
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Sander Hummerich

born in Heidelberg (Germany)

2021

Hybrid Flows for LHC Events

Increasing Precision of LHC Event Generation with Normalizing
Flows Using Hybrid Objectives

This bachelor thesis has been carried out by Sander Hummerich at the
Institute for Theoretical Physics Heidelberg

under the supervision of
Prof. Tilman Plehn

Abstract

At the LHC experiments, proper big data is produced, entailing the need for fast analysis
tools. For event generation, the long established Monte Carlo methods cannot keep pace
with the rising amount of future collider runs. Modern approaches use machine learning
models for more efficient event generation. In this thesis, we will show how to add preci-
sion to event generation of LHC processes with normalizing flows using hybrid objectives.

Zusammenfassung

In den LHC Experimenten werden große Datenmengen erzeugt, für deren Verarbeitung
schnelle Analyse-Methoden benötigt werden. Etablierte Monte-Carlo-Methoden, zur
Simulation von LHC Prozessen, können nur schwer mit den steigenden Datenmengen von
zukünftigen Experimenten schritthalten. Modernere Methoden bedienen sich Modellen
des maschinellen Lernens, um die die Effizienz der Simulationen zu erhöhen. In dieser
Arbeit wird gezeigt, wie man mithilfe hybriden Trainings die Präzision von generativen,
invertierbaren neuronalen Netzwerken erhöhen kann.

Contents

1 Introduction 1

2 Neural Networks 2
1 Introduction to Neural Networks . 2
2 Training Neural Networks . 4
3 Unsupervised Learning and Generative Models 7
4 Normalizing Flows . 8
5 Hybrid Learning . 12

5.1 Maximum Mean Discrepancy . 12
5.2 Flow GAN . 14

3 Phenomenology 16
1 A Glimpse at Relativistic Kinematics . 16
2 Hadron Collider Physics . 16
3 Jets . 17
4 Drell-Yan Process . 18
5 WZ Production and Decay . 19

4 Methodology 20
1 Training Data . 20
2 Generative Model . 21
3 Hybrid Training with MMD . 22
4 Hybrid Training as a Flow-GAN . 23

5 Results 24
1 Drell-Yan Data Set . 24
2 WZ Data Set . 31
3 Latent Space Refinement - an Outlook . 36

6 Conclusion 39

Bibliography

1 Introduction
The Standard Model of Particle Physics (SM), which describes the fundamentals of our
universe with quarks, leptons and bosons, has been established in numerous experiments.
A concluding moment was the discovery of the Higgs Boson at the Large Hardron Collider
(LHC) at CERN. In search of new physics beyond the SM, new experiments at the LHC
are already in progress, while data from old events is not even analyzed yet. To analyze
the enormous amounts of data produced in past and future collider runs, powerful tools,
such as algorithms for event generation, are needed. Until now, the established methods
are Monte Carlo Simulation based event generators such as Madgraph [1] et cetera. More
modern techniques use machine learning models for event simulations. Using density es-
timation techniques, generating collider events becomes more efficient than Monte Carlo
based methods. Still, since the generation process does not rely on a physical background
but only on the learned distribution, the density estimators often lack precision on mul-
tidimensional physical correlations.

Normalizing flow models or invertible neural networks find a wide range of applications
in the scientific world. These range from parameter estimation of pandemic models to
speech synthesis . The unique invertible structure of flow-based models gives the oppor-
tunity to solve problems in an invertible manner. For LHC physics, many neural network
based approaches for various kinds of applications have been proposed in recent years.
These include generative adversarial networks variational autoencoders and normalizing
flows applied to event generation [2], unfolding [3, 4], event unweighting [5], super reso-
lution for jet images [6] or jet tagging [7, 8].

Extending the previous approaches we will use a normalizing flow model for event gen-
eration. Furthermore, we show how an additional hybrid objective might help to obtain
control over the generation process and to nudge the model towards learning highly cor-
related data correctly. In this context, we combine a usual normalizing flow model with
an adversarial discriminative network as proposed in [9]. Our network setup will be ap-
plied to event generation of the well-known Drell-Yan Process as well as WZ-diboson
production.

1

2 Neural Networks
1 Introduction to Neural Networks

In this section, the fundamentals of neural networks will be discussed.

The basic building block of a neural network is a node referred to as a neuron. A neuron
gets inputs xi, i ∈ {1, ..., n} and transforms it to an output z. This transformation is
usually split into two parts as illustrated in figure 2.1. First, a linear preactivation is
applied, and then a in general nonlinear activation function is applied to the preactivated
input:

Preactivation: z̃ = β · x + b, (2.1)
Activation: z = Φ(z̃). (2.2)

......

Figure 2.1: Single neuron

β is called the weight vector which has the same dimension as the input x. The product
of β and x is a scalar product. The bias b is a scalar offset. Common choices for the
activation function are the Rectified Linear Unit (ReLU) and its variants, such as the
Exponential Linear Unit (ELU), as well as the logistic sigmoid function (σ):

ReLU(z̃) =

{
z̃ if z̃ > 0

0 else
, ELU(z̃) =

{
z̃ if z̃ > 0

ρez̃−1 else
, σ(z̃) =

1

1 + ez̃
. (2.3)

These three activation functions as well as other widely used activation functions are
shown in figure 2.2.

2

(a) (b)

Figure 2.2: Common activation functions (a) ReLU and its variations (b) other popular
activation functions

Single neurons are arranged in subsequent layers l ∈ {1, ..., L}, holding neurons m ∈
{1, ...,Ml}. The data input, the output of the network, and all layers in between are
referred to as input layer, output layer, and hidden layers respectively. For example
in classification tasks, each hidden layer successively transforms the data such that the
problem becomes linear in the output layer. It becomes clear that data with certain
complexity can only be transformed to a linear problem if the depth L and widths Ml of
the network are sufficiently big.

...

...

...

...

...

...

...

...

Hidden Layers
Input
Layer

Output
Layer

Layer
Node

Figure 2.3: Fully connected neural network

In a bigger picture, a neural network can be seen as a transformation fΘ : x 7→ z with

3

parameters Θ, which have to be optimized by minimizing a cost function. Due to the
non-linearity of the activation function the functional space on Rd, being covered by
a neural network, is huge. The Universal Approximation Theorem [10] states that an
arbitrary function f ∈ Lp = {f |(

∫
R
|f(x)|pdx)

1
p } can be approximated arbitrarily well

by a sufficiently wide neural network.

2 Training Neural Networks

To optimize the parameters Θ of a neural network, one has numerous optimization algo-
rithms to choose from. Still Gradient Descent is the fundamental concept behind all of
them and therefore worth explaining.

The parameters Θ of a neural network are chosen such that a loss function L is min-
imized. For sufficient complex models these optimal parameters cannot be determined
analytically. To optimize the parameters, one therefore computes the gradient of the
loss ∇ΘiL with respect to each parameter and updates the parameters in the opposite
direction of steepest descent:

Θ
[t]
i ← Θ

[t−1]
i − α∇ΘiL. (2.4)

Here we introduced the learning rate α, which determines the size of each update step.
These updates are performed until the gradient vanishes. The goal of this method is to
find the global loss minimum, which is not guaranteed since the gradient vanishes in a
bad local minimum as well, as illustrated in figure 2.4.

Bad Local Minimum

Global Minimum

Figure 2.4: Stochastic Gradient Descent in a made up loss-landscape

4

Plain Gradient Descent often leads to bad convergence which can be improved by up-
dating the parameters Θ more frequently. Therefore, the total training set {xi}Ni=1 is
subdivided into small batches {B1, ..., BB}, performing gradient optimization steps for
each of these batches successively. This method is called stochastic Gradient Descent
(SGD) or mini-batch Gradient Descent.

Optimization algorithms like Momentum [11] build on this basic idea. Their purpose is
to stabilize training by updating the parameters Θ using a momentum term, which is
the exponential weighted moving average of the gradients so far:

Θ
[t]
i ← Θ

[t−1]
i − αm[t], m[t] = β1m

[t−1] + (1− β1)∇ΘiL, β1 ∈ [0, 1]. (2.5)

Through this momentum term, the resistance to statistical outliers and bad local min-
ima is increased making the convergence more stable as illustrated in figure 2.5. The
parameter β1 regulates how much the newly computed gradient affects the optimization
step. In static setups with a constant loss-landscape β1 is chosen rather high, whereas
in dynamical systems such as a Generative Adversarial Network, which will be discussed
later, β1 must be chosen smaller to allow for some flexibility.

 SGD with Momentum

 SGD

Figure 2.5: SGD in comparison to SGD with Momentum

The even more advanced Adam optimizer [12] improves on the fact that the momentum
term leads to inattention to atypical samples, by introducing an acceleration term for
each dimension separately:

v[t] = β2v
[t−1] + (1− β2)(∇ΘiL)2, β2 ∈ [0, 1]. (2.6)

This acceleration term, which is the exponential weighted second moment of the gradient,
serves as a measurement of the variance of the gradient along each direction. The gradient

5

steps along directions with high gradient are weighted by the inverse squareroot of the
acceleration term:

Θ
[t]
i ← Θ

[t−1]
i − α m[t]

√
v[t] + ε

, ε > 0. (2.7)

The method to compute the gradient of the loss for every single parameter is Backprop-
agation. Starting with the gradient of the last layer, it computes the gradients of the
previous layer using the chain rule and the already computed gradients [13].

In equation 2.4 the learning rate α was introduced. Training a neural network is a bal-
ancing act between exploration (large α) and exploitation (small α). A good learning rate
scheduler speeds up convergence by large gradient steps in the beginning, while main-
taining precision with small steps at the end. Schedulers used throughout this thesis are
a step scheduler decreasing α after a fixed number of epochs and a OneCycle scheduler
introduced by [14].

A neural network is trained on a set of data instances {xi}Ni=1 drawn from the true
probability density distribution P (x). The expectation value of the loss function is
approximated by a mean over these data instances:

〈...〉x∼P (x) ≈
1

N

N∑
i=1

... . (2.8)

Since neural networks can represent highly complex functions and we train on a finite
number of data instances overfitting can occur. This happens if the network does not
account for statistical fluctuations in the data, perfectly fitting each data point including
statistical outliers. In figure 2.6 we show how a cubic spline interpolation overfitts a
cosine correlation with some additional noise.

Figure 2.6: Simple example of overfitting

6

Methods to prevent overfitting and to stabilize training to a certain degree include L1
and L2 Regularization, punishing large weights, Spectral Normalization [15], normalizing
the input of each layer by the spectral norm, and Dropout [16], randomly setting parts
of neuron inputs to zero.

Another significant factor in training a neural network successfully is preprocessing the
input data. Thereby, it is important to ensure all data dimensions are of the same mag-
nitude such that all dimensions are about equally significant for the optimization. This
can be achieved by simply normalizing each dimension by subtracting the mean µ and
dividing by the variance σ. Another powerful preprocessing step is called Principal Com-
ponent Analysis (PCA), which transforms the data to a new coordinate system where
the coordinate axes are in the direction of biggest variance in the data. Furthermore,
applying specific functions to the data instances might help the network in some scenarios.

3 Unsupervised Learning and Generative Models

In machine learning, there are in general three types of problems: supervised learning,
unsupervised learning and reinforcement learning. The major difference separating un-
supervised learning from the other two is that in unsupervised learning the model does
not learn correlations between data instances xi, and labels yi (supervised learning) or
rewards ri (reinforcement learning) but rather learns structures and correlations in the
data itself.

In unsupervised learning, a key assumption is that the data is drawn from an unknown
probability density distribution P (x). The main learning motives are density approxi-
mation, where the probability density is learned, and feature extraction, where crucial
properties of the distribution are learned [17].

The goal of generative models is to approximate the true probability density PΘ(x) ≈
P (x) by a model with parameters Θ. This model then can be used to generate new data
instances that fit well into the learned data distribution. The most common objective to
train a generative model results from the Maximum Likelihood Principle introduced by
R. A. Fisher. The idea of this principle is to choose the model parameters Θ such that the
likelihood of the true data {xi}Ni=1 given the model PΘ and its parameters is maximized.
The objective can be expressed as minimizing the Negative Log-Likelihood [18]:

Θ̂ = argmin
Θ

N∑
i=1

−log[PΘ(xi)]. (2.9)

7

A big problem in physics is that the theories evolved so far work well in certain scenarios
and limits, but many effects are not yet understood by theorists. Therefore, numerically
finding some hidden structures in a data set might provide understanding beyond the
known theoretical models. Furthermore, generative models yield the possibility to simu-
late huge amounts of data way faster than common Monte Carlo based methods, which
is essential for future LHC and other collider runs.

4 Normalizing Flows

Normalizing flows or Invertible Neural Networks (INNs) [19] are models that realize a
mapping fΘ between two probability density distributions P (x) and P (z). In this thesis,
they are used as a generative model, where P (x) is the probability density the model
should learn and P (z) is a known probability density that can be chosen arbitrarily but
usually is a multidimensional standard normal distribution P (z) = N (0, I) in the so-
called latent space. The catch of normalizing flows is that the mapping fΘ is invertible
such that one can map from data space X ⊆ Rddata to latent space Z ⊆ Rdlatent and vice
versa:

fΘ : X → Z, x 7→ z, (2.10)

f−1
Θ : Z → X , z 7→ x. (2.11)

Therefore, the model can be trained in the forward direction (X → Z) and generate in
backward direction (Z → X), sampling from the known latent space distribution.

To ensure the invertibility of fΘ, it is constructed as a homeomorphism between the spaces
X and Z. This yields some restrictions for the model. Firstly, the dimension of the latent
space has to be the same as the dimension of the data space because otherwise, according
to the Theorem of the Invariance of the Dimension, X can not be homeomorphic to Z:

ddata = dlatent. (2.12)

Secondly, the network fΘ has to be a bijection, which only can be attained if all layer
transformations Φl are bijective:

fΘ = ΦL ◦ ... ◦ Φ1, (2.13)

f−1
Θ = Φ−1

1 ◦ ... ◦ Φ−1
L . (2.14)

Due to the design of fΘ as a homeomorphism the topological properties of the data in
X are preserved in Z.

8

Figure 2.7: Topological transformation from data space X to latent space Z under fΘ

for a two dimensional toy model

Sampling z ∼ P (z) then approximates sampling from the true probability distribution
P (x) by the change of variables formula:

P (x) ≈ PΘ(x) = P (z) · |Jz|, Jz = det
(∂fΘ(x)

∂x

)
. (2.15)

The Jacobian accounts for the change of probability density under fΘ. Naively com-
puting Jz is quite expensive (O(d3)). Therefore, so-called coupling layers are used, not
only implementing the invertibility but also ensuring that the Jacobian determinant is
tractable. The transformation of an input x to an output z is done in the following
procedure [19]:

1. Split the input x = [x1, ..., xD]→ xu = [x1, ..., xD
2

], xl = [xD
2

+1, ..., xD]

2. Compute some parameters θ(xu) of a function hθ depending on xu

3. Transform xl 7→ hθ(xl), xu 7→ xu

4. Output z = [xu, hθ(xl)] = [zu, zl]

This procedure is illustrated schematically in figure 2.8.

9

θ

Figure 2.8: Coupling layer

The transformation hθ is a homeomorphism, which is applied element wise. The param-
eters θ are usually computed by an arbitrary neural network. Because only transforming
the last D

2 instances in each layer is not beneficial, permutation layers are built inbetween
the coupling layers:

fΘ = Φ1 ◦O1 ◦ ... ◦OL−1 ◦ ΦL. (2.16)

In this thesis, we will use soft-permutation layers, which are randomly generated rotation
matrices from SO(d), as provided by [20].

Due to this layer design, the Jacobian matrix for each coupling layer becomes triangular
and the determinant simply the product of the diagonal entries.

∂Φl(x)

∂x
=

(
1

∂hθ(xl)
∂xu

0 ∂hθ(xl)
∂xl

)
,

∂hθ(xl)

∂xu
<∞.

There are several possibilities to implement hθ. Herinafter we want to discuss two of
them.

Affine transformation: An affine transformation consists of an elementwise multipli-
cation (�) with s(xu) and addition (⊕) of t(xu):

xl 7→ xl � s(xu)⊕ t(xu) = zl, (2.17)
zl 7→ (yl 	 t(xu))� s(xu) = xl. (2.18)

This transformation is invertible regardless of the functions s(·) and t(·), which therefore
can be implemented as non-invertible neural networks [19]. For reasons of numerical
stability two adjustments to equation 2.18 are implemented:

s(xu)← exp
[
a tanh

[1

b
s(xu)

]]
, a, b > 0. (2.19)

10

Firstly, we use a tanh : (−∞,∞) → [−1, 1] to soft-clamp s(xu) in the interval [−a, a].
Secondly, the soft clamped value is exponentiated such that the division by s(xu) be-
comes a multiplication with exp[−s(xu)].

Cubic Spline Transformation: A cubic spline coupling transformation entails more
flexibility due to a mapping hθ : [0, 1] 7→ [0, 1] that consists of joining together multiple
monotonic increasing cubic polynomials in a way that the result is differentiable. The
free parameters θ of this mapping, which will be computed by a neural network with
input xu, are the positions of the knots at which the individual polynomials are linked
and the boundary derivatives. [21] The first knot must be at (0, 0) and the last at (1, 1).
To realize the mapping from [0, 1] to [0, 1] we scale down a previously defined interval
[min,max] at the input of each coupling layer.

Figure 2.9: Cubic spline interpolation

In figure 2.9 we show a cubic spline interpolation on the interval [0, 1] with nine bins.

The training objective of an INN results from comparing the generated probability density
to the desired distribution using the Kullback-Leibler (KL) divergence:

Θ̂ = argmin
Θ

KL(P (x)||PΘ(x)) =
〈

log
[P (x)

PΘ(x)

]〉
x∼P (x)

= 〈log[P (x)]〉x∼P (x) − 〈log[PΘ(x)]〉x∼P (x).

(2.20)

The first term is independent of the model and can therefore be dropped. The second
term is the negative log likelihood and realizes an exact maximum likelihood objective,

11

using the change of variables formula in equation 2.15:

LLatent = 〈log[P (z = fΘ(x))]〉x∼P (x) − log[|Jz|]. (2.21)

For latent variables distributed according to a standard normal probability densityN (0, I)
the loss then reads:

LLatent =
〈fΘ(x)2

2

〉
x∼P (x)

− log[|Jz|]. (2.22)

5 Hybrid Learning

As explained in section 4, the loss objective of an ordinary normalizing flow network
results from the maximum likelihood principle and is evaluated in latent space Z. Mod-
els trained on this objective often lack precision on the generated density distributions
compared to other generative models [9]. To improve on accuracy, we can formulate loss
objectives in the data space X and combine them with the maximum likelihood objective
in a hybrid objective. This setup is illustrated in figure 2.10.

INN

Figure 2.10: Schematic illustration of hybrid learning

5.1 Maximum Mean Discrepancy

If the data space X is very large, structures and correlations that cover only a small area
of the whole space might be overseen by the network. To force the network to learn these
tight structures correctly, a Maximum Mean Discrepancy (MMD) loss can be helpful.
The idea of MMD is to map two probability density distributions of a variable u onto

12

a so-called reproducing kernel Hilbert space H by a positive-definite kernel function and
compare them in this space [22]:

k : X → H. (2.23)

For a variable u distributed according to the true probability density distribution P (u),
approximated by the model PΘ(u), the MMD loss reads as:

L2
MMD = (〈k(u)〉u∼P (u) − 〈k(u)〉u∼PΘ(u))

2 (2.24)

= 〈k(u)k(u)〉u,u∼P (u) + 〈k(u)k(u)〉u,u∼PΘ(u) − 2〈k(u)k(u)〉u∼P (u),u∼PΘ(u).

(2.25)

To narrow down the loss on the relevant structures, common kernel functions are the
Gaussian kernel or the Breit Wigner (BW) kernel as used in [2]:

kGaussian : u 7→ exp
[−u2

2σ

]
, kBW : u 7→ σ2

u2 + σ
. (2.26)

Here, the width σ is a hyperparameter.

Example: The effect of the loss function can be best understood considering a simple
example on R: Let the true data be sampled from a normal distribution with variance
σ2
t and let the generated data be approximated by a normal distribution with variance
σ2
p:

P (x) = exp
[−x2

σ2
t

]
, PΘ(x) = exp

[−x2

σ2
p

]
.

Furthermore, we use the Gaussian kernel function (equation 2.26). The MMD loss then
reads as:

L2
MMD = 〈k(x)k(x)〉x,x∼PΘ(x) + 〈k(x)k(x)〉x,x∼P (x) − 2〈k(x)k(x)〉x∼P (x),x∼PΘ(y)

=

∫
R

dx

∫
R

dx k(x)k(x)PΘ(x)PΘ(x) +

∫
R

dx

∫
R

dx k(x)k(x)P (x)P (x)

− 2

∫
R

dx

∫
R

dx k(x)k(x)P (x)PΘ(x)

=
1√

(1 + σ2
p)

2 − σ4
p

+
1√

(1 + σ2
t)

2 − σ4
t

− 2
1√

(1 + σ2
p)(1 + σ2

t)− σ2
pσ

2
t

.

This function is depicted for σt = 1 in a two dimensional case in figure 2.11 and has a
global minimum at σp = σt and thereby P (x) = PΘ(x) which is the desired behavior.

13

Figure 2.11: MMD loss landscape in two dimensions for the analytically solved example
(σt = 1)

5.2 Flow GAN

Another method to tune some structures is training a discriminator network explicitly
or implicitly on the problematic structure, using its feedback to optimize the generative
network.
In general a discriminator D is a network that learns to distinguish whether an instance
u is drawn from the true probability density distribution P (u) or from the models’
approximation PΘ(u):

D : U → D = [0, 1], u 7→ D(u). (2.27)

Hereby, an output of 1 corresponds to u ∼ P (u) and an output of 0 corresponds to
u ∼ PΘ(u). The mapping onto [0,1] is enforced by a sigmoid activation function (equa-
tion 2.3) in the output layer of the discriminative network.

The discriminator is trained minimizing the binary Cross Entropy (BCE) loss:

LDisc = −〈log[D(u)]〉u∼P (u) − 〈log[1−D(u)]〉u∼PΘ(u). (2.28)

The discriminator outputD∗(u) ∈ [0, 1] for a perfectly trained network can be interpreted
as proportional to the probability of the data instance being sampled from the true
distribution P (u ∼ P (u)|u). Therefore, the discriminator output can be used to rebalance
the generated data instances xi = f−1

Θ (zi) by introducing so-called weights [23]:

wi =
D(xi)

1−D(xi)
∝ P (xi ∼ P (xi)|xi)
P (xi ∼ PΘ(xi)|xi)

. (2.29)

Note that we can train the discriminator on some variables u that not necessarily have
to be equal to the generator outputs x but can be a correlated function of them instead

14

or additionally.

Then, the generative and discriminative model can be trained as a Generative Adversarial
Network (GAN) [24] by feeding an adversarial loss back to the generative model:

LAdv = 〈log[D(u)]〉u∼P (u) + 〈log[1−D(u)]〉u∼PΘ(u). (2.30)

For a perfectly trained discriminator D∗(u), the adversarial loss objective implements a
comparison of the generated and true probability density distribution, using the Jensen-
Shannon (JS) divergence:

LAdv ∝ JS(PΘ‖P) + const . (2.31)
(2.32)

The JS divergence can be expressed in terms of the KL divergence, which was introduced
in equation 2.20:

JS(PΘ‖P) =
1

2
KL
(
PΘ

∥∥∥PΘ + P

2

)
+

1

2
KL
(
P
∥∥∥PΘ + P

2

)
. (2.33)

A well-performing discriminator outputs D(u) = 1 for u ∼ P (u) and D(u) = 0 for
u ∼ PΘ(u) in most cases. A technical problem with this theoretically optimal behavior
is that the adversarial loss becomes close to zero and the gradients of the sigmoid output
of the discriminator vanish. A simple solution to this problem is to introduce a non-
saturating (ns) adversarial loss [25]:

LnsAdv = −〈log[D(u)]〉u∼PΘ(u). (2.34)

In our case, the network setup differs from an ordinary GAN in one important point: In
an ordinary GAN setup the generative model is trained on the adversarial loss term only.
Here, we combine the adversarial loss in data space with a maximum likelihood loss in
latent space. Therefore, we call this setup a Flow-GAN as proposed in [9].

15

3 Phenomenology
1 A Glimpse at Relativistic Kinematics

Relativistic kinematics introduces a four dimensional space called space-time, consist-
ing of a time dimension additional to the ordinary three dimensional space dimensions.
Kinematics in this four dimensional space are best described by four-vectors of position
X or momentum P:

X = (t,x)T , P = (E,p)T , c = ~ = 1. (3.1)

Here, x and p are the three-position and three-momenta of space.
The energy of a relativistic particle consists of its kinetic energy p and its invariant mass
M:

E2 = p2 +M2. (3.2)

The invariant mass is the mass of a particle measured in a frame where the particle
is at rest. To transform or boost the four-momenta of a particle to another frame, a
Lorentz-Transformation is used:

P̃‖ =

(
Ẽ
p̃‖

)
=

(
γ −γβ
−γβ γ

)(
E
p‖

)
, β = ‖vframe‖, γ =

1√
1− β2

. (3.3)

β is a measurement of the velocity of the frame with respect to a globally resting frame.
Note that only the momentum p‖ parallel to the movement of the frame is affected by
the boost, whereas p̃⊥ = p⊥.
The Minkowski scalar product 〈·|·〉 and therefore its induced norm | · | is a invariant
property under a Lorentz-boost:

〈U|V〉 = U0V0 − U1V1 − U2V2 − U3V3 = 〈Ũ|Ṽ〉. (3.4)

The norm of a particles’ four-momentum |P| equals its center of mass (CM) energy,
which is clear for a single particle where the center of mass energy equals its invariant
mass ECM = M . This yields the restriction that the CM energy of the decay products
of a single particle is limited by the invariant mass of the mother particle due to energy
conservation. In fact this restriction is violated in some cases, leading to the introduction
of virtual or off-shell particles that do not live on the mass shell dictated by equation
3.2.

2 Hadron Collider Physics

In hadron colliders like the Large Hadron Collider (LHC), hadrons, mostly protons and
or antiprotons, are accelerated to a CM energy

√
s and forced to collide with a Luminos-

ity, indicating the number of collisions per second and square centimeter. At the LHC,

16

the maximum center of mass energy is 14 TeV [26]. In a collision, partons x1 and x2 of
the colliding hadrons are involved in the hard interaction. These two partons do not nec-
essarily have the same momentum but follow the so-called Parton Distribution Function
(PDF) instead. These PDFs and thereby the scattering behavior of the hadrons strongly
depend on the energy scale of the process [27]. For high energies, the strong coupling
between the partons is only a small perturbation and they can be treated as asymp-
totically free, interacting in hard processes. For energies below a certain energy limit,
the pertubative description of Quantum Chromo Dynamics (QCD) is not sufficient and
a non-pertubative description of the then so-called soft processes must be established.
Due to the individually varying momenta of the interacting partons, the center of mass
of the collision is boosted in beam direction.

The kinematics of the collision are best described by the Pseudorapidity η, the transverse
momentum pT , and the azimuthal angle φ, where η is defined by the polar angle θ [28]:

η = − log[tan

(
θ

2

)
]. (3.5)

For each particle involved or produced in the collision the Cartesian four-momentum can
be expressed by (m, η, pT , φ):

p =

 sin(φ)pT
cos(φ)pT
sinh(η)pT

 , E =
√
m2 − (p2

x + p2
y + p2

z), P = (E,p)T . (3.6)

3 Jets

At the LHC, heavy resonances of the Standard Model (SM), such as the W±-, Z- or
H-boson as well as the t-quark, are frequently produced in hard processes. These reso-
nances from the hard scattering decay in further hard processes into quarks and leptons,
which then produce showers of quark and lepton radiation. At lower energies around
Λsoft, the produced quarks begin to hadronize forming bound states of quark anti-quark
pairs, mesons, or baryons consisting of three quarks. [28]

u

d

c

s

t

b

Quarks
e

Leptons Bosons
g

Z W

H

Figure 3.1: Particles of the Standard Model

17

These Jets of particles produced in the soft processes are then measured by the detec-
tor. Recombination algorithms like the kT [29], Cambridge-Aachen [30] or anti-kT [31]
algorithm then can be used to reconstruct information about the particles from the hard
process. For massive particles, these jets are often called fat-jets due to their large spread
in the η-φ plane. For fat jets, reconstruction is best done with the four-momenta of the
particles, because we want to take the invariant mass of the particles into account. After
reconstruction, the massive particles can be found in the reconstruction chain by search-
ing for invariant mass changes that correspond to the specific masses. [32].

4 Drell-Yan Process

The Drell-Yan process is probably the best known process occuring at the LHC and other
particle colliders. The underlying process is rather simple:

qq → Z/γ∗ → l+l−. (3.7)

Two quarks annihilate to form a on-shell Z-boson, with a resting energy of about
91.2 GeV, or a virtual photon that then decays leptonically. The corresponding feyn-
man graph is shown in figure 3.2.

1

2

Figure 3.2: Feynman graph: Drell-Yan process

Assuming we get the four-momenta {Pi}2i=1 for the two final state particles in figure 3.2
from a reconstruction algorithm or simply from a simulation of the hard process, we can
reconstruct the invariant masses of the Z-boson:

M2
Z = |P1 + P2|2. (3.8)

Considering the fact that the original Z-boson is only boosted in the beam direction, we
know that the momenta of the two jets transverse to the beam direction must sum up
to zero in each direction, respectively:

2∑
i=1

px,i = 0,

2∑
i=1

py,i = 0 or pT,1 = pT,2, ∆φ1,2 = π. (3.9)

18

5 WZ Production and Decay

Another process observed in the LHC experiments is the production of a WZ-diboson
state, where theW -boson decays hadronically and the Z-boson leptonically. At the LHC,
the dibosonic state is dominantly produced by a quark, anti-quark initial state with an
intermediate single off-shell W -boson [33]:

qq →W →WZ → qql+l−. (3.10)

Here, both bosons are on-shell with masses MW = 80.4 GeV and MZ = 91.2 GeV. The
corresponding feynman graph is shown in figure 3.3.

3

1

2

4

Figure 3.3: Feynman graph: WZ diboson production (s-channel) and decay

We can reconstruct the invariant masses for theW - and Z-bosons from the four-momenta
of the two quarks and two leptons in the final state:

M2
Z = |P1 + P2|2, M2

W = |P3 + P4|2. (3.11)

Furthermore, we know from the momentum conservation:

4∑
i=1

px,i = 0,
4∑
i=1

py,i = 0 or pT,W = pT,Z , ∆φW,Z = π. (3.12)

19

4 Methodology
1 Training Data

The training data for the INN is generated using Madgraph. The data is simulated on
parton level, which means that no showers, hadronization or detector effects have been
simulated. Hence, the data space X will in future be referred to as parton space. From
these events 50% are used for training (Train) and the other 50% for validation (True).
We have two data sets we want to apply our network on. The simplest Drell-Yan data
set consists of two final state leptons resulting from the Drell-Yan process as described
in section 4. The more complicated data set, the WZ data set, consists of two final state
leptons and two final state jets from the process explained in section 5. In parton space
X the INN is trained on the observables

{pT,i, φi, ηi} or {px,i, py,i, pz,i}

for i = 1, 2 or i = 1, ..., 4, depending on the data set. This is not exactly true, since we
know from equations 3.9 and 3.12 that some of these observables can directly be derived
from others, which reduces the dimension of the manifold of the data in parton space.

(a) (b)

Figure 4.1: Momentum conservation in x direction (a) Drell-Yan Data Set (b) WZ Data
Set. The momentum density in x direction is plotted for the leptons in the
Drell-Yan data set and for the Z- and W -boson of the WZ data set.

The Drell-Yan data set satisfies the momentum conservation exactly, while there is a
deviation of magnitude ∼ 10−4 in the WZ data set. Therefore, we enforce the momentum
conservation when training on the Drell-Yan data set, since not considering the reduced

20

dimension in parton space might inhibit the homeomorphic behavior of normalizing flows.
As explained in section 4, the latent variables z in the equal dimensional latent space Z
are distributed according to a standard normal distribution. In these latent variables the
network should encode the relevant information about the distribution of the input data
and correlations in the data.

2 Generative Model

The implemented INN architecture makes use of the Framework for Easily Invertible
Architectures (FrEIA) [20]. The main coupling blocks used are the AllInOne-Block from
FrEIA and a CubicSpline-Block adapted from [21]. The subnetworks of these coupling
blocks consist of dense layers with ELU activation. Optional for the subnetworks is
dropout and spectral norm. The optimization algorithm of choice is the Adam optimizer
[12]. Optional a L2 regularization is used with this optimizer. Additionally to the
acceleration term in the optimization step, we use a OneCycle or Step scheduler, as
introduced in section 2. For each instance in data space X the observables described in
section 1 are available. We use several preprocessing steps PreP : X → X̃ to transform
the data into a new space X̃ in which the data is easier to learn for the network. The
preprocessing steps include:

1. pT 7→ log[pT − pT,min] (if trained on pT)

2. φ 7→ tanh−1[φπ] (if trained on φ)

3. Normalization

4. Principal Component Analysis

The first and second preprocessing steps transform the pT and φ distribution to a distri-
bution more similar to a standard normal distribution, as shown for the φ observable in
figure 4.3.

21

Figure 4.2: Preprocessing of the φ distribution. Left: unpreprocessed data distribu-
tion for φ1 and φ2 as a 2D histogram, right: 2D histogram after applying
tanh−1

[
x
π

]
to each data instance.

3 Hybrid Training with MMD

The MMD objective will be used exclusively to improve the generated probability density
distributions of the mass correlation. Since we do not train on the mass distribution
directly, the mass correlation must be computed from the output of the generative model
using equation 3.6 and 3.2. The mass distributions only cover a thin hypersurface in
the total phase space. Hence, we use the kernels introduced in equations 2.26 to narrow
down the effect of the MMD objective on the relevant structure. As suggested in [2], the
width σ of the kernel should be adjusted to the width of the distributions predicted by
the model, in order to avoid that relevant instances to the MMD Loss are suppressed
by the kernel. Therefore, the width must be adaptive to the broadness of the generated
distribution during training. This can be realized in several ways.

1. Cooling-Kernel: A Cooling-Kernel simply uses an epoch-wise decaying kernel
width, for example an exponential decay:

λt = λ0e−tτ .

Here t is the epoch and τ a time constant. The main obstacle using this method is
to adjust τ to the rapidity of changes in distribution width.

2. Estimate-Kernel: A Estimate-Kernel estimates the current width of the distri-
bution every now and then, to use this estimate as a new kernel width. A problem
arising with this method are an instable training when the kernel width and there-
fore the MMD loss is changed abruptly.

3. Multi-Kernel: A Multi-Kernel in general is the sum of multiple MMD losses
using multiple kernel widths. The used kernel widths are chosen such that for

22

every distribution width a more or less matching kernel is contributing to the loss.
This method is quite easy to apply and does not suffer from numerical instabilities.
That is why a multi-kernel was the method of choice for this thesis.

4 Hybrid Training as a Flow-GAN

The Flow-GAN objective will be used for all distributions we want to improve in pre-
cision. Because we want to train the discriminative network not only on the output of
the generative network in X̃ , we need to transform the output data to a new space U
by a function DPreP : X̃ → U , where we define new observables we want to train the
discriminator on. Unless stated otherwise, these observables are normalized.

PreP INN
D
PreP

Disc

Figure 4.3: Schematic illustration of the Flow-GAN setup

As a discriminative network a fully connected network with Leaky ReLU activation will
be used. Just as with the generative network, the Adam optimizer will be used for the
gradient steps. Additional, a L2 regularization, gradient penalty, or spectral norm will
be applied if needed. When training the generative and discriminative networks as ad-
versaries, we change the parameters (β1, β2) from their default values of (0.9, 0.99) to
(0.5, 0.9) as discussed in section 2.

23

5 Results
1 Drell-Yan Data Set

The simplest problem was the Drell-Yan data set. Here we had to design the generative
network intentionally small to have some space for improvement. A baseline model with
an architecture noted in table 5.1 was trained for 300 epochs.

input observables {px,l1, pyl1, pz,l1, pz,l2}
block type AllInOne

number blocks 20
layers per block 3
nodes per layer 256
soft clamping 5

parameters to optimize 1.4M
spectralnorm 3

L2 0.0
learning rate 2 · 10−4 (OneCycle)
batchsize 2k

Table 5.1: Setup of the generative model for the Drell-Yan data set

The resulting probability density distribution for the mass correlation is shown in figure
5.1.

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100 110 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 5.1: Baseline mass distribution for the Drell-Yan data set. Panel 1: probability
density distribution of events, panel 2: quotient of the true and generated
density (bin-wise), panel 3: relative deviation from the true density (bin-
wise).

24

First, we apply a MMD loss objective to the mass distribution. The Loss term LMMD

(equation 2.25) is added to the Loss of the generative network weighted with a factor
λMMD. Considering the Baseline Mass distribution in figure 5.1 using multiple Gaussian
kernels with widths σ ∈ {5, 2, 1} seemed appropriate. For λMMD ∈ {0.2, 2} the effects
of the MMD Loss are shown in figure 5.2.

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100 110 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

(a)

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100 110 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

(b)

Figure 5.2: Mass distributions with hybrid MMD objective for the Drell-Yan data set (a)
λMMD = 0.2 (b) λMMD = 2

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−200 −100 0 100 200

pz,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

(a)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−200 −100 0 100 200

pz,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

(b)

Figure 5.3: Momentum distributions in z direction with hybrid MMD objective for the
Drell-Yan data set (a) λMMD = 0.2 (b) λMMD = 2

We can see how the additional loss term affects the performance on the mass distribu-

25

tion with increasing weight. Nevertheless, considering other distributions, we see that
the MMD loss objective does not force the generative network to converge towards the
global minimum, since loosing precision in other phase space regions, as shown for the
pz,l1 distribution in figure 5.3. Here we see how the generative INN optimizes for the
MMD loss correctly. Still, we do not have any control over how the two loss terms in-
teract in the hybrid objective. The main hyperparameter to tune is the balance of both
loss terms λMMD, which does not influence how the MMD objective acts in other phase
space regions.

Next, we train the network as a Flow GAN, explained in section 5.2. To train in adver-
sarial mode we introduce a discriminative network with properties listed in table 5.2.

input observables {MZ}
number layers 4
nodes per layer 64

parameters to optimize 9k
spectralnorm 7

gradient penalty 7

L2 1 · 10−3

learning rate 1 · 10−4 (OneCycle)
batchsize 2k

Table 5.2: Setup of the discriminative model for the mass distributions of the Drell-Yan
data set

As a first step, we train the discriminative network for 20 epochs by itself, minimizing
the BCE loss objective LDisc (equation 2.28). Using the discriminator output on the
generated events, we can compute weights according to equation 2.29 and reweight each
event. The resulting probability density of the reweighted mass distribution is shown in
figure 5.4.

26

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Figure 5.4: Reweighted mass distribution for the Drell-Yan data set. Panel 1-3: see figure
5.1, panel 4: discriminator output (bin-wise).

The discriminative network converges almost perfectly to the theoretical minimum D∗,
where the probability interpretation of the output matches the ratio of the generated and
true probability density distributions.

Next, we train the generative and discriminative network as adversaries for 20 more
epochs by adding the adversarial loss term LAdv (equation 2.30) weighted with a factor
λAdv to the loss objective of the generative network. For λAdv ∈ {1, 10}, the effects of
the hybrid objective on the density distribution of the Z-boson mass is shown in figure 5.5.

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(a)

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(b)

Figure 5.5: Mass distributions with Flow-GAN objective for the Drell-Yan data set (a)
λAdv = 1 (b) λAdv = 10

27

Using the hybrid objective, the generative network is nudged towards learning the mass
density distribution correctly. Still, when considering the other distributions it becomes
clear that the network is not converging to a joint minimum of both loss terms in the
hybrid objective, because the precision of other distributions decreases when the precision
of the mass distribution increases. Density histograms for other phase space regions can
be found in the appendix.

The next step to retain precision in other phase space regions, is to train the gener-
ative network on other distributions as well. The momentum distributions generated
by the generative network described in table 5.1 are shown in figure 5.6. Since we en-
forced momentum conservation, the momentum distributions for both leptons are equal.
Furthermore, the distributions in x and y direction are symmetrical. Therefore, it is
sufficient to consider the px,l1 and pz,l1 distributions.

0.009

0.010

0.011

0.012

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−40 −20 0 20 40

px,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

(a)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−200 −100 0 100 200

pz,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

(b)

Figure 5.6: Baseline momentum distributions for the Drell-Yan data set (a) px,l1 (b) pz,l1

In contrast to the good performance on the mass distribution, simply training a dis-
criminative network on the one-dimensional momentum distributions yields rather poor
reweighting results. This can be best understood considering that the discriminative
network only ’sees’ a one-dimensional distribution and therefore can not learn any cor-
relations that help distinguishing between generated and true events. Furthermore, the
discriminator is only trained on a small batch (here 2k samples) of instances that underlie
statistical batch-fluctuations as shown in figure 5.7.

28

Figure 5.7: Batch fluctuations on the pz,l1 distributions. Computed for a batchsize of 2k
instances over 10k batches for the Drell-Yan data set.

Still, when training on multidimensional discriminator input including the mass observ-
able, the reweighting results improve, which is expected due to the multidimensional
correlations the discriminator now can use for its classification.
Therefore, we trained a pretrained discriminator with a multidimensional input summa-
rized in table 5.3 together with the pretrained generative model as adversaries for 100
epochs.

input observables {MZ , px,l1, pyl1, pz,l1, pz,l2}
number layers 6
nodes per layer 128

parameters to optimize 67k
spectralnorm 7

gradient penalty 7

L2 1 · 10−3

learning rate 5 · 10−5 (Step)
batchsize 2k
λAdv 2

Table 5.3: Setup of the discriminative model for the momentum distributions of the Drell-
Yan data set

The effects on the momentum distributions as well as on the mass distribution are shown
in figure 5.8.

29

0.009

0.010

0.011

0.012

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−40 −20 0 20 40

px,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(a)

0.000

0.002

0.004

0.006

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−200 −100 0 100 200

pz,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(b)

Figure 5.8: Distributions after adversarial training for the Drell-Yan data set (a) px,l1 (b)
pz,l1

Especially in the area around 0GeV of the px,l1 distribution, there is some serious im-
provement of the generated density with relative errors δ around the 1% mark. Other
distributions improve slightly, as shown for the pz,l1- distribution in figure 5.8. Stll, con-
sidering the course of the loss functions, we see that the minimizing the adversarial loss
leads to a increase of the latent loss as show in figure 5.9, until both loss terms saturate
in an equilibrium.

0 20 40 60 80 100

Epoch

−0.020

−0.018

−0.016

−0.014

−0.012

−0.010

L
at

en
t

L
os

s
L L

a
te
n
t

Latent Loss

−0.674

−0.672

−0.670

−0.668

−0.666

−0.664

A
d

ve
rs

ar
ia

l
L

os
s
L A

d
v

Adversarial Loss

Figure 5.9: Course of the adversarial and latent loss in adversarial training for the Drell
Yan data set with pretrained models (Coupling λAdv = 1, learning rate 5·10−5

(Step)).

30

This shows that the current Flow-GAN setup might improve the distributions, but does
not lead to finding the joint global minimum of both loss terms.

2 WZ Data Set

TheWZ data set consists of four final state particles. Since the momentum conservation
is not exact in the training data set, we do not enforce it by reducing the dimension of
the input. Therefore, we train the generative network on a 16 dimensional input in X̃ ,
requiring a more powerful generative model summarized in table 5.4.

input observables {pT,i, ηi, φi}4i=1

block type Cubic Splines
number blocks 24
layers per block 3
nodes per layer 128

parameters to optimize 2.7M
spectralnorm 7

L2 0.0
learning rate 2 · 10−4 (OneCycle)
batchsize 4k

Table 5.4: Setup of the generative model for the WZ data set

After 500 epochs of training, there is still some room for improvement in the mass density
distributions shown in figure 5.10.

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

70 80 90 100 110 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100

MW [GeV]

0.1

1.0

10.0

δ[
%

]

(b)

Figure 5.10: Baseline mass distributions for the WZ data set (a) MZ (b) MW

31

In the remaining distributions, especially the distributions of the pseudorapidity η lacks
in precision in some areas as one can see for the two jets in figure 5.11.

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

−6 −4 −2 0 2 4 6

ηj1

0.1

1.0

10.0

δ[
%

]

(a)

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

−6 −4 −2 0 2 4 6

ηj2

0.1

1.0

10.0

δ[
%

]

(b)

Figure 5.11: Baseline pseudorapidity distributions for the WZ data set (a) ηj1 (b) ηj2

Since the complexity grew on this data set, we designed the input observables of the dis-
criminator in U more carefully. The preprocessing of the discriminative network DPreP
consists of reverting the preprocessing of the generator PreP , defining a set of observ-
ables on X , normalization and PCA. The discriminative network we used is summarized
in table 5.5.

input observables {MZ ,MW } ∪ {px,i, py,i, pz,i}4i=1

number layers 6
nodes per layer 128

parameters to optimize 67k
spectralnorm 7

gradient penalty 7

L2 1 · 10−4

learning rate 2 · 10−4 (OneCycle)
batchsize 4k

Table 5.5: Setup ot the discriminative model for the WZ data Set

Note that we trained on the Cartesian momenta {px,i, py,i, pz,i} instead of {pT,i, ηi, φi} we
used as input for the generative model. With these input observables, the discriminative
model performed better. This makes sense considering equation 3.6, showing how the
Cartesian momenta are a multidimensional correlation of the generator observables.

32

Using the setup shown in table 5.5, we trained the discriminator for 400 epochs on the
previously trained generative model. Since the mass distributions in figure 5.10 deviated
the most compared to all other distributions, the discriminative network primarily focuses
on the mass correlation.

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(b)

Figure 5.12: Reweighted mass distributions for the WZ data set (a) MZ (b) MW

The reweighted mass distributions perfectly match the validation curves with relative
errors below 1% in the area of the peak.

Considering the weight distributions in the 2D η phase space region, for the discriminator
setup in table 5.5, we can see visible weight structures, in the areas the generative model
lacks in precision. Those structures in other distributions only become visible in the last
few percent of reweighting in the mass peak. This shows how the discriminative model
focuses on the most relevant structures first. Furthermore, we see how a large part of
reweighting the events with incorrect mass correlation does not affect other phase space
regions noticeably. In figure 5.13 we show the 2D weight distributions in the (ηl1, ηl2)
phase space for two discriminative models trained for 200 and 400 epochs, respectively.
The model trained for 400 epochs reweights the mass density distributions about 1-2
% better, than the model trained for 200 epochs. In figure 5.12 we show the mass
distributions for the longer trained model, while the mass distributions for the shorter
trained model can be found in the appendix.

33

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6
η j

2

0.0

0.4

0.8

1.2

1.6

2.0

w
ei

gh
t

(c
la

m
p

ed
to

¡2
)

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

−0.004

0.000

0.004

ch
an

ge
in

d
en

si
ty

(a)

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6
η j

2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
en

si
ty

of
ev

en
ts

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

0.0

0.4

0.8

1.2

1.6

2.0

w
ei

gh
t

(c
la

m
p

ed
to

¡2
)

−6 −4 −2 0 2 4 6
ηj1

−6

−4

−2

0

2

4

6

η j
2

−0.008

−0.004

0.000

0.004

0.008

0.012

0.016

0.020

0.024

ch
an

ge
in

d
en

si
ty

(b)

Figure 5.13: Bin-wise weight distribution in the (ηl1, ηl2) phase space for the discrimi-
native model from table 5.3 (a) trained for 200 epochs (b) trained for 400
epochs

Training on other input, excluding the mass distributions led to great reweighting results
for example in the η distributions as shown in figure 5.14.

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

−6 −4 −2 0 2 4 6

ηj1

0.00
0.25
0.50
0.75
1.00

D
(x

)

(a)

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

−6 −4 −2 0 2 4 6

ηj2

0.00
0.25
0.50
0.75
1.00

D
(x

)

(b)

Figure 5.14: Reweighted pseudorapidity distributions for the WZ data set (a) ηj1 (b) ηj2.
The discriminative network was trained on the generator output without
further preprocessing for 200 epochs

The reweighted pseudorapidity distributions have relative errors around the 1% mark in
the regions of high statistics (η ∈ [−2, 2]).

34

In theory, we know for shure that the coupled latent and adversarial loss terms have a
well-defined global minimum:

LLatent + λAdvLAdv is minimal⇔ P (x) = Pθ(x).

Anyhow, we found, setting up a Flow-GAN converging towards this global minimum,
is difficult on the Drell-Yan data set and even more difficult on the more complex WZ
data set. For all setups so far, training as adversaries did not lead to a convergence to a
global minimum but to bad local minima instead. When training the pretrained models
summarized in tables 5.4 and 5.5 as adversaries, both loss objectives increased during
training as exemplary shown in figure 5.15.

0 20 40 60 80 100

Epoch

10−1

100

L
at

en
t

L
os

s
L L

a
te
n
t

Latent Loss

100

101

102

A
d

ve
rs

ar
ia

l
L

os
s
L A

d
v

Adversarial Loss

Figure 5.15: Course of the adversarial and latent loss in adversarial training with pre-
trained models (Coupling λAdv = 1, learning rate 1 · 10−4 (OneCycle)).

Training the generative and discriminative models as adversaries without pretraining,
led to a generative network converging to a local minimum in which either the distribu-
tions were not affected at all by the adversarial loss, or in a local minimum with improved
precision on some distributions but drastically decreased precision on other distributions.

For this problem, using a hybrid objective is possible in theory, but becomes hard to
implement for rising complexity of the problem. We think the main caveat making the
optimization task for the generative INN a really complex problem is the fact that the
losses are computed on both parton space X and latent space Z. This makes it hard to
control in which phase space regions and how the generative network optimizes for each
one of the loss objectives. Therefore, we propose to use the discriminative network not
on parton space but on the latent space instead.

35

3 Latent Space Refinement - an Outlook

Since transferring information from the discriminative model to the generative model us-
ing an additional adversarial loss term did not improve the generative model, we consider
using the discriminative model on latent space. In this section, we want to take a look at
the latent space Z to analyse the mapping behavior of fΘ : X → Z and give and outlook
on information transfer from the discriminative model to the generative INN not in the
parton space but in the latent space itself.

For reasons of better presentation, we consider the three-dimensional Drell-Yan problem
in the following two exemplary plots. For the generator described in table 5.1, we trans-
form the test data set under fΘ onto the latent space. The distributions in latent space
Z are shown in figure 5.16.

−2.5 0.0 2.5
0.0

0.1

0.2

0.3

0.4

−2 0 2
−3

−2

−1

0

1

2

3

−2.5 0.0 2.5
0.0

0.1

0.2

0.3

0.4

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2.5 0.0 2.5
0.0

0.1

0.2

0.3

0.4

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2.5 0.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

Figure 5.16: Distribution of the test data set transformed to the latent space for the
Drell-Yan data set. 2D-Histograms: bottom row: x-axis: latent dimension
1, y-axis latent dimensions 2-4 from left to right, row above: x-axis: latent
dimension 2, y-axis latent dimensions 3-4 from left to right, et cetera. 1D-
Histograms: distribution in the latent dimension shown on the x-axis of the
2D-histograms in each row.

The optimal latent distribution is a standard normal distribution. In figure 5.16 we can

36

see how the mapping of real data onto the latent space differs from this optimal mapping
behavior. Of course, these deviations can be the result of a lack of expressiveness of fΘ

but also topological constraints might play a role as discussed in section 4.

Additionally, to the already discussed reweighting effect in parton space, we can consider
the reweighting effects of the discriminative model described in table 5.3 on the latent
space. Therefore, we sample a set of instances {zi}Ni=1 from the real latent space dis-
tribution P (z) = N (0, I) and send them through the network in backward direction by
applying f−1

Θ : zi 7→ xi, which is the standard data generation procedure discussed in
section 4. Then, the discriminative network is used to generate weights wi to reweight
each data pair (zi, xi). In figure 5.17 the weight dsitributions in latent space clamped to
a maximum value of 2 are shown.

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

Figure 5.17: Weight distribution in the latent space for the Drell-Yan data set. 2D-
Histograms: see figure 5.16

Comparing the 2D-histograms in figure 5.16 and figure 5.17 it becomes clear that reweight-
ing in parton space indirectly enforces sampling from a latent space distribution similar
or equal to the transformed data distribution under fΘ.
The information of the discriminator can be used to create a reweighted latent space to
sample from for example using the Laser-Protocol proposed in [34].

37

Furthermore, we can train a discriminative network on the latent space to distinguish
between the latent Gaussian distribution and the models’ mapping fΘ. Besides the ap-
parent differences between the one-dimensional distributions, the discriminative network
can check whether the generative network maps onto a multidimensional correlated la-
tent distribution PΘ(z), since we do not have any correlations in P (z). In this setup
the adversarial loss is computed in the latent space, which might make the optimization
task easier for the generative network. Furthermore, this approach results in unweighted
events in parton space X since reweighting is directly possible in latent space. Neverthe-
less, we can not train on the specific observables we want to improve.

Another promising approach is to use the information that the discriminative model
provides and modify the latent loss function of the ordinary INN, instead of introducing
an additional loss term. Using the discriminator in parton space X , we can rebalance
the data {(xi, zi)}Ni=1 by the inverse of the computed weight and compute the latent loss
over these rebalanced data instances. That way the attention of the latent loss is moved
towards events, with small weights. The modified latent loss objective for a standard
normal latent distribution then reads:

L∗Latent =
1

N

N∑
i=1

1

wi

(fΘ(xi)
2

2
− log[|Jz|i]

)
. (5.1)

Assuming a perfectly trained discriminative model, this loss has a minimum with respect
to the weights if all weights are equal to one, which requires P (x) = PΘ(x). First runs
with this modified objective yield promising results that can be found in the appendix.

38

6 Conclusion
In this thesis we showed how an invertible network, used for LHC event generation, be-
haves with a hybrid objective in parton space.

As a first application, we applied the model to the Drell Yan data set. On this setup, we
first used a MMD loss function computed on parton space additional to the maximum
likelihood objective in latent space. For the mass distribution the MMD loss is applied
to, we found an increase in precision when training the generative model on this hybrid
objective. Anyway, we had no control over the effects of the additional loss objective in
other phase space regions. This becomes particularly relevant, since the mass observable
of each event is a multidimensional correlation of other observables. Using the Flow-
GAN setup, we were able to control how the discriminative model influences other phase
space regions, using the output of the discriminator to reweight all distributions in phase
space event-wise. Furthermore, we were able to influence the the adversarial feedback
by choosing the input observables for the discriminative model. Nevertheless, we found
that it is hard to find a Flow-GAN setup in which both loss terms are minimzed simulta-
neously. Instead, the generative model converged to a equilibrium state, in which either
the adversarial or the latent loss objective were minimized depending on the balance of
both loss terms.

The second application was the WZ data set. Here the complexity of the problem is
doubled as this data set consists of four final state particles instead of two. Using a dis-
criminative on the generated events, we were able to reweight the generated events to a
precision of around 1%, which is a massive improvement. Still, transferring the feedback
of the discriminative model to the generative model using an adversarial loss term in
parton space, to obtain unweighted events, failed.

For our current setup, using a hybrid objective in latent space and parton space did not
lead to a generative model converging towards the global minimum. In theory and in
application this is possible as shown in [9]. Nonetheless, for our problem it seems that
implementing a hybrid objective in parton space is not very productive yet. Therefore, we
propose to use the discriminative network not via a hybrid objective, but to reweight the
latent space using the Laser protocol [34], to apply a discriminative model in the latent
space, or use the discriminative model to rebalance the latent loss function. The latter re-
cently showed promising results, which hopefully will be presented in an upcoming paper.

The summarized results of this thesis are:

1. We can use a MMD objective to improve precision on specific distributions, but
have no control over the optimization effects in other phase space regions.

39

2. Using a discriminative network gives more control over how and which distributions
are affected by the hybrid objective.

3. We can reweight the generated events to obtain distributions with relative errors
around the 1% mark with respect to the validation data.

4. We can not yet use an adversarial loss term to nudge the generative model towards
the theoretical global minimum.

5. We could do a reweighting procedure in latent space, not transferring the informa-
tion of the discriminative model to the generative model.

6. We found first promising results modifying the latent loss function, using the dis-
criminative network.

Anyhow, using a discriminative model on the generated density distributions helps us,
since machine learning methods for event generation of LHC processes often lack precision
and control over the generation process. By using a discriminative network, we get ahead
in both of these caveats. The reweighting procedure gives precisely weighted events in
good agreement with the events simulated using Monte-Carlo-Methods. Furthermore, we
can use the discriminative feedback as a measurement on how precise our simulations are
in certain phase space regions. Generating unweighted events needs further exploration
of various approaches. Especially the latent space refinement leaves open a large area
of further research. We hope to find a more elegant way, to give the generative model
external feedback.

40

Bibliography
[1] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao,

T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations. https://arxiv.org/abs/1405.0301, 2014.

[2] Anja Butter, Tilman Plehn, and Ramon Winterhalder. How to gan lhc events.
https://arxiv.org/abs/1907.03764, 2019.

[3] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, and Ramon Win-
terhalder. How to GAN away Detector Effects. https://arxiv.org/abs/1912.
00477, 2020.

[4] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rous-
selot, Ramon Winterhalder, Lynton Ardizzone, and Ullrich Köthe. Invertible net-
works or partons to detector and back again. https://arxiv.org/abs/2006.06685,
2020.

[5] Mathias Backes, Anja Butter, Tilman Plehn, and Ramon Winterhalder. How to
GAN Event Unweighting. https://arxiv.org/abs/2012.07873, 2021.

[6] Pierre Baldi, Lukas Blecher, Anja Butter, Julian Collado, Jessica N. Howard, Fabian
Keilbach, Tilman Plehn, Gregor Kasieczka, and Daniel Whiteson. How to GAN
Higher Jet Resolution. 12 2020.

[7] Anja Butter et al. The Machine Learning landscape of top taggers. https://arxiv.
org/abs/1902.09914, 2019.

[8] Michela Paganini. Machine Learning Algorithms for b-Jet Tagging at the ATLAS
Experiment. https://arxiv.org/abs/1711.08811, 2018.

[9] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Bridging implicit and
prescribed learning in generative models. https://arxiv.org/abs/1705.08868,
2017.

[10] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. https://www.sciencedirect.com/science/
article/abs/pii/0893608089900208?via%3Dihub, 1989.

[11] Ning Qian. On the momentum term in gradient descent learning algorithms. https:
//doi.org/10.1016/s0893-6080(98)00116-6, 1999.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
https://arxiv.org/abs/1412.6980, 2017.

[13] Yoann Boget. Adversarial regression. generative adversarial networks for non-linear
regression: Theory and assessment. https://arxiv.org/abs/1910.09106, 2019.

https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/1912.00477
https://arxiv.org/abs/1912.00477
https://arxiv.org/abs/2006.06685
https://arxiv.org/abs/2012.07873
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/1711.08811
https://arxiv.org/abs/1705.08868
https://www.sciencedirect.com/science/article/abs/pii/0893608089900208?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/0893608089900208?via%3Dihub
https://doi.org/10.1016/s0893-6080(98)00116-6
https://doi.org/10.1016/s0893-6080(98)00116-6
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1910.09106

[14] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of resid-
ual networks using large learning rates. http://arxiv.org/abs/1708.07120, 2017.

[15] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. https://arxiv.org/abs/1802.
05957, 2018.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
https://www.jmlr.org/papers/volume15/srivastava14a/, 2014.

[17] Peter Dayan, Maneesh Sahani, and Grégoire Deback. Unsupervised learning. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2531, 1999.

[18] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richard-
son, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction
to machine learning for physicists. https://arxiv.org/abs/1803.08823, May 2019.

[19] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pelle-
grini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Ana-
lyzing inverse problems with invertible neural networks. https://arxiv.org/abs/
1808.04730, 2019.

[20] Framework for easily invertible architectures. https://github.com/VLL-HD/FrEIA.

[21] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-spline
flows. https://arxiv.org/abs/1906.02145, 2019.

[22] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space
embedding for distributions. http://www.gatsby.ucl.ac.uk/~gretton/papers/
SmoGreSonSch07.pdf, 2007.

[23] Anders Andreassen and Benjamin Nachman. Neural networks for full phase-space
reweighting and parameter tuning. https://arxiv.org/abs/1907.08209, 2020.

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
https://arxiv.org/abs/1406.2661, 2014.

[25] Maciej Wiatrak, Stefano V. Albrecht, and Andrew Nystrom. Stabilizing generative
adversarial networks: A survey. https://arxiv.org/abs/1910.00927, 2020.

[26] Eva Halkiadakis. Introduction to the LHC Experiments. https://inspirehep.
net/literature/853601, 2010.

[27] Richard D. Ball, Valerio Bertone, Stefano Carrazza, Luigi Del Debbio, Stefano Forte,
Patrick Groth-Merrild, Alberto Guffanti, Nathan P. Hartland, Zahari Kassabov,
José I. Latorre, and et al. Parton distributions from high-precision collider data.
https://arxiv.org/abs/1706.00428, 2017.

http://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957
https://www.jmlr.org/papers/volume15/srivastava14a/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2531
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2531
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1808.04730
https://arxiv.org/abs/1808.04730
https://github.com/VLL-HD/FrEIA
https://arxiv.org/abs/1906.02145
http://www.gatsby.ucl.ac.uk/~gretton/papers/SmoGreSonSch07.pdf
http://www.gatsby.ucl.ac.uk/~gretton/papers/SmoGreSonSch07.pdf
https://arxiv.org/abs/1907.08209
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1910.00927
https://inspirehep.net/literature/853601
https://inspirehep.net/literature/853601
https://arxiv.org/abs/1706.00428

[28] Simone Marzani, Gregory Soyez, and Michael Spannowsky. Looking inside jets.
https://arxiv.org/abs/1901.10342, 2019.

[29] Stephen D. Ellis and Davison E. Soper. Successive combination jet algorithm for
hadron collisions. https://arxiv.org/abs/hep-ph/9305266, 1993.

[30] Yu.L Dokshitzer, G.D Leder, S Moretti, and B.R Webber. Better jet clustering
algorithms. https://arxiv.org/abs/hep-ph/9707323, 1997.

[31] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. The anti-ktjet clustering
algorithm. https://arxiv.org/abs/0802.1189, 2008.

[32] Tilman Plehn. Lectures on lhc physics. https://arxiv.org/abs/0910.4182, 2012.

[33] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. A. Abdelalim,
O. Abdinov, R. Aben, B. Abi, and et al. Measurement of w ± z production in
proton-proton collisions at

√
s = 7 TeV with the atlas detector. https://arxiv.

org/abs/1208.1390, 2012.

[34] Ramon Winterhalder, Marco Bellagente, and Benjamin Nachman. Latent space
refinement for deep generative models. https://arxiv.org/abs/2106.00792, 2021.

https://arxiv.org/abs/1901.10342
https://arxiv.org/abs/hep-ph/9305266
https://arxiv.org/abs/hep-ph/9707323
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/0910.4182
https://arxiv.org/abs/1208.1390
https://arxiv.org/abs/1208.1390
https://arxiv.org/abs/2106.00792

List of Figures

2.1 Single neuron . 2
2.2 Common activation functions . 3
2.3 Fully connected neural network . 3
2.4 Stochastic Gradient Descent in a made up loss-landscape 4
2.5 SGD in comparison to SGD with Momentum 5
2.6 Simple example of overfitting . 6
2.7 Topological transformation from data space X to latent space Z under fΘ

for a two dimensional toy model . 9
2.8 Coupling layer . 10
2.9 Cubic spline interpolation . 11
2.10 Schematic illustration of hybrid learning 12
2.11 MMD loss landscape in two dimensions . 14

3.1 Particles of the Standard Model . 17
3.2 Feynman graph: Drell-Yan process . 18
3.3 Feynman graph: WZ diboson production (s-channel) and decay 19

4.1 Momentum conservation in x direction . 20
4.2 Preprocessing of the φ distribution . 22
4.3 Schematic illustration of the Flow-GAN setup 23

5.1 Baseline mass distribution for the Drell-Yan data set 24
5.2 Mass distributions with hybrid MMD objective for the Drell-Yan data set 25
5.3 Momentum distributions in z direction with hybrid MMD objective for

the Drell-Yan data set . 25
5.4 Reweighted mass distribution for the Drell-Yan data set 27
5.5 Mass distributions with Flow-GAN objective For the Drell-Yan data set . 27
5.6 Baseline momentum distributions for the Drell-Yan data set 28
5.7 Batch fluctuations on the pz,l1 distributions for the Drell-Yan data set . . 29
5.8 Distributions after adversarial training for the Drell-Yan data set 30
5.9 Course of the adversarial and latent loss in adversarial training for the

Drell Yan data set . 30
5.10 Baseline mass distributions for the WZ data set 31
5.11 Baseline pseudorapidity distributions for the WZ data set 32
5.12 Reweighted mass distributions for the WZ data set 33
5.13 Bin-wise weight distribution in the (ηl1, ηl2) phase space 34

5.14 Reweighted pseudorapidity distributions for the WZ data set 34
5.15 Course of the adversarial and latent loss in adversarial training 35
5.16 Distribution of the test data set transformed to the latent space for the

Drell-Yan data set . 36
5.17 Weight distribution in the latent space for the Drell-Yan data set 37

List of Tables

5.1 Setup of the generative model for the Drell-Yan data set 24
5.2 Setup of the discriminative model for the mass distributions of the Drell-

Yan data set . 26
5.3 Setup of the discriminative model for the momentum distributions of the

Drell-Yan data set . 29
5.4 Setup of the generative model for the WZ data set 31
5.5 Setup ot the discriminative model for the WZ data Set 32

Appendix

0.008

0.009

0.010

0.011

0.012

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−40 −20 0 20 40

px,l1

0.00
0.25
0.50
0.75
1.00

D
(x

)

(a)

0.009

0.010

0.011

0.012

0.013

n
or

m
al

iz
ed

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−40 −20 0 20 40

px,l1

0.00
0.25
0.50
0.75
1.00

D
(x

)

(b)

px,l1 distributions with Flow-GAN objective for the Drell-Yan data set. The discrimina-
tive model is trained on {MZ} only. (a) λAdv = 1 (b) λAdv = 10

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
Z

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(c)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(d)

Reweighted mass distributions for the discriminative model from table 5.5 trained for
200 epochs

0.00

0.05

0.10

0.15

0.20

0.25
d
σ

d
M
Z

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(e)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(f)

10−4

10−3

10−2

d
σ

d
p
T
,l

1
[p

b
/G

eV
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(g)

0.00

0.05

0.10

0.15

d
σ

d
φ
l 1

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

−3 −2 −1 0 1 2 3

φl1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(h)

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
η
l 1

[p
b

/G
eV

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

−6 −4 −2 0 2 4 6

ηl1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

(i)

Generated event distributions using the reweighted latent loss objective. (a),(b): mass
distributions of the Z- and W -boson, (c),(d),(e): pT , η, φ distributions for the first
lepton. The setup of the generative network is equal to the setup in table 5.4. The
discriminative dense network has 256 layers à 256 nodes. Each of the networks was
trained for 400 epochs in total.

Acknowledgements

First of all, I want to thank Tilman and Anja to give me the opportunity to work on this
highly interesting topic in a great atmosphere. Moreover, I am highly grateful to Theo,
who not only implemented the code base of our project but helped me out all along these
months of research by answering questions, putting us back on track, and finally taking
a look at my thesis. In regard to answering questions and providing code, I would also
like to thank Armand and Ramon for their great support. Working together with Tobias
was always a lot of fun and very helpful when discussing new ideas. Last but not least
I want to thank the whole group for making this research project a really good time. It
was a pleasure getting to know all of you!

Erklärung
Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 7.8.2021, Sander Hummerichgood
-

	Introduction
	Neural Networks
	Introduction to Neural Networks
	Training Neural Networks
	Unsupervised Learning and Generative Models
	Normalizing Flows
	Hybrid Learning
	Maximum Mean Discrepancy
	Flow GAN

	Phenomenology
	A Glimpse at Relativistic Kinematics
	Hadron Collider Physics
	Jets
	Drell-Yan Process
	WZ Production and Decay

	Methodology
	Training Data
	Generative Model
	Hybrid Training with MMD
	Hybrid Training as a Flow-GAN

	Results
	Drell-Yan Data Set
	WZ Data Set
	Latent Space Refinement - an Outlook

	Conclusion
	Bibliography

