pnew = pi + pj that is added to the list. This is repeated until only one sub-jet is
left in the list. It carries the entire momentum of the jet and is the root of the
reconstructed splitting tree.

In addition to the binary tree of sub-jets, we can also extract the order in which
they were found. With this information, we can now sort the four-momenta. In the
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Figure 4.1: Fraction of toy shower events with 4, 6 and 7 constituents where the
n-th particle was sorted correctly, for kT - and pT -sorted constituents.

reverse order that they were constructed in, we go through the sub-jets as follows:
We determine which of the two child sub-jets carries the larger fraction of the parent
sub-jet’s energy. If this branch of the tree was not visited by the algorithm before, we
go through the tree choosing following the subjets with the higher energy fraction
until we reach a jet constituent. The four-momentum of the constituent is then
appended to the sorted list of four-momenta. Going back to the starting point, we
repeat the same steps for the sub-jet with the lower energy fraction.

If there is a limit for the number of output four-momenta, the reduction can be
achieved by stopping the algorithm after a sufficient number of four-momenta is on
the output list. We examined a second reduction method that conserved the total
momentum of the jet by outputting sub-jet four-momenta instead of constituent
four-momenta for the splittings found first during the reconstruction algorithm,
effectively reducing the size of the tree. However, as the soft constituents found last
during kT sorting only have a small effect on the inference result, we found the first
method to be simpler while resulting in a better inference performance. The order
found by our kT sorting algorithm is the same as truth sorting if

1. the tree was reconstructed correctly,

2. the order in which the subjets were merged is the reverse order of their pro-
duction, and

3. for each splitting, the parton with the higher energy fraction was placed first
in the list of partons.

From the description of truth sorting in Section 4.2 it is clear that especially the last
point cannot be guaranteed for all splittings. In practice however, the reconstruction
of the splitting tree and the order of the splittings is often not accurate as well. Still,
the kT sorting algorithm is better at reproducing truth sorting than simply sorting
by pT .

Fig. 4.1 shows a comparison between kT sorting and pT sorting for data generated
by our toy shower generator. For each position in the sorted list of four-vectors, the
fraction of constituents that are in the same position as in truth sorting is shown.
The comparison is made for three different numbers of constituents. We observe
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higher accuracies for lower numbers of constituents. Furthermore, kT sorting (as
well as pT sorting) is more accurate for the first constituents in the list. A likely
explanantion for this observation is that the tree reconstruction is less accurate for
the soft jet constituents, affecting the assumptions (1) and (2) in the enumeration
above. Furthermore, while assumption (3) holds for hard quarks emitting soft glu-
ons, it becomes less likely to be true once triple-gluon vertices occur.

4.4 Network architecture and training setup

The BayesFlow network is implemented in TensorFlow 1.14 [73] and all train-
ings are performed on GPUs, as the training of neural networks strongly profits from
parallelization. The code is based on the BayesFlow implementation by Stefan
Radev [74]. The training data set consists of parameter points and each parameter
point contains M jets generated with the same splitting kernel parameters. M can
be either fixed or randomly drawn from a prior distribution to learn the measure-
ment uncertainty as a function of the number of jets. Our training data sets either
contain 105 parameter points or the training data is generated during the training.
This choice will be discussed in more detail in the next section. We split the param-
eter points up into batches of 16 points, resulting in 6250 batches per epoch. For
technical reasons, M has to be the same for every point in a batch. In addition to
the training data, 104 parameter points of testing data are sent through the network
in every epoch. The loss function for the testing data should be always similar or
higher than the loss function of the training data, otherwise the setup suffers from
over-fitting and a larger training data set is needed.

For trainings with a variable number M of jets per parameter point, we draw M
from the interval 102 . . . 105 with a probability distribution proportional to 1/M
(reciprocal distribution) to compensate for the larger runtimes for points with a large
M . Also, if M follows a reciprocal distribution, logM is uniformly distributed. In
our case, that means that each order of magnitude of M constitutes approximately
one third of the training data set. This makes the reciprocal distribution a very good
choice when M spans multiple orders of magnitude. In our current BayesFlow
implementation given our hardware limitations, we were not able to go beyond 105

jets per point.

The summary network is built from four fully connected layers with 64 units and two
fully connected layers with 32 units. All layers except for the last one have ReLU
activation. The last layer has a linear or ELU activation function to prevent sparse
network outputs. It is followed by a pooling layer where the summary network
outputs are averaged over all jets in the parameter point. We do not use a second
stage of the summary network operating on the pooled values as we found it to be
detrimental to the overall performance and especially the training stability of the
network. The choice of the summary network architecture has a large effect on the
inference performance. Making the summary network smaller in terms of depth,
width and number of outputs leads to a worse performance. Further increasing its
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size beyond the values given above does not lead to a better performance. Notably,
we found the necessary number of summary statistics for a well-performing network
and stable training to be much larger than the number of splitting kernel parameters
that the network is trained on (32 compared to 2 or 3).

Because the summary statistics contain no information about the number of jets in a
point, that information has to be added manually and has to be passed to the cINN.
For trainings with a variable point size, we append

√
M to the vector of summary

statistics. Alternatively, summing instead of averaging could be used in the pooling
layers. However, this would lead to the values of the summary statistics spanning
several orders of magnitude, making it much harder for the cINN to process them.

The cINN part of the model consists of five affine coupling blocks. The sub-networks
of the ACBs are fully connected networks with three layers with 64 units each and
ELU activation functions. We observed that changes to the cINN architecture have
much less effect on the inference performance compared to changes to the summary
network architecture.

We use the Adam optimizer [63] to train the network. The optimizer starts with a
learning rate of 10−3, followed by a stepwise exponential decay:

ηt = 10−3 · 0.99bt/nsc (4.25)

The learning rate decay step size ns turned out to be one of the most important
hyper-parameters. A high learning rate decay results in large fluctuations of the
network weights and this in turn results in systematic measurements errors. For
example, the posterior means for one parameter might be systematically larger than
the true value at one time, but after resuming the training for one more epoch, they
might be all systematically lower when the performance is tested the next time.
Low learning rate decays lead to systematic errors as well because the network is
not fully converged. The optimal ns depends on the training data, i.e., the choice
of shower generator, splitting kernel parameters and sorting strategy, so it has to be
tuned individually.

A summary of the network architecture and training parameters can be found in
Table 4.1.

4.4.1 Methods to handle very large data sets

One major issue of the BayesFlow architecture is the large number of jets needed
to train it. We need a sufficient amount of statistics per parameter point to get low
measurement uncertainties of the splitting kernel parameters. Since each parameter
point is reduced into a single vector of summary statistics that is passed to the cINN,
we also need a sufficient amount of parameter points to train the network without
over-fitting. For instance, for our experiments with a fixed number of jets per
parameter point, the total number of jets in our training data set was 104 ·105 = 109,
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resulting in file sizes exceeding 100 GB even for compressed data with a limited
number of stored jet constituents. As the trainings were performed on a GPU
cluster where the training data was not necessarily stored on the same machine
that the training was running on, loading times posed a considerable performance
problem. We developed two solutions to counter this problem.

As each generated event is statistically independent from all other events, the process
of generating events is “embarassingly parallel”. Therefore, it lends itself to be
executed in parallel on a GPU. Because GPUs cluster the parallel threads they are
running into warps and the threads in each warp have to run the same instruction
at any time but operate on different data, efficient parallelization on GPUs requires
programs with only a small amount of data-dependent branching. We found that
this requirement is fulfilled in the case of the gluon radiation shower where only
one splitting function is active. Hence, we are able to generate the training data
during the training (online learning). Instead of repeating the same data in each
epoch, new data is generated continuously, slightly improving the training stability.
Especially for trainings on variable numbers of jets per data points, this proved
to be advantageous. However, for the shower simulation including all the splitting
functions, the simulation code is not efficient enough for online learning to be a viable
option. We use online learning for all the trainings on gluon radiation showers in
this thesis.

Our second solution of the data loading performance problem is to introduce “super-
batches”. Classically, one batch of parameter points would be loaded into the mem-
ory, and the network would be trained on it. Then, this would be repeated for
every batch. Instead, we load multiple batches into memory at a time and then
train the network on these batches multiple times. The number of batches in such a
super-batch is limited by the available memory and should be as large as possible.
Choosing the number of repetitions is a trade-off between a fast and stable training.

Symbol Value

Number of parameters L 2, 3
Maximum number of constituents F 13
Jets per parameter point (variable/fixed) M 102 ... 105 / 104

Batch size N 16
Batches per epoch E 6250
Output dimension summary network S 32
Fully connected summary net architecture Si 64,64,64,64,32,32
Coupling layers nlayers 5
Fully connected coupling layer architecture si/ti 64,64,64
Epochs e 10 ... 40
Decay steps (toy shower/PF flow) ns 200 ... 500 / 500 ... 1000

Learning rate after t batches ηt 10−3 · 0.99bt/nsc

Training/testing points 100k / 10k

Table 4.1: BayesFlow network architecture and training hyper-parameters
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We found that for 50 batches per super-batch with 25 repetitions per super-batch had
a large benefit in terms of training time while not significantly reducing the training
stability. We use the super-batch training method for all trainings on showers where
all three splitting functions are enabled.

4.4.2 Attempts to improve the summary network architecture

Our largest improvements in inference performance were achieved by tuning the
summary network architecture. Before settling for the architecture described above
in combination with the kT sorting algorithm, we tried out multiple other options.
With these, we were mainly trying to tackle two problems of the summary network.
Firstly, the summary network as it is used in the final training setup is not invariant
under a change of the order of the input four-momenta. Therefore, the four-momenta
have to be in a meaningful order. Also, the varying number of jet constituents has to
be encoded in some way. We do this by zero-padding the four-momenta in our final
setup. However, we also tried out order-invariant architectures that did not rely on
zero-padding. Secondly, we observed that the summary statistics as a function of the
splitting parameters were often very similar to each other, so we looked for ways to
increase the expressiveness of the summary statistics. While none of these attempts
ultimately led to better results, we will discuss them briefly in the following.

Radev et al. found that an attention mechanism used in the summary network as
described in section 3.6.1 led to faster convergence and better performance [26]∗. In
our implementation of the attention mechanism, we used a fully connected network
with ReLU activation functions that started with a layer with 64 nodes, followed by
four to six layers with decreasing numbers of nodes. The final layer had one node
and linear activation. We observed no beneficial effects of the attention mechanism.
Instead, we found that it had a negative effect on the training stability and made
the convergence slower (in terms of training time) because of the added complexity
of the network.

In [75], an autoencoder was trained on zero-padded jet constituent four-momenta.
The network performance significantly increased when the four-momenta were Lorentz-
boosted into the jet frame as a pre-processing step. However, that was not the case
for the BayesFlow network.

Looking for an architecture that would be invariant under the order of the input four-
momenta, we tried to extend the idea behind the permutation-invariant summary
networks to the four-momenta. In this three-stage summary network, a first network
acts on each four-momentum individually. It is followed by a pooling layer, that takes
the averages of the outputs of the first network over all four-momenta of the jets. We
are then left with a fixed-size vector for each jet and these are used as inputs for the
rest of the summary network which is the same as in the final architecture. Again,

∗The discussion of the attention mechanism and its effects was removed in the fourth version
of the BayesFlow paper [26] on arXiv.
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we did not observe a positive effect on the network performance for this model. This
was still true when the tree-stage summary network was used in conjunction with
the attention mechanism in the first and/or second stage of the network.

Louppe et al. [76] proposed a network architecture acting on jet constituent four-
momenta that takes the splitting tree into account by recursively applying a sub-
network, resulting in a fixed-size vector of summary statistics. Thus, this architec-
ture is an interesting candidate for the first stage of the summary network. We
implemented this network for truth-sorted gluon-radiation showers where all gluons
split off one quark. The recursive network had a similar performance to our normal
network. We did not try this architecture for more complicated splitting trees where
it would have to be used together with the kT algorithm.

We tried two different methods to reduce the similarity between the summary statis-
tics. First, we tried to pre-train the summary network as the encoder part of an
autoencoder as proposed in [23]. However, we found that the effect of the pre-
training on the summary statistics was only visible in the first epochs, and for the
fully converged network, no difference between the results with and without pre-
training was observed at all. Our second attempt was to add a term to the loss
function that punishes correlations between the summary statistics. While it led
to less correlations of the summary statistics to some extent, this method had a
negative effect on the overall performance.

4.5 Results

4.5.1 Gluon-radiation shower

As a first benchmark of the inference, we will look at the performance of our net-
work for showers with only gluon radiation from our toy shower generator. In this
configuration, the splittings starting from a gluon are disabled and only the splitting
kernel Pqq is taken into account in the generation process. We vary the parameters
{Dqq, Fqq, Cqq} and choose the prior to be a uniform distribution over the intervals

Dqq ∈ [0.5, 2], Fqq ∈ [0, 4], Cqq ∈ [−10, 10] . (4.26)

As the parton shower generation is computationally comparatively cheap for the
gluon-radiation shower, we choose this model to test the scaling of the posterior
width for trainings with a variable number M of jets per parameter point. M
is sampled from a reciprocal distribution over the interval [100, 100000]. In the
following, we will discuss the results of one training on truth-sorted data and one
training on kT -sorted data.

To evaluate the success of a training run and its quality of inference, we take multiple
criteria into account. First, we look at the loss as a function of training epochs to
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check whether the network weights are sufficiently converged. Next, we draw 1000
parameter points from the prior and generate a fixed number of jets per parameter
point, M = 10000. For each point, we run the network in inference mode to sample
2000 points from the posterior. Using the means of the posterior sample as estimates
for each of the three parameters, we can plot the estimated parameters against the
true parameters to see the quality of inference over the whole prior. In Fig. 4.2,
this is shown for both truth sorting and kT sorting. It can be seen that there is no
region of the prior with clear systematic deviations except for the boundaries of the
prior intervals, where we can see some deviations of the points towards the inner of
the prior interval. This is of course the expected outcome as the prior encodes our
knowledge that the parameters should not be outside of these intervals.
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Figure 4.2: The estimated parameters plotted against the true parameters
{Dqq, Fqq, Cqq} for 1000 points randomly drawn from the prior for train-
ings on gluon-radiation showers with two different sortings of the four-
momenta. The closer the points are to the dotted line, the better was
the recovery of the true parameters.

Another way to assess the quality of inference over the whole prior is to use the
simulation-based calibration method described in section 3.7. Again using 1000

42



points from the prior, 10000 jets per parameter point, but this time 500 samples
from the posterior, we calculate the rank statistic for all the parameters for each
parameter point. The histograms of the rank statistics for the two trainings with
truth- and kT -sorted data can be seen in Fig. 4.3. Both networks are well-calibrated.
We only show the calibration plots for these two trainings, but all other trainings
discussed in the following were checked to be well-calibrated too.
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Figure 4.3: Histograms of the rank statistics for simulation-based calibration
for the trainings on gluon-radiation showers, where the parameters
{Dqq, Fqq, Cqq} were varied.

The most interesting result from a physics standpoint is the performance of the net-
work measuring jets with leading-order Standard Model QCD parameters. We will
call them Standard Model parameters or speak about SM-like jets for brevity. In
the case of the gluon radiation shower, the Standard Model parameters are Dqq = 1,
Fqq = 1 and Cqq = 0. 10000 SM-like jets are generated and 2000 points are sampled
from the posterior. Fig. 4.4 shows the marginal and bivariate posterior distri-
butions for truth- and kT -sorted training data. In addition, a fit to a Gaussian
distribution is shown for the marginal posteriors. We generate multiple sets of jets
at Standard Model parameters and choose a point for the plot where the distribu-
tions are centered around the true value to make the figure easier to interpret. In
practice, the position of the maximum of the distributions fluctuates around the
true value according to their width. It can be seen that the fitted Gaussians are
in good agreement with the histograms for all the parameters and both truth and
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Figure 4.4: Posterior probabilities of the gluon radiation parameters {Dqq, Fqq, Cqq}
for 10000 SM-like toy shower jets for truth-sorted and kT -sorted con-
stituents.

kT -sorted four-momenta. From the Gaussian standard deviations of σ(Dqq) = 0.012
and σ(Fqq) = 0.049 for truth sorting compared to σ(Dqq) = 0.019 and σ(Fqq) = 0.13
for kT sorting, we can see that the performance for truth-sorted data is indeed much
better due to the information backdoor. For the rest term parameter, the difference
between the two different sorting strategies is only small with σ(Cqq) = 0.97 for
truth sorting and σ(Cqq) = 1.00 for kT sorting. The stronger correlations between
Dqq and Fqq as well as Fqq and Cqq for the kT -sorted constituents are another sign
that infering from kT -sorted data is the greater challenge for the network. These
correlations also contribute to the increased width of the marginal distributions. In
both cases, we can clearly see the hierarchical structure of the three parameters. The
parameter Dqq for the regularized divergence has the largest effect on the splitting
probability and is therefore the easiest to infer for the BayesFlow network. The
parameter Fqq for the finite terms is slightly harder to infer and the measurement
error is the largest for the pT -suppressed rest terms.

The results discussed above were all obtained for a fixed number of 10000 jets. But
as we train the network with a variable number of jets per parameter point, we need
to evaluate the network performance for different sizes Meval of the evaluation data
point. We look at 100 different Meval spaced logarithmically between 103 and 105.
For each Meval, we generate 200 sets of jets of the respective size. For each set i with
i = 1, . . . , 200, we sample 2000 points from the posterior and calculate the means
µi(T ) and standard deviations σi(T ) for each theory parameter T = Dqq, Fqq, Cqq.

σ(T ) =
1

200

200∑
i=0

σi(T ) (4.27)
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is the mean estimated error and we call

σtrue(T ) =
1

200

200∑
i=0

|µi(T )− T | (4.28)

the true error. The numbers 200 and 2000 are chosen to offer sufficient statistics for
this analysis and are otherwise arbitrary.
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Figure 4.5: Measurement error as a function of the number of jets for truth- and
kT -sorted gluon radiation showers. The red curve shows the mean and
spread of the estimated posterior standard deviation for 200 sets of Meval
SM-like jets. The blue curve shows the true error, defined by the mean
over the absolute differences between the true and estimated parameters.
The black curve is a power law fit to the red curve.

The results for the estimated and true error along with a fit to a power law a·M b can
be seen in Fig. 4.5. For all three parameters, the network is slightly overestimating
the measurement error. This is more prominent for the training on kT -sorted data.
As the comparison to the fit curve shows, the scaling of the estimated error as a
function of Meval is close to the expected 1/

√
Meval power law. However, for the kT -

sorted data, we can see deviations from the expected behaviour for large Meval, where
there is a bend in the estimated error curves for all three parameters. While the true
errors of Dqq and Fqq have the expected 1/

√
Meval scaling, this is not the case for

Cqq. This is caused by systematic deviations and influences the error estimation of
all three parameters. These systematic deviations are the reason why it is necessary
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to tune the learning rate decay as detailed in section 4.4. While the learning rate
decay was tuned for both of the trainings, it is not always possible to completely
prevent the systematic uncertainties from occuring. However, for a poorly tuned
decay constant, the deviations from the expected behaviour would be much larger.
Another way to improve the performance and stability for high M at the cost of
longer training times, is to choose a uniform distribution for M in the training data
set instead of a reciprocal distribution.
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Figure 4.6: Posterior probabilities of the gluon-radiation parameters {Dqq, Fqq, Cqq}
for 10000 SM-like toy shower jets for a network trained on high-level
observables and the networks trained on kT - and truth-sorted low-level
observables.

To show that the training on high-dimensional low-level observables performs better
than the training on low-dimensional high-level observables, as it would be done in
more traditional methods for Bayesian inference, we also trained a BayesFlow
network on the six high-level observables introduced in section 2.6. The network
architecture and training procedure is otherwise kept the same as for the low-level
observables since we found this architecture to work the best also in the case of high-
level observables. The posterior distributions for SM-like jets estimated for truth-
and kT -sorted low-level observables and high-level observables are shown in Fig. 4.6.
From the posterior widths and the reduced correlations, it is clear that the network
is able to extract more information from the kT -sorted four-momenta than from the
high-level observables. The training performance in terms of widths and correlations
is the best for the truth-sorted data because of the additional information contained
in the order of the four-momenta.
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4.5.2 Measuring the leading terms

Having discussed the gluon-radiation shower in detail, we can proceed to the full
QCD shower where all three splitting functions are enabled in the shower simula-
tion. First, we will look at the extraction of the parameters for the soft-collinear
divergences, Dqq and Dgg. This approximately corresponds to the measurement of
the QCD color factors CF and CA under the assumption that the splittings are
dominated by the leading terms. We choose a uniform prior again. The parameters
are drawn from the intervals

Dqq ∈ [0.5, 2], Dgg ∈ [0, 3] . (4.29)

Since we are generating quark jets, Dqq should not go down to zero because then,
there would be no shower at all. This is not a problem for Dgg, so we can choose a
larger prior interval. Again, we train the network with truth- and kT -sorted data.
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Figure 4.7: Posterior probabilities of the leading parameters {Dqq, Dgg} for 10000
SM-like toy shower jets for truth-sorted and kT -sorted constituents.

Fig. 4.7 shows the posterior distributions for SM-like jets with Dqq = Dgg = 1. †

The estimated error of Dgg is more than twice as large as the error of Dqq. This
is the expected result, as we are only generating showers starting from a quark
and we expect less gluon splittings as a consequence. It can be seen that there is
no significant difference between the truth-sorted and kT -sorted terms, indicating
that the summary network might be learning simpler observables here that are less
dependent on additional information about the splitting sequence. Moreover, in
contrast to the LEP measurements, there is almost no correlation between Dqq and
Dgg.

†The figures of the estimated parameters plotted against the true parameters for these trainings
and other trainings where they are not referenced in the text, can be found in Appendix A.
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Figure 4.8: Summary statistics for 1000 parameter points with 10000 kT -sorted jets
each. The positions of the point are given by (Dqq, Dgg). The color
indicates the value of the summary statistic from red (minimal) to green
(maximal). Plots for all 32 output nodes of the summary network are
shown.

The training on only two splitting parameter allows us to visualize the learned
summary statistics as a function of Dqq and Dgg for the test data set with 1000
parameter points drawn from the prior. The result is shown in Fig. 4.8. It can be
seen that there is a variety of different summary statistics. None of the summary
statistics are dominated by random noise, instead they all show a clear dependence
on at least one of the two parameters. Some focus mostly on Dqq while others focus
on Dgg or linear combinations of the two observables. Also, they have the region
of their largest sensitivity in different parts of the prior. As expected for the large
number of 32 summary statistics, some of the network outputs are very similar. Still,
this amount of summary network outputs proved to be beneficial for the training
stability and inference performance.

4.5.3 Measuring the rest terms

As the next step, we examine whether we are able to measure pT -suppressed correc-
tions to all three splitting kernels with our approach. The network is trained with
a uniform prior over the intervals

Cqq ∈ [−10, 10] , Cgg ∈ [−15, 15] , Cgq ∈ [−15, 15] . (4.30)

The larger intervals for the second and third parameters are again chosen because
the corresponding splittings are less likely to occur than the first splitting. The
posteriors for truth- and kT -sorted data with vanishing rest terms Cqq = Cgg = Cgq =
0 are shown in Fig. 4.9. For both sortings, σ(Cqq) is smaller than the corresponding
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errors from the trainings with gluon-radiation showers, with σ(Cqq) = 0.90 (0.86) for
kT - (truth-)sorted data in this run and σ(Cqq) = 1.00 (0.97) in the previous run. This
could be because of the hierarchical structure of the parameters in the {Dqq, Fqq, Cqq}
training that the network has to separate, in contrast to the more similar magnitudes
of the effects of {Cqq, Cgg, Cgq} on their respective splitting functions. As expected,
σ(Cgg) and σ(Cgq) are larger than σ(Cqq). However, the large errors in the marginal
distributions are partially caused by the strong negative correlation between Cgg and
Cgq. Other than for the gluon-radiation shower where the correlation was caused by
the choice of sorting, we observe this correlation for both sorting methods, making
it less likely that the correlation is an artifact of our inference method.
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Figure 4.9: Posterior probabilities of the rest term parameters {Cqq, Cgg, Cgq} for
10000 SM-like toy shower jets for truth-sorted and kT -sorted con-
stituents.

Like for the gluon-radiation shower, we also train the network on high-level observ-
ables with the same architecture and settings. The comparison between the posteri-
ors for high-level observables and kT -sorted and truth-sorted low-level observables is
shown in Fig. 4.10. Again, the results are clearly the best for the truth-sorted data
and the kT -sorted data performs better than the high-level observables. However,
the performance gain from using the kT sorting over the high-level observables is
not as high as for the gluon-radiation shower. The high-level observables posterior
for Cgg deviates from a Gaussian, indicating that the trainings are not as stable as
for low-level observables.

4.5.4 Further results

We have only presented results for data sets where two or three splitting param-
eters were varied. We also tried to vary more parameters in a single training, for
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Figure 4.10: Posterior probabilities of the rest term parameters {Cqq, Cgg, Cgq} for
10000 SM-like toy shower jets for a network trained on high-level ob-
servables and the networks trained on kT - and truth-sorted low-level
observables.

example by combining the finite parameters with the rest terms, with five parame-
ters {Cqq, Fqq, Cgg, Fgg, Cgq} being varied. However, the training stability decreased
tremendously and the network was not even able to infer a sub-set of the parameters
with the same quality that we saw in runs with lower numbers of parameters. While
there are examples of BayesFlow being used with higher-dimensional model pa-
rameters [77], in these cases, the model predictions for the inferred parameters are
often more important than the values of the parameters themselves. This does not
apply to our physics use-case.

Another limitation of the BayesFlow method is that the maximal number of jets
included in one measurement is limited by the maximal number of jets per parameter
point during the training. We examined if we could do a Bayesian update by using
the posterior extracted from one set of jets as the prior distribution in a second train-
ing, such that the inference could be repeated for a second set of jets, giving us the
combined posterior. While it is in principle possible to use BayesFlow that way,
the training is no longer amortized, making the inference method computationally
very expensive and rendering it unusable for practical applications.

50



5 Hadronization and detector effects

So far, we discussed the results for idealized data from our toy shower generator
and found them to be promising. However, this data is not realistic in multiple
ways. Firstly, instead of simulating parton showers starting from the two quarks
generated in the hard process, we only let one of those quarks undergo splittings.
In a more realistic setup, we would get two jets that we would need to reconstruct
using a jet algorithm. Secondly, we trained the network directly on the partons of the
parton shower and in the case of truth-sorted data, the network even had additional
information about the order of the splittings. Of course, we cannot measure this
order in reality and because of confinement, we cannot directly measure the four-
momenta of the partons either. Instead, we have to take hadronization effects into
account. Lastly, to actually measure events we need a detector. This means that
add a detector simulation step to our Monte Carlo event generation chain. Our
more realistic generator setup and the resulting trainings will be discussed in this
chapter.

5.1 Event generation and training setup

For our more realistic event generation setup, we use a modified version of Sherpa
2.2.10 [27] that includes our parameterized splitting functions introduced in section
4.1. Sherpa does not make use of the symmetry of the gluon splitting, so all four
splitting kernels Pqq, Pgg,1, Pgg,2, Pgq have to be implemented. The hard process is

e+e− → qq̄ , q = u, d, s (5.1)

at ECMS = mZ again. Because of the leptonic initial state, we can ignore initial
state radiation, and we do not simulate pile-up. The weakly-decaying heavy c and
b quarks are not only disabled in the hard process but also in the parton shower
generator. In contrast to the toy shower generator, the D parameters are modified
with an universal factor accounting for next-to-leading-order corrections to the soft
gluon emission that is typically included in standard parton shower generators [78].
The parton shower has a cut-off at 1 GeV after which hadronization is simulated.

Because we want to examine the effects of hadronization alone and of hadronization
combined with detector effects, we either use the four-momenta of hadrons, charged
leptons and photons, or we pass the Sherpa output on to Delphes 3.4.2 [28] with
the default ATLAS card and use the four-momenta of the particle flow objects [52]
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Figure 5.1: Jet pT distributions of 100000 jets generated with Sherpa and our toy
shower at Standard Model parameters.

found by Delphes. In both cases, we use FastJet 3.3.4 [79] to find anti-kT jets [55]
with R = 1.2 and a lower pT cut-off of 20 GeV. The constituents of the jet with
the largest total pT are then sorted using our kT sorting algorithm. We only save
the first 13 constituents since the effect of the following softer constituents on the
inference performance is small.

Fig. 5.1 shows the pT distributions of the hadronized Sherpa jets and the jets from
our toy shower generator. The maximal pT is mZ/2 in both distributions. As no
lower cut-off is applied to the toy shower jets, the pT can be close to zero. The toy
shower pT distributions peaks at mZ/2 while the Sherpa jet pT distribution peaks
earlier because not the entire momentum of the hard quark is necessarily included
in the jet. These jets are much softer than typical LHC jets and going to higher
pT would likely result in more splitting information being contained in the sub-jet
observables. However, in this regime we would also expect a larger effect of the
calorimeter energy resolution.

To check the consistency of the Sherpa shower with our toy shower generator,
we compared the distributions of high-level observables for full showers without
hadronization and jet clustering in Sherpa, and with showering from both hard
quarks in the toy shower. This was done for different values of the splitting param-
eters and we found the distributions to be very similar. Even after comparing jets
instead of full events by using FastJet on the Sherpa events, and starting the
shower from one hard quark in the toy shower, the differences between the distribu-
tions were still small. This means that our method to efficiently generate single jets
in the toy shower generator proved to be a reasonable approximation.

The BayesFlow training setup is the same as for the toy shower data. We will
again vary two or three parameters at a time for the three different combinations of
parameters {Dqq, Fqq, Cqq}, {Dqq, Dgg} and {Cqq, Cgg, Cgq}. We use the same priors
as for the toy shower. Unlike for the toy shower, we also use a fixed number of jets
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per parameter point for the gluon-radiation parameters and we use the full QCD
shower instead of deactivating the Pgg and Pgq splittings. We found that the training
setup for variable numbers of jets per parameter point is still working for the Sherpa
showers, but due to the computationally costlier generation and training process,
we will not use it in the following analyses.

5.2 Effects of hadronization and detector

To show the effects of our splitting parameters on the parton showers and what
changes after hadronization and detector effects are taken into account, we pick the
parameter for the leading term of the gluon-radiation splitting function Dqq and vary
it over the interval [0.5, 2]. This is the same as the prior interval that we use for
the Dqq parameter. Fig. 5.2 shows histograms for four of the high-level observables
introduced in section 2.6, excluding N95 and xmax due to their high correlation with
the number of constituents nPF .

The numbers of constituents nPF for the toy shower are typically very low, and in
the case of Dqq = 0.5, the histogram peaks at a single constituent. For higher Dqq,
the splitting probability increases and therefore the nPF histogram shifts towards
higher values. Still, almost all of the showers have less than 10 constituents. The
hadronization process strongly increases the number of constituents, resulting in a
broad nPF distribution peaking between 14 and 16 depending on the value of Dqq.
This number is reduced again by the detector because of the limited resolution and
very soft constituents not being detected. The detector-level nPF distributions peak
between 9 and 11.

The distribution of the girth wPF for the toy shower has a large peak at 0 from jets
with a single constituent with a second peak around 0.15 from narrow jets with a
higher number of splittings. The distribution then slowly falls towards higher wPF .
Showers with a high girth are more likely for higher Dqq. For the hadronized jets
and after detector simulation, there is no peak from one-constituent jets, so they
peak between 0.15 and 0.2 depending on Dqq. The difference between the latter two
curves are small with a slight shift towards lower wPF for the detector.

The pTD distribution again looks very different for the toy shower compared to the
results after hadronization. This is again caused by the low numbers of splittings.
A single hard constituent results in pTD = 1. The values for two, three and four
constituents with equal pT are

√
2/2 ≈ 0.71,

√
3/3 ≈ 0.58 and

√
4/4 = 0.5. pTD

increases the less uniform the pT is distributed among the constituents. This man-
ifests itself in the peak structure of the histogram. The histograms for hadronized
jets with and without detector effects are again very similar with a broad maximum
around 0.4.

Finally, the two-point energy correlator C0.2 also has a peak from single-constituent
showers at 0 and very broad maximum around C0.2 ≈ 0.5. Again, the shape of
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Figure 5.2: Effects of varying the leading gluon-radiation parameter Dqq on the high-
level observables nPF, wPF, pTD and C0.2 for toy shower jets and Sherpa
jets with and without detector effects. The dotted lines show the results
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the distribution is less complex for the hadronized jets and the detector effects only
cause a slight shift of the histogram.

Even when the peaks from single-constituent jets in the toy shower histograms are
neglected, it is still valid to say that the hadronization effects are much more impor-
tant than the detector effects. This is why we first study the effects of hadronization
on the inference of shower parameters and then include the detector effects.

5.3 Results

5.3.1 Measuring the gluon-radiation parameters
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Figure 5.3: The estimated parameters plotted against the true parameters
{Dqq, Fqq, Cqq} for 1000 points randomly drawn from the prior for train-
ings on Sherpa jets with and without detector effects. The closer the
points are to the dotted line, the better was the recovery of the true
parameters.
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For the measurement of the three hierarchical gluon-radiation parameters {Dqq, Fqq, Cqq},
we generate the full QCD shower in Sherpa instead of looking at a pure gluon-
radiation shower like in the previous chapter. Fig. 5.3 shows the inference perfor-
mance over the whole prior with and without detector effects. Already from this
plot, it is apparent that the measurement uncertainties are much larger than for the
toy shower. Moreover, the plots for Cqq show that there is a larger region around
the boundaries of the prior interval where the parameter estimates are biased.

0.9 1.0 1.1

Dqq

2

4

6

8 σ =0.054

0.5 1.0 1.5

Fqq

0.9

1.0

1.1

Dqq

0.5 1.0 1.5

Fqq

1

2

σ =0.18

-5 0 5

Cqq

0.9

1.0

1.1

Dqq

-5 0 5

Cqq0.5

1.0

Fqq

-5 0 5

Cqq

0.1

0.2 σ =2.0

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

(a) Without detector effects

0.9 1.0 1.1

Dqq

2

4

6
σ =0.06

0.5 1.0 1.5

Fqq

0.9

1.0

1.1

Dqq

0.5 1.0 1.5

Fqq

1

2 σ =0.2

-5 0 5

Cqq

0.9

1.0

1.1

Dqq

-5 0 5

Cqq

0.5

1.0

Fqq

-5 0 5

Cqq

0.1

σ =2.3

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

(b) With detector effects

Figure 5.4: Posterior probabilities of the gluon-radiation parameters {Dqq, Fqq, Cqq}
for 10000 SM-like Sherpa jets with and without detector simulation.

Fig. 5.4 shows the posteriors for 10000 SM-like jets with and without detector
effects. It can be seen that compared to the results for the kT -sorted toy shower,
the estimated uncertainty for the hadronized jets is slightly larger for the finite
parameter Fqq, larger by a factor of ∼ 1.9 for the rest term Cqq and larger by a factor
of ∼ 2.8 for the leading term. However, the correlations between the parameter are
not stronger than in the toy shower. The uncertainties increase only slightly when
detector effects are applied. This matches our expectations from the previous section
where we stated that the hadronization effects are quantitatively more important
than the detector effects.

5.3.2 Measuring the leading terms

Next, we look at the leading parameters Dqq and Dgg, approximately corresponding
to a measurement of the QCD color factors CF and CA. Fig. 5.5 shows the posterior
distributions for jets with and without detector effects. Like in the case of kT -
sorted toy showers, Dqq has a lower estimated uncertainty than in the training
with the three gluon-radiation parameters. The detector effects make no significant
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Figure 5.5: Posterior probabilities of the leading parameters {Dqq, Dgg} for 10000
SM-like Sherpa jets with and without detector simulation.

difference. However, the uncertainty of the leading term for the triple-gluon splitting
explodes by a factor of more than 12 compared to the toy shower results. Also, the
two parameters are now strongly anti-correlated, contributing to the larger width
of the marginal distributions. As we are training on quark-initiated jets, the gluon
splittings are already much more rare than the quark splittings. Consequently it is
harder for the network to extract this information. The likely reason for the large
drop in performance going to hadronized results is the much larger number of jet
constituents (see Fig. 5.2). This makes it even harder for the network since the four-
momenta containing relevant information about the gluon splittings can appear in
many different positions in the list of input four-momenta. Comparing the results
for the full simulation chain with the results for the QCD Casimirs from LEP (see
section 2.2.3), we can see that the relative error of ≈ 5% for Dqq for only 10000 jets
is close to the error of the combined LEP result for CF , while our relative error for
Dgg is much larger than LEP measurement uncertainty for CA.

5.3.3 Measuring the rest terms

Lastly, we examine the results for the three rest term parameters Cqq, Cgg and Cgq,
shown in Fig. 5.6. The uncertainty of the parameter Cqq for the gluon-radiation
is roughly a factor two larger than the result for the kT -sorted toy shower. The
uncertainty is lower than in the training on the gluon-radiation shower parameters,
again indicating that separating the three hierarchical terms is difficult for the net-
work. The distributions for Cgg and Cgq are very similar to their respective prior
distributions. That means that the network was not able to extract any information
about these parameters from the data. Therefore, we give no numerical value for
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Figure 5.6: Posterior probabilities of the rest term parameters {Cqq, Cgg, Cgq} for
10000 SM-like Sherpa jets with and without detector simulation.

the standard deviation because it would only reflect our choice of the prior distri-
bution. Choosing a larger prior is not a reasonable option for the C parameters
because the rest terms would no longer be small, and the hierarchical nature of the
parameters D, F and C would be lost. The drop in performance is again caused by
the training on quark-initiated jets. As the estimated errors were already very large
for the leading parameter Dgg, it is not a surprising result.
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6 Summary and outlook

In this thesis, we proposed a new method to measure the fundamental properties
of QCD splitting functions using machine-learning techniques. First, we introduced
a general parameterization of the splitting functions with parameters for the di-
vergent and finite terms and introduced a pT -suppressed rest term to account for
contributions beyond the soft-collinear approximation. Since the splitting functions
are dominated by the divergent terms, measuring the parameters for those terms ap-
proximately corresponds to measurements of the QCD color factors CA and CF . We
implemented a toy shower generator that allows us to vary these parameters. The
generated parton four-momenta were then used to train a conditional invertible neu-
ral network (cINN) and a summary network according to the BayesFlow method.
This allowed us to estimate posterior distributions for the splitting parameters from
sets of many jets.

We looked at two different sortings of the generated parton four-momenta as input
for the summary network. Firstly, truth-sorted partons still contained information
about the order in which the splittings were generated due to the way we imple-
mented the toy shower generator. Secondly, we introduced the kT sorting strategy
based on the kT algorithm to approximate the thruth sorting. As a baseline, we
also trained the network on six established high-level jet observables. We looked at
three combinations of parameters to test our method: The three parameters of a
shower with only gluon-radiation, the two leading parameters of the gluon-radiation
and triple-gluon splittings and the three rest term parameters. In all three cases,
our network was able to measure the parameters. As expected, we got the best re-
sults for truth-sorted constituents, but the measurement uncertainties for kT -sorted
constituents were still significantly smaller than for trainings on high-level observ-
ables. Also, we were able to demonstrate that the estimated posterior standard
deviations have the expected inverse square root scaling behaviour with the number
of measured jets.

For a more realistic analysis including hadronization effects, we modified the Sherpa
parton shower generator to include our splitting parameterization. Furthermore, we
used Delphes with an ATLAS card to also take detector effects into account. We
showed that our network was still able to extract the gluon-radiation parameters.
The relative uncertainty of our result was in a similar order of magnitude as the er-
ror of the LEP measurement of CF , even though we only used a very small number
of jets in our measurement. Also, we were able to measure the rest term parameter
of this splitting. These are very encouraging results, indicating that our method
could be used to improve measurements of the QCD casimirs and that even testing
higher-order contributions might be within reach. Estimating the parameters of the
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gluon splitting function Pgg and Pgq proved to be more challenging as we trained
the network on quark-initiated showers, making these splittings more rare. Our nu-
merical results for the posterior standard deviations from all the trainings discussed
in this thesis can be found in Table 6.1.

Setup & Parameter Toy shower Sherpa
Truth-sorted kT -sorted HLO Hadronized Detector-level

{Dqq, Fqq, Cqq}
σ(Dqq) 0.012 (0.013) 0.019 (0.013) 0.024 (0.015) 0.054 (0.025) 0.060 (0.03)
σ(Fqq) 0.05 (0.04) 0.16 (0.07) 0.19 (0.08) 0.18 (0.09) 0.20 (0.1)
σ(Cqq) 0.97 (0.8) 1.04 (0.8) 1.7 (1.0) 2.0 (1.2) 2.3 (1.4)

{Dqq, Dgg}
σ(Dqq) 0.013 (0.013) 0.013 (0.013) 0.013 (0.013) 0.047 (0.025) 0.047 (0.025)
σ(Dgg) 0.034 (0.034) 0.033 (0.033) 0.035 (0.035) 0.41 (0.23) 0.50 (0.25)

{Cqq, Cgg, Cgq}
σ(Cqq) 0.86 (0.8) 0.90 (0.8) 1.0 (1.0) 1.5 (1.0) 1.4 (0.9)
σ(Cgg) 3.4 (1.4) 5.6 (1.7) 5.4∗ (1.7) ∗ ∗ ∗ ∗
σ(Cgq) 2.7 (1.1) 4.9 (1.4) 5.2∗ (1.4) ∗ ∗ ∗ ∗

Table 6.1: Estimated posterior standard deviations for 10000 SM-like jets for all the
trainings discussed in this thesis. This includes the results for the gluon-
radiation parameters, leading parameters and rest term parameters. For
the toy shower, the results for truth-sorted and kT -sorted low-level ob-
servables and for high-level observables are shown. For the hadronized
Sherpa showers, the results with and without detector simulation are
shown. The asterisks denotes non-Gaussian posterior distributions. The
values in parentheses are the estimated errors when only one parameter is
varied. They are calculated by taking a slice of the posterior distribution
at the Standard Model value instead of using the marginal distribution.

Our approach proved to be a promising first step in the direction of a systematic
study of QCD splitting properties, opening many avenues for future research. Us-
ing gluon-initiated jets instead of or mixed with quark-initiated jets could help to
improve the inference performance for the parameters of the Pgg and Pgq splitting
kernels where the splitting particle is a gluon. The next step would then be to
go from the electron-positron scattering process at ECMS = mZ to a LHC scenario
with harder jets. This would increase the number of splittings and therefore also
the effect of the splitting kernel parameters, but at the same time, the calorimeter
energy resolution would have a larger influence on the results. Also, for a more
realistic LHC simulation, effects of pile-up and initial state radiation would have to
be included. After enhancing the simulations like that, the final step would be to
test the performance of our method on actual experimental data.

One of the main problems of the BayesFlow method is that it does not scale well
for higher numbers of jets. This is not an issue when conventional likelihood methods
are used. The maximum number of jets for which the posterior can be extracted is
determined by the maximum number of jets per parameter point during the training.
We used up to 105 jets per data point, however in a typical LHC analysis one would
like to analyze millions of jets. Splitting up the data, doing the inference in multiple
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batches and combining the results afterwards would require a better understanding
of the involved systematic uncertainties.

Finally, one of the most interesting features of the BayesFlow network is that it
learns to calculate jet summary statistics in an unsupervised way. A closer exami-
nation of those summary statistics regarding their interpretability might be a way
to develop high-level observables that improve the extraction of the information of
interest from the data.
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A Additional plots

In the discussion of the inference results, we have focused on the network perfor-
mance at a single parameter point. However, it is important to check that the
estimated posterior distributions are unbiased over the whole prior of the trainings.
This can be done using simulation-based calibration or by looking at the estimated
posterior means against the true parameters for several points in the training dataset.
For the measurements of {Dqq, Dgg} and {Cqq, Cgg, Cgq}, these plots are shown in
Fig. A.1 and A.2.
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Figure A.1: The estimated parameters plotted against the true parameters
{Dqq, Dgg} for 1000 points randomly drawn from the prior for train-
ings on our four different data sets. The closer the points are to the
dotted line, the better was the recovery of the true parameters.
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Figure A.2: The estimated parameters plotted against the true parameters
{Cqq, Cgg, Cgq} for 1000 points randomly drawn from the prior for train-
ings on our four different data sets. The closer the points are to the
dotted line, the better was the recovery of the true parameters.
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