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Abstract:

Jets are a substantial background in any LHC analysis so studying their substruc-
ture is essential in the search for new physics but these studies suffer from poor
detector resolution in the forward region. The recent advent of deep generative
models and their impressive performance on images offer a valuable opportunity
to investigate if it is possible to enhance detector resolution through machine
learning. We apply a Generative Adversarial Network to QCD- and Top-Jets and
show that it is possible to super-resolve calorimeter images.

Zusammenfassung:

Jede LHC Analyse muss Hintergrundprozesse durch Jets beachten, daher ist ein
genaues Verständniss der Substruktur bedeutend in der Suche nach neuer Physik.
Dies wird jedoch durch eine geringe Detektorauflösung in Vorwärtsrichtung er-
schwert. Das Aufkommen generierender Modelle und deren beachtliche Leistung
in der Anwendung auf Bilder ist eine willkommene Möglichkeit zu untersuchen ob
es möglich ist die Detektorauflösung durch machinelles Lernen zu verbessern. Wir
wenden ein Generatives Modell auf QCD- und Top-Daten an und zeigen, dass wir
dadurch Kalorimeter Bilder super-auflösen können.
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1 Introduction

The standard model of particle physics, including Einstein’s theory of gravitation, is
by far the best known description of all fundamental forces. Despite its success there
remain open questions like the full mechanism of electroweak symmetry breaking,
related to the hierarchy problem [1], the nature of dark matter [2] or the mechanism
giving rise to neutrino masses [3]. Even questions purely within the standard model
remain to be investigated, for example precision studies of the Higgs boson. Because
these questions are so fundamental one needs to go to sufficient high energies to study
them and only modern particle accelerators can achieve this, among them the LHC
is leading.
Whatever the question is, jets play an important role at hadron colliders. Often
they are responsible for dominating backgrounds and the level of precision achieved
must be matched by the level these backgrounds can be understood and subtracted.
This is especially difficult in the forward region where detector resolution is much
lower than in the central region but often substantial amount of information could
be derived in this regime due to the nature of collinear splittings. Traditionally
cut based approaches have been employed as a first step for this task [4] but more
and more alternative approaches manage to outperform them. Leading candidates
include those based on machine learning. Often highly advanced techniques that
have been developed in a pure machine learning setting, can be used for physics
tasks, for example to speed up analyses [5].
Boosted Decision Trees have been employed for such tasks with great success [6] but
modern computational resources allow for the application of deep neural networks
that outperform those long standing approaches. Among them generative networks
have been granted a great deal of attention leading to networks that can copy famous
painters or compose music. In this thesis we will use these powerful generative
models to investigate if we can take them a step further in physics applications and
truly have them improve measurements. Specifically we will attempt to enhance jet
image resolutions, driven by the aforementioned reality of low detector resolution in
the forward region.
While we will not go as far as a real experimental setup would demand, we will
show that a modified generative network can perform such an enhancement for the
important cases of top- and qcd-jets as well as showing that these are not merely
learned on a case by case basis but that the network can make use of underlying
principles to enhance resolution of jet types it has not seen during training.
This thesis is organized as follows: In Section 2 we give a brief overview of jets at
hadron colliders and introduce the relevant variables to describe calorimeter entries
in terms of images. Section 3 gives an overview of the most basic machine learning
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principles allowing a network to learn. In Section 4 we specify our task and introduce
the generative model used in the analysis. Section 5 shows the principle ability of
the model to enhance resolution in the simplest cases while Section 6 is dedicated
towards an optimization of the model applied to top jets. In Section 7 we investigate
difficulties when applied to qcd jets and in Section 8 we perform a detailed study of
what we found to be an optimal setup. A summary of the results and an outlook
for future work is given in Section 9.
Most of the relevant results of this thesis will be implicitly or explicitly part of
a paper scheduled for submission [7]. In turn some of the interpretations of our
results are derived from there. A substantial part of this work was done in close
collaboration with Lukas Blecher and especially results and illustrations in the first
sections have already been used in his bachelor thesis [8].
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2 Jets at the LHC

2.1 Hadron Colliders

The Large Hadron Collider (LHC) is the most powerful operating machine for prob-
ing the standard model of particle physics as well as the search for beyond standard
model effects [9]. Its status as a discovery machine relies on the unrivaled center of
mass energy of

√
s = 13 TeV, scheduled to be increased to 14 TeV in the future [10].

To reach such energies one must control the energy loss due to synchrotron radiation
which scales ∝ (E

m
)4 (here E is the beam energy and m the particle mass). This

strong mass dependence suggest to collide heavy particles in order to achieve high
center of mass energy, namely protons at the LHC which have over 1800 times the
mass of the electron. However, protons are not fundamental particles but compli-
cated objects with a lot of substructure. At the heart, protons are described by
Quantum Chromodynamics (QCD) and its fundamental degrees of freedom the spin
1/2 quarks and spin 1 gluons. From the qcd point of view a proton consists of three
valence quarks that constantly interact with each other through gluon exchange, in-
ducing the appearance of sea-quarks. A crucial fact here is the asymptotic freedom
of qcd, which means that the running of the strong coupling αs [11] is such that the
theory is perturbative in the UV regime but strongly coupled in the IR. This strong
coupling at low energies means that the distribution of energy inside a proton, as
described by parton distribution functions (pdf) [12], cannot be calculated from first
principles but rather has to be fitted to measurements. This complicated internal
structure leads to many complications as compared to the cleaner signals provided
by lepton colliders [13], for example the center of mass energy of the underlying
hard process ie. the scattering of partons inside the proton, can be any fraction
of the collider center of mass energy. Therefore the total cross section of a given
hadronic process is an intricate convolution of parton level sub-processes, usually
encapsulated through the QCD factorization theorem [14].

Quarks and gluons cannot be directly observed. Partons created in a hard scattering
process undergo different stages until they reach the detector. Up until energies of
order GeV they lose energy by showering additional particles, mainly due to qcd
interactions. This can formally be expressed through splitting kernels [15]. For
the showering stage phenomenological effective describtions exists, however the fol-
lowing hadronization, ie. the combination of partons into color singlet hadrons, is
completely non-perturbative. Those hadrons or their decay products are actually
observed by particle detectors. In addition electroweak particles are also emitted
during events but typically with smaller cross sections.

3



Figure 2.1: Schematic detector layout. Figure taken from Ref. [13]

The detection of particles is schematically shown in Figure 2.1: Particles leaving the
interaction point enter the tracking system which is permeated by a strong magnetic
field such that charged particle paths are bend while transversing the tracker. From
the curvature of the tracks the momentum to charge ratio can be inferred. After the
tracker comes the calorimeter system. In the electromagnetic calorimeter particles
like leptons and photons deposit most of their energy in the form of an electromag-
netic shower cascade whereas hadrons only deposit small amount of energy. This
situation is reversed in the hadronic calorimeter where the hadrons deposit their
energy in the form of hadronic showers. The shower information can be used to
identify the particle and reconstruct its energy. After the hadronic calorimeter most
particles have been stopped but muons can manage to advance into muon chambers
since they are heavier than electrons but do not decay as quickly as the tau. The
muon chamber is basically a coarser tracker and again the bending of the muon
path is used for reconstruction. Figure 2.2 schematically shows the signature of
some particles in the calorimeter system.

Since the trackers can only detect charged particles the calorimeter information is
crucial in most events and it is desirable to have a high resolution in all detector
regions. However at a functional level the calorimeter is divided into cells of given
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Figure 2.2: Signature of different particles in the calorimeter system. Figure taken
from Ref. [13]

resolution and the detectors employed at LHC are such that that resolution is high
perpendicular to the beam axis but becomes increasingly coarser. This is insofar
unfortunate as the qcd splitting of partons possess a collinear divergence [16] which
suggests that substantial amount of energy is showered into the soft and/or collinear
regime, ie. into partons with low amount of transverse momentum

pT =
√

(px)2 + (py)2 (2.1)

where px, py, pz is the particles 3-momentum and at small angles Θ relative to the
beam axis. Here we follow usual convention and define the beam axis to be in the
z-direction.
Although the pp-collision takes place into the center-of-mass frame, the hard process
does not necessarily do so since the energy fraction x of the partons in relation to
the proton energy will in general be different for the interacting partons, leading to
a boost in the beam direction. One would therefore like to describe the unfolded
calorimeter plane in coordinates that are boost invariant or at least are additive
under boosts. This is obviously true for the azimuthal angle around the beam pipe
φ but not for the angle Θ. However it can be shown that the rapidity

y =
1

2
ln
E + pz
E − pz

(2.2)

is additive under boosts [13]. In the massless limit, which in this thesis we will
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always assume for particles reaching the detector, E ≈ |~p| and the rapidity is equal
to the pseudo-rapidity

η = ln cot
θ

2
(2.3)

Thus the pseudo-rapidity, azimuthal angle and transverse momentum are an equiv-
alent describtion of the 4-momentum for a massless particle, with the formula

pµ = (pT cosh η, pT sinφ, pT cosφ, pT sinh η) (2.4)
and the description of calorimeter images in terms of (pT , η, φ) allows us to view
them like 1 channel 2d images. The central region of the calorimeter is usually
taken to be the region |η| < 2.5 and possesses high spatial resolution, the forward
region 2.5 < |η| < 5 has low resolution.

2.2 Jets

Due to the collinear splittings a parton created in the hard process will show up in
the detector as a spray of collimated meta-stable particles. Since we are interested in
fundamental physics we would ideally be able to fully reconstruct the parton from
which the spray originated but since showering is a stochastic process this is not
possible in general. Instead, based on a distance metric, we cluster the collimated
particles into an object called jet [17]. From a theoretical point it is surprisingly
difficult to give a clear definition of jets, for example one has to keep in mind IR-
safety [18].
In practice the most used jet algorithms are the generalized kt-algorithms
[19; 20; 21; 22] :

1. Define the distances

dij = min(p2lT i, p
2l
T j)

∆Rij
2

R2
(kT distance) (2.5)

diB = p2lT i (beam distance) (2.6)

for all particles, with

∆R =

√
∆η2 + ∆φ2 (2.7)

and R the jet-radius parameter.

2. Find the minimal distance dmin. If it is in the dij set combine particles i and
j into one object with summed four momentum. If it is in the diB set remove
particle i from the list and consider it a jet.

3. Repeat steps 1 and 2 until the lists are exhausted.

Typical values for the parameter l are 1 (kT algorithm), -1 (anti-kT algorithm) and
0 (Cambridge-Aachen algorithm).
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2.2.1 Top Jets

The top, with a mass of roughly 172 GeV [23], is by far the heaviest among all
quarks. This leads to the important observation that tops decay through electroweak
interactions before they can hadronize. The dominating decay channel is t→ b+W+

with the W further decaying into a quark anti-quark pair qq̄′, the tree level Feynman
diagram is depicted in Figure 2.3. Therefore the top displays a 3-prong signature
as compared to the single-prongness of jets initiated by non-top quarks and for this
reason we will refer to top jets and qcd jets in what follows, implicitly excluding the
top from the latter.

q̄′
t

q

b

W

Figure 2.3: Purely hadronic top decay. Diagram created with [24].
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3 Machine Learning and Neural Networks

Machine learning, in its broadest sense, is the field of automated learning by an arti-
ficial system through analyzing examples and making use of self-learning algorithms
with the intent of enabling the system to solve a task despite not being explicitly
programmed to do so. In a more narrow sense one wants the system to learn a
mapping f between given inputs x and desired outputs y. The systems considered
in this thesis are neural networks [25] which have become prime machine learning
tools after the advent of powerful GPUs.

3.1 Fully Connected Neural Networks

The underlying mathematical foundation of neural networks are simple linear trans-
formations, encapsulated in the basic units called perceptrons [26]. A perceptron
takes an input x and transforms it according to

z = Wx+ b (3.1)

where W and b are trainable parameters of the perceptron denoted as weight and bias
respectively. A neural network, at the most basic level, is simply a set of perceptrons.
Conventionally the network is divided into an input layer, hidden layers and output
layer. In a fully connected (or dense) neural network all perceptrons of layer l are
connected (in the sense of receiving input) to all perceptrons of layer (l-1), see Figure
3.1, save for the input layer. The algorithm performed by a layer of perceptrons then
becomes a linear transformation of vectors, so that Eq. 3.1 is altered to

~z = W~x+~b (3.2)

where now W is a matrix and z, x and b are vectors.
A crucial step is the inclusion of activation functions φ for at least two reasons: So
far the network as defined by Eq. 3.2 can only perform linear transformations but
most tasks demand the network to learn non-linear mappings. Such nonlinearities
are introduced by activation functions. Further, the output z will in general be a
real number but often it is advantageous to map the real line into a finite interval,
for example in classification tasks where then a final layer output can be interpreted
as a probability. Common choices of activation functions are (leaky) ReLU [27],
hyperbolic tangent or, historically, sigmoids. Thus Eq. 3.2 becomes

φ(~z) = φ(W~x+~b) (3.3)
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Figure 3.1: Fully connected neural network with 2 hidden layers. Figure taken from
Ref. [28]

3.2 Convolutional Neural Networks

It can be shown that fully connected networks are universal function approxima-
tors [29] so in principal the dense network described in the previous section could
learn any desired mapping f. In practice fully connected networks can only be em-
ployed for a limited range of tasks since computational resources and time is limited
and the number of learnable parameters (ie. the weights and biases) rapidly scale
with the number and dimension of hidden layers. Moreover, it might not even be
desirable to connect every unit of a layer to each of the next layer since that might
’hide’ relevant information by overloading the receiving perceptron, making it more
difficult to filter out the relevant inputs. This is for example the case in arguably
the most important subset of machine learning tasks: Image recognition, a field that
benefits heavily from convolutional architectures. The design of convolutional layers
is guided by two principles commonly found in images: locality and translation in-
variance [30]. Locality means that distinctive features in an image are encapsulated
by clusters of neighboring pixels, for example facial features: To recognize an eyeball
in the top left corner one does not need the pixels in the bottom right corner of the
image. Translation invariance is the formalized notion that these local distinctive
features can in general show up anywhere in the picture or appear more than once.
Informally a convolutional layer is a k × k dimensional window that slides verti-
cally and horizontally across the image and detects a feature, through the learned
weights, within this k×k sub-image. Such a window is called a kernel and the result
of a convolutional transformation is called feature map. A crucial step is that the
weights are fixed during the sliding process (weight sharing) which assures that the
same feature is looked for across the entire image. Convolutional layers are defined
through a number of parameters, the most important ones are:

1. Number of Filters C: The number of different kernels employed. Each map
has an independent set of weights and thus can extract different features.

2. Kernel size k: The size of the window.
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3. Stride: The amount of pixels the window is displaced each time it is moved
across the image.

An example convolutional operation is depicted in Figure 3.2 where the input image
is a 3×3 tensor, the kernel size is 2×2 and the stride is 1. The shaded pixels display
the computation of the first output pixel:

0× 0 + 1× 1 + 3× 2 + 4× 3 = 19

So far we have implicitly described convolutional layers acting on one channel

Figure 3.2: Example of a two dimensional convolution. Figure taken from Ref. [30]

two dimensional images but all of the above can straightforwardly be generalized
to arbitrary numbers of channels and dimensions. In case of multi-channel inputs
(which often arise in hidden layers) a given kernel runs over each channel separately
and then adds up all resulting feature maps.

3.2.1 Pooling Layers

A special case of convolutional layers are pooling layers. These have fixed weights
and are used to reduce image dimensionality and keeping only the most important
information in a feature map. Max-pooling layers with a k × k kernel slide over
the feature map and keep only the hardest pixel in the k × k sub-window. A very
important pooling variant for our purpose is sum-pooling, where the values of the
k × k pixels are summed up into one output pixel.
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3.3 Loss Function and Training Procedure

If we want a neural network to solve a given task it has to first learn (or rather
approximate) the implicitly desired mapping and then generalize to unseen data.
The first part is called the training stage, the latter evaluation stage. Consequently,
one usually uses at least two different data sets: A training set on which the model
learns and an evaluation sets on which the model performance is measured.
In this thesis we will only make use of supervised learning in which every input x
comes with an (abstract) label that corresponds to the desired output y. In this
setting the model’s learning progress can be expressed through a loss function L
via:

L(y, y′) = L(y, f(x|θ)) (3.4)

Here y is the truth label, y′ = f(x|θ) is the model output and θ are the weights
parametrizing the model. The loss function has to be chosen according to the task
and model but in any case it is constructed such that the ideal mapping f corresponds
to a global minimum of the loss function L.
Common choices of loss functions are L1 loss, L2 loss and Binary Cross Entropy:

L1 =
n∑
i=1

|ytruth − ypredicted| (3.5)

L2 =
n∑
i=1

(ytruth − ypredicted)2 (3.6)

LBCE =
n∑
i=1

[ytruth log(ypredicted) + (1− ytruth) log(1− ypredicted)] (3.7)

where n denotes the number of samples. For simple tasks, like linear regression, it
can be possible to derive the minimum of L analytically but in general this is not
possible. One then has to use numerical approximation methods like mini-batch
stochastic gradient descent [31]:
At the core this algorithm relies on a simple Taylor approximation under a small
update of the weights w → w + δw (we now consider the loss L to be a function of
the weights w and suppress additional labels)

L(w + δw) = L(w) + δ ~w · ∇wL(w) +O(( ~δw)2) (3.8)

The upshot is that this leads to a minimization of L if we chose the update δw to
be proportional to minus the absolute value of the loss function’s gradient so that
our iterative update rule becomes

~w ← ~w − η

|B|
∑
i∈B

|∂wL(w)| (3.9)

The computation of the gradient is done by a numerical algorithm commonly known
as backpropagation [32].
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In Eq. 3.9 we swiftly introduced two important notions: The learning rate η and the
mini-batch B. η is a hyperparameter, ie. a parameter not learned but chosen before
training that can be regarded as part of the model architecture, that determines
how much the network moves per iteration in the loss function’s manifold. If it
is picked to be too big then the model might overshoot and into a region away
from the minimum, if it is too small the model may never converge in feasible
time. A mini-batch consists of a subset of available training data, using mini-
batches speeds up training significantly but the batch size has to be big enough
to reasonably approximate the average loss as compared to a computation over all
training data. Based on this it seems a good idea to use a dynamic learning rate,
bigger at the beginning of training and getting smaller as we approach a minimum.
Such algorithms incorporating learning rate schedulers (and of course performing the
gradient descent) are readily available, the one we will use throughout this thesis is
ADAM [33].

Figure 3.3: Right panel: Conventional layer block. The mapping f(x) has to be
learned by the weights. Right panel: Residual block using a skip con-
nection. The dotted block only has to learn the deviation from the
identity, moreover the identity mapping is easier to learn by pushing the
weights towards zero. Figure taken from Ref. [30]
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3.4 Residual Connections

Choosing the right network architecture is difficult. If the network is too deep train-
ing might take an unreasonable amount of time and might even lead to overfitting,
that is the model picks up features present in the training set but not present in
the underlying data distribution. Such a model will show excellent results during
training but generalize very poorly as seen during evaluation. On the other hand, if
the model is undercomplex it will lead to underfitting, meaning that the model does
not have the necessary complexity to learn all relevant features and thus will not be
as performant. Thus it would be ideal to have a guideline by which increasing model
complexity will lead to a more expressive rather than just a different architecture.
This is the rationale behind residual connections [30].
Let G be the function space accessible to a given model and g* the ideal mapping
we desire to be learned. If g* is not in G then the best the model can do is find an
optimal approximation g∗G ∈ G. If we now increase the model complexity, usually by
adding additional layers, it is a priori not clear that the model can perform better
since the new function space G’ will in general not be a subset of G. Residual con-
nections prevent this from happening by guaranteeing G ⊂ G′ or in other words the
identity mapping g(x) = x is part of the function space induced by every additional
layer.
Technically a residual connection is a block of layers (dense, convolutional, pooling,
activation functions) followed by a skip connection, so let x be the input flowing into
the block and f(x) the output without the skip connection. Then the total output
is f ′(x) = f(x) + x. This means that the residual block does not have to learn
the desired mapping f ∗(x) but only the deviation from the identity and in fact the
identity is a natural part of the function space so that residual connections truly
increase the network’s expressiveness. This is illustrated in Figure 3.3, the left panel
shows a standard block of layers while on the right panel a skip connection is added.
Historically the introduction of residual blocks has vastly improved deep learning
and models like ResNet [34] achieved new performance heights.
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4 Super Resolution

4.1 Generative Adversarial Networks

Generative models try to learn the underlying distribution of the training data and
produce new output that is indistinguishable from the given inputs. Among them
the class of Generative Adversarial Networks (GANs) [35] are popular and
powerful and the model structure used in our study. A GAN consists of two sub-
networks, a generator and a discriminator that compete against each other, that
is the generator produces fake simple, trying to fool the discriminator while the
discriminator attempts to tell apart fake from truth samples. Ideally we manage
through training that the discriminator cannot tell apart fake from truth input at
all. Thus generator and discriminator compete in a minmax game.
At the heart of GANs is the adversarial loss

Ladv = 〈log(D(x))〉x + 〈log(1−D(G(z)))〉z (4.1)

here D(x) is the discriminator’s estimate of the probability that real data x is real,
G(z) is the generator’s output given noise z, D(G(z)) is the discriminator’s estimate
of the probability that a fake sample is real and 〈. . . 〉 is the expectation value over
probability distribution X or Z, in practice these will be approximated by sample
means over each batch.
One major issue of GANs is that it can be difficult to find a reliable performance
metric since, unlike for example in classification tasks, it is not straightforward to
compare a given generator output to a desired label y. As an illustration we show
an image with a checkerboard pattern in Figure 4.1, such repeating patterns often
arise in generated images and one has to employ sophisticated methods to prevent
them. For our physics application there are natural performance checks that we will
describe in the following sections.

Figure 4.1: Example of a generated image suffering from checkerboard patterns. Fig-
ure taken from Ref. [36]
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Figure 4.2: Toy example of generated images based on the Mnist dataset.

4.2 Single Image Super Resolution

Super Resolution [37] is a generative task where the model’s input is a lower reso-
lution (LR) image of a high resolution (HR) ground truth. The generator produces
super resolved (SR) images that shall mimic the HR ground truth through an up-
sampling routine. Such a task has the inherent difficulty that usually there is not
one but many acceptable SR outputs. Considering this it is questionable if a model
can reliably produce good results on a image by image case or if it can only repro-
duce the HR space in a statistical sense, i.e. averaged over many images. However
it also makes clear why a GAN setup is advisable as compared to a non adversarial
upsampling procedure: Without the discriminator the upsampling routine had no
guidance how to distribute the information present in the LR image in the larger
SR image, the discriminator will enforce similarity to the HR image. A even more
fundamental question is if the network can output more information in the SR im-
age than the LR image to begin with. This again is ensured through the adversarial
process since in the physics task we consider, to be described in the next section,
the HR image will implicitly encode fundamental physical properties that the net-
work can pick up on. In Figure 4.2 we show a toy usage of the GAN we will use in
this thesis, upsampling of handwritten digits from the Mnist dataset [38]. The left
panels show the ground truth, the middle panels the by a factor 4 downsampled low
resolution input and the right panels the generated images. We trained the network
for just a few hundred batches and already see a nice performance. The Mnist
dataset is historically important but not suitable for performance benchmarks of
modern deep networks.
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4.3 Jet Image Dataset

Our task is to apply super resolution to Jet Images. Physically this is a very interest-
ing challenge: Jets are part of virtually any process at the LHC [39] so understanding
their substructure is crucial for most analyses. They provide a mean of stringently
testing QCD and even in the search for new physics many background processes will
produce substantial number of jets [40]. Given that beyond standard model signals
are expected to have small rates, understanding and reducing QCD backgrounds
is of immense importance. Experimentally the task of upsampling jet images is
mandated by the fact that jets are seen in detectors as calorimeter entries and as
described in section 2 the resolution in the forward region is much worse compared
to the central region.
Since we are interested in probing the general capacity of neural networks to upsam-
ple jets we consider in this thesis only simple processes, namely tt̄ and QCD dijet
events. For our super resolving task we have to provide the network with paired HR
and LR images. The data generation pipeline is as follows:

1. We use Pythia 8.240 [41] to create tt̄ events. The tops are forced to decay to
W and a bottom quark with the W subsequently decaying through a hadronic
channel. Each top is required to have a transverse momentum pT of at least
600 GeV. Analogously QCD events are created with the hard process now
resulting in two quarks.

2. We pass these events to Delphes 3.4.1 [42], using the standard ATLAS
card with the sole modification of setting the calorimeter cell size to 2/160 =
0.0125 for the whole calorimeter. This corresponds to 160 cells over a range
[−1, 1]× [−1, 1] in the η−φ plane, the physical range captured in our images.

3. The resulting output is processed in the following manner on an event-by-
event basis: First every calorimeter hit gets registered to a 2d histogram with a
binsize of 0.0125. Then we apply sumpooling to this histogram as described at
the end of section 3.2.1 to create a low resolution histogram. Now FastJet [43]
is ran on each set of entries (HR and LR) separately, using the anti-kt algorithm
with a conesize of R = 0.8. Finally, from the reconstructed jets, we select the
one with the highest pT and apply a filter that lets it pass only if the jet pT is in
the range 550 GeV to 650 GeV and the absolute value of η is smaller than 2.0,
in addition to that we compute the ∆R difference between the selected HR and
LR jet to ensure the LR jet corresponds to the HR one, allowing a maximum
discrepancy of 0.1,lastly we only accept jets with at least 15 constituents. We
apply the same matching requirement to create LR image samples with down-
scaling factors of 2, 4, and 8, removing events that fail the requirement for any
particular resolution from all samples. This way all jet samples are composed
of the same events.

In this way we create image data in the η− φ plane with the transverse momentum
pT as entries. The images are further preprocessed by centering around the jet, that
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Figure 4.3: Jet image checks for multi factor top sample. Data points are blue
dots, no mismatch occurs on the blue solid line. The dotted red lines
correspond to a mismatch of ±10 GeV between HR and LR images.
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Figure 4.4: Jet image checks for multi factor qcd sample. Data points are blue
dots, no mismatch occurs on the blue solid line. The dotted red lines
correspond to a mismatch of ±10 GeV between HR and LR images.

is we shift the image so that the hardest pixel sits in the center.
In the third step it was crucial that the jet clustering is performed on the HR and
LR entries separately because this prevents an information backdoor which means
that no additional information present in the HR image can leak into the LR images.
This comes at the price of an imperfect matching procedure so that in some cases the
images are wrongly paired together. In practice this is not an issue as can be seen in
Figure 4.3: Here we plot the HR pT against the LR pT , defined to be the sum over all
pixels for the different downsampling factors of top jets. The individual entries are
displayed as scattered dots, the solid blue line is the ideal bisecting line which means
there would be no pT difference. The dotted red lines represent a pT mismatch of
±10 GeV. We see that only about 1% of events have a pT mismatch larger than
10 GeV. Since our sample contains about 600.000 events we could in principal even
remove these events from the dataset but given the sub-percent occurrence this was
not done. Figure 4.4 shows that equivalent conclusions hold for the qcd sample.
Figure 4.5 shows an example top jet image with the corresponding LR Image.
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Figure 4.5: Example Top Jet Image and corresponding LR Image.

4.4 GAN Architecture

The starting point of our model is an state of the art architecture for image super
resolution, the Enhanced Super Resolution GAN [44; 45; 46]. In contrast to
regular images our jet images are extremely sparse, with of the order of 50 non-
zero pixels. This makes it mandatory that we alter the basic architecture. In the
following we describe the network architecture we ultimately employed.

4.4.1 Generator

The generator is the centerpiece of our network, correspondingly it is quite intricate.
It is schematically displayed in the top part of Figure 4.6. Technically it is a fully
convolutional residual network encapsulated through nested blocks. The basic block
is the dense residual block (DRB): It is built out of consecutive convolutional layers
with (3 × 3)-kernels, stride 1, padding 1, and 64 filters. The activation function is
a leaky ReLU with α = 0.2. These parameters for a convolutional layer have the
property that they keep the spatial dimension fixed. This is insofar important as
it allows us to easily use input images of different dimensions. Three dense resid-
ual blocks form a residual-in-residual dense block (RRDB), connected via residual
connections. The hyperparameter β, indicated in the Figure is an alteration of the
usual skip connection that allows us to relatively scale the importance of the block
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Figure 4.6: Modified generator from ESRGAN (upper) and discriminator modified
from the SRGAN (lower). Figure by Lukas Blecher [8]

output f(x) compared to the addition of the input x. The upsampling is performed
in steps of factors f = 2 i.e. every upsampling step doubles the image dimension.
In our application we will use at max 3 upsampling steps, corresponding to a max-
imal upsampling factor of f = 8. Our network can use two different algorithms for
upsampling: pixel shuffle [47] and transposed convolution, each perform a factor
2 upsampling and in the case of several upsampling steps (corresponding to total
factor 4 or 8 upsampling) we can freely choose which combinations to use. A study
of the most performant upsample setup will be shown later. The default is to only
use pixel shuffle, where upsampling is performed according to the formula

(C × 4, Hin,Win) −→ (C,Hin × 2,Win × 2)

Here C is the number of channels and H, W the image height and width. An
example of a transposed convolution is shown in Figure 4.7. In contrast to a standard
convolutional operation the input window is now slid along the kernel, in a sense
exchanging the role of the two.
The pixel shuffle has the advantage of encoding the full information from the feature
maps. It simply redistributes the information by transforming a large number of
channels, as usually arise after deep convolutions, into a set of feature maps with
fewer channels but larger spatial dimensions. The transposed convolution takes
into account local information though a trainable kernel. After learning meaningful
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weights it can can help learning intricate, non-local patterns, which would be missed
by a global pixel shuffle [48].

4.4.2 Discriminator

The discriminator network is a convolutional network with leaky ReLU activations,
shown in the bottom half of Figure 4.6. It uses blocks consisting of two convolutional
layers with a (3×3)-kernel and padding 1, therefore also retaining spatial dimension
but followed by a second layer halving the feature map dimensions through a strided
convolution. We link four of those blocks and start with 64 filters, doubling the
number of filters after each block. We cut off the network before the flattening and
feed it into a fully connected layer, thereby switching to a Markovian discriminator.
Effectively this means that instead of outputting a single number, our discriminator
output is a matrix where each entry corresponds to a different patch in the image.
Finally, we include the option of employing a second discriminator with exactly the
same structure. In case this second discriminator is activated the full discriminator
response is the sum of two discriminator networks. For the second discriminator we
reset all weights after a fixed number of batches.
The original ESRGAN uses batch normalization layers to improve training, however
we use a gradient penalty (see section 4.4.3) for stabilization and therefore remove
batch normalization as pointed out in [49].

Figure 4.7: Transposed Convolution with 2x2-kernel and stride 1. Figure taken from
Ref. [30].

4.4.3 Loss Function

Compared to a vanilla GAN the ESRGAN makes use of more complicated loss
functions. In addition, having the task of super resolving sparse images in mind, we
added some losses.

Generator Loss As a minimal loss we employ a L1 loss calculated between the
HR and SR image. This simply compares the image on a pixel-by-pixel basis. We
prefer L1 over L2 since the latter would be especially sensitive to large differences
in a given pixel but given the sparsity of our jet images we do not expect nor want
the SR image to actually be the same as the HR image.
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LHR = L1 (SR, HR) (4.2)

As a consistency check we can analogously measure how similar the LR image is to
the downsampled SR image which we will denote as LRgen, we want to point out
that this image is not a generator output but rather just the sumpooled version of
the SR image. Thus we add an LR loss

LLR = L1 (LRgen, SR) . (4.3)

The adversarial loss is changed compared to Eq. 4.1, instead we use a loss proposed
in relativistic average GAN models [46]:

Ladv = −〈logD〉G − 〈log(1−D)〉T
with DT =σ (CT − 〈C〉G)

DG =σ (CG − 〈C〉T ) (4.4)

where σ is a sigmoid classifier function and C is the unactivated discriminator out-
put. G and T refer to the generated and truth distribution, respectively. Compared
to a standard GAN loss adversarial loss we have an additional term because DT de-
pends on the generated data G. Compared to standard adversarial losses, here the
truth and generated samples both enter in DG or DT , intuitively a standard adver-
sarial loss only considers how real the generated samples appear but the relativistic
average adversarial loss compares how generated samples appear more realistic than
real samples on average and the other way round.

When we up-sample the LR-jet image by a factor f , we need to distribute each
LR pixel energy over f × f SR pixels. These f × f pixels define a patch, and we
encourage the network to spread the LR pixel energy such that the number of active
pixels corresponds to the HR truth. This defines the additional loss term

Lpatch = L2 (patch(SR), patch(HR)) (4.5)

It is important to notice that in this loss we do not consider the actual value of the
given pixel but simply add up the number of non-zero pixels.

The combined generator loss is then

LG = (λHR LHR + λLR LLR + λadv Ladv + λpatch Lpatch) , (4.6)

where λ... are the respective hyperparameters that regulate the relative importance
of the loss terms.
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Discriminator Loss The discriminator loss corresponds to the adversarial loss of
the generator but with switched labels,

LD′ = −〈log(1−D)〉G − 〈logD〉T . (4.7)

this naturally incorporates the different tasks: While the generator tries to make
the generated samples look real, the discriminator attempts to mitigate such a con-
clusion.
In an adversarial setting it is important that both the generator and discriminator
perform on comparable levels: If the generator becomes too strong then the dis-
criminator will be unable to provide relevant feedback and thus the generator may
hit a plateau before it is actually optimized. Conversely, if the discriminator is too
strong then the generator also will stop improving because this time the discrimina-
tor feedback will be too definite in the sense of not being swayed by little changes
in the generator weights but such a small step improvement was the basis of our
gradient descent algorithm. Since upsampling sparse images is difficult we expect
the generator to perform bad at the beginning stages of training, thus we want to
regularize the discriminator by adding a regularization term to the loss. Simply
making the discriminator weaker is not a good option because then we might run in
the first issue of a too weak discriminator at later stages. A suitable regularization
is gradient penalty [49]:

Lreg = 〈(‖∇X′C(X ′)‖2 − 1)2〉. (4.8)

Here X’ is a randomly weighted average between a real and generated sample:

X ′ = εXT + (1− ε)XG, (4.9)

and C(X’) is the unactivated discriminator output. The gradient penalty penalizes
discriminator outputs that are close to 0 or 1, or in other words makes it less
attractive for the discriminator to output very definite predictions.
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4.5 Training and Evaluation

Our training procedure can be seen in Figure 4.8. To begin with we have the paired
HR and LR ground truth images. Both of them are pixel-wise raised to a power p.
Further the LR image is divided by a factor 1/f where f is the upsampling factor and
then passed through the generator. The output is the SR image raised to a power
of p. We undo the scaling by multiplying with k as well as taking the pth root to
get to the SR image, however we retain the power raised SR image for further loss
computations. Through sumpooling the standard and power SR image with a factor
f we finally get the LRgen and LRp

gen images, so that we have a set of four images (HR,
LR, SR, LRgen) twice: Once with a standard power of 1 and once with a power p.
These are then used to compute the various loss functions described in the previous
section. It is important to note that both sets have their own discriminator, this
must not be confused with the aforementioned maximum setup involving a second
set of discriminators. In such a maximal setup we will have in total 4 discriminators,
of which two are reset at fixed intervals. The total generator loss is therefore a sum
over standard and power losses of Eq. 4.6

LG =
∑

s∈{std, pow}

λs (λHR LHR + λLR LLR + λadv Ladv + λpatch Lpatch) . (4.10)

The reason for this power setup is our choice of physical process: As previously
explained the jet evolution starts with a set of partons created in the hard process.
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Due to our high pT requirement these will undergo a few splittings with the result-
ing daughter partons still carrying high pT and therefore they will show up in our
images as the hardest pixels. As we enter the showering stage the soft qcd-mediated
splittings will lead to a number of low pT partons corresponding to soft entries in
the image. For the machine learning task this means that the pT distributions will
be sharply peaked near zero but still covering a wide range with a few entries close
to 500 GeV. Raising the distribution to a power p will widen the distribution and
help training. This is exemplified for some powers in Figure 4.9, there and in the
rest of this thesis we will use transverse momentum and energy to mean the same.
We can even give a purely physical argument for why the dual setup is thought to
perform better: The images are dominated by the few (usually up to 5) hardest
pixels. Thus the network can increase its performance best by focusing on these
hard pixels, neglecting the soft noise. By broadening the distribution we mitigate
the dominance of the hard pixel and therefore it is beneficial for the network to learn
to get also softer pixels right.

Evaluation As previously mentioned it can be difficult to find good performance
metrics for generative models, the lowest loss does not always correspond to a sat-
isfying generated image. For standard images like faces powerful metrics like peak
signal-to-noise ratio exist but these are not applicable for our sparse jet images. To
circumvent this we make use of early stopping [50] and physical variables. Early
stopping means that we evaluate our model on a validation set after a fixed number
of batches and save the model’s weights whenever it achieves a better evaluation
score than the previously saved weights. Evaluation is based on the distribution
of nth-hardest pixel distributions compared between the HR and SR datasets, the
patch image described in the previous section and a mean image, taken to be a 2d
histogram of the sum of activity in each pixel. Finally we test how well our models
generalize by evaluating it on an independent evaluation set. Such an evaluation is
shown for a model upsampling by a factor of 8 in Figure 4.10.
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Figure 4.9: pT distributions raised to different powers of p. We clearly see that the
distributions get broader with smaller power values.
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Figure 4.10: Example evaluation of a factor 8 upsampling model. In addition to the
ordered pixels (with a square-root scaling), we show the patch image
and mean histogram. Each entry of the patch image has been divided
by the ground truth mean value. The left and top panel of the 2d
histogram show the projected 1d distributions. The zero-bin in energy
collects jets with too few entries.
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5 Baseline Model

In the analysis performed in this chapter we will make use of a simplified dataset:
It contains only top jets and the HR and LR images are not uncorrelated, instead
the LR image is simply obtained by performing sumpooling. This can lead to an
information backdoor but since the goal is to establish a well performing baseline
model for upsampling factors f of 2, 4 and 8 this is acceptable. This also mandates
the usage of a minimal architecture: We only use the LHR, LLR and Ladv losses,
no second discriminator set and all upsampling layers are pixel shuffle. The corre-
sponding hyperparameters of our baseline are listed in Table 5.1. We will present the
performance of this model for the different upsampling factors, discuss its shortcom-
ings and based on that perform a careful optimization in the next chapter. There
we will also take up the matter of qcd jets.
Throughout we will use the Adam optimizer with a learning rate η = 0.0001 and
momentum β1 = 0.5, β2 = 0.9 [51]. Our models train for approximately 100.000
batches, the evaluation set contains 50.000 images for good statistics. Our HR im-
ages have 40 × 40, 80 × 80 and 160 × 160 pixels for the respective factors 2, 4 and
8.

#RRDB batch size β rescaling p λreg λstd λpow λHR λLR λadv

15 15 0.1 0.3 0.002 0.2 1 1 0.1 0.01

Table 5.1: Hyperparameters for our baseline model; β is the residual scale factor
defined in Fig. 4.6.

5.1 2x Upsampling

It is natural to begin with the minimal upsampling factor 2. The evaluation results
are depicted in Figure 5.1. We clearly see that the model is capable of learning
all nth hardest pixel distributions very well. It is remarkable that the distributions
for the 10th, 20th and 30th hardest pixel are approximated as well as the one’s for
the 4 hardest pixels. This suggests that the model has picked up on the pattern
of soft qcd-mediated splittings. It further is noteworthy that the biggest difference
between HR and SR distribution, albeit by a small margin, appears for the 5th

hardest pixel. This however is explainable in terms of physics because the region of
5th to 10th hardest pixel is neither entirely in the hard process regime nor the soft
noise regime, therefore it is the most difficult to learn. Later we will see this effect
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more pronounced. In the bottom panel of Figure 5.1 we see that the model also
manages to populate the right number of pixels in the SR space as well as assign
them the correct energy, at least on an average level. Together this leads to the
conclusion that the total energy across the image is conserved during the generative
process. What is not perfect is the distribution of the energy of a single LR pixel
into the corresponding 2 × 2 SR pixels. This is captured in the bottom-left panel,
the patch image. We want to reiterate again that in a way all information about the
super resolving performance is implicitly present in the patch image: Given the LR
image, the only real task of the network is to distribute the energy of all LR pixels
in the right way across the 2×2 corresponding pixels in the SR image and obviously
this distributions will be uniform for the HR images, as it is. The model however
has a tendency to put too much energy into the bottom right pixel, although for the
case of 2× upsampling the relative imbalance as can be read off from the colorbar
is of the order of 50000/47000.

5.2 4x Upsampling

The case of 4× upsampling is shown in Figure 5.2. Similar conclusions hold as in
the factor 2 case. Again the soft noise regime is equally well approximated by the
super resolved image as the hard regime. The most significant difference arises in
the bottom panel: The model now fills too many pixels compared to the HR ground
truth (bottom left) but on average puts less energy into those pixels (bottom center).
This however again suggests that the total energy of the image is preserved. In the
patch image we can now clearly see that the distribution of energy is not uniform
for the SR image, some pixels are overpopulated while others are underpopulated.
Still, the ordered pixel distributions are so well described that we will move on to
the more challenging factor 8 upsampling and attempt further improvements for this
case.

5.3 8x Upsampling

A first obvious attempt to improve the patch image is to activate the corresponding
loss Lpatch. We found a value for the corresponding hyperparameter λpatch of 0.1 to
work best, so the updated list of hyperparameters is captured in Table 5.2.

#RRDB batch size β rescaling p λreg λstd λpow λHR λLR λadv λpatch

15 15 0.1 0.3 0.001 0.2 1 1 0.1 0.01 0.1

Table 5.2: Hyperparameters for our baseline model including the patch loss.
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Figure 5.1: Evaluation of the baseline model with 2x upsampling. In addition to the
ordered pixels (with a square-root scaling), we show the patch image,
the number of non-empty pixels and the average energy per pixel. The
zero-bin in energy collects jets with too few entries. Legend by Lukas
Blecher [8]
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Figure 5.2: Evaluation of the baseline model with 4x upsampling. In addition to the
ordered pixels (with a square-root scaling), we show the patch image,
the number of non-empty pixels and the average energy per pixel. The
zero-bin in energy collects jets with too few entries. Legend by Lukas
Blecher [8]

The model evaluation based on these hyperparameters is shown in Figure 5.3. Com-
pared to the 2x and 4x case we now see clear deviations of the prediction compared
to the HR ground truth. The SR distributions are systematically shifted to the right,
i.e. the SR pixels are given too much energy. As before, the patch image features
on overactive pixel, meaning that the model still prefers to distribute most of the
energy of a LR pixel into a single SR pixel so we have to conclude that inclusion of
the patch loss Lpatch alone cannot fix this model behavior. This is also seen in the
mean image (bottom-right) featuring characteristic repeating patterns.
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At this point two comments are in order: First, we can see that in all cases the
relation of the LR image to the LRgen is the same as the relation between the HR
and SR image. This comes as no surprise because so far the LR image is just the
sumpooled version of the HR image. For tops, with their innate three-prong decay
structure, the active pixels cover a relative big area of the available image space,
as can be seen in the relative broad distribution of the mean image. This means
that sumpooling a subwindow containing a given nth hardest pixel will usually not
include other hard pixels so that the nth hardest HR pixel will be pooled to the
nth hardest LR pixel. Secondly we already pointed out the importance of the patch
image. We might therefore ask if our early stopping evaluation, dominated by the
orderd pixel distributions, really manages to capture the point of best model per-
formance. This suggests to change up the early stopping in such a way that the
performance during training is solely given by the patch image. Such a modification
was performed for the baseline model and the resulting final evaluation is shown in
Figure 5.4. The result is somewhat inconclusive: While the shift in the SR pixel
distributions seems to have been attenuated this might just be an effect of initial
seeding. We will investigate this briefly in the next section. The patch and mean
image in Figure 5.4 cannot be said to having improved compared to Figure 5.3 but it
is still impressive that model performance has not deteriorated which corroborates
our statement that most of the relevant information is captured in the patch image.
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Figure 5.3: Evaluation of the baseline model with 8x upsampling. In addition to
the ordered pixels (with a square-root scaling), we show the patch image
and the mean image. The zero-bin in energy collects jets with too few
entries.
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Figure 5.4: Evaluation of the baseline model with 8x upsampling where the best
model point during training was solely determined by the patch image.
In addition to the ordered pixels (with a square-root scaling), we show
the patch image and the mean image. The zero-bin in energy collects
jets with too few entries.
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6 Top Optimization

Previously we saw that our baseline model can approximate the ordered pixel distri-
butions arguably well but struggles to distribute the energy of a single LR pixel in
the SR image space. This leads to repeating patterns in the mean image and makes
it obvious that our super resolved images are so far imperfect. In this section we
will try to improve on this. This means it is also time to drop the simplified dataset
and use LR jets that do not benefit from an information backdoor according to the
pipeline outlined in section 4.3. As a first step it is mandatory to check how this af-
fects model performance. Thus we have retrained our baseline model with the same
hyperparameters as described in table 5.2, again using only the patch image in the
early stopping evaluation, on the new dataset. The evaluation results are displayed
in Figure 6.1 and are very appealing: Compared to Figure 5.4 model performance is
at least equal. This suggests that either there has not been any information back-
door to begin with or the model never made use of it.
As outlined our task is now to remove the artifacts in the mean image or cor-
respondingly lead the network to distribute energy more uniformly in the patch
image. Before we change up our model we will investigate two related questions:
How much artifacts does our network implement into a generated image irrespective
of the given LR image and how do the results depend on the seeding of the net-
work. The first question will qualitatively and briefly be touched on by performing
the blank image test, the latter by training and averaging several networks with the
same hyperparameters.

Blank Image Test The blank image test is a very basic sanity check often per-
formed with generative models. One simply feeds a blank image into the network.
Ideally the resulting generated image is also blank. The outcome for our baseline
model can be seen in the top panel of Figure 6.2. The SR image is indeed blank so
our model passes the test. As a further cross-check we added 150 pixels with random
gaussian noise to the blank image in the bottom left panel of Figure 6.2 and fed this
also through the network, the result being shown in the bottom right panel. There
we see that the SR image does not correspond to the HR image but the difference is
reasonable. Together these tests give us confidence that the appearance of artifacts
is not inherently ingrained into the model.

Initial Seeding Machine learning algorithms often make use of random numbers
but since these are produced by pseudo-random number generators [52] the entire
’randomness’ is captured into the seeding, meaning that given the same initial seed,
the sequence of random numbers produced will also be the same. We have seen that
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the super resolved patch image tends to feature one very active pixel in which most
of the energy is distributed but the location of this pixel within the f × f window
changes. On one hand this is simply a reflection of symmetry: We know that there
is no preferred direction in the image so this is no surprise but it also tells us that
we can assume that the effect will be mitigated when we average over sufficiently
many initial seeds. We trained 10 separate iterations of the baseline model for
approximately 30.000 batches. In Figure 6.3 we plot the root mean square per pixel
over the 10 resulting patch images together with the ground truth for comparison.
We also include example patch images of two instances in Figure 6.4. The colorbar
has been normalized to 2x the ground truth mean value at the upper end and 0.5x
of it at the lower end. Further, the numbers displayed in each pixel show the actual
count divided by the ground truth mean i.e. how hard the pixel is relative to the
mean value.
We see that the averaged patch image is much more uniform compared to the results
in the previous section. As expected the position of the very hard pixel is essentially
random and thus washed out in an average. However from Figure 6.4 we also see
that single instance performance can drastically vary, with the left panel instance
almost comparable to the averaged image and the right panel featuring multiple
overpopulated pixels. What we can learn from this is that the influence of the seed
seems to be much larger than the concrete choice of hyperparameters, suggesting
the conclusion that another parameter search will most likely not lead to stable
performance improvements. Instead we are lead into the direction of changing up
our model architecture.
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Figure 6.1: Evaluation of the baseline model with 8x upsampling where the best
model point during training was solely determined by the patch image.
Model trained on a dataset without information backdoor. In addition
to the ordered pixels (with a square-root scaling), we show the patch
image and the mean image. The zero-bin in energy collects jets with too
few entries.
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Figure 6.2: Upsampling of an empty image (top), soft noise as cross-check (bottom).

Figure 6.3: Root mean square per pixel over 10 iterations of the baseline (left) and
ground truth (right). The values in each pixel are explained in the text.

Figure 6.4: Example of two of the ten instances of the baseline, trained with different
initial seeds. The values in each pixel are explained in the text.
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6.1 Modified Generator

We will now start to make full use of the generator capabilities as described in Sec-
tion 4.4.1 and depicted in Figure 4.6. As a first step we experiment with different
upsampling routines, that is different combinations of pixel shuffle and transposed
convolution layers. The possible advantages of each have been mentioned in Section
4.4.1. In addition to that we allow for one further extension, namely the inclu-
sion of additional RRDB blocks (see Figure 4.6) after upsampling. The reason for
this is that so far all relevant convolutional layers are before the upsampling and
it might be interesting to see if further processing of the image afterwards can im-
prove performance. In practice the addition of RRDB blocks after upsampling is
computationally expensive [53] because now all convolutions have to operate on the
160× 160 feature maps so we can only allow for one additional RRDB block. Since
we will exclusively work with an upsampling factor f = 8 = 23 we will always have
3 upsampling layers. The standard option used so far was exclusively pixel shuffle.
We will test three alternatives:

1. Alternating between pixel shuffle and transposed convolutions, so for the f =
8 case the upsampling sequence is [pixel shuffle, transposed convolution, pixel
shuffle].

2. Using exclusively transposed convolutions.

3. Using exclusively pixel shuffle (default mode) and adding one RRDB block
after the upsampling layers.

All tests are based on the baseline model with a pure patch image early stopping,
the relevant comparison is therefore Figure 6.1. The results are shown in the Figures
6.5, 6.6, 6.7. We can derive some conclusions from these: First of all in all cases the
distribution of nth hardest pixels is at least as good as in the default case Figure 6.1,
suggesting again that these distributions can be learned in a stable way for the top
data. Concerning the patch and mean image, the most blatant observation arises
in the case with additional RRDB block. The overpopulated pixel in the patch
image has become even harder and correspondingly the repeating patterns in the
mean image are even more pronounced. We note that the same poor performance
can be seen in any other combination including RRDB blocks after upsampling and
therefore discard this option.
In contrast to that the other two alternatives, alternating the upsampling and using
transposed convolutions exclusively, show substantial progress: The overactive pixel
in the patch image is now much less pronounced compared to the ground truth
average and overall the patch image starts to look more uniform. In the mean
jet image we still see some fluctuations but these now appear less repetitive. We
conclude that both approaches yield valuable improvements.
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Figure 6.5: Evaluation with alternating upsampling. In addition to some ordered
pixels (with a square-root scaling), we show the patch image and the
mean image. The zero-bin in energy collects jets with too few entries.
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Figure 6.6: Evaluation with exclusively transposed convolution upsampling. In ad-
dition to some ordered pixels (with a square-root scaling), we show the
patch image and the mean image. The zero-bin in energy collects jets
with too few entries.
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Figure 6.7: Evaluation with additional RRDB block. In addition to some ordered
pixels (with a square-root scaling), we show the patch image and the
mean image. The zero-bin in energy collects jets with too few entries.

6.2 Second Discriminator

What is left before we make use of the full power of the network is activating the
second set of discriminators, one for the standard images and one for the power
raised images. As described in Section 4.4.2 these will have the same architecture
as the default discriminators but their weights are reset after a fixed number of
training batches [54]. Unfortunately we do not know a solid, compelling theoretical
argument for this setup but we can motivate this a little bit by noting that the
total discriminator response is the average of the individual responses, therefore,
after resetting, the second discriminator response will be very poor in the sense of
not being able to discriminate between real and generated images. This in turn
implies that even a well performing generator has to make weight changes again in
order to decrease the adversarial loss, thereby breaking up the pattern of putting
most energy into a single SR pixel. The tests performed are similar to those of the
previous sections, the relevant changes are summarized in Table 6.1.

Upsampling Procedure Reset Interval
Pixel Shuffle 15000
Alternating 5000
Alternating 20000

Transposed Convolutions 15000

Table 6.1: Different setups with second discriminator.

The evaluations are shown in Figures 6.8, 6.9, 6.10, 6.11.
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Figure 6.8: Evaluation with reset interval 15000 and pixel shuffle upsampling. In
addition to some ordered pixels (with a square-root scaling), we show
the patch image and the mean image. The zero-bin in energy collects
jets with too few entries.
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Figure 6.9: Evaluation with reset interval 5000 and alternating upsampling. In ad-
dition to some ordered pixels (with a square-root scaling), we show the
patch image and the mean image. The zero-bin in energy collects jets
with too few entries.
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Figure 6.10: Evaluation with reset interval 20000 and alternating upsampling. In
addition to some ordered pixels (with a square-root scaling), we show
the patch image and the mean image. The zero-bin in energy collects
jets with too few entries.
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Figure 6.11: Evaluation with reset interval 15000 and transposed convolution upsam-
pling. In addition to some ordered pixels (with a square-root scaling),
we show the patch image and the mean image. The zero-bin in energy
collects jets with too few entries.
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Again we see that in all cases the ordered pixel distributions are well approximated
so the relevant changes are once more contained in the patch image and mean jet
image. While the patch image in Figure 6.11 is comparable but not improved com-
pared to the results in the previous section, the ones in Figures 6.8, 6.9 and 6.10
have become even more uniform than before, leading to the conclusion that the first
three variations in Table 6.1 are highly performant.
From the evaluation plots it may appear that the first option, pixel shuffle up-
sampling with a second discriminator, performs exceptionally well but these results
have to be verified by training the same setup multiple times, in accordance to our
discussion of seeding effects. Upon doing so we found that on average the second
variation, alternating between pixel shuffle and transposed convolution with a sec-
ond discriminator reset interval of 20000 batches works best and therefore this is
the setup we will adopt. We note however that there is no real performance drop
in the reset range from 15000 to 30000 batches. The full set of hyperparameters for
our optimized top model are summarized in Table 6.2

#RRDB batch size β rescaling p λreg λstd λpow λHR λLR λadv λpatch reset

15 15 0.1 0.3 0.001 0.2 1 1 0.1 0.01 0.1 20k

Table 6.2: Hyperparameters for our optimized top model including the second dis-
criminator reset interval. The upsampling procedure is alternating be-
tween pixel shuffle and transposed convolutions.
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7 Upsampling QCD Jets

Having achieved impressive performance on the top dataset we will now try to
upsample qcd jets. Based on what was said in Section 2.2.1 we know that these
will behave differently than the tops. Instead of a three-prong structure we now
expect pixel entries to arise solely from collinear and/or soft splittings which in
the jet images will manifest in an increased activity near the center and a more
narrow spread in the η − φ plane. From a machine learning perspective this will
probably be a more difficult task since there will be less information in the LR image,
most of it encapsulated in the hardest pixel. In spite of that we might hope that
our network setup and modifications from the previous sections have been general
enough to lead to a good performance. We trained a model with parameters as in
Table 6.2 on qcd jets and show the evaluation on a qcd jet testset in Figure 7.1.
From this we can derive a number of conclusions: As conjectured the activity is
sharply peaked around the center as can be seen in the jet mean image, so much
that even the ground truth patch image is not entirely uniform anymore. The SR
patch image does not feature any unreasonable overactive pixel, even less so than
in the top case, but this is supposedly just a reflection of the easier distribution of
activity in the HR image. The nth-hardest pixel distributions for the SR image are
well described and approximate the HR distributions, albeit not as well as in the
top case. What blatantly sticks out however is that LRgen distributions are shifted
and slightly distorted compared to the LR distributions, at least for the leading four
pixels. This is in stark contrast to the top sample where the relative distance of
the SR to HR distributions was completely mirrored by the LRgen to LR distance.
The fact that the SR distributions are closer to the ground truth than the LRgen

counterparts seems disturbing but we have to keep in mind that the LRgen image
arises through sumpooling the SR image in contrast to the ground truth were HR
and LR are independent, therefore we have to be careful what we compare: A priori
it is not given that the nth-hardest LRgen pixel results from the nth-hardest SR pixel,
the details about what constitutes the first is captured by the exact distribution of
energy in the SR pixels. Because the qcd activity is more peaked around the center,
getting this distribution right is more difficult than in the top case and apparently
the network is not getting it right so far. This demands a closer investigation of how
the LRgen distributions come about.
To be specific we are interested which pixels in the SR image are clustered into a
given hard pixel in the LRgen image by the sumpooling. To this end we perform the
sumpool manually for a few images in the training set, keeping track of which SR
pixels constitute a given LRgen pixel. An example is shown in Figure 7.2. Note that
there we also sumpooled the HR image (top-left) so the corresponding LR image
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(bottom-left) is not the same as LRgen. What we find is that the hardest pixel in
the pooled SR image (bottom-right) is made up by the three hardest pixel in the
SR image (top-right) in addition to some very soft pixels. In contrast, the hardest
pixel in the pooled HR image just includes the hardest, 4th, 7th and 10th hardest HR
pixels.
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Figure 7.1: Evaluation of the top-optimized model on qcd jets. In addition to the
ordered pixels (with a square-root scaling), we show the patch image
and the mean image. The zero-bin in energy collects jets with too few
entries.
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Figure 7.2: Example of a manually sumpooled qcd jet image.
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Figure 7.3: Number of non-empty pixels (left) and average energy per pixel (right)
for the model trained on qcd jets.
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Repeating this analysis for some more jet images we can conclude the following:

1. For qcd jets all the hard pixels are very close to the center. This leads to the
first few hardest pixels in the SR image to all be sumpooled into the hardest
pixel of the LRgen image.

2. As seen in the left plot of Figure 7.3 the LR and LRgen images have essentially
the same number of non-empty pixels but the SR image has more non-zero
pixels on average than its HR counterpart, thus these additional non-zero
entries in the SR image must be included in the 8 × 8 pixels that constitute
each LRgen pixel via sumpooling. On the other hand, as seen in the right plot
of Figure 7.3, the SR pixels are slightly softer than their HR counterparts so
that the total energy in the SR and HR image is approximately the same. This
is in accordance to what we already found earlier for top jets.

Based on this we are lead to believe that the first few hardest pixels in the LRgen

image already include all hard pixels in the SR image since these are all near the
center, in addition to very soft pixels that are ubiquitous in the SR image but more
likely to be distributed near the center. This explains why the leading LRgen pixels
are systematically harder than the leading LR pixels. The main difficulty for the
network is therefore to disentangle the complicated distribution of energy around
the center.

Having made these observations we may ask if physics can guide us from a model
optimized on top jets towards a model working well on qcd jets. To summarize the
challenges from qcd: In the top jet dataset hard pixels are relatively well separated,
therefore learning the high resolution distributions well automatically leads to well
approximated downsampled distributions. On the other hand, this also implies that
the jet image as a whole is more spread out than its qcd equivalent, something we
have noted earlier. This leads to a more difficult topology of the jet as a whole. In
the qcd case the situation is different: As the manual downsampling analysis showed
there is a much more complicated relation between the HR and LR distributions and
our model so far only learned to approximate the former well. This is not actually
so surprising because up to now the model did not have an actual impetus to care
about the LR distributions due to us only including the HR distributions in the early
stopping evaluation (see Section 4.5). Thus a first reasonable change is to include
also the downsampled distributions in the evaluation, an unnecessary step for the
top jets but important for qcd ones because the latter are all distributed close to
the center where disentangling them is much more challenging. Further we might
ask if our model really needs to be so deep. We know that qcd jets are determined
by the collinear splittings and therefore this is what the network really needs to
learn when improving on the LR information. An overcomplex model might have
difficulties to backpropagate this information, leading to very well approximations
for whatever we choose to explicitly evaluate but failing to see the bigger picture. On
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the other hand the model also must not be undercomplex so a reasonable compromise
seems to reduce the number of RRDB blocks from 15 to 10. This will be our final
proposal for the model and the dictating hyperparameters are summarized in Table
7.1. Extensively testing this model setup is the task performed in the next section.

#RRDB batch size β rescaling λreg λstd λpow λHR λLR λadv λpatch reset

10 15 0.1 0.3 0.001 0.2 1 1 0.1 0.01 0.1 20k

Table 7.1: Hyperparameters for our final model proposal. The relevant changes are
reducing the number of RRDBs and including the LR distributions in the
early stopping evaluation.
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8 Cross Check Evaluation

So far we have considered top and qcd jets in isolation but our overarching goal is
to achieve a model setup that can perform well on both types of jets. To show that
the model proposed in the last section does live up to this task we will now first
train and evaluate it on qcd jets, then we will take a step back and show that also
the upsampling of top jets is performed well. Finally we will analyse a cross-check
by evaluating the model trained on qcd data using top jets and vice versa.

8.1 High Level Jet Observables

Up to this point we have treated the model’s output like we would any image,
describing its performance entirely in terms of the individual pixel entries and a
few collective distributions (the patch- and jet mean image) but since we know
that our images arose from jets it is natural to include typical jet observables in
the evaluation, probing if the network can reproduce what we know on physical
grounds even though this has not been explicitly ingrained into the performance
metric during training. The high level jet observables we will consider in what
follows are [55; 56; 57; 58]:

mjet =

(∑
i

pµi

)2

wpf =

∑
i pT,i∆Ri,jet∑

i pT,i

C0.2 =

∑
i,j pT,ipT,j(∆Ri,j)

0.2

(
∑

i pT,i)2
τN =

∑
k pT,kmin(∆R1,k, ...,∆RN,k)∑

k pT,kR0

. (8.1)

The variables appearing on the right side of these equations have been introduced
in Section 2. The sum is taken over all jet constituents. The invariant mass mjet

will be very different for top and qcd jets: We expect the distribution of the former
to peak around the top mass ≈172 GeV while for the latter, arising from massless
partons, we expect detector effects to have the distribution peak around 20 to 50
GeV.
The girth wpf will be dominated by the hard pixels and essentially describes their
placement relative to the jet axis. C0.2 is the two-point energy correlator.
τN is the N-subjettiness, a measure of the likelihood that the jet arose from N
subjets. In practice we will use the N-subjettiness ratios τ2/τ1 and τ3/τ2 because
these can discriminate between 2- and 3-prong jets which we expect to be important
based on the 3-prongness of top jets.
Before evaluating a model with these jet variables it is first interesting to see how
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Figure 8.1: Distribution of the number of active pixels and high-level observables
mjet, τ2/τ1, τ3/τ2, wpf for the ground truth HR and different ground
truth LR images. Qcd jet results shown in top rows, top jet results in
the bottom rows.

they inherently differ between different resolutions. To this end we now make use of
all the different low resolution data, namely LRx2, LRx4 and LRx8 for respective
factors of 2, 4 and 8 between LR and HR image. In Figure 8.1 we plot the jet
variable distributions as well as the number of non-empty pixels for these ground
truth images evaluated on qcd jets (upper part of the Figure) and top jets (lower
part of the Figure).
As expected the jet mass is essentially invariant across the different resolutions and
peaks around 170 Gev for tops and around 50 GeV for qcd jets. In both cases
the different resolutions interpolate between the number of active pixels, highest for
the HR image and lowest for the factor 8 downsampled one. Further we see that
the τ2/τ1 ratio is the same across all resolutions for the top jets, this reflects their
innate three-prong nature, while we see a difference between resolutions for τ3/τ2. In
contrast to this both subjettiness ratios differ with resolution in the qcd case. Lastly
the energy correlator C0.2 is essentially the same for all qcd resolutions but clearly
interpolates between resolutions for tops while the girth wpf this is reversed between
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tops and qcd jets. We can attribute this to our earlier findings, the more widespread
leading pixels for tops allowing the energy correlator to differ when downsampling
to a lower resolution as slowly more and more hard pixels are put together while the
leading pixels in qcd images are already so near the center that downsampling does
not change much.

8.2 QCD Evaluation

Having familiarized with the high level jet observables we will now present the results
when evaluated for the model SR images. In Figure 8.2 we show the evaluation of
the model proposed in Table 7.1 when trained and evaluated on qcd jet images. We
see that the jet mean image and patch image are reasonable uniform and free of too
pronounced repeating patters. In obvious contrast to our first qcd jet evaluation,
Figure 7.1, the ordered pixel distributions are now very well approximated for HR
and LR, at least for the leading pixels and the soft noise regime. We take this
as a conformation of the changes proposed at the end of the last section. The
biggest discrepancy between LR and LRgen distribution arises for the 7th- and 10th-
hardest pixel but we already expected such a behavior earlier because this regime
interpolates between hard pixels and soft noise and therefore was conjectured to be
the most difficult to learn. All the high-level jet observables are well approximated
by the SR and LRgen distributions, especially the invariant mass is clearly learned.
Further the N-subjettiness ratio τ3/τ2 is approximated slightly worse by the SR
image compared to HR than the τ2/τ1 ratio. This suggests that the network is
not generating enough splittings of the hard parton. All together we see a clear
improvement compared to the qcd evaluation based on the top-optimized model but
we now have to investigate how well the current model still works for top jets.

8.3 Top Evaluation

The optimal top jet evaluation was shown for the ordered pixels and the patch
and jet mean image in Figure 6.10. To conclude that our proposed hyperparameter
changes in Table 7.1 really improve the big picture the performance of the new model
compared to this optimized model must at least not be worse than the performance
of the optimized top model trained on qcd jets in Figure 7.1. The top-trained model
evaluated on top jets is shown in Figure 8.3. We see that the first four leading pixel
distributions are described extremely well by both SR and LRgen. These correspond
to the well separated hard partons arising in the top decay and are therefore easy
to learn even with the less complex network. Again, starting from the 7th-hardest
pixel we see clear deviations of the SR distribution compared to the HR one. This
suggests that this cross-over regime is similar for both top and qcd jets and indeed
the soft pixel distributions start to resemble their qcd equivalents. One difference is
that even for soft pixels the number of zero entries is substantially lower than for qcd
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Figure 8.2: Evaluation of a network trained on QCD-jets and evaluated on QCD-
jets. We show square root scaled ordered pixel distribution, mean and
patch image as well as the high-level jet observables. The zero-bin in
energy collects jets with too few entries.

images, indicating that there is more structure left to be learned in top jet images and
this can be used by the network to approximate the soft pixel distributions slightly
better than for qcd jets. The ordered pixel distributions are arguably approximated
as well as in the optimal model evaluation however the mean jet image features a
more pronounced repeating pattern than in Figure 6.10. This however is no surprise
because in fact diminishing this pattern was the sole purpose of the optimized model.
As for qcd jets all high level observables are very well approximated. There is a
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minimal shift of the jet mass in the SR distribution compared to HR. In contrast
to qcd jets the N-subjettiness ratios are equally well learned. Again this can be
attributed to the three-prongness of top jets, resulting in three well separated hard
partons. Overall the performance is at best minimally worse than for the optimized
model and therefore we can conclude that our final model changes indeed lead to an
increased performance when top and qcd jets are not regarded in isolation anymore.
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Figure 8.3: Evaluation of a network trained on top-jets and evaluated on top-jets.
We show square root scaled ordered pixel distribution, mean and patch
image as well as the high-level jet observables. The zero-bin in energy
collects jets with too few entries.
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8.4 Cross-Evaluation

So far we have seen that we could find model parameters that can learn to upsample
top jets and qcd jets but in a pointed remark we could ask if the network has really
learned some physics or merely learned to upsample images. After all, in any slightly
realistic application the network would have to work on jets regardless from which
process they arose. To qualitatively check our model dependence on the dataset we
will now train the model on either top or qcd jets but perform the evaluation on the
respective other dataset. The results for a model trained on qcd jets but evaluated
on top jets can be seen in Figure 8.4. The results are promising: The ordered pixel
distributions are still learned very well albeit with larger deviations than in the top
trained model. The jet mean image features some stronger noise and the repeating
pattern is clearly visible in the top-left panel but in the patch image we see that the
most populated SR pixel is just 1.5 times harder than the average HR pixel which
shows that the significant improvements made in Section 6 are still present. The
shift in the jet mass between SR and HR has become a little bigger but overall the
jet observables are still well approximated. The discrepancy between the SR and
HR τ3/τ2-ratio has increased whereas the τ2/τ1-ratio has remained stable. This is
due to the network being trained on qcd jets and therefore not conditioned to create
a three-prong signature.
The last case, a model trained on tops but evaluated on qcd jets, is displayed in
Figure 8.5. Based on all our previous conclusions we expect this to be the most
challenging case. The simple, sharply peaked jet mean image is again learned well
and correspondingly the patch image is still quite uniform but the SR distributions
of the leading pixels show significant deviations compared to the HR case while the
soft noise distributions, starting with the 10th-hardest pixel are accurately approx-
imated. This is in accordance to what we had to say earlier about the difficulties
of upsampling qcd jets: The model trained on tops has not learned to disentangle
the intricate activity in the center of qcd images, especially it never learned to re-
gard LR distributions during training since these are intimately related to the HR
distributions for tops. Interestingly the deviations in the leading pixels are now
between SR and HR, completely reversed to the deviations between LR and LRgen

that we started with in Section 7. In the high-level jet observables we now see the
biggest deviation in the τ2/τ1 ratio between SR and HR distribution. This again
arises through the three-prong structure of the training top dataset, conditioning
the network on a higher subjet count.
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Figure 8.4: Cross-Evaluation of a network trained on qcd-jets and evaluated on top-
jets. We show square root scaled ordered pixel distribution, mean and
patch image as well as the high-level jet observables. The zero-bin in
energy collects jets with too few entries.
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Figure 8.5: Cross-Evaluation of a network trained on top-jets and evaluated on qcd-
jets. We show square root scaled ordered pixel distribution, mean and
patch image as well as the high-level jet observables. The zero-bin in
energy collects jets with too few entries.
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8.5 Single Event Performance

We have seen that our model can upsample top and qcd jets in a way that well
approximates the ground truth distributions but all of this is essentially a statistical
statement. It is natural to ask what happens when we compare SR and HR on an
event-by-event basis. In some sense this is doomed to fail from the beginning: While
in the dataset every HR image comes with a paired LR image, such a pairing is in
itself not unique, or in other words given a LR image there are multiple HR images
it could have possibly arisen from through the downsampling procedure. Despite
that we might investigate if certain characteristic properties, like the energy of the
leading pixels, can be retained on a single event case. To this end we compare
how the two hardest pixel energies are transferred from HR to SR in Figure 8.6 for
the top sample and in Figure 8.7 for the qcd sample. The top panels show the HR
energy of a given event versus the SR energy of of the same event for the two leading
pixels. The bisecting line corresponds to the pixel energy being the same in HR and
SR. In both, top and qcd case, we see a substantial spread of activity away from
the bisector, indicating that there is often an imbalance in energy. In the bottom
panels we divide the distribution of energy into 5 distinct slices for the HR samples
(bottom-left) and show how a value in a given slice is mapped by the model into
the SR distribution (bottom-right). Again for both cases and both leading pixels we
see that these distributions are significantly broadened for the SR images, further
showing that on a single event basis the energy of the leading pixels is not retained
in the SR image.
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Figure 8.6: Correlation between two leading pixel energies in SR and HR images
on an event-by-event base (top panel) and mapping of a certain energy
range from HR to SR (bottom panel) for top-jet sample.
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8.6 Conclusion and Outlook

We applied the task of single image super resolution to sparse jet images, describing
what modifications are necessary starting from a Generative Adversarial Model built
to yield optimal performance on regular, machine learning benchmark image sets.
We have showed that our model can reliably upsample top-jet images up to a factor
8, correctly reproducing low-level and high-level distributions and described the
necessary modifications to reach similar performance on the more difficult qcd-jet
data. Importantly we then demonstrated that our model is not dependant on any
specific type of jet but can generalize from one sample to the other.
The work done so far was mostly proof-of-concept, much more has to be done until
real experiments could benefit from it. Open questions and ideas for future work
are:

• At what upsampling factor does the model fail? Due to our data pipeline any
new resolution has to be created from scratch so that it was not possible to
test the next step, 16x Upsampling.

• We have seen that some of the jet observables interpolate between different
resolutions. Can we in turn make use of multiple resolutions during training,
e.g. comparing the SR output after every upsample layer to the correspond-
ing resolution ground truth? This could especially help to disentangle the
complicated qcd patterns.

• Can we completely drop any separation between qcd and top data and instead
simply train and evaluate on a large mixed sample? How does the model
interpolate between the two extremes in such a case?

• In this thesis we were only concerned with performance, not computational
cost or training time constraints. Is the immense complexity of the network
really necessary to yield satisfying results? By how much does performance
really decrease when lowering model complexity and what is the ideal thin
model?

Some of these questions are currently investigated by our collaborators [7] and we
look forward to what can be achieved in this direction.
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