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Abstract

PYTHIA and HERWIG are among the most popular Monte Carlo generators for quark and
gluon jets. Recent studies have found that quark-gluon classifiers perform significantly
worse on data generated by HERWIG compared to data generated by PYTHIA. This work
introduces a bayesian classifier, Bayesian ParticleNet (BPN), which assigns both a pre-
diction and an uncertainty for each jet. It is shown that the performance of the BPN
is comparable to the performance of it’s underlying architecture ParticleNet, a cutting-
edge Dynamic Graph Convolutional Neural Network. The network outputs, together with
a set of physically motivated observables, are used to systematically study the irregular-
ities in the input data that cause the performance difference. It is found that HERWIG

trained networks have difficulties in tagging gluons, which can be traced to a lack of
gluon-rich regions in the observable space. Both prediction and uncertainty are shown
to be strongly correlated to the particle multiplicity in the jet. It is further argued that a
network’s performance is sensitive to the seperability of the multiplicity distribution in
the dataset.

Zusammenfassung

PYTHIA und HERWIG zählen zu den prominentesten Monte Carlo Simulatoren für Quark-
und Gluon-Jets. Vergangene Studien zeigen dass Quark-Gluon-Klassifikatoren deutlich
schlechtere Resultate liefern wenn sie auf HERWIG Jets getestet werden verglichen mit
PYTHIA Jets. Diese Arbeit führt einen bayesischen Klassifikator, Bayesian ParticleNet
(BPN), ein, welcher jedem Jet neben einer Klassifikationsaussage auch eine Unschärfe
zuweist. Diese Arbeit zeigt, dass die Resultate des BPN vergleichbar sind mit den Re-
sultaten des zugrunde liegenden ParticleNet, einem leistungsstarkten Dynamic Graph
Convlutional Neural Network. Die Ausgabe des Netzwerkes wird mit physikalisch mo-
tivierten Observablen verknüpft um die relevanten Unterschiede in den Daten zu unter-
suchen. Dabei wird festgestellt, dass auf HERWIG trainierte Netzwerke Schwierigkeiten
haben, Gluonen korrekt zu klassifizieren. Dies wird zurückgeführt auf einen Mangel
an Phasenraum-Regionen mit hoher Gluonendichte. Es wird außerdem gezeigt, dass
die Ausgabe des Netzwerkes sensibel gegenüber der Anzahl von einzelnen Teilchen im
Jet ist. Es wird weiter argumentiert, dass die Tagging-Leistung sensibel gegenüber der
Separierbarkeit der Anzahl-Verteilung ist.
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1 Introduction

Particle jets are an omnipresent observation during proton-proton collisions at the Large Hadron
Collider (LHC). Long considered an experimental annoyance, they have turned into a power-
ful tool in the search for new physics. The term "jet" generally refers to a collimated spray
of particles. As jets are generally initiated by strong force interactions, they are described by
quantum chromodynamics (QCD).
One of the essential questions to answer when analyzing a jet is the particle that initiated it, as
jets initiated by different particles show different characteristics. A prominent example are jets
initiated by hadronically decaying top jets, which show a distinct two-prong structure. These
characteristics give rise to jet-tagging, the art of classifying a jet by the particle of its origin
based on physical observations in the experiment.
One of the most essential jet-tagging tasks is the differentiation between quark and gluon
initiated jets. Many searches for physics beyond the standard model rely on the observation
of quark jets. Successfully filtering gluon jets has the potential to drastically enhance these
searches, making quark-gluon discrimination a topic studied in numerous papers for the past
decade. Quark-gluon discrimination is also one of the more challenging jet-tagging tasks. Un-
like hadronically decaying heavy particles, jets initiated by quarks and gluons generally show
no clear prong structure. The differences between them are more subtle. Numerous studies
have introduced and studied QCD-motivated intermediate high-level observables [1–5] and
their discriminative power in quark-gluon tagging. More recently, machine learning methods,
particularily deep neural networks (DNNs), have been used to discriminate quarks from glu-
ons, matching or exceeding intermediate observables [6,7].
The majority of these studies rely on Monte-Carlo (MC) simulated data instead of experimental
results. The MC simulators most frequently used in quark-gluon simulations are HERWIG [8]
and PYTHIA [9]. It has been found that in terms of tractable observables, quarks and gluons are
more distinguishable in PYTHIA then in HERWIG [4, 10, 11]. When using image-based convo-
lutional neural networks (CNNs), the differences in the generated jets have led to a decreased
performance of networks trained on HERWIG data compared to similar networks trained on
PYTHIA [6]. Testing HERWIG jets on PYTHIA trained networks and vice versa has shown that the
network’s performance is correlated with the seperability of the testing data, not the training
data, as shown in Fig. 1.
Systematic uncertainties in the understanding of the data is a major restriction on the use of
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Figure 1: ROC curves for the PYTHIA- and HERWIG-trained CNNs applied to 200 GeV
samples generated with both of the generators. Data taken from [6].

machine learning models in LHC physics. This work adresses these uncertainties by trying to
untangle the PYTHIA-HERWIG-conundrum in quark-gluon tagging. Using a bayesian dynamic
graph convolutional neural network (BDGCNN) that ouputs both a predictive score and a pre-
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dictive uncertainty, a combination of the network outputs and tractable physical observables
is used to systematically search for characteristics in the jet data that cause the performance
difference.
Sec. 2 presents both the observables and the benchmark quark-gluon datasets used in this
work. Sec. 3 outlines ParticleNet, a dynamic graph convolutional neural network for jet-
tagging that was introduced in [12] and is used as the underlying architecture of a bayesian
ParticleNet (BPN), which is introduced in Sec. 4. In Sec. 5, the results of the BPN are discussed
with respect to both it’s performance and it’s classification output. The results are summarized
in Sec. 6. In a final outlook several suggestions are made on how the knowledge of data un-
certainty could be used to build more robust quark-gluon taggers.
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2 quark-gluon observables and datasets

Despite the vast application of quark-gluon tagging, there is no strict experimental or theo-
retical definition of what either one of these jet types precisely is. A comprehensive study of
alternative definitions is given in [2]. The definition widely used in jet-tagging is that quark
or gluon jets refer to the parton which is produced in the hard process at leading order in
perturbation theory and initiates the parton shower [3]. Gluon and quark jets are thus gen-
erated from qq̄ → Z(→ vv̄) + g and qg → Z(→ vv̄) + (uds) processes which occur during
proton-proton collisions.

2.1 Benchmark datasets

The datasets used in this work are part of the EnergyFlow package [13–15]. The gener-
ators used are PYTHIA 8.226 and HERWIG 7.1.4. For each generator, the package contains
two datasets with 2M total jets each, one dataset containing only up-, down-, and strange-
quarks (uds), the other also containing bottom- and charm-quarks (udsbc). With a number
of sophisticated methods for tagging heavy bottom- and charm-quarks already in place, most
quark-gluon tagging focuses on light (uds) quarks. This analysis also exclusively features the
(uds) datasets. The simulations use default tuning and shower parameters and are carried out
at a center-of-mass energy of 14TeV. Hadronization and multi-parton interactions are turned
on and no detector simulation is performed. The jets are defined in FASTJET 3.3.0 [16] via an
anti-kT-algorithm [17]. The radius limit is set to R= 0.4. For each event the leading jet is kept
if 500GeV < pT,jet < 550GeV and ηjet < 1.7. For a jet with nC consituents, the jet is defined
via

x i =
�

(pT,η,φ, PID)k
	

with k = 1, . . . , nC (1)

with the transverse momentum pT, pseudorapidity η, azimuthal angle φ and the particle ID
(PID). The particle ID follows the Monte Carlo Particle Numbering Scheme of the Particle Data
Group (PDG) [18]. The integer values assigned via the PID scheme are highly irregular and
are thus not considered to be a good input for classifiation algorithms. For any PID-related
observable in the training of DNNs in this work, the PID value is transformed to an experimen-
tally more realistic ID. Based on their PDG assigned PID value, particles are indicated as being
one of only five particles types (electron e±, muon µ±, charged hadron h±, neutral hadron
h0, and photon γ) as well as having the charge q. These categories are based on particle flow
reconstruction algorithms at ATLAS and CMS, where h± = π±/K±/p/p̄ and h0 = KL/n/n̄. The
IDs are included as boolean features (1 if the particle belonging to this category is true and 0
otherwise). The original PDG IDs as well as the boolean representation for all particle types
generated by PYTHIA and HERWIG are shown in Tab. 1. The jets contain different numbers of
constituents and are thus zero-padded to form arrays of similar length. Each data set consists
of equal parts quarks and gluons and is contained in 20 files with 100k jets each. The recom-
mended data split for train/test/validation is 1.6M/200k/200k, which is used throughout this
work if not indicated otherwise.

2.2 Tractable observables

There are two central QCD-motivated features that allow for the discrimination between quarks
and gluons. The observables used in this work are based on these features and have shown
good performance in distinguishing quarks and gluons on both MC generated and real world
data.

• In leading order, the ratio of the particle multiplicity npf of a gluon jet vs. a quark jet is
proportional to the ratio in color charges (QCD charges) of gluons (CA = 3) and quarks
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particle PDG-ID q is(e±) is(µ±) is(h±) is(h0) is(γ)

zero-padding — — 0 0 0 0 0 0
photon γ 22 0 0 0 0 0 1
pion π+ +211 +1 0 0 1 0 0
anti-pion π− −211 −1 0 0 1 0 0
kaon K+ +321 +1 0 0 1 0 0
anti-kaon K− −321 −1 0 0 1 0 0
long-lived kaon KL +130 0 0 0 0 1 0
neutron n +2112 0 0 0 0 1 0
anti-neutron n̄ −2112 0 0 0 0 1 0
proton p +2212 +1 0 0 1 0 0
anti-proton p̄ −2212 −1 0 0 1 0 0
electron e− +11 −1 1 0 0 0 0
positron e+ −11 +1 1 0 0 0 0
muon µ− +13 −1 0 1 0 0 0
anti-muon µ+ −13 +1 0 1 0 0 0

Table 1: Left: particles generated in proton-proton collisions in HERWIG and PYTHIA

Middle: Particle IDs according to Monte Carlo Particle Numbering Scheme of the Par-
ticle Data Group (PDG) [18]
Right: For quark-gluon tagging with particle-ID information, the PIDs are included
in an experimentally realistic way by using only five particle types (electron, muon,
charged hadron, neutral hadron, and photon), as well as the electric charge [12].

(CF = 4/3) [3]:



npf,gluon

�




npf,quark

� =
CA

CF
=

9
4

(2)

The larger color charge of gluons also leads to a wider linear radial moment (girth) wpf
of the jet, which can be visualized by looking at averaged quark and gluon jets in the
(η,φ)-plane, see Fig. 2.

• In next-to-leading order, the splitting functions for quarks and gluons differ in the soft
limit. This is measured via the generalized two-point correlation function [19] C (β)1 ,
where quark-gluon discrimination has shown to work best for small positive β values
(β ' 0.2). Due to the larger fragmentation of quarks, individual constituents in quark
jets on average carry a larger part of the jet energy. This can be measured in the β = 0
limit of C (β)1 via pTD := 1− C (0)1 [20].

These four observables can be calculated algebraically using the raw data of the particle
flow constituents which make up the jet:

npf =
∑

ipf

1 wpf =

∑

ipf
pT,i∆Ri,jet
∑

ipf
pT,i

C0.2 =

∑

ipf, jpf
pT,i pT, j

�

∆Ri j

�0.2

�

∑

ipf
pT,i

�2 pTD =

Ç
∑

ipf
p2

T,i
∑

ipf
pT,i

.

(3)

npf simply counts the constituents in a jet. The girth wpf adds the angular separation∆Ri =
q

η2
i +φ

2
i

for each constituent and weights them with their respective transversal momentum pT,i before
normalizing with the total transversal jet momentum pT,jet. C0.2 takes the relative angular
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(a) Averaged gluon-jet images
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(b) Averaged quark-jet images

Figure 2: quark and gluon jet images in the (η,φ)-plane, averaged over 20k individ-
ual images after preprocessing. The jet images are cropped to a 40×40 grid, covering
η = −0.566, . . . , 0.566 and φ = −0.684, . . . , 0.684. The color intensity corresponds
to the binned pT-magnitude. Due to the color charge ratio of 9/4, gluon jets (left)
tend to have more constituents and a broader radiation pattern (girth) than quark
jets (right).

separation ∆Ri j =
Æ

(ηi −η j)2 + (φi −φ j)2 to the power of β and weights it with the prod-
uct of the respective transversal momenta pT,i pT, j before normalizing again with the squared
total angular momentum. pTD sums over the squares of the transversal momenta, a value that
is larger for a high variance in the pT,i spectrum, before again normalizing via summing the
momenta of all constituents.
An additional discriminant for the girth is defined via ∆R5, which is the mean angular sepera-
tion of the 5 jet constituents with the largest angular separation∆R. An additional observable
that identifies the larger fragmentation of quarks is the highest fraction of transversal momen-
tum pT contained in a single constituent, xmax [21]. The distributions of these observables for
the 1.6M training jets from the benchmarking dataset are shown in Fig. 3. During training
of the DNN’s in this work, jets are typically cropped at 100 constituents in order to maintain
data efficiency. Thus the distributions in Fig. 3 are also cropped at 100 constituents. The
discriminative power of each observable can be estimated via the receiver operating charac-
teristic (ROC) curve, which shows the inverse background mistag rate (εb)−1 as a function of
the signal efficiency εs. The ROC curves and as well as the area under the curve (AUC) for all
observables are shown in Fig. 4. The highest AUCs are found for the number of constituents
npf, which aligns with the findings in [3]. For all observables the AUC is higher for PYTHIA

then for HERWIG. This confirms prior results on the reduced seperability of HERWIG jets.
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Figure 3: Observables for 1.6M training jets cut at 100 constituents for HERWIG and
PYTHIA generated jets. The physically motivated positive correlations between npf,
wpf and ∆R5 are evident, as well as the negative correlation between pTD and C0.2.
Overall, the gluon distributions are shifted stronger between the generators then the
quark distributions.
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Figure 4: ROC curves and AUC’s for 1.6M PYTHIA and 1.6M HERWIG jets computed
via particle observables. For all observables the PYTHIA jets have a higher AUC then
their HERWIG counterpart. As expected the npf observable generates the hightest
AUC, indicating that in an uncorrelated analysis this observable distinguishes best
between quarks and gluons.
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3 ParticleNet: Jet Tagging via Particle Clouds

Using a bayesian classfier to analyze the systematic differences between the MC simulations
requires a high performing backbone network. Strong performance metrics on common jet
tagging benchmarking tasks are an indicator that the network does a good job at learning dis-
criminative features in the data. Only once it is established that the network can learn such
features can possible performance drops on alternative datasets be attributed to systematic
differences in the training data.
The network chosen for this project is a light version of ParticleNet, a network that Qu and
Gouskos introduce in [12]. In it’s original publication it achieves state-of-the-art performance
on differenct benchmark classification tasks, namely Top vs. QCD and quark vs. gluon discrim-
ination. While recent transformer networks [22] have exceeded ParticleNet’s performance, the
large GPU time needed during training deemed transformer networks impractical for the aims
of this resilience analysis. ParticleNet can be realized with limited computational resources
and represents a good trade-off between performance and computational cost. It’s uniqueness
lies in the representation of the input jets: They are treated as permutation invariant particle
clouds, which allows for the construction of a dynamically changing graph in the feature space
as well as the use of edge convolution for efficient training and feature learning. Unlike jet
images, this data structure inherits no a priori physical information. This should allow the
network to learn without constraints the features which best discriminate quark- and gluon-
initiated jets. The following subsections particle clouds and network architecture exclusively
feature ideas, implementations and results from [12] with additional citations. While the
orginal ParticleNet is implemented in TENSORFLOW/KERAS, in subsection PyTorch implemen-
tation and results the network is reimplemented in PyTorch in order to simplify the process
of adding features of a bayesian DNN. Subsection Training ParticleNet-Lite describes the dif-
ferences in training between the original implementation and this work, highlighting in detail
which aspects of the training do not overlap. The results from the original paper are treated
as a benchmark to which the PyTorch implementation can be compared. In subsection Py-
Torch implementation and results it is shown that the re-implementation shows a comparable
performance to the original version. This result renders the re-implementation suitable as a
foundation for a new network, Bayesian ParticleNet (BPN).

3.1 Particle Clouds

All algorithms that aim to classify particle jets with respect to their particle of origin need as an
input a specific representation of the input jet data. The way in which a jet is being represented
has a great impact on it’s suitability for specific deep learning models and their performance. A
popular representation of jets is in the form of jet images: The energy of the jet constituents is
mapped in the (η,φ)-plane before being binned to form the pixels of the jet image. With time,
several pre-processing steps were introduced [23], boosting the performance of image based
networks. Representing jets as images allows for the use of Convolutional Neural Networks
(CNN’s), which were popularized in the field of image recognition following the release and
success of AlexNet [24] in 2012. CNN’s have since been adapted and applied to a number of
jet classification problems, including top tagging [23, 25, 26] and quark-gluon tagging [6, 7].
Despite the broad application of CNN’s in particle physics, jet images as the underlying data
structure have two key fallacies: First, they are computationally inefficient. In order to not
miss any jet constituents while still providing a reasonable resolution in the area of interest,
most particle tagging CNN’s typically take input images with O(1000) pixels. At the same
time, most jets across different classification problems and datasets contain only O(10) to
O(100) constituents. This leaves a majority of the pixels vacant, thus passing a lot of empty
values through the CNN’s dense layers. The second downside lies in the information loss due
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to the binning. Features such as particle ID, which are non-additive quantities of the individual
constituents, cannot be considered.
It seems to be a more intuitive idea to just treat the jet simply as a set of constituent particles.
Such an approach allows for calculation of any feature on constituent and jet level, including
features that take into account the particle’s ID. A choice has been to sort the particles in
ordered lists used for recurrent neural networks (RNNs) [27–29] as well as binary trees used
for recursive neural networks (RecNNs) [30,31]. Both RNNs and RecNNs are not indifferent to
the order in which the particles of each jet are fed into the network. Thus it has to be assumed
that the way the particles are sorted in the 1D lists or the binary trees affects the training in
one way or the other. This poses the problem that, physically speaking, there is no inherent
order to the particles that make up a jet. Sorting them by their transversal momenta pT is
the most popular option across the cited works. However this choice, while being practical,
remains arbitrary.
[13] and [12] propose to regard jets as particle clouds - analogous to point clouds in computer
vision. Mathematically speaking, a particle cloud representation is simply an unordered set
containing the particles that make up a jet. For point clouds in computer vision, the points are
generally considered to be correlated. Thus a network that takes point clouds as it’s input is
able to learn the internal structure of the higher dimensional object - jets in this case. The key
to ParticleNet is that it makes use of both it’s CNN like structure as well as the particle cloud
representation of it’s input data, which allows the use of a large set of features and enables
the learning of small- and large-scale structures in the jet.

3.2 Network architecture

The success of CNNs can be largely attributed to two key reasons: First, the number of learn-
able parameters is greatly reduced by using a single kernel that is shared accross the entire
image. The kernel’s weights can use all locations in the image, allowing for effective learning.
Secondly, convolutional layers can be stacked to form a deep network. Throughout these lay-
ers, features are learned in a hierarchichal approach [32]. Shallow layers learn local features
while deeper layers learn more global features. Unlike images however, particle clouds do not
feature the same grid-like structure on which a local kernel can easily be defined. Instead the
very characteristic of a particle cloud is the irregular spacing of the unordered consituents.
[33] proposes the edge convolution (EdgeConv), an operation that just like a classic convo-
lution operation featues a kernel-like object which sees a large number of input features and
which is also stackable. The point cloud is first represented as a graph where the vertices are
the points themselves and the edges are the connections between each point and it’s k neares
neighbouring points. The way that for a regular convolution operation a local patch consists
of the surrounding pixels, EdgeConv defines a local patch for each point as the set of the k
nearest points. Let x i denote a point in the point cloud and let x i ∈ RF be the feature vector of
x i lying in the F -dimensional feature space. The features in x i can depend on the coordinates
of x i but are not restricted to coordinate-dependent features (e.g. in the case of particle-ID
related features). Let now {i1, . . . , ik} denote the indices of the k nearest neigbouring points
of x i . We then define the EdgeConv operation as

x ′i =
k
�
j=1

hΘ
�

x i , x i j

�

(4)

where� is a symmetric aggregation operation, i.e. max, sum or mean, and hΘ : RF×RF → RF ′

is the so called edge function. The form of hΘ can be arbitrary, the function is parametrized
by learnable parameters Θ and the same edge function is shared across all edges. hΘ is the
equivalent to the kernel K in the image based convolution operation as it’s parameters see
the features of all points in the point cloud. � being invariant under permutation of it’s input
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feature vectors makes the EdgeConv operation permutationally symmetric, which is desireable
due to the unordered nature of the input feature vectors. The EdgeConv operation also maps
each feature vector x i to a new feature vector x ′i , meaning that it can be understood as a map-
ping of one point cloud to another. Thus is is possible to stack several EdgeConv operations,
analogous to the multiple convolutional layers in an image-based CNN. After performing a
single EdgeConv operation on a point cloud of points x i , the original coordinates x i can be
used for determining the k nearest points before the updated feature vectors x ′i are used to
determine a new generation of feature vectors x ′′i . However it has been shown to boost perfor-
mance [33] if instead the k nearest neighbours are found with respect to the updated features
x ′i . This way the graph which is used to determine the k nearest neighbours is updated with
each EdgeConv operation, which allows for the network to dynamically learn the proximity
of points in the feature space. The dynamically changing graph results in the Dynamic Graph
Convolutional Neural Network (DGCNN) [33].
ParticleNet takes the DGCNN idea and adapts it to best suit the problem of jet tagging. Fig. 5
shows a single EdgeConv-block in ParticleNet. For each particle it first finds the k nearest
neighbouring particles based on the coordinate input to the EdgeConv block. For each particle
and it’s k nearest neighbours it then takes the corresponding feature input. ParticleNet uses a
special form of the edge function

hΘ
�

x i , x i j

�

= hΘ
�

x i , x i j
− x i

�

, (5)

so instead of considering the actual features of the central particle and it’s neighbouring par-
ticles, the difference between each of the k neighbouring particle’s features and the central
particle’s features is calculated, resulting in the so-called edge features. The term edge fea-
tures is appropriate as these features do not correspond to the neigbouring particles (vertices)
themselves, but rather to the connection between them (edges). The k edge feature vectors
are then forwarded into the edge function, which is implemented as a three-layer multi-level
percepton (MLP). Each layer consists of a linear transformation, a batch normalization [34]
and a ReLU layer [35]. After all k edge feature vectors are passed through the edge function,
they are aggregated using the mean 1

k

∑

, which has shown to perform better then alternative
aggregation functions such as max or sum. Inspired by ResNet [36], the k original feature
vectors are passed down via a shortcut and are added to the aggregated output of the edge
function. The combined feature vector is then again passed through a ReLU layer. The hyper-
parameters characterizing a single EdgeConv block are the number k of nearest neighbours
considered for each point and the number of channels C = (C1, C2, C3) which determine the
number of units in each linear transformation layer.

[12] introduces two alternative architectures, ParticleNet and ParticleNet-Lite, which are shown
in Fig. 5b. ParticleNet-Lite is a smaller version of ParticleNet, which reduces the number of op-
erations per input jet by an order of magnitude. ParticleNet (ParticleNet-Lite) consists of three
(two) EdgeConv blocks, each using k = 16 (k = 7) nearest neigbours and the number of chan-
nels C being (64, 64,64), (128,128, 128) and (256, 256,256) ((32, 32,32) and (64,64, 64)).
The first EdgeConv-block takes as the coordinate input the (η,φ)-information from the raw
data and as feature input the kinematic and optionally the ID-related features listed in Tab. 2
and Tab. 3. For both inputs the following EdgeConv blocks take the output of their preceed-
ing block respecitively, adapting the idea of a dynamically changing graph. Afterwards the
features of all particles in the particle cloud are aggregated via a global average pooling, a
fully connected layer with 256 (128) channels, another ReLU layer and a dropout layer [37]
with a drop probability of 0.1, which prevents overfitting. A last fully connected layer with 2
channels follows before a softmax function generates the output in the interval [0, 1] used for
the binary classification task.
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(a) EdgeConv block structure.

coordinates features
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k = 16, C = (256, 256, 256)

Global Average Pooling
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(b) ParticleNet (left) and ParticleNet-Lite (right) architectures.

Figure 5: left: A single EdgeConv block. Based on the coordinate input the k nearest
neighbours for each particle are determined. Using the feature input, the edge fea-
tures for each neighbouring particle are calculated and passed through a 3-layer MLP
which acts as the edge function. Each MLP layer contains a linear transformation,
a batch normalization and a ReLU activation. After the MLP, the features for all k
particles are aggregated and the input features are added via a shortcut connection.
Each EdgeConv block is characterized by the number of channels C = (C1, C2, C3) in
the linear transformations as well as the number k of considered neighbours for each
particle.
right: Two alternative architectures, ParticleNet (left) which features three EdgeConv
blocks and ParticleNet-Lite (right) with two EdgeConv blocks. Both feature additional
fully connected layers, an additional ReLu layer, a dropout layer and a softmax func-
tion generating the restricted output.
Taken from Ref. [12].

3.3 Training ParticleNet-Lite

Both architectures were implemented in this project, however the analysis relies entirely on
ParticleNet-Lite. For the number of runs needed and the additional complexity introduced
through the bayesian version, the computational cost of training the original ParticleNet ex-
ceeded the available resources.
The original implementation of ParticleNet and ParticleNet-Lite is based on TENSORFLOW/KERAS

and can be found on the authors GitHub repository. In order to simplify the process of adding
bayesian characteristics, the network is first re-implemented using PyTorch. The training of
the PyTorch implemented ParticleNet-Lite (PN-Lite) closely resembles the training described
in [12]. This section highlights all similarities and differences in the training, which are also
summarized in Tab. 4. In both implementations, the AdamW optimizer [38]with a weight decay
of 0.0001 is used, minimizing the cross entropy loss

LBCE =
1
M

M
∑

m=1

−ym log f (xm)− (1− ym) log (1− f (xm)) , (6)
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variable definition

∆η difference in pseudorapidity between the particle and the jet axis
∆φ difference in azimuthal angle between the particle and the jet axis
log pT logarithm of the particle’s transverse momentum pT
log E logarithm of the particle’s energy E
log pT

pT, jet
logarithm of the particle’s pT relative to the jet pT, jet

log E
Ejet

logarithm of the particle’s energy E relative to the jet energy Ejet

∆R angular separation between the particle and the jet axis (
p

(∆η)2 + (∆φ)2 )

Table 2: Kinematic input variables used in the quark-gluon tagging task [12].

variable definition

q electric charge of the particle (determined from the particle ID)
isElectron if the particle is a electron e±

isMuon if the particle is a muon µ±

isChargedHadron if the particle is a charged hadron h± = π±/K±/p/p̄
isNeutralHadron if the particle is a neutral hadron h0 = KL/n/n̄
isPhoton if the particle is a photon γ

Table 3: Particle-ID input variables used in the quark-gluon tagging task [12].

where f (xm) ∈ [0, 1] is the network’s classification output for a single jet xm and y (xm) ∈ 0, 1
is the truth label of the jet (0 for gluons, 1 for quarks). The epochs and their corresponding
learning rates are slightly altered from the description in the original paper and instead follow
the implementation as given in the authors repository:

LR=











10−3 for epoch ≤ 10

10−4 for 10< epoch ≤ 20

10−5 for epoch > 20

(7)

The network is being trained for 30 epochs (24 in [12]), using a batch size of 128 (1024
in [12]). The smaller batch size is used due to memory constraints of the GPUs. Follow-
ing [12] the network parameters are saved after each epoch and the model snapshot that has
the highest accuracy on the validation data is used for the final evaluation.

For the initial EdgeConv block the network’s features input takes a set of kinematic features
shown in Tab. 2. Additionally, the feature input can contain the particle-ID related features
shown in Tab. 3. As described in Sec. 2, the particle-ID related boolean features represent
an experimentally realistic setup in which the exact ID of a particle may not be known but it
can still be associated with a broader group of particles. In [12], ParticleNet and ParticleNet-
Lite are trained both with and without particle-ID features, the results are given in Tab. 5.
For quark-gluon tagging, [12] uses the full PYTHIA generated dataset described in Sec. 2 and
the suggested train/validation/test split of 1.6M/200k/200k jets. For each jet only the 100
constituents with the largest transveral momenta pT are being considered. The PyTorch im-
plementation is also trained with the identical data split and pT cutoff on PYTHIA as well as
on HERWIG. In addition, it is trained and validated with a train/validation split of 400k/50k
jets. This restricted training, which uses only 25% of the jets available, is carried out on both
PYTHIA and HERWIG jets, in each case the training is repeated 10 times. Repeating the training
allows quantitative statements on the uncertainties in the performance metrics.
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training parameter PN-Lite
(TENSORFLOW/KERAS)

PN-Lite (PyTorch)

batch size 1024 128
number of constituents 100, with highest pT 100, with highest pT
signal-to-background ratio 1.0 1.0
number of epochs 24 30
training/validation/testing 1.6M/200k/200k 1.6M/200k/200k,

400k/50k/50k

Table 4: Default ParticleNet-Lite (PN-Lite) training specifics for the original TEN-
SORFLOW/KERAS implementation (left) and the re-implemented PyTorch version
(right).

network architecture PID accuracy AUC ε−1
b (εs=0.5) ε−1

b (εs=0.3)

ParticleNet-Lite 7 0.826 0.8993 32.8 84.6
ParticleNet 7 0.828 0.9014 33.7 85.4
ParticleNet-Lite 3 0.835 0.9079 37.1 94.5
ParticleNet 3 0.840 0.9116 39.8± 0.2 98.6± 1.3

Table 5: Benchmark performance of the TENSORFLOW/KERAS implementation of Par-
ticleNet and ParticleNet-Lite on the quark-gluon tagging dataset (PYTHIA/PYTHIA),
with and without PIDs [12].

3.4 PyTorch implementation: results

Tab. 6 shows the testing results for the PyTorch implementation trained/tested on 1.6M/200k
jets. Looking at the results for the PYTHIA trained network and comparing it to the PN-Lite
(with PID) results from Tab. 5, we see that while the original implementation has a slight edge
in all performance metrics considered, the PyTorch implementation does have almost iden-
tical statistics. The training of DNN’s is inherently statistical and determining precisely which
aspects of the training or network implementation caused the slight difference in performance
is all but easy. There is the possibility that choosing a batch size smaller by the order of one

network architecture train/test PID accuracy AUC ε−1
b (εs=0.5) ε−1

b (εs=0.3)

PN-Lite PYTHIA/PYTHIA 3 0.831 0.9049 36.3 91.0
PN-Lite HERWIG/HERWIG 3 0.761 0.8348 15.5 48.5

Table 6: Performance of the PyTorch implementation of PN-Lite trained/tested on
1.6M/200k PYTHIA and HERWIG jets (different combinations) using the setting out-
lined in Sec. 3

magnitude might have affected the training, however a number of recent studies [39,40] have
shown that for DNN’s in general there is no clear correspondence between a larger batch size
and a model’s performance. It is worth noting that the PyTorch implementation of PN-Lite
outperforms the larger ParticleNet trained without particle-ID related features. It also outper-
forms alternative quark-gluon discriminators available at the time that [12] was published,
namely the Particle Flow Network (PFN) [13] and the Particle-CNN [41], as shown in [12].
Looking at both the receiver operating characteristic curves (ROC curves) shown in Sec. 3.4

as well as the performance metrics in Tab. 6, there is a sharp performance drop for the network
trained/tested on 100% of all HERWIG jets. For the networks trained on 25% of the datasets,
Sec. 3.4 shows the ROC curves including errorbars which result from the multiple training
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HERWIG/PYTHIA, AUC= 0.8800± 0.0013
HERWIG/HERWIG, AUC= 0.8347± 0.0003
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Figure 6: PyTorch implementation of PN-Lite trained/tested on 1.6M/200k (left)
and 400k/50k (right) PYTHIA and HERWIG jets (different combinations) using the
training outlined in Sec. 3. The full statistics are shown in Tab. 6 and Tab. 7. The
width of the curves on the right corresponds to the errorbars aquired through training
iteration.

iterations. Comparing Tab. 6 and Tab. 7, is can be observed that for the train/test combi-
nations PYTHIA/PYTHIA and HERWIG/HERWIG there is a small drop in performance across all
metrics, which can be attributed to the smaller amount of training data. We additionally ob-

network architecture train/test PID accuracy AUC ε−1
b (εs=0.5) ε−1

b (εs=0.3)

PN-Lite PYTHIA/PYTHIA 3 0.829± 0.001 0.9020± 0.0004 34.7± 0.5 95.8± 2.7
PN-Lite HERWIG/PYTHIA 3 0.796± 0.003 0.8800± 0.0013 28.1± 0.2 84.9± 2.3
PN-Lite HERWIG/HERWIG 3 0.762± 0.001 0.8347± 0.0003 15.1± 0.2 50.0± 0.8
PN-Lite PYTHIA/HERWIG 3 0.718± 0.003 0.8121± 0.0007 12.7± 0.2 41.3± 1.1

Table 7: Performance of the PyTorch implementation of PN-Lite trained/tested on
400k/50k PYTHIA and HERWIG jets (different combinations) using the training out-
lined in Sec. 3

serve that a network trained on HERWIG performs significantly better when tested on PYTHIA

jets then when tested on HERWIG jets. While the combination PYTHIA/PYTHIA still yields the
best results, the performance of the network seems to be stronger correlated to the jets used
in testing then to the jets used in training. This is cemented by the performance of a PYTHIA

trained network tested on HERWIG, which performs even worse then the HERWIG/HERWIG sce-
nario. Fig. 7 shows the predicted means and standard deviations on the 50k test jets for all
four combinations of training/testing on PYTHIA and HERWIG. The peculiarities in these distri-
butions, such as the vacancy around µpred → 0 for HERWIG trained networks, are reproduced
by the bayesian classifier and will be discussed in detail in Sec. 4 and Sec. 5.
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Figure 7: Predictive means and standard deviations from PN-Lite trained/tested on
400k/50k PYTHIA and HERWIG jets (different combinations) using the training out-
lined in Sec. 3
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4 Predictions plus uncertaincies: Bayesian ParticleNet (BPN)

Bayesian neural networks (BNNs) do not assign a classification output based on a fixed set of
weights. Instead, they draw each weight from a learned distribution, yielding a probabilistic
network output for which the uncertaincy can be quantified. [42] lists three possible sources
of uncertainty in the particle physics context:

• finite but perfectly labeled training samples, coreresponding to a statistical uncertainty
in the classification output, i.e. due to finite MC statistics;

• systematic inconsistencies in the training data and their labels, corresponding to system-
atic uncertainty in the classfication output;

• differences between the training and the test samples.

In the context of deep learning [43], two types of uncertainty are considered: (i) epistemic
uncertainty, which describes the lack of statistics and can be reduced by adding more data/-
training iterations and (ii) aleatoric uncertainty resulting from noise in the data which can-
not fully be eliminated. [42] relates these uncertainties to the points listed above: epistemic
uncertainty corresponds to statistical, aleatoric uncertainty to systematic unceratinties in the
classification output. The latter is either related to irregularites in the input jets or is related to
systematic differences between train and test data. Given the extent of the quark-gluon dataset
described in Sec. 2 for both train and test data, it is most probable that uncertainties in the
classification output are neither statistical, nor can they be attributed to systematic differences
between train and test data. Therefore, observed uncertainties likely correspond to irregular
input data. In the context of quark-gluon tagging, large uncertainties can point towards latent
space regions in which quarks and gluons are hard to keep apart. As BNNs assign uncerainty
jet-by-jet, they provide a powerful analysis tool: A jet with a large uncertainty is likely located
in a latent space region where there is a large overlap between quark and gluon induced jets.
This is the key motivation for adding bayesian features to the quark-gluon tagger introduced
in Sec. 3. Bayesian networks have been implemented on different occasions in the context of
particle physics [42, 44, 45], the following subsection Bayesian neural networks follows their
descriptions of the mathematical principles behind bayesian deep learning. Subsection Train-
ing BPN-Lite outlines the training specifics of the network used in this work.

4.1 Bayesian neural networks

Given a training dataset D = {(xn, yn)Nn=1}, the weights ω of a BNN are not fixed but instead
follow the posterior distribution p(ω |D), which according to Bayes’ theorem can be obtrained
via

p(ω |D) = p(D |ω)p(ω)
p(D)

(8)

with p(D | ω) = ∏N
n=1 p (yn | xn,ω) being the likelihood of observing the training data D

for a given network with parameters ω. p(ω) is the prior distribution which can be choosen
freely and is in most applications a normal distribution with µp,σp being hyperparamters in
the training. In any classification task, the goal is to predict the likelihood p(c | x) of a test
event x to be member of the class c. Following Eq. (8), p(c | x) can be obtained via:

p(c | x) =
∫

dωp(ω |D)p(c | x ,ω) (9)

with p(c | x ,ω) being the network output. The integral can be interpreted as the sum over
an infinitely large number of different weight configurations which are being weighted with
their posterior probability p(ω | D). The posterior p(ω | D) cannot be directly accessed via a
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neural network, given the large number of parameters that need to be considered. A solution
is given by variational interference [46], where the posterior is approximated by a distribution
qΘ(ω) parametrized by learnable parameters Θ. This way Eq. (9) can be approximated as

p(c | x)≈
∫

dωqθ (ω)p(c | x ,ω), (10)

which is solvable via Monte Carlo integration. In order to obtain the parameters Θ of qΘ(ω),
the Killback-Leibler-divergence (KL-divergence)

KL[qΘ(ω), p(ω | D)] =
∫

dωq(ω) log
qΘ(ω)

p(ω | D) (11)

is minimized. The KL-divergence is a measure of similarity between two distributions. It is 0
if the distributions are identical and positive otherwise. By minimizing the KL-divergence, qΘ
approximates p(ω | D) with increasing accuracy. Using Eq. (9), Eq. (11) can be rewritten as

KL [qθ (ω), p(ω |D)] =
∫

dωqθ (ω) log
qθ (ω)

p(ω |D)

=

∫

dωqθ (ω) log
qθ (ω)p(D)

p(ω)p(D |ω)

= KL [qθ (ω), p(ω)] + log p(D)−
∫

dωqθ (ω) log p(D |ω)

(12)

The second term is called Bayesian bias term and as it does not depend on the parameters Θ, it
can be omitted in the loss function. The first term depends on the chosen prior but not on the
training data and can thus be regarded as a regularization term that prevents the model from
overfitting. The third term includes the negative log-likelihood, resembling the cross entropy
loss, weighted with qΘ and integrated over the weight-space. Omitting the second term the
loss function for a BNN is given by

LBNN := KL [qθ (ω), p(ω)]−
∫

dωqθ (ω) log p(D |ω) (13)

While the first term aims to minimize the difference between the chosen prior distribution for
each weight and the tractable distribution qΘ(ω), the second term includes the log-likelihood
which sums over all points in the training set,

log p(D |ω) =
N
∑

n=1

log p (yn | xn,ω) . (14)

Minimizing the negative log-likelihood is equivalent to finding the weightsω which maximize
the probability of a point x i being mapped to the correct label yi . The integral over the log-
likelihood can be approximated via sampling from the posterior distribution S times,

∫

dωqθ (ω) log p(D |ω)≈ 1
S

S
∑

s=1

log p (D |ωs) =
1
S

S
∑

s=1

N
∑

n=1

log p (yn | xn,ωs) (15)

where ωs ∼ qΘ(ω) is the weight drawn for each sampling. In a realistic training setting, the
sampling is not done on the entire dataset but instead on batches of size M , yielding a final
BNN loss function

LBNN ≈ KL [qθ (ω), p(ω)]− 1
S

N
M

S
∑

s=1

M
∑

m=1

log p (ym | xm,ωs) . (16)
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Once the parameters Θ have been optimized, the prediction can be obtained via Eq. (9)

p(c | x) =
∫

dωq(ω)p(c | x;ω)≈ 1
N

S
∑

s=1

p (c | x ,ωs) =: µpred (17)

withωs ∼ qΘ(ω). This predictive mean can be regarded as avering over an ensemble of netwe-
orks with different weight configurations which are drawn from the learned distributions. The
predictive standard deviation is accordingly defined via

σ2
pred :=

1
S

S
∑

s=1

�

p (y∗ | x∗,ωs)−µpred

�2
. (18)

Predictive mean and predictive standard deviation form the combined output of a BNN.
Most classification models map their unbounded output to a closed interval [0,1] using a fi-
nal SoftMax layer, which in the special case of a binary classification problem is a sigmoid
layer. [42] shows how such a sigmoid layer alters the BNN output distribution from it’s orig-
inal Gaussian shape and transform the uncorrelated outputs

�

µ(unconstr)
pred ,σ(unconstr)

pred

�

into a
parabolic correlation

σpred ≈ µpred

�

1−µpred

�

σ(unconstr)
pred with µpred ∈ [0,1] (19)

[42] argues that a poorly trained network will not output a parabolic correlation between µpred
and σpred, meaning that this correlation can be treated as an evaluation criteria on whether
the network trains properly.

4.2 Training BPN-Lite

When training BPN-Lite, both the prior and the weight distribution for each weigh is assumed
to be Gaussian, with the mean and width of the prior

�

µp,σp

�

being fixed hyperparameters
which are usually set to 0 and 1. Meanwhile the mean and width of the distribution from
which each weight is sampled are learnable parameters

�

µq,σq

�

. This way the KL-divergence
Eq. (11) becomes

KL
�

qµ,σ(ω), pµ,σ(ω)
�

=
σ2

q −σ2
p +

�

µq −µp

�2

2σ2
p

+ log
σp

σq

=
1
2

¨

2 log
σp

σq
+

�

σq

σp

�2

+

�

µq −µp

σp

�2

− 1

«

.

(20)

Setting S = 1, as it is usually done in order to minimize computational cost, and inserting 0
and 1 for

�

µp,σp

�

yields the complete loss function

LBPN :=
1
N

KL
�

qµ,σ(ω), pµ,σ(ω)
�− 1

M

M
∑

m=1

log p (ym | xm,ω)

=
1
N

∑

i∈{ω}

1
2

�

µ2
i +σ

2
i − logσ2

i − 1
	− 1

M

M
∑

m=1

log p (ym | xm,ω)

︸ ︷︷ ︸

(binary) cross-entropy loss

.
(21)

The last term in Eq. (21) is still dependent on the weights ω. These weights can be reparam-
eterized to make the term dependent on the learnable parameters

�

µq,σq

�

via

ω∼N
�

µq,σ2
q

�

=⇒ ω= µq + εσq, ε∼N (0,1). (22)
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For each training iteration and weight the parameter ε is drawn from the normal distribution,
after which the parameters

�

µq,σq

�

for each weight are minimized with respect to Eq. (21).
The PyTorch implementation from Sec. 3 is transformed by replacing the linear layers in the
EdgeConv blocks as well as the fully connected layers by bayesian linear and 2D-convolution
layers taken from [47]. In these layers the weights ω are replaced by the Gaussian param-
eters

�

µq, logσ2
q

�

from which ω is obtained by sampling ε. The choice of using logσ2
q as a

parameter for minimization has been shown to stabilize the training [45]. The parameters
in the batch-normalization remain regular learnable weights ω. The training statistics and
architectures for a bayesian version of ParticleNet and ParticleNet-Lite are shown in Tab. 8.

The most notable difference is the number of epochs. [45] shows that BNN’s can take sig-

hyper-parameter BPN BPN-Lite

number of EdgeConv blocks 3 2
number of nearest neighbors k 16 7
number of channels C for
each EdgeConv block

(64, 64,64)
(128, 128,128)
(256, 256,256)

(32,32, 32)
(64,64, 64)

channel-wise pooling average average
fully-connected layer 256 and ReLU 128 and ReLU
dropout probability 0.1 0.1
batch size 128 256
number of constituents 100, with highest pT 100, with highest pT

Bayesian bias terms? no no
re-sampling during validation? no no
training/validation/testing 400k/50k/50k 400k/50k/50k
signal-to-background ratio 1.0 1.0
number of epochs 100 100
prior mean µp = 0 0 0
prior width σp 1 1
re-sampling for testing 50x 50x

Table 8: Default Bayesian ParticleNet (BPN) and BPN-Lite architectures [12]. Only
the weights in the linear and 2D-convulutional layers are described by Gaussian dis-
tributions. The bias terms as well as the parameters in the batch-normalization lay-
ers are regular learnable parameters. The mean and width of the prior are given by
µp = 0 and σp = 1. The number of Monte Carlo samples used to calculate µpred and
σpred is S = 50 (see Eqs. (17) and (18)).

nificantly longer to converge, which is partially correlated to the larger number of learnable
parameters. Thus training for more epochs guarantees a converging training. Again we only
use the lite architecture for further testing due to computational constrains. The network is
trained on both PYTHIA and HERWIG data seperately.

4.3 BPN-Lite: results

The ROC-curves for BPN-Lite trained on PYTHIA and HERWIG are shown in Fig. 8, including
cross-testing. The corresponding performance metrics are listed in Tab. 9. Across all train/test
combinations and all performance metrics, the results of BPN-Lite are similar to the ones ob-
tained for the deterministic ParticleNet-Lite (see Tab. 7). The distribution of the predicted
mean µpred shown in Fig. 9 also resembles the distribution in Fig. 7.
The distribution of the prediction uncertainty σpred differs for the bayesian version, most no-
tably for the networks trained on HERWIG. This difference can be attributed to the different
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Figure 8: BPN-Lite trained/tested on 400k/50k PYTHIA and HERWIG jets (different
combinations) using the default settings in Tab. 8.

network architecture train/test PID accuracy AUC ε−1
b (εs=0.5) ε−1

b (εs=0.3)

BPN-Lite PYTHIA/PYTHIA 3 0.820 0.9016 34.0 99.2
BPN-Lite HERWIG/PYTHIA 3 0.798 0.8790 28.2 82.5
BPN-Lite HERWIG/HERWIG 3 0.761 0.8348 15.0 52.1
BPN-Lite PYTHIA/HERWIG 3 0.689 0.8147 12.8 38.5

Table 9: Performance of the PyTorch implementation of BPN-Lite trained/tested on
400k/50k PYTHIA and HERWIG jets (different combinations) using the default settings
in Tab. 8.

ways in which the uncertainties were obtained. For the deterministic version they are obtained
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Figure 9: Predictive means and standard deviations from BPN-Lite trained/tested on
400k/50k PYTHIA and HERWIG jets (different combinations) using the default settings
in Tab. 8.

by reiterating the training process multiple times. Thus the uncertainties shown in Fig. 7 are
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directly related to the statistical nature of the training algorithms involved. For the BPN how-
ever, the uncertainties correspond to systematic noise in the input data and can provide further
insights. Fig. 10 shows the correlation bewteen µpred andσpred. The scattered points are trans-
formed into a density map using Gaussian kernel estimation. For all train/test combinations
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Figure 10: Correlation between µpred and σpred represented via a Gaussian kernel
estimation. As expected, the curves roughly show a parabolic relation with deviations
for certain combinations.

the distributions roughly resemble a parabola, as described in Eq. (19). Thus we can assume
that the training ob the BPN is generally stable for both HERWIG and PYTHIA training data.
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5 The PYTHIA-HERWIG conundrum

The differences in performance and in the distributions of µpred and σpred are rooted in differ-
ences in the training and testing data. From a human perspective it is not possible to know
which high-level features in the data are learned by the network. Tractable physical observ-
ables and their correlation to the network output are a limited yet insightful way to make sense
of the difference in behaviour between PYTHIA and HERWIG.
The results from the BPN shown in Fig. 8 and Fig. 9 allow for three key observations:

• The performance of the network is strongly dependent on the testing data and weakly
dependent on the training data. Both networks tested on PYTHIA perform significantly
better then the networks tested on HERWIG across all performance metrics.

• The µpred distribution for both HERWIG-trained networks is asymmetric, the area close
to µpred → 0 is left vacant. It seems as if there were no HERWIG gluons.

• Theσpred distribution for both HERWIG-trained networks has no clear peak atσpred → 0.
There is only a limited number of jets that a HERWIG-trained network classifies with
confidence. Meanwhile PYTHIA trained networks also have a fair share of uncertain
predictions with a small yet identifiable peak at σpred ≈ 0.09.

The first observation has already been made in [6], where it is argued that the insensitivity to
the training data confirms the robustness of DNN’s in quark-gluon classification. However the
observations in the predictive output, despite not having a large effect on the performance, are
largely training dependent. This questions the robustness derived from the mere performance.
The goal of this section is to understand above observations in terms of physical observables
and give a more nuanced answer to the question of resilience in quark-gluon tagging.

5.1 Correlations and performance

It is a natural assumption that the classification output of the BPN corresponds to discriminative
observables. A simple yet effective tool to determine which tractable observables correspond
best with the features learned by the network is the Pearson’s correlation coefficient (PCC)

PCC=
cov(µpred, x i)

std(µpred)std(x i)
(23)

between the predictive mean µpred and the tractable observable x i . The PCC’s for the observ-
ables introduced in Sec. 2 are shown in Tab. 10. While there is a significant correlation for all

train/test npf wpf pT D C02 xmax ∆R5

PYTHIA/PYTHIA −0.81 −0.46 0.70 −0.67 0.62 −0.64
HERWIG/PYTHIA −0.82 −0.53 0.78 −0.77 0.69 −0.65
HERWIG/HERWIG −0.83 −0.55 0.75 −0.76 0.65 −0.66
PYTHIA/HERWIG −0.79 −0.47 0.61 −0.62 0.52 −0.66

Table 10: Correlation coefficients of the predictive mean µpred with tractable observ-
ables for 50k PYTHIA and HERWIG test jets.

observables, the correlation is the strongest for npf. The correlation is visualized in Fig. 11,
where the npf-distribution is shown for different bins in µpred. As one would expect, jets which
the network considers to be gluon-like have a large number of constituents while quark-like
jets fall towards the lower end of the spectrum. The similarities in the bin structure for net-
works trained on the same generator shows that feature learning is strongly tied to npf, an
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Figure 11: nPF distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons. The filled histograms show all quarks and gluons in the testing data. The
colored graphs show the distribution for µpred-bins. The µpred values are obtained
with the train/test combination indicated in the figure legend. As expected, low
predictive scores correspond with large npf. The bin structures are almost identical for
networks trained on the same data, indicating that the network learning is strongly
tied to the observable.

observation that is also made for other observables that correlate with µpred.
The predictive mean being strongly correlated to the number of particle flow objects gives a
partial explaination for the poor performance of a PYTHIA-trained network when tested on
HERWIG. The npf distribution for the training data (Fig. 3) clearly shows that while the quark
distributions look alike for both generators, the gluon distribution for HERWIG is shifted to-
wards smaller multiplicity values compared to PYTHIA. Thus a significant number of HERWIG

gluons, based on npf, look quark-like to a network that has learned the npf distribution of
PYTHIA-generated jets. This leads to a high gluon-jet mistag rate εb for the PYTHIA/HERWIG-
case, which is reflected in the performance as seen in Tab. 9. HERWIG trained networks learn a
more dense distribution, thus PYTHIA jets tend to be located more towards the edges of distri-
butions learned through HERWIG. This allows a HERWIG trained networks to correctly classify
PYTHIA jets at a high rate.
The performance of tractable discriminants on experimental data of light quark and gluon jets
tends to fall in between the performance achieved on HERWIG and PYTHIA [11]. Given the
correlation between tractable discriminants and classification output it can be assumed that
experimental data would also perform in between PYTHIA and HERWIG when applied to a deep
neural network. Judging from the BPN results, training a DNN on data that is more or less
discriminative than the data on which it is being tested does have a negative effect on the
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performance. This of course is a motivation to simulate data that resembles the experimental
reality as precisely as possible. However the performance difference is small compared to the
difference induced by more or less discriminative test data.

5.2 Understanding the µpred distributions: Where are the HERWIG gluons?

Minimizing the cross entropy loss (Eq. (6)) will push classification scores towards the edges
of the unit intervall [0,1]. The vacancy at µpred → 0 for HERWIG trained networks is a strong
indication that for HERWIG jets there is no phase space region in which gluons can clearly be
identified by the network. This hypothesis can qualitatively be strengthened by estimating the
relative gluon density in the phase space region in which a PYTHIA trained network locates glu-
ons. Estimating the density of quarks and gluons in a O(100)-dimensional latent space is com-
putationally difficult. The problem can be simplified by instead searching in a low-dimensional
observable space, using the same tractable observables as above. Refs. [1, 2] systematically
study the discriminative power in a two-dimensional observable space, also combining mul-
tiple oservables to form more sophisticated classification schemes. The approach shown here
relies on pairwise comparison in a two-dimensional observable space. In the general case, a
DNN learns high level correlations that cannot be understood in physical terms. Thus marking
regions with gluon-like jets in terms of physical observables is only an approximation of the
regions learned by the network.
In a PYTHIA/PYTHIA-scenario, the 10% test jets with the lowest classification score (most gluon-
like) are located in a a plane of two observables. Their location of greatest density is (rather
crudely) defined as a box in the observable plane. The edges of the box are determined by
calculating the mean and standard deviation for the set of gluon like jets (µx i

,σx i
) for each

observable x i . The edge of the box in the observable x i is then simply given by the interval
[µx i

− σx i
,µx i

+ σx i
]. Marking the region via PYTHIA/PYTHIA test jets, the boundaries are

then applied to both the PYTHIA and HERWIG training data. The relative gluon density is then
quantified by calculating the ratio of gluons to quarks in this region. This analysis is repeated
for all pairs of the observables listed in Sec. 2. The resulting quark-gluon ratios for the PYTHIA

training jets, as well as the percentage of training jets in the found regions, are shown in
Tab. 11.

interval observable wpf pT D C02 xmax ∆R5

[52,81] npf 6.85 (18%) 6.66 (19%) 6.08 (21%) 6.69 (17%) 5.95 (22%)
[0.032,0.11] wpf 4.99 (22%) 3.75 (34%) 4.22 (25%) 4.04 (29%)
[0.19,0.27] pT 4.80 (25%) 4.59 (28%) 5.70 (20%)
[0.48,0.64] C02 4.33 (26%) 4.34 (28%)
[0.081,0.175] xmax 5.29 (21%)
[0.060,0.138] ∆R5

Table 11: gluon/quark-ratio for PYTHIA training jets. Regions are defined via lowest
10% PYTHIA test jets.

Unsurprisingly, regions in observable space with a high particle multiplicity combined with
an additional observable show the largest gluon/quark-ratios. Similar results were found in
[3], where combining multiplicity and girth (npf and wpf) yielded the best discrimination.
Two regions with the highest g/q-ratio are visualized in Fig. 12. Taking the same box edges
but transferring them to the HERWIG generated training data yields the ratios in Tab. 12. In
the HERWIG data, the g/q-ratios are significantly lower across all observables, the difference
is most pronounced for correlations with the multiplicity npf. The two key takeaways from
this analysis are that (i) a HERWIG trained network cannot allocate gluons, even in higher
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Figure 12: 400k PYTHIA training jets in two-dimensional observable planes. The
highlighted box marks the area determined through low classification scores µpred
and shows the quark/gluon-ratio as well as the percentage of jets in the region.

interval observable wpf pT D C02 xmax ∆R5

[52,81] npf 5.28 (13%) 5.36 (15%) 4.94 (16%) 5.30 (14%) 4.82 (18%)
[0.032,0.11] wpf 4.19 (19%) 3.56 (33%) 3.62 (23%) 3.45 (24%)
[0.19,0.27] pT 4.07 (23%) 3.88 (26%) 4.60 (17%)
[0.48,0.64] C02 3.27 (17%) 3.70 (25%)
[0.081,0.175] xmax 4.29 (18%)
[0.060,0.138] ∆R5

Table 12: gluon/quark-ratio for HERWIG training jets. Regions are defined via lowest
10% PYTHIA test jets.

dimensional observable spaces, and that (ii) a network’s ability to identify gluons is closely
linked to the seperability in the npf distribution, which is significantly reduced in HERWIG.
The close relation to the particle multiplicity and girth can also be approached by systematically
constraining the data that the network is given to npf- and wpf-related features. The BPN is
retrained with similar settings as described in Sec. 4 except for one key difference: The feature
input of the first EdgeConv block is given none of the pT- and PID-related features in Tab. 2
and Tab. 3. Instead, the same coordinates (η,φ) from the raw data which are fed into the
coordinate input are also fed into the feature input. The information in the combined inputs
is thus constrained to the number of particles and their position in the (η,φ)-plane and does
not include transversal momentum or the particle-ID of each constituent. The resulting ROC
curves and output distributions, shown in Fig. 13, reproduce most of the features observed
with a BPN trained on pT- and PID-related features. These include the order of performance
for the different train/test combinations, the gluon vacancy for HERWIG trained networks as
well as the two-peak structure in the σpred distribution for PYTHIA trained networks. These
shared features are another indicator for a strong correspondence between seperability of the
npf distribution and the network performance.

26



Thesis Generator dependencies in quark-gluon tagging

0.0 0.2 0.4 0.6 0.8 1.0
quark-jet efficiency (εs)

100

101

102

103

104
in

ve
rs

e
gl

uo
n-

je
t

m
is

ta
g

ra
te

(ε
−1 b

)
PYTHIA/PYTHIA, AUC= 0.8730

HERWIG/PYTHIA, AUC= 0.8575

HERWIG/HERWIG, AUC= 0.8129

PYTHIA/HERWIG, AUC= 0.8015

0.0 0.2 0.4 0.6 0.8 1.0
predictive mean µpred

0

1

2

3

4

no
rm

al
iz

ed

PYTHIA/PYTHIA

HERWIG/PYTHIA

HERWIG/HERWIG

PYTHIA/HERWIG

0.0 0.03 0.06 0.09 0.12 0.15
predictive standard deviation σpred

0

4

8

12

16

20

24

no
rm

al
iz

ed

PYTHIA/PYTHIA

HERWIG/PYTHIA

HERWIG/HERWIG

PYTHIA/HERWIG

Figure 13: ROC curves, predictive means and standard deviations from BPN-Lite
trained/tested on 400k/50k PYTHIA and HERWIG jets (different combinations) with-
out pT- or PID-related features.

5.3 Understanding the σpred distributions, peak by peak

Apart from giving insights on the quality of the network training, the parabolic curves in Fig. 10
give a first hint regarding the non-trivial peak structure observed in Fig. 9. Most pronounced is
the low density in the low µpred, low σpred region for HERWIG trained networks. The parabolas
seem to be tilted. This asymmetry can be visualized by showing σpred for gluons and quarks
seperately (Fig. 14). The gluon distributions for HERWIG trainded networks asymptically ap-
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Figure 14: Predictive means and standard deviations from BPN-Lite trained/tested
on 400k/50k PYTHIA and HERWIG jets (different combinations) using the default
settings in Tab. 8. Seperate distributions for gluons (left) and quarks (right)

.

proach 0 at low µpred. This behavior resembles the observations for µpred in Sec. 5.3. Taylor
expanding the parabolic relationship Eq. (19) around µpred = 0 gives a linear relationship be-
tween classification score and uncertaincy. This relationship of course is not without error, if
the parabola was perfect then the σ analysis would be redundant. However the strong simi-
laritiy between the two distributions indicates that the same irregularities in the HERWIG data
that cause the vacancy at µpred → 0 cause it in the σpred-distribution.
For PYTHIA trained networks, the sharp peak at low σpred is quark dominated, although for
PYTHIA/PYTHIA there is also a limited number of low σpred gluons. For the HERWIG trained
networks, there is also a small peak of low σpred quarks. This shows that the quark-gluon
asymmetry is not exclusively a HERWIG problem, as PYTHIA quarks are classified with high
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confidence at a much larger rate then PYTHIA gluons. It seems as if this conclusion could al-
ready have been derived from the different magnitudes in the gluon and quark peaks in the
µpred distribution. However repeating the training multiple times has shown that these mag-
nitudes differ strongly for each training iteration, while the general peak structure in the σpred
distribution remains stable.
Again the distributions can be understood in terms of physical observables. Analogously to
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Figure 15: npf distributions in different σ bins for 50k PYTHIA and HERWIG test jets.
Jets with low predicted uncertainty lie towards the edges of the distribution, whereas
jets with high uncertainties are located in the overlap region between quarks and
gluons.

Fig. 11, Fig. 15 shows the multiplicity distribution npf in bins of σpred. Jets with σpred < 0.03
lie almost exclusively on the edges of the npf spectrum, whereas the larger σpred bins fill the
overlay region between quarks and gluons. The second peak at σpred ≈ 0.09 in the PYTHIA

trained networks are located at npf ≈ 40, where quarks and gluons are hard to tell apart based
on countable observables. The effect of larger σpred being distributed in overlay regions shows
for all observables that are considered, but is strongest for observables which strongly correlate
with µpred, namely npf and pTD.
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6 Conclusion and outlook

In the pursuit of understanding systematic uncertainties in HERWIG and PYTHIA jets, this work
introduced a bayesian dynamic graph convolutional neural network (BDGCNN). In a first step,
ParticleNet, a point-cloud based DGCNN, was reimplemented in PyTorch and trained to meet
the benchmark set in [12]. In a second step, the network was bayesified using a modified loss
function and by replacing standard weights ωi by learnable distribution parameters (µi ,σi).
This network was again trained and tested to meet the benchmark set by the deterministic
ParticleNet. The summarized results in Tab. 13 show that despite a slight decrease in overall
performance, the BPN’s statistics get close to the original deterministic implementation. The

network architecture PID accuracy AUC ε−1
b (εs=0.5) ε−1

b (εs=0.3)

PN-Lite (TENSORFLOW/KERAS) 3 0.835 0.9079 37.1 94.5
PN-Lite (PyTorch) 3 0.831 0.9049 36.3 91.0
BPN-Lite 3 0.820 0.9016 34.0 99.2

Table 13: Performance comparison of ParticleNet-Lite trained/tested on
PYTHIA/PYTHIA. The values in the top row are taken from [12].

network outputs (µpred,σpred) were then used to strategically analyze characteristics of the
underlying datasets. In this process, three key finds were made:

• The network performance is connected to the test data, not the train data. The network
predictions are strongly correlated to a set of physical observables, namely npf, which are
more discriminative in PYTHIA then in HERWIG. During cross-tresting, a PYTHIA trained
network mistags jets that based on their characteristics are clearly identifyable in PYTHIA

but lie in shared quark-gluon regions in HERWIG. A HERWIG trained network learns a
more dense distribution and can thus confidently assign PYTHIA jets as quarks and gluons
as they lie closer towards the edges of HERWIG observable distributions. Training on data
that is more or less discriminative than the test data does have a negative effect on the
performance, but this effect is small compared to the performance drop caused by the
irregularities in the test jets.

• The classification output of HERWIG trained networks is asymmetric, they mistag gluons
at a much higher rate then quarks and classify them with low confidence. A qualitative
analysis in two-dimensional observable planes shows that PYTHIA regions with a large
gluon to quark ratio have no equivalent in HERWIG. This underlying uncertainty limits
the network’s ability to learn more high level features for gluon identification, leaving
the area of µpred → 0 vacant. The largest g/q-ratios correlate with a large number of
jet constituents, indicating that the shift of the gluon distribution towards smaller npf
values in HERWIG might be the leading cause for the performance gap.

• Apart from a peak at σpred → 0, which is quark dominated, PYTHIA trained networks
assign a high uncertainty to a large share of quark and gluon jets.
The difficulites at correctly identifying gluons also applies to PYTHIA, but with less sever-
ity. The additional peaks for PYTHIA trained networks correspond to overlap regions in
the observable distributions, whereas low uncertainties lie at the edges of observable
distributions. I.e. the peak at σpred ≈ 0.09 for PYTHIA trained networks roughly corre-
sponds to both quark and gluon jets which are located at npf ≈ 40.

If now ParticleNet was chosen to represent the mutlitude of DNN classifiers in quark-gluon
tagging, could their tagging be considered resilient with respect to the MC generator used?
Based on this study, the performance will drop if the network is trained on data that is either
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more or less discriminative then the test data. However this performance drop is still domi-
nated by irregularites in the test data. In particular, a DNNs ability to correctly identify gluons
is highly sensitive to small changes in the gluon phase space in the testing data. The BPN
confirms that this sensitivity can be partially understood in a physical way by means of inter-
mediate observables. The strongest evidence is found with respect to the particle multiplicity
npf, where the HERWIG generated distribution is shifted towards smaller values compared to
PYTHIA. The origin of the npf distribution’s discriminative prowess, the fraction of color factors
CA/CF , is also the leading cause for a number of other observable distributions. In addition,
npf by definition correlates strongly with other observables. Therefore there is a good chance
that the multiplicity distribution is just an indicator pointing towards the problematic regions
in a high dimensional phase space that are difficult to access through tractable observables.
If a small phase space shift prevents a cutting-edge network from finding gluons, the question
arises whether there are methods in the realm of machine learning that improve on existing
methods by specifically targeting the uncertainties in the gluon space. There are a couple of
promising methods of which two are being presented here:

• Reweighting: Reweighting [48,49] is a method that attempts to morph the phase space
of gluons and quarks generated by PYTHIA into the phase space of HERWIG or vice versa.
A classifier is trained to distinguish HERWIG generated jets from PYTHIA generated jets.
Via the classification score f (x i) the factor that morphs the two probability densities
pPYTHIA(x i) and pHERWIG(x i) can be estimated:

w(x i) =
pPY(x i)
pHE(x i)

≈ f (x i)
1− f (x i)

. (24)

The learned weights can then be applied to the datasets before another classifier tries to
distinguish quark from gluon jets.

• Contrastive learning: Unsupervised contrastive learning algorithms learn to map low-
level data to optimized observables and have been succesfully implemented for Top-
QCD tagging [50]. Contrastive learning could potentially learn observables with greater
discriminative power, even for HERWIG generated jets.

Both of these methods can be tested in the future for their ability to close the gap between
HERWIG and PYTHIA.
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7 Appendix

7.1 Observable distributions in µpred and σpred bins
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Figure 16: wpf distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 17: pTD distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 18: C0.2 distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 19: xmax distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 20: ∆R5 distributions in different µ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 21: wpf distributions in different σ bins for 50k PYTHIA and HERWIG quarks
and gluons

0.1 0.2 0.3 0.4 0.5 0.6 0.7
pTD

0

500

1000

1500

2000

2500

3000

3500

co
un

ts

PYTHIA (gluons)
PYTHIA (quarks)
0.00 < µ < 0.03
0.03 < µ < 0.06
0.06 < µ < 0.09
0.09 < µ < 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7
pTD

0

500

1000

1500

2000

2500

3000

3500

co
un

ts

HERWIG (gluons)
HERWIG (quarks)
0.00 < µ < 0.03
0.03 < µ < 0.06
0.06 < µ < 0.09
0.09 < µ < 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7
pTD

0

500

1000

1500

2000

2500

3000

3500

co
un

ts

HERWIG (gluons)
HERWIG (quarks)
0.00 < µ < 0.03
0.03 < µ < 0.06
0.06 < µ < 0.09
0.09 < µ < 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7
pTD

0

500

1000

1500

2000

2500

3000

3500

co
un

ts

PYTHIA (gluons)
PYTHIA (quarks)
0.00 < µ < 0.03
0.03 < µ < 0.06
0.06 < µ < 0.09
0.09 < µ < 0.15

Figure 22: pTD distributions in different σ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 23: C0.2 distributions in different σ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 24: xmax distributions in different σ bins for 50k PYTHIA and HERWIG quarks
and gluons
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Figure 25: ∆R5 distributions in different σ bins for 50k PYTHIA and HERWIG quarks
and gluons
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