
Department of Physics and Astronomy

Heidelberg University

Bachelor Thesis in Physics
submitted by

Joran Valentin Köhler

born in Bad Salzungen (Germany)

1998

fINNishing vegas

Replacing the multidimensional integration module vegas by

an Invertible Neural Network.

This Bachelor Thesis has been carried out by Joran Valentin Köhler at the
Institute for Theoretical Physics in Heidelberg

under the supervision of
Prof. Tilman Plehn

Abstract

This thesis is about working on a replacement of the vegas algorithm [1]. It gives
estimates for the integral of an arbitrary multidimensional function. Even though
it is well approved and a common choice also in high energy physics, it has some
weaknesses. Neural Networks with their easily increased complexity now give the
chance to outperform this simple algorithm for functions with high complexity. We
combine two different types of training for an Invertible Neural Network (INN).
The goal is to get a precise result for the integral and, at the same time, being able
to generate samples, as the target distribution would do. Finally we challenge the
state-of-the-art benchmark I-flow [2] with our enhancement BiG-flow.

Zusammenfassung

Diese Arbeit dreht sich um den Nachfolger vom vegas Algrithmus [1]. Dieser er-
rechnet numerische Schätzungen für das Integral von beliebig vieldimensionalen
Funktionen. Zwar ist der Algorithmus bewährt und auch in der Hochenergiephysik
die übliche Wahl, doch hat er auch einige Schwächen. Neuronale Netzwerke bieten
nun die Möglichkeit, die Ergebnisse dieses einfachen Algorithmus für komplexere
Funktionen zu übertreffen. Für das Training unseres Invertierbaren Neuronalen
Netzwerks (INN) kombinieren wir zwei verschiedene Trainingsarten. Das Ziel ist es
einerseits, das Integral mit hoher Präzision abzuschätzen und andererseits genau so
Daten zu generieren wie es die Zielverteilung tun würde. Schließlich messen wir uns
an der aktuellen Benchmark I-flow [2] mit unserem erweiterten Model BiG-flow.

Contents

1 Introduction 1

2 LHC Physics and numeric approximations for event generation 2
2.1 Matrix element and cross section 2
2.2 Parton Distribution Function and LHAPDF module 4
2.3 Phase space parametrisation and RAMBO algorithm 4
2.4 gg → ggg . 7

3 Fundamentals of Neural Networks 8
3.1 Universal Approximation Theorem 8
3.2 Loss and Optimiser . 9
3.3 Learning Rate Schedules . 11
3.4 Generative Models . 12

4 Invertible Neural Networks 12

5 Monte Carlo Integration with Importance Sampling 14
5.1 vegas . 15
5.2 INN Generating . 16
5.3 INN Recycling . 16

6 Integration pipeline for the cross section 17

7 vegas benchmark 21
7.1 gg → ggg . 21
7.2 Toy example . 26

8 INN toy integration 27
8.1 Getting to know INN Generating 27
8.2 Getting to know INN Recycling . 31
8.3 Combined training . 33

9 Outperforming I-flow benchmark 35
9.1 I-flow setup . 35
9.2 I-flow training . 36
9.3 Torch-flow - mimicking I-flow in pytorch 38
9.4 BiG-flow - Bijective Gaussian iflow 42

10 Summary 46

11 Conclusion/Outlook 49

12 References 50

1 INTRODUCTION

1 Introduction

At the European Organization for Nuclear Research (CERN) in Switzerland physi-
cists are searching for new physics for example in form of dark matter [3] or Super
Symmetry partners of particles [4]. The experiments in the huge colliders shall
confirm or discount particles which would be part of the theories beyond the known
theory of the Standard Model of Particle Physics (SM). Part of this approach is to
make predictions upon the theories to test. This subject, which connects the the-
ory with experiments is called phenomenology. To test a prediction, often not even
very precise tests are needed, but rather a fast approximation is sufficient. Such
a test often includes the calculation of a cross section of a given physical process.
Practically this mostly means integrating a high-dimensional integrand with high
complexity. An analytical solution of such an integral in requires a lot of resources,
if at all possible. There is already a vast number of numerical methods which are
more or less efficient in estimating the integral. We will focus on the method which
is called importance sampling. Here the sampling distribution has to get modelled
like the integrand. In current frameworks for event simulation, an algorithm called
vegas is used for this task. It is an algorithm with a relatively simple principle,
invented in 1978 by G. P. Lepage [1] and continuously upgraded since then.
At the same time we live in the age of Neural Networks (NNs). They are helping
us to find - more or less reliably - a highly complex function which maps given
input to the right output. The aim of this thesis shall be to tackle exactly this task
of integration with Invertible Neural Networks [5][6][7][8]. These are special NNs,
representing a trainable bijective map between a simple distribution on the one side
and a highly complex distribution - for example from a real world problem - on the
other side. The invertibility makes this kind of networks more explainable, which
is a big gain for applications in science like physics or medicine.
A pioneer applying INNs for integration is the group of C. Krause, having intro-
duced a network called I-flow [2]. This is also based on an INN, but only trained in
one direction. We will try to expose the advantage of exhausting the full potential
of the INNs: We combine two types of training, where one is in the same way as in
I-flow and the other one processes the generated data in the opposite direction of
the network.
Integrating with this method involves sampling as realistic as possible. I.e. the
distribution of events we are simulating should be as close to real event data from
a particle collider as possible. Though this could be a nice side effect, it allows us
also to formulate this as the second goal. Thus we can assess our results under two
different objectives.

At first in section 2 we will comprehend the physical background. Besides we will
get to know possibilities to simulate the physics with numerical modules. After that
we will take a look to fundamentals of Neural Networks and INNs in section 3 and
4. In section 5 we will introduce Monte Carlo Integration and the implementations
like vegas or the INN methods. After that we are ready to draft the architectures
for the integrator and event simulator in section 6. The results of vegas will be
shown in section 7 and the results of our INN training in section 8. Finally in

1

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

section 9 we will let us lead by the implementation of I-flow and challenge it with
our enhancements.
Because the project was done in collaboration, content and figures in this thesis can
equal the ones in the Bachelor thesis of Simon Pijahn.

2 LHC Physics and numeric approximations for event generation

The Large Hadron Collider (LHC) at CERN is a particle collider, where massive
particles like protons collide at high center of mass energy

√
s. The experiments

are done to search for new physics beyond the SM. For proton-proton collisions
it reaches around

√
s =13TeV. The outgoing particles like quarks and gluons are

characterised by their four momenta p = (E, px, py, pz). However these high energy
particles are not measured directly by the detector. By successive branching, the
particles create a collimated shower and below a certain energy, quarks and gluons
hadronise again. This means at this energy level, the QCD coupling constant αs
dominates and forces every colour-charged particle to form a neutral (colourless)
object. So quark pairs and gluons are bound to each other and for instance if two
quarks are ripped apart, a new quark-anti-quark pair will be produced out of the
interaction energy. Such an ensemble of particles is called a jet. The four-momenta
of the jet particles is then calculated from various kinds of calorimeters and other
detectors. Additional to the events in the so called pre-detector level, detector
effects are included. Due to imperfections, the detectors always alter the actual
signals at least a bit. Though in this thesis we do neither consider these detector
effects, nor the hadronisation in the jet. We will concentrate on the physics in the
parton level.

2.1 Matrix element and cross section

To simulate the generation of LHC events and to determine the cross section of
a certain process, we need to calculate the probability amplitude for producing
the given final state out of a given initial state. To comprehend the theoretical
background we follow here Peskin / Schröder [9]. To represent the inital-state
particles, we take wavepackets . We evolve these with the time-evolution operator
and overlap the result with the given final state. In the case of two incoming
particles, we can express this probability for example as

P = |〈φ1φ2...︸ ︷︷ ︸
future

|φAφB︸ ︷︷ ︸
past

〉|2 (2.1)

where |φAφB〉 represents the initial state of two wavepackets, emerged in the past
(time -t) and 〈φ1φ2...| the final state of several wavepackets emerged in the future
(time t). We used here the Heisenberg picture, e. g. the states are time-independent.
Though the names do indicate, that the states are defined at different times.
As our data are definite momenta in the end, we also want to calculate with states
of definite momentum. Therefore we assume that the states are constructed inde-
pendently at different locations. Thus we can leave the momentum integration of

2

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

the Fourier-transformed wave function out and can calculate with the transition
amplitude of in and out states of definite momentum:

out〈p1p2...|kAkB〉in = lim
t→∞
〈p1p2...︸ ︷︷ ︸

t

|kAkB︸ ︷︷ ︸
−t

〉 (2.2)

= lim
t→∞
〈p1p2...|e−iH(2t)|kAkB〉 = 〈p1p2...|S|kAkB〉 (2.3)

In equation 2.3 we then evolved an expression where the states are defined at the
same reference time by adding the time-evolution operator with Hamiltonian H.
This again can be written as an unitary operator and the limit in time is then
called the S-matrix. To separate actual interaction from non-interacting transition
we can write

S = I + iT (2.4)

Lastly we also want to extract the four-momentum conservation from the matrix
element and hence we arrive at

〈p1p2...|iT |kAkB〉 = (2π)4δ4(kA + kB −
∑

pf) · iM(kA, kB → pf) (2.5)

Practically we will evaluate the matrix element for the desired process with the
Madgraph framework [10].

The cross section σ is now defined as following. We consider a beam of particles
targeting another beam of particles. Now we expect some number of events and
this should be proportional to the cross-sectional area, the density distribution of
the beams and the length of the beams. Now the cross section is the number of
events we actually observe divided by all these quantities (so called luminosity), it
should be proportional to.
With our matrix element, defined in Equation 2.5, the cross section for two initial
particles can developed as

dσ =
|M(kA, kB → {pf})|2

2EA2EB|vA − vB|
(2π)4δ4(kA + kB −

∑
pf)
∏
f

d3pf
(2π)3

1

2Ef
. (2.6)

Since only the highly relativistic case is relevant we can simplify this by

|vA − vB| = c = 1 and 4EAEB = 2(kA + kB)2 = 2s (2.7)

and the definition

dX := (2π)4δ4(kA + kB −
∑

pf)
∏
f

d3pf
(2π)3

1

2Ef
(2.8)

to

dσ =
|M(kA, kB → {pf})|2

2s
dX. (2.9)

3

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

2.2 Parton Distribution Function and LHAPDF module

In this thesis we will focus on proton proton collisions. Here always collide only
constituents (partons) of the protons, which have different fractions of the proton
momentum. Because these fractional momenta are mainly collinear with the frac-
tion of the proton, these fractions are also called longitudinal fractions. To take this
additional selection of constituents into account, we have to include the so called
parton distribution function (PDF) in our calculation. This function is the proba-
bility of finding the specific parton f with longitudinal fraction ξ [9].

LHAPDF is a general purpose C++ interpolator, used for evaluating PDFs from
discretised data files [11]. These data files are provided as so called PDF sets and
besides meta data they contain PDF values for each flavour on a rectangular grid
of “knots” in the plane (ξ,Q2). Here Q2 is the factorization scale, which is defined
as the negative squared momentum of the hadron, that collides. Thus at each point
there are values for all flavours given. The values come from the evaluation of fits
by different groups. In the range of the fits LHAPDF interpolates in log(Q2)–log(ξ)
space and outside of the fit range extrapolates in a similar programatic way.

2.3 Phase space parametrisation and RAMBO algorithm

As described above we consider colliding partons which do not have the same mo-
mentum. But to simplify the calculations we would like to be in the centre of mass
frame and therefore we have to boost the momenta from the lab frame. We can find
better parameters than the four-momentum, to characterise the particle, to make
it easier to compare particles in different frames: (E, px, py, pz) we can describe by
E, the transverse momentum pT , the azimuthal angle φ and the rapidity y.

pT =
√
p2
x + p2

y y =
1

2
log

(
E + pz
E − pz

)
(2.10)

Comparing two particles rapidity, the difference will be invariant under boosts
along the z-direction. In our highly relativistic cases, we can write this also as the
pseudo rapidity η:

η =
1

2
log

(|p|+ pz
|p| − pz

)
= log

(
tan

(
θ

2

))
(2.11)

with the polar angle θ. η and φ now parametrise a cylindrical surface, also referred
to as the η-φ-plane. Here we can define the separation of two particles i and j with

∆Rij =
√

∆η2
ij + ∆φ2

ij. (2.12)

The minimum of needed parameters is equal to the degrees of freedom of the
considered process. For the example of two colliding high energy partons producing
again two outgoing partons we can reduce the needed number of parameters by 4.
This is because the overall pT is zero and because we consider both to be light-like
particles. For n outgoing particles this makes in general 3n-2 degrees of freedom,

4

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

including the momentum fractions.
We call the reduction of phase space parameters here phase space parametrisation
and the transformation back to four-momenta phase space generation. Of course
there are arbitrarily many ways to parametrise a phase space. One automation is
done by the so called RAMBO algorithm. RAMBO is a phase space generator, first
implemented by R. Kleiss and W.J. Stirling in 1985 [12]. Then in 2013 S. Plätzer
could refine the algorithm to RAMBO on diet, such that it indeed only needs the
number of degrees of freedom as input size [13]. This input gets transformed into
the four-momenta of the final state by successive branching the tree of decays.
Therefore it takes the energy of the intermediate particle as new center of mass
energy and boosts into its centre of mass frame to find the new decay products. In
the following section we will comprehend the algorithm for two different examples.

The algorithm for 2→2 scattering

In the following we comprehend the algorithm, taken from [13], for the case of two
particles in the initial and the final state. Additionally we assume here that the
two initial particles collide completely and their masses are neglectable. The final
particles masses are set to zero.
As input parameters RAMBO takes variables {ri ∈ R | 0 < ri < 1} and the centre
of mass energy

√
s of the colliding hadrons. The RAMBO algorithm than looks as

following:

Algorithm 1 RAMBO for n=2

Require: r1, r2,
√
s

1: M1 ←
√
s, M2 ← 0

2: cos θ ← 2r1 − 1
3: sin θ ←

√
1− cos2θ

4: φ← 2πr2

5: q2 ← M1

2
=
√
s

2

6: ppp1 ← q2

cos φ sin θ
sin φ sin θ

cos θ

 =
√
s

2

cos φ sin θ
sin φ sin θ

cos θ

7: p1 ← (q2,p1), Q2 ← (q2,−ppp1)
8: (boost by (1,0,0,0))
9: p2 ← Q2

For our test run we take
√
s = 1000, r1 = 0.1 and r2 = 0.5. That means we have

cos θ = −0.8⇒ sin θ = 0.6 and φ = π.
Going further through the algorithm gives us the four-momenta:

p1 =

500
−300

0
−400

 and p2 =

500
300
0

400

 (2.13)

5

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

The algorithm for proton-proton collision

Now let us consider two incoming protons, where only a fraction of each collides.
This means we have now two additional input variables r3, r4 ∈ (0, 1) providing the
fractions. The only difference here is that we have to adjust s to ŝ and then boost
our result from above in z-direction. ŝ is determined by

ŝ = (r3pp1 + r4pp2)2 ≈ 2r3r4pp1pp2, (2.14)

where pp1 = (
√
s/2, 0, 0,

√
s/2) and pp2 = (

√
s/2, 0, 0,−√s/2) are the four-momenta

of the incoming protons. This means:

ŝ = 2r3r42s/4 = r3r4s (2.15)

The boost can be executed with Boost matrix in z direction, where β can be
determined as following:

β =
γm′β

γm′
=

pz
Elabframe

=
(r4 − r3)

√
s/2

(r3 + r4)
√
s/2

=
r4 − r3

r3 + r4

, (2.16)

where p′z = (r4 − r3)pz with pz =
√
s/2 and the energy of the colliding fraction in

the lab frame Elabframe = (r3 + r4)
√
s/2.

Let us take for example r3 = 0.1 and r4 = 0.4, than with the same parameters
r1 and r2 from above we get in the center of mass frame:

p′1 =

100
−60

0
−80

 and p′2 =

100
60
0
80

 (2.17)

Boosting this to the lab frame by β gives the following four-momenta:

p1 =

65
−60

0
−25

 and p2 =

185
60
0

175

 (2.18)

The implementation we use executes the boost in the following way:

6

2 LHC PHYSICS AND NUMERIC APPROXIMATIONS FOR EVENT
GENERATION

Algorithm 2 boost to lab frame

Require: pin1, pin2, pout, r3, r4

1: reflab ← (pin1 · r3 + pin2 · r4)
2: if reflab[0] < 0 or (reflab)2 < 0 then
3: print(invalid boost)

4: βββ ← reflab[1 :]/reflab[0]
5: γ ← 1√

1−βββ2

6: for p in pout do
7: βp ← βββ · p[1 :]
8: p[0]← γ(p[0] + βp)
9: γ′ ← (γ − 1)/βββ2

10: f ← βpγ
′ + γp[0]

11: p[1 :]← p[1 :] + fβββ
return pout

Here the line 4 is exactly the calculation for eq. (2.16).

RAMBO weights

RAMBO returns also a weight for each four-momentum in the output. Partly it can
be understood as the Jacobian of the phase space generation, though in our massless
case the Jacobian will always be constant. Instead the weight is mainly carrying the
phase space volume corresponding to the given fractions or the resulting ŝ. Thus
the weight w is calculated by

w =
(π/2)n−1 · ŝn−2

(2π)3n−4 · (n− 1)! · (n− 2)!
(2.19)

with n massless final states and thus 3n− 4 degrees of freedom [13].
The implementation of RAMBO we use, has also an option to specify several cut-offs
in the phase space. This is useful to avoid regions, where the matrix element diverges
a priori. These cuts are implemented by setting the weights of the corresponding
event to zero.

2.4 gg → ggg

We decided to work with the process of two colliding gluons, producing three gluons.
This is a rather simple QCD-process with light-like four-momenta. The initial state
is well defined by the PDFs for the gluon. The seven degrees of freedom make the
problem for INN seven dimensional, which is challenging, but still doable.
With Equation 2.9 and 2.15 we can write down the cross section for this process as

dσ =
PDFg(r1)PDFg(r2) |M(kg1, kg2 → pg3, pg4, pg5)|2

2r1r2s
dX ′, (2.20)

where dX ′ is dX adapted to our parametrisation with 3 · 3− 4 parameters.
For this process we have to consider the infrared divergence for ŝ→ 0 as well as the
collinear divergence for θ → 0. For the first one we can implement in RAMBO the
∆R-cut and for the second one the pT -cut.

7

3 FUNDAMENTALS OF NEURAL NETWORKS

3 Fundamentals of Neural Networks

Let us go roughly through some fundamental concepts of Deep Learning. In this
section we will mainly follow Goodfellow, Bengio and Courville [14].

i2

i1

h3

h2

h1

o1

o2

w
31 , b

3

w
32 , b3

w
21 , b2

w11
, b1

v
11 , c1

v23
, c2

Fig. 1: Scheme of a simple neural network with one input layer, one hidden layer and one
output layer

A neural network consists of one input layer, at least one hidden layer and one
output layer. These layers contain so called nodes, which represent the neurons of
the network. On each edge (arrow in Figure 1) there is a weight wij. In each node
hi, except in the input nodes, a non-linear activation function f acts on the input
xj with a specific bias bi. We can write:

hi = f

(∑
j

wijxj + bi

)
(3.1)

or with the whole layer:

h = f (Wx + b) (3.2)

Here we want to consider only the very simplest standard activation function, since
we are using it also in our implementation. It is called Rectified Linear Unit (ReLU)
and defined as:

ReLU(input) = max(0, input) (3.3)

3.1 Universal Approximation Theorem

The success of Neural Networks is grounded on the Universal Approximation
Theorem [15]:
Let φ(x) be a non-constant, bounded and non-decreasing continuous function. For
any ε > 0 and any continuous function f on [0, 1]D there exists an N ∈ N,v ∈
RN ,b ∈ RN and W ∈ RN×D, such that if we denote

F (x) = vTφ(Wx + b), (3.4)

8

3 FUNDAMENTALS OF NEURAL NETWORKS

then for all x ∈ [0, 1]D

|F (x− f(x)| < ε. (3.5)

Later the theorem was proofed also for φ =ReLU [16]. We can sketch the proof
here in Figure 2:
If a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

Fig. 2: Approximation by ReLU taken from [17]

By setting the biases bi we can create exactly this sequence of linear segments as
a sum of ReLU units.

3.2 Loss and Optimiser

In neural networks the training process is implemented by calculating the gradient
of a loss function and updating the parameters. This loss function is a metric how
big the error of the network is. It has to be differentiable.
The most basic implementation of updating parameters is the Stochastic Gradient
Descent Algorithm (SGD): Given a network as computing function f(), it takes
a minibatch of m training samples, e.g. a fraction of the training batch. This
consists for example of training data x and the corresponding target values y. Now
it calculates their mean gradient g of the loss function L and then updates the
parameters Θ by subtracting g, scaled by the learning rate α smaller than one.

Algorithm 3 SGD Optimiser

Require: f(), Θ, α
1: while stopping criterion is not met do
2: Sample minibatch of m training samples (xi, yi)
3: g← 1

m
∂
∂Θ

∑
i L(f(xi; Θ), yi)

4: Θ← Θ− αg

9

3 FUNDAMENTALS OF NEURAL NETWORKS

Over the years this algorithm got improved further and further. The main gain
of current versions is that the direction of the previous gradients are included by
the momentum. The most common optimiser nowadays is called Adam [18] and
we will use it always in our implementation. The algorithm additionally takes the
constants ε, β1 and β2. Their default values are listed in Table 1.
The algorithm uses three additional variables: s is the momentum, which contains

Adam parameter default value
α 0.001
ε 10−8

β1 0.9
β2 0.999

Tab. 1: Adam parameters

Algorithm 4 Adam Optimiser

Require: f(), Θ, α, ε, β1, β2

1: s = 0, r = 0, t = 0
2: while stopping criterion is not met do
3: Sample minibatch of m training samples (xi, yi)
4: g← 1

m
∂
∂Θ

∑
i L(f(xi; Θ), yi)

5: t = t+ 1
6: s← β1s + (1− βq)g
7: r← β2r + (1− β2)g2

8: αt ← α
√

1− βt2/(1− βt1)
9: Θ← Θ− αt√

r+ε
s

the previous gradients. r is the second moment estimate. It is used to normalise
the momentum with respect to its variance. Both are biased in the sense, that if
we go through the algorithm for t steps, we have:

rt = (1− β2)
t∑
i=1

βt−i2 g2
i . (3.6)

where

(1− β2)
t∑
i=1

βt−i2 = (1− β2)
1− βt2
1− β2

= 1− βt2 (3.7)

This means our expectation of rt is biased:

E[rt] = E[g2](1− βt2) (3.8)

Thus we see the reason why αt gets a factor of
√

1− βt2/(1− βt1) in line eight.

10

3 FUNDAMENTALS OF NEURAL NETWORKS

3.3 Learning Rate Schedules

In our experiments we will work a lot with different types of learning rate scheduling.
This means over the training procedure we are adapting the learning rate α. The
goal is to give the optimiser the optimal dynamic to find the global minimum. In
general this means a higher learning rate at the beginning a decreasing learning
rate in the end, not to make too big steps out of the loss minimum.
There are many different ways to schedule learning rate, here we will get to know
two different schedules, we implemented for the results.

Exponential Decay

0 20 40 60 80 100
batches

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

le
ar

ni
ng

 ra
te

Fig. 3: Example of STEPLR for stepsize=20 and decay=0.4

In Figure 3 we see an example of the learning rate scheduler with exponential
decay (STEPLR) applied on a training of 100 batches. The initial learning rate is
set to 0.001 and every 20 batches it gets decreased by 0.4. Usually this is a very
robust schedule, though it might be, that the periods with higher learning rate are
too short.

1cycle

0 20 40 60 80 100
batches

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

le
ar

ni
ng

 ra
te

Fig. 4: Example of One cycle learning rate scheduler for maximum learning rate = 0.001

11

4 INVERTIBLE NEURAL NETWORKS

The idea of ensuring a stable beginning in the training lead to the 1cycle learning
rate policy [19]. As visible in Figure 4 the scheduler increases the learning rate
in the first third and then switches smoothly to the decrease until a minimum is
reached. This can boost the training strongly.

3.4 Generative Models

In this thesis we will perform unsupervised learning. In contrast to supervised learn-
ing we do not give the network a label yi to the corresponding data point xi. A
special type of unsupervised learning is reinforcement learning, where the network
still gets a reward ri for every decision it makes. In our case the network should
learn structures and correlations in the data itself instead.
For generative models the goal is to approximate the true probability density P (x)
by a model with parameters Θ. Usually in the end the model shall be able to sample
from P (x), but sometimes even an explicit calculation of P (x) is possible [14].
As in most of the cases in supervised learning, the principle of designing a loss for
generative models is usually the maximum likelihood principle, introduced by R.
A. Fisher. It says, if we have a data-generating distribution pdata and training data
X = {x1,x2, ...,xn}, then our model parameters Θ should maximise the likelihood
of this data:

Θmodel = arg max
Θ

pmodel(X; Θ) (3.9)

4 Invertible Neural Networks

One approach for maximising the likelihood in Equation 3.9 is to assume that the
data x depends on a latent variable z which is the random variable of a much more
simple distribution like uniform or Gaussian. The idea to make the mapping mΘ

between any variables x and z invertible, lead to the Invertible Neural Network
(INN) [20], also called Normalising Flow [5][21]. Since we are going to use it as a
model to generate events, we will call the space of z the latent space Z and the
other side the pre-event space X .

mΘ : Z → X , z → x (4.1)

m−1
Θ : X → Z, x→ z (4.2)

From the invertibility follow some restrictions for the network. The mapping has to
be constructed as homeomorphism. This firstly means, the dimension of Z and X
have to be the same. Secondly this means the transformation has to be bijective.
Though we can build our bijective map out of many bijective transformations. For
INNs we call these single transformations coupling blocks. One coupling block can be
viewed in Figure 5. Unfortunately the ReLU activation function is not invertible and
in general inverting a Dense layer is - if at all possible - computationally expensive.
At the same time we do not want to forgo the power of dense layers described in
section 3. The solution is to switch to an easily invertible transformation, where
the Jacobian can be calculated very fast, but at the same time using classical Dense
networks for determining the transformations parameters.

12

4 INVERTIBLE NEURAL NETWORKS

Therefore we have to split the input variable into two halfs, e.g. the resulting
variables have only half of the dimension of z. Then we use the upper one as input
for the dense layer, to transform the lower half by hΘ with the calculated parameters
Θ.

z
split

it

copy

hΘ(zl)

Concatenate xDense layer

zu

zl

xu

xl

Θ

Fig. 5: Scheme of a coupling block in an INN

The map from z to x can now easily get inverted by taking the inverse of hΘ. To
ensure that every dimension of z gets transformed at least once, we need at least
two blocks and we have to permute the dimensions in between. This can be done by
(random) permutation matrices or by continuous rotation matrices. For the latter
ones we have to ensure that our latent space has the right rotation symmetry.
To implement our INN, we employ the FrEIA framework by the Visual Learning
Lab Heidelberg [20].

Rational Quadratic Spline Transformation

Fig. 6: Example of rational quadratic spline fitting, taken from [22]

One type of invertible transformations are polynomial splines. These are just
piecewise polynomial functions with differentiable transitions between the pieces.

13

5 MONTE CARLO INTEGRATION WITH IMPORTANCE SAMPLING

They monotonically map [0, 1] → [0, 1]. An alteration of polynomial splines are
rational quadratic splines, first introduced by Gregory and Delbourgo [23]. This
means our function is a ratio of two quadratic functions. The parameters of this
spline are the positions (x, y) of the knots the corresponding polynomial is linked to
and the boundary derivatives [24]. The first knot is fixed at (0,0) and the last one
at (1,1). This way of fitting is illustrated in Figure 6. While this transformation
is powerful, it is also computationally cheap to invert and to calculate its Jacobian
of. We use rational quadratic splines for all our results obtained with INNs.

5 Monte Carlo Integration with Importance Sampling

Monte Carlo methods have the simple principle of sampling random numbers and
they can be extremely powerful. Though when emphasising the precision of the
result, in some cases using Monte Carlo methods can lead to excessive computational
power consumption. In our case we consider the Monte Carlo integration. Here we
approximate the integral I of function f by evaluating f at N uniform samples
from UN = {si | si ∈ Ω, i ∈ {1, ..., N}} in the integration space Ω with volume V :

I ≈ EN := V
1

N

N∑
i=1

f(si) = V 〈f〉UN
(5.1)

Thus the variance of the approximation goes with the variance of function f .

Var(EN)UN
= V 2 Var(f)UN

N
= V 2

〈f 2〉UN
− 〈f〉2UN

N
(5.2)

This easily leads to crucial inefficiencies, when integrating complex functions in
higher dimensions, since one has to compensate with the number of evaluations N .
For us the samples si are individual events and so we call f(si) the corresponding
event weight wi. In the end our integrator shall also be a phase space sampler.
Thus, besides the precision of the integral, we also wish the events all to be unit-
weighted. The most simple approach is to employ a hit-or-miss algorithm, convert-
ing a weighted set to an unit-weighted set of events. This unweighting goes with
efficiency

εuw :=
〈w〉UN

wmax
. (5.3)

Now the variance of the estimate and the unweighting efficiency are two different
metrics for the quality of our result. Typically they go with one another, but they
do not have to lead to the same optimisation measures. Instead of the learning rate
we will rather use the width of the weight distribution as measure of success.
Importance sampling [25] is one method to reduce or even eliminate the non-
statistical error, by sampling from a different distribution: We increase the number
of samples, where function values are big and thus contribute the most to the in-
tegral and we decrease it in regions with small values. Technically speaking, we
would like to sample from a distribution g(x), which has the shape of the integrand
f itself:

E ′N := V
1

N

N∑
i=1

f(xi)

g(xi)
= V 〈f/g〉GN

(5.4)

14

5 MONTE CARLO INTEGRATION WITH IMPORTANCE SAMPLING

with GN a set of N samples xi from g(x). From the variance

Var(E ′N) = V 2 Var(f/g)GN

N
= V 2

〈(f/g)2〉GN
− 〈f/g〉2GN

N
(5.5)

we now see that in the ideal case f(x) = g(x) the variance would vanish.
One algorithm which uses this method is vegas.

5.1 vegas

Fig. 7: Example of vegas grid after training on the integrand in Equation 5.6

vegas is an algorithm invented in 1978 by G. P. Lepage [1], to give better Monte
Carlo estimates of integrals. The principle attempt is to flatten the integrand by
automatic transformation to the integration volume. This is done by taking the
volume as a multidimensional grid and than adapting the size of each cell inversely
to the corresponding relative value of the integrand in this region. After this is
done, a Monte Carlo estimate of the integral can be given with the transformed
variables. Especially important for us is that the Jacobian of this transformation is
again passed as weight corresponding to one sample/event.
The integrand does not have to be analytical or continuous, though - and here comes
the main weakness of vegas - vegas does assume that the integrand is factorisable.
Taking for example the double gaussian integrand

f(x, y) = e
−(x−0.25)2−(y−0.25)2

0.25 + e
−(x−0.75)2−(y−0.75)2

0.25 (5.6)

we have two regions on the diagonal, being most relevant for the integral. What
vegas is forced to do is adapting its grid as shown in Figure 7, e.g. it maps four
instead of two gaussians in the integration space.

One among other features of interest for us is the adaptation to Monte Carlo
errors. This means vegas does not have to sample in every grid the same number
of samples. Instead it can redistribute the samples such that it samples most of the
points in the regions, where its Monte Carlo estimate has the biggest errors [26].

15

5 MONTE CARLO INTEGRATION WITH IMPORTANCE SAMPLING

5.2 INN Generating

From Equation 5.5 we can conclude, that our goal is to shape our distribution, we
sample from, like the integrand. Transforming the latent space distribution p(z)
with our INN, we want the INN Jacobian g(r) to have the shape of the integrand
f(r):

f(r) ∼ ptrue(r) ←
training

pmodel(r) = p(z) det

(
∂z

∂r

)
= p(z) det

(
∂m−1(r)

∂r

)
=: g(r)

(5.7)
where we used the change of variables formula.
As objective for the training we thus need some kind of a metric for the discrepancy
of the Jacobian and the integrand. The divergence gives us the distance between
two distributions. Though there are many different kinds of formulas for divergence.
Here we will refer for example to the Pearson χ2 divergence:

Dχ2 =

ˆ
(p(r)− q(r))2

q(r)
dr (5.8)

or the Kullback-Leibler divergence:

DKL =

ˆ
p(r)log

(
p(r)

q(r)

)
dr (5.9)

But for all our results we will stick to the so called exponential divergence:

De =

ˆ
p(r)log

(
p(r)

q(r)

)2

dr (5.10)

Introduced was this type of training first by Bothmann, Janßen, Knobbe, Schmale
and Schumann [27], but then also by Gao, Isaacson and Krause [2].
For our loss we have to write this integral as sum over our samples. Since our
samples generally describe a non-uniform distribution, we have to divide by the
density of the distribution at these points:

De =

ˆ
g(r)

g(r)
f(r)log

(
f(r)

g(r)

)2

dr = Er∼g(r)

(
f(r)

g(r)
log

(
f(r)

g(r)

)2
)

(5.11)

=
∑
r∼g(r)

f(r)

g(r)
log

(
f(r)

g(r)

)2

(5.12)

Though by mistake we forgot the factor of 1/g(r) in our implementation and noticed
it only when working with I-flow in section 9. This makes the loss the same after a
flat initialisation, but from the point on, when the network learned the distribution
roughly this makes a bigger difference.

5.3 INN Recycling

Another approach for a loss function is as usually based on the Maximum Likelihood
principle in Equation 3.9. In this case we just have to maximise |g(r)|, derived from

16

6 INTEGRATION PIPELINE FOR THE CROSS SECTION

Equation 5.7. As prior p(z) the common choice is a normal distribution N (0, I).
Since we take the logarithm for our loss, we can neglect the normalisation of the
normal distribution. Thus our loss is shifted by a constant and can also be negative.
We call this training recycling since we can reuse the sampled data, generated by
the training above. Concretely we have to correct the loss of r, to train with the
target distribution ptrue(r). This is done by weighting the loss with the normalised

weights ŵtr(r) = wtr(r)
〈wtr〉r , with

wtr(r)pmodel(r)
!

= ptrue(r) ∼ f(r) ⇒ wtr(r) :=
f(r)

pmodel(r)
. (5.13)

Taking all together our loss L for a Gaussian latent space is then defined as

L = mean

(
ŵtr(r)

z(r)2

2

)
−mean

(
ŵtr(r)log(g(r))

ndim

)
(5.14)

We have to divide the second term additionally by the number of dimensions ndim,
since the first term takes the mean over z(r), which is multidimensional, while g(r)
is only one-dimensional.
In the case of integrating a matrix element this type of training can be especially
useful, since evaluating it, often is the bottle-neck of the integrator. But for recycling
we do not need to evaluate it again, instead we use the network in the opposite
direction.

6 Integration pipeline for the cross section

Bringing all together we can build up a pipeline of all modules to obtain an estimate
of the cross section for our process - once with vegas and once with the INN.

vegas pipeline

The pipeline with vegas is shown in Figure 8. vegas has its own random number
generator and thus needs no input. Since RAMBO takes only variables between 0
and 1 vegas returns variables in a d-dimensional hypercube (r-space). With n the
number of final states we have d = 3n− 2, since we have 3n− 2 degrees of freedom
including the momentum fractions. RAMBO transforms this into four-momenta p
in the phase space. Its weights are directly transferred into the evaluation of the
integrand, which is the differential cross section. Thus we define the integration
volume to be the r-space, e.g. the integrand is defined in this space.
For the evaluation we take Equation 2.20 and for dX ′ we take the transformed phase
space volume, given in the RAMBO weights wrambo. The result gets returned and
vegas uses it to transform its integration space. After every training iteration vegas
also returns the integral estimate by summing over its evaluations. Here it also
has to divide by the Jacobian of its transformation, which is hidden in the vegas
weights wvegas.

17

6 INTEGRATION PIPELINE FOR THE CROSS SECTION

INN pipeline

With the INN replacing vegas we have in principle exactly the same architecture,
showed in Figure 9. Again the integrand f(r) is defined in the r-space and in the
loss it is compared with g(r).
On the other side there are different implementations possible: In some experiments
we just used a flat latent space and thus m(z) is defined as the pure INN. In most
of the experiments we used a Gaussian latent space like in the scheme. Usually it
is hard for a network to learn to set borders in the output like the r-space. Thus in
this cases we added in the INN the transformation which turns a Gaussian into a
uniform distribution - namely the error function. It is defined as

erf(z) =
2√
π

ˆ z

0

e−t
2

dt (6.1)

and maps R to (−1, 1). So we only have to scale and shift the output to (0, 1).

Plotting

For the plotting we wish to see the pure samples expressing what the network
already learned. This is simply done by sampling after training and plotting a
histogram. Additionally we plot the true data distribution by weighting them with
wtr from Equation 5.13. For vegas this is f(r)

wvegas(r)
and for the INN f(r)

g(r)
.

Apart from that we can make a check, if nothing goes wrong by weighting the
samples such that the uniform distribution results.

wU(r)pmodel(r)
!

= U[0,1] ⇒ wU(r) =
1

pmodel(r)
(6.2)

18

6 INTEGRATION PIPELINE FOR THE CROSS SECTION

p
ar

am
s:

E
cm
,d

V
E

G
A

S
r-

sp
ac

e
[0
,1

]d
R

A
M

B
O

p
h
as

e
sp

ac
e

E
va

lu
at

io
n
:

|M
(p

i
)|
2
w

r
a
m

b
o

i
p

d
f(
r 1

)p
d

f(
r 2

)

2
sr

1
r 2

1 N

N ∑ i=
1

..
.w

v
eg
a
s

i

R
es

u
lt
σ

r i
p i

L
H

A
P

D
F

M
ad

G
ra

p
h

T
ra

in
in

g

w
r
a
m
bo

i
P

D
F

s

w
v
eg
a
s

i

M

F
ig
.
8
:

S
ch

em
e

o
f

in
te

g
ra

ti
o
n

p
ip

el
in

e
w

it
h
ve
ga
s

19

6 INTEGRATION PIPELINE FOR THE CROSS SECTION

N
(0
,I

)
IN

N
er

f(
x
)

R
A

M
B

O
|M
|2

(p
i
)p

d
f(
r
i 1
)p

d
f(
r
i 2
)ω

r
a
m

i

2
sr

i 1
r
i 2

M
ad

gr
ap

h
L

H
A

P
D

F

=
:
f

(r
)

→
ev

al
u
at

e
on

sa
m

p
le

s

1 N

N ∑ i=
1

..
.w

IN
N

i
R

es
u
lt
σ

L
os

s(
f,

g)

z i
x
i

r i
p i

w
r
a
m

i

|M
|2

P
D

F
s

ca
lc

u
la

te
J
ac

ob
ia

n
:

g
(r

)
=

∂
m

−
1
(r

)
∂
r

p(
z)

m
(z

)

Θ

ω
IN

N
i

F
ig
.
9
:

S
ch

em
e

o
f

in
te

g
ra

ti
o
n

p
ip

el
in

e
w

it
h

IN
N

20

7 VEGAS BENCHMARK

7 vegas benchmark

After finding a way of working with vegas we tried to estimate the cross section of
our process gg → ggg.

7.1 gg → ggg

For the integration we choose physical parameters, listed in the left part and vegas
arguments, listed in the right part of Table 2.

.

physical param chosen value√
s 13TeV

pT -cut 20GeV
∆R-cut 0.4GeV
pdf-set MSTW2008lo68cl nf3

vegas param chosen value
iterations 10

evaluations 100000
sampling 110000

Tab. 2: Parameters for vegas baseline

Plots

After sampling with the trained vegas model, we can plot different observables. A
list of all with the formula to calculate it from the four vectors is given in Table 3.
We list here also how many plots for the three final gluons we can make all together.

In blue we plot the raw number of phase space samples (without any weights).

.

observable formula number

pz - 3

pT
√

(px)2 + (py)2 3

η 1
2
log
(
|p|+pz
|p|−pz

)
3

φ tan−1
(
px
py

)
3

∆R
√

∆φ+ ∆η 3

Elab

∑
i(p

i
T · cosh(ηi)) 1

√
ŝ

√
E2

lab − (
∑

i p
i
z)

2 1

Momentum fraction
Elab±

∑
i p

i
z√

s
2

Tab. 3: List of observables we can plot

The samples weighted with wU are shown in red. A target distribution we built
from the madgraph framework is plotted in green. This can be considered as true
data, since the final sampling distribution gets unweighted, e.g. the distribution is
corrected.
In the plots for the MadGraph samples and the raw phasespace samples we imple-
ment 1√

N
errorbars (if N is the number of samples in one bin). For the weighted

21

7 VEGAS BENCHMARK

distribution we can not argue in the same way, since there can be weight-outliers.
Therefore we calculate the error for each bin εbin independently by:

εbin =
N√ ∑N

w w

max(w)

With this implementation, if all weights in one bin are equal, εbin again reduces to
1√
N

; but in the limit, when the data in one bin is getting dominated by a single
high-weighted event, εbin is going to N.
Additionally we add two subplots, where we plot the deviations of the pure samples
and the Madgraph data from our true distribution, obtained by weighting the pure
samples. In the upper subplot we plot the ration of true over test and in the lower
one we plot the deviation divided by the true values.

Results

For first we show here only the pT -distribution for the first outgoing gluon.

10−6

10−5

10−4

10−3

10−2

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 10: pT distribution of the first gluon in the final state with parameters as in Table 2

Viewing only the pT -distribution of the first particle in Figure 10 we already see
that vegas did not learn very much in the training: The blue line is not close to
the true distribution, created by the weights shown in the red line. Also the cut is
not yet visible there. But most importantly it makes clear that our configuration
is not the same as the Madgraph one, because the true distribution created by our
weights deviates from the Madgraph distribution.
To find the difference we simplify our integrand: In our and in Madgraphs fortran
code, we set parts of it to one, while we either plot

• samples from a trained vegas model as before, or

• samples from a uniform hypercube (r-space) fed into RAMBO.

22

7 VEGAS BENCHMARK

M=PDF=1

We set the PDFs and the matrix element to 1 , leaving only dσ ∝ 1/(2r1r2s) as well
as the RAMBO weights. Now, sampling uniformly, the observable distributions are
in good accordance (Figure 11).

10−3

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 11: pT -distribution, sampled uniformly and M=PDF=1

PDF=1

We again insert the matrix element. Sampling from vegas, our weighted distribution
is very close to the Madgraph distribution (Figure 12).

10−4

10−3

10−2

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 12: pT -distribution, sampled with vegas and PDF=1

23

7 VEGAS BENCHMARK

M=1

Now we set the matrix element again to one and instead insert the full PDFs. The
problem arises again, for both, sampling uniformly as well as with trained vegas
(Figure 13).

10−4

10−3

10−2

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 13: pT -distribution, sampled with vegas and M=1

Thus the problem lies in the PDFs and we tried some changes: First we used the
exact same pdf set as Madgraph. Though the behaviour does not change. Secondly
we also set the energy scale of the PDFs in Madgraph and in our code to the mass
of the Z-Boson. Again, the deviation remained.

Gluon PDF approximation

On our supervisors advice, we decided to omit the LHAPDF package and to use
instead an approximation for the gluon pdf function:

pdfgluon(x) ≈ 1

x2

Since we just want to create a baseline for our INN, it is no loss to use only an
approximation.

Finally the red and the green curve are in good accordance for every observable.
Additionally to the pT -distribution in Figure 14 we show here also the η-distribution
in Figure 15 and the ∆R-distribution in Figure 16. In all of these we see that the
true distribution under the label Physics? is the most noisy one. These uncertain-
ties have to be caused by the weights wtr. This makes it hard to compare it with
the Madgraph data more accurately.
The blue curve shows that vegas still did not learn out. The final estimates for the
integral are in the same order of magnitude, though the difference is much bigger
than the error of both of them: For madgraph we get (15.296 ± 0.015)GeV−2 and

24

7 VEGAS BENCHMARK

10−6

10−5

10−4

10−3

10−2

n
or

m
al

iz
ed

Physics?

PS-sampling

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 14: pT -distribution, sampled with vegas and the 1/x2 pdf approximation

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

Physics?

PS-sampling

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

Fig. 15: η-distribution, sampled with vegas and the 1/x2 pdf approximation

for our vegas architecture (12.78 ± 0.16)GeV−2. This deviation is hardly explain-
able by us. Though one explanation could be that vegas underestimated the error
dramatically, because it did not see some narrow peaks in the integrand and thus
could not quantify the true variance.

25

7 VEGAS BENCHMARK

0.0

0.2

0.4

0.6

n
or

m
al

iz
ed

Physics?

PS-sampling

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 2 4 6 8

∆R12

0.1

1.0

10.0

δ[
%

]

Fig. 16: ∆R12-distribution, sampled with vegas and the 1/x2 pdf approximation

7.2 Toy example

Double Gaussian

With our INN we will start with the toy function, already described in Equation 5.6.
We can easily extend this function into higher dimensions, but let us first stick to two
dimensions. The function is plotted in Figure 17a. As described in subsection 5.1,

(a) Scattering plot of target function

(b) Normalised vegas weight distribution after integrat-
ing the double Gaussian toy function

Fig. 17: Toy function from Equation 5.6 and trained vegas weights

vegas assumes the integrand to be factorisable, what the double Gaussian is not.
When we integrate it, vegas needs for 10 iterations, each of 2 · 105 evaluations,
round about 47 seconds on a common CPU. The result of the last estimate is
0.3328±0.0006. A suitable measure of precision is the relative error of the estimate.
This is the standard deviation divided by the true integral value. Since the error
goes with the inverse root of the number of evaluations Neval (see Equation 5.2),

26

8 INN TOY INTEGRATION

we additionally multiply it with
√
Neval and call this value ∆I. For this run we get

∆I = 0.74.
In Figure 17b of the normalised weights we can recognise the difficulties, vegas has
with these kind of functions. The range of weights goes over three magnitudes,
because the wrongly modelled Gaussians have to get down-weighted.

Four Gaussian

To see, if we can beat vegas also for factorisable functions we integrate a toy function
with four Gaussians, shown in Figure 18a. Again we train 10 iterations, each of 2·105

evaluations. vegas obviously does a lot better this time. Though it needs now 122

(a) Scattering plot of target function

(b) Normalised vegas weight distribution after integrat-
ing the four Gaussian toy function

Fig. 18: Toy function with four Gaussians and trained vegas weights

seconds for the same procedure, the normalised weight distribution in Figure 18b
shows only a small width. The last integral estimate is 0.66666 ± 0.00011 which
makes a ∆I of 0.074.

8 INN toy integration

Training the INN can be done in the two ways described in subsection 5.2 and
5.3. As with vegas we now reduce our pipeline by taking the double Gaussian toy
function as integrand.
First we want to learn, how generating and recycling work for their own separately.

8.1 Getting to know INN Generating

Gaussian Ring

For learning the difficulties of the INN training we implement a second toy function:
A Gaussian ring, shown in Figure 19.

We try first what happens, if we let train the network by generating for a very
long time. Therefore we use the 1cycle policy as introduced in section 3.3. Hereby
we take 10−6 as initial learning rate and increase it in the first third to 10−5. After

27

8 INN TOY INTEGRATION

(a) Scattering plot

(b) Distribution projected on first dimension

Fig. 19: Toy function of Gaussian ring

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) After 1000 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) After 2000 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(c) After 3000 batches

Fig. 20: Generating with 1cycle policy on Gaussian ring - beginning

every 1000 batches, each of them of size 1024, we plot the intermediate results. In
Figure 20 we can nicely observe the distribution creating a ring.

After the full training we project the samples on the radius (Figure 21b) and see
the pure samples in green very close to the true distribution in red. In Figure 21a we
see the loss decreasing very fast in the first third and then at some point becoming
very noisy. Though this does not seem to damage the results.

28

8 INN TOY INTEGRATION

(a) Loss curve for 15000 batches of generating (b) Final result radius projection

Fig. 21: Generating with 1cycle policy on Gaussian ring - final results

Double Gaussian

We do the same thing with the double Gaussian toy function and observe a different
behaviour in Figure 22. After 900 batches the network starts to evolve edges in the
distribution, concreting over the training. Analysing the inverse Jacobian after 1200
batches in Figure 23a we see the network does not sample in some regions with low
integrand at all. In these regions the Jacobian becomes peaky and starts dominate
also the true distribution (orange line in Figure 23b).

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) After 300 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) After 900 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(c) After 1500 batches

Fig. 22: Generating with 1cycle policy on double Gaussian - beginning

29

8 INN TOY INTEGRATION

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

inv_jac

(a) Samples weighted with inverse Jacobian after 1200
batches

(b) Projected samples with weights after 1500 batches

Fig. 23: Generating with 1cycle policy on double Gaussian - unstable training

Baseline

Since we want to avoid unstable training as above, we now set the learning rate
to constantly 10−5. To set a baseline we train for 700 batches, red lines are just
marking every new hundred batches.

(a) Loss curve

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Sample distribution

Fig. 24: Results of generating 700 batches

The results in Figure 24 do not look satisfying since the network did not train
for long enough. But because vegas is very fast, we do not want our network to
train for arbitrarily long time. To have a more quantitative baseline, we insert the
errors in the projections in Figure 25 as in subsection 7.1. Additionally we can take
a look on the distribution of the weights in Figure 26. The different lines represent
the intermediate states after every 100 batches. What we see is, that the network
is improving only slowly.
After every period (red marker) we also calculate the integral estimate with roughly
105 evaluations. The last estimate for the integral of this run has a relative error of

30

8 INN TOY INTEGRATION

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Projection on 1st dimension

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

(b) Projection on 2st dimension

Fig. 25: Projections of sample distribution

10 3 10 1 101 103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1
2
3
4
5
6

Fig. 26: Normalised weight distribution after every 100 batches. The labels numerate these
intermediate states (0 means after the first 100 batches).

11 · 10−4 and thus a ∆I of 0.36.

8.2 Getting to know INN Recycling

To train with recycling, there are several ways to obtain training data. What we
do, is to use the unlearned model to sample uniformly and than multiply with the
integrand as weights as described in subsection 5.2.

Overfitting

First we try to train on only five batches of size 1024 a 100 times (100 epochs).
In Figure 27a we see the loss dropping quite low, though the final distribution in
Figure 27b looks extremely blurred.

Most of the runs with more training data did not show such a low loss. This is
why we assume, the model tending to overfit, when training on a data set with less
than round about 100 batches. I. e. our model sees too little data, to be able to
generalize in a appropriate way.

31

8 INN TOY INTEGRATION

(a) Loss curve

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Sample distribution

Fig. 27: Results of recycling for 100 epochs on 5 batches

Baseline

We can lead the recycling to very fast converging with the 1cycle policy as in the
following case. Here we already turned on the training while generating the training
data. Now the training has the same training length as the generating baseline, but
this time three epochs over 175 batches. We start with a learning rate of 8 · 10−5

and raise it as usual by a factor of ten.
The loss in Figure 28a now reduces only down to −10−3, but to plot the loss in
a logarithmic scale we add the constant 0.1. The final distribution in Figure 28b
looks close to the true one, but in the first dimension in Figure 29a there are a
few more artifacts left than in the second dimension. In Figure 30 we see that the
recycling makes the distribution narrow quite quickly. The last integral estimate
has a ∆I of 0.11.

(a) Loss curve
0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Sample distribution

Fig. 28: Results of recycling for 5 epochs on 100 generated batches

32

8 INN TOY INTEGRATION

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Projection on 1st dimension

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

(b) Projection on 2st dimension

Fig. 29: Projections of sample distribution

10 3 10 1 101 103

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1
2
3

Fig. 30: Weight distribution after generating (0) and every epoch (1-3)

8.3 Combined training

Our goal is now to combine these two types of training in a more suitable way. We
saw that recycling is faster and trains more stable. Though we want to generate the
training data by ourself and use the fact, that meanwhile we can already improve
the model.
After experimenting a bit we find a good compromise: We stick to the constant
learning rate of 10−5 for generating and schedule the recycling by the 1cycle policy.
After every generated 25 batches we switch to recycling, marked by the red dashed
lines in Figure 31a. In the recycling periods we train over all data generated up to
this point, visible again by the red markers in Figure 31b. All in all the network
processes 675 batches.

The generating loss curve shows that at some points recycling is boosting the
training a lot. Instead the generating periods seem to push up the recycling loss,
but we assume this is a sign of preventing overfitting.
In Figure 32a the intermediate states after generating are plotted in yellow merging
to red and after every recycling period in blue to turquoise. Comparing the width of
the final weight distribution in turquoise with the recycling baseline in Figure 30 we
see very small improvement of the overall shape, but also some outliers appearing,

33

8 INN TOY INTEGRATION

(a) Loss curve
(b) Sample distribution

Fig. 31: Loss for recycling every 25 batches over total data - 6 times

which increase the range of weights. The relative error of the last integral estimate
makes the same small improvement with ∆I = 0.091. In Figure 33a and 33b we
see some outliers, but overall little significant deviation.
All in all this run is a success, but with over a minute of training this is still much

10 3 10 1 101 103

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1
2
3
4
5
6
7
8
9
10
11

(a) Weight distribution after generating and every recy-
cling epoch

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Projection on 1st dimension

Fig. 32: Results of recycling after every 25 generated batches over total data - 6 times

longer than vegas needs for this function. This is the reason, why we also look at
the work of the group we took the concept of INN generating from.

34

9 OUTPERFORMING I-FLOW BENCHMARK

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Projection on 1st dimension

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

(b) Projection on 2st dimension

Fig. 33: Projections of sample distribution

9 Outperforming I-flow benchmark

There is another benchmark we can create. The training described in subsection 5.2
was introduced also by Gao, Isaacson and Krause [2], who called their network I-
flow. We can use their implementation, published on gitlab [28], for our toy function.
To show that we are indeed able to make improvements to the model, we shall first
copy I-flow’s architecture to our code.

9.1 I-flow setup

Efficiency

For a two-dimensional function I-flow uses a network which is a hundred times
smaller than what we used to work with. In Table 4 we list up our old hyper
parameters and the ones I-flow uses for a 2d-problem. All in all this makes 1123070

.

hyper parameter so far used I-flow
Number of blocks 10 2
Number of layers 3 5

Layer size 256 32
Number of spline bins 60 16

Tab. 4: List of hyper parameters for network architecture

parameters to learn for us and only 9698 for I-flow.

Tensorflow library

I-flow is coded in tensorflow library [29]. Thereby some difficulties do arise, when
we try to copy it to the pytorch library. Some of them are related to the different
initialisation of layers in tensorflow on the one hand and the different initialisation
of the splines on the other hand.

35

9 OUTPERFORMING I-FLOW BENCHMARK

Latent space and permutation

I-flow uses a flat latent space, where it samples the input for the network from.
For two dimensions I-flow uses only two blocks. While we used a rotation matrix
between our blocks, they take here just a fixed matrix which flips the channels.

I-flow loss function and one mistake of ours

Per default I-flow employs the ‘exponential’ divergence as we do it. Although at
this point we noticed a bigger mistake in our implementation: We forgot to elimi-
nate the factor our distribution of samples brings in. Thus in our implementation
the factor 1/g(r) was missing as described in subsection 5.2. This means that our
results for generating could have been worse than they should be.
Another difference in the code of I-flow is the normalisation of f and g:
In the code they take the mean of f/g, reusing this again for calculating the inte-
gral. This mean is normalising f(r), while they do not normalise g(r). We call this
normalisation norm1 :

f ′(r) :=
f(r)

〈f/g〉r
, g′(r) := g(r)⇒ f ′(r)

g′(r)
=
f(r)

g(r)
〈f/g〉r (9.1)

This again is not completely comprehensible for us, since this is not necessarily the
same as our normalisation norm2 :

f(r)

〈f〉r
· 〈g〉r
g(r)

=: f ′′(r) · 1

g′′(r)
(9.2)

Training type

They only use generating as training. Though in the following we will see that
their training is extremely stable and even with a ten times higher learning rate it
converges reliably.

9.2 I-flow training

Let us see how well I-flow does in fitting the double Gaussian toy function. From
this point on the batch size is per default set to 5024. This makes the GPU even
faster to process the code.
We go first up to 1000 batches.

Default configuration

In the default setting I-flow trains with a constant learning rate of 10−3.
The results are for us surprisingly good: In Figure 34a the sampling distribution

looks very smooth and does not show any artifacts or similar defects. The weights
in Figure 34b are extremely narrow, especially on the right side, there is almost no
tail.
In Figure 35, we see the generating loss going down to 10−3.
For this run I-flow gives for the last integral estimate with 25000 evaluations a
relative error of 2.7 · 10−4, which makes a ∆I of 0.043 and therefore better than
what we got so far.

36

9 OUTPERFORMING I-FLOW BENCHMARK

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) Sampling distribution

10 3 10 1 100 101 103>103

weights

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

(b) Weight distribution

Fig. 34: I-flow results after 1000 batches with norm1 and learning rate of 10−3

0 200 400 600 800 1000
batches

10 3

10 2

10 1

lo
ss

Fig. 35: Loss curve for I-flow in default configuration

Increasing learning rate

Next we want to see how stable the I-flow training really is and let it run with
a ten times higher learning rate. Figure 36b shows I-flow does still converge very
well, only a few bumps show up. The final loss as well as the weight distribution in
Figure 36a look even better than before. Also the ∆I is lowered to 0.016.

Different normalisation

Next we reset the learning rate to 10−3 and change the normalisation, to see if
I-flows choice was made for reasons of performance. norm2 is indicated in equation
9.2 and is also the default one, we used for our loss implementation before.
Instead of a crucial deterioration, we rather see small enhancements in comparison

to the default configuration. The width of the weight distribution in Figure 37a
is smaller and so is the ∆I of the last estimate with 0.032. This means, there are
most probably other reasons for the I-flow normalisation and we can stick to ours.

37

9 OUTPERFORMING I-FLOW BENCHMARK

10 3 10 1 100 101 103>103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

(a) Weight distribution

0 200 400 600 800 1000
batches

10 4

10 3

10 2

10 1

lo
ss

(b) Loss curve for 1000 batches

Fig. 36: I-flow results for learning rate of 10−2

10 3 10 1 100 101 103>103

weights

10 3

10 2

10 1

100

no
rm

al
ize

d

(a) Weight distribution

0 200 400 600 800 1000
batches

10 3

10 2

10 1

lo
ss

(b) Loss curve over 1000 batches

Fig. 37: I-flow results for normalisation as in eq. 9.2

9.3 Torch-flow - mimicking I-flow in pytorch

To get a copy of I-flow in pytorch we borrow all the hyper parameters I-flow uses
and start to change also the initialisation in the layers and splines towards I-flow.

Initialisation

I-flow has a flat initialisation. To get a similar result, we have to set the initial
derivatives in the splines to one and also the last layers weights and biases to zero.
Now in Figure 38 there is now difference in initialisation visible anymore and the
weights look almost the same too.

38

9 OUTPERFORMING I-FLOW BENCHMARK

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) I-flow sampling without training

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Torch-flow sampling without training

Fig. 38: Comparing initial states of I-flow and our copy Torch-flow

10 3 10 1 100 101 103>103

weights

10 1

100

101

no
rm

al
ize

d

(a) I-flow weight distribution without training

10 3 10 1 100 101 103>103

weights

10 1

100

101
no

rm
al

ize
d

0

(b) itorch

Fig. 39: Torch-flow weight distribution without training

Training

Since we still want a precise copy of iflow in pytorch, we implement also the nor-
malisation in the same way (Equation 9.1). Unfortunately our training diverges as
can be seen in Figure 40a. The first 50 batches look exactly like in the I-flow loss
curve, but then the loss turns upwards.
To observe the divergent behaviour, we look on the first 100 batches more carefully.
In Figure 40b the part of the first 40 batches is a bit scaled, but it is still the same
behaviour.

When comparing the sample distributions after 40 batches with a I-flow result
after 40 batches in Figure 42, the plots look very similar. In Figure 41b we see
already a tendency of our model to crook the lines, what I-flow does not do. This
reinforces over the training and in the end only a thin line remains.

39

9 OUTPERFORMING I-FLOW BENCHMARK

100

101

lo
ss

generate

0 200 400 600 800 1000
batches

1
2

ch
i2

gen

10 4

10 3

10 2

10 1

100

Tr
ue

gen

(a) Loss curve for 1000 batches

100

101

lo
ss

generate

0 20 40 60 80 100
batches

1.00
1.25

ch
i2

gen

10 4

10 3

10 2

10 1

100

Tr
ue

gen

(b) Loss cruve for 100 batches

Fig. 40: Torch-flow loss curves for training with norm1. Additionally the relative deviations
of the intermediate integral estimates and the resulting χ2-values are plotted with
the corresponding axis on the right side.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) I-flow after 40 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Torch-flow after 40 batches

Fig. 41: Comparing I-flow and Torch-flow after 40 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) Torch-flow after 50 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(b) Torch-flow after 60 batches

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(c) Torch-flow after 70 batches

Fig. 42: Divergence of Torch-flow with norm1

40

9 OUTPERFORMING I-FLOW BENCHMARK

Torch-flow with norm2

Since with I-flow we see no big difference running it with the other normalisation
(norm2, Equation 9.2), it was good enough, if we managed to copy I-flow with
this implementation. Indeed, this time the network does not diverge, but neither
it shows the same performance as I-flow. Again the loss in Figure 43a behaves
like I-flow for the first 40 batches and then, after a bump it sticks to a plateau
at ∼ 10−2. The weights look far worse than what we saw for I-flow too. In the
sample distribution in Figure 44 we can observe a bias to the direction of the second
Gaussian.

10 2

10 1

lo
ss

generate

0 200 400 600 800 1000
batches

1.0

1.5

ch
i2

gen

10 4

10 3

Tr
ue

gen

(a) Loss curve with two integral estimates

10 3 10 1 100 101 103>103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0

(b) Weight distribution after 1000 batches

Fig. 43: Training of Torch-flow with norm2

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) Sample distribution after 1000 batches

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(b) Sample distribution projected on first dimension

Fig. 44: Results of Torch-flow with norm2

G-flow - Torch-flow with Gaussian latent space

We expect the continuous rotations between the blocks (soft permuting) to proof
their strength in bigger networks for functions with more complexity. This is why
we switch here to the Gaussian latent space and look how the model generates.

41

9 OUTPERFORMING I-FLOW BENCHMARK

Unfortunately we have to note again a very unstable training and thus we reduce
the learning rate by 1/4.
The loss in Figure 45a still evolves very noisy after 200 batches, but the weight
distribution shows the right direction.

10 2

10 1

lo
ss

generate

0 200 400 600 800 1000
batches

1.0

1.5

ch
i2

gen

10 4

10 3

10 2

Tr
ue

gen

(a) Loss curve with two integral estimates

10 3 10 1 100 101 103>103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1

(b) Weight distribution after 500 and 1000 batches

Fig. 45: Training of G-flow with learning rate of 2.5 · 10−4

9.4 BiG-flow - Bijective Gaussian iflow

We keep the setting of ”G-flow” and add our most promising improvement: INN
recycling.

Only Recycling

First we want to find suitable hyper parameters for the recycling training. Therefore
we again generate 100 batches with the learning rate set to zero.
For the following results we did train one epoch on the weighted 100 batches with
a learning rate of 10−2. In the sample distribution in Figure 47 we again see a
systematic shift to the second Gaussian.

We can compare this to I-flow training for 100 batches with the same learning
rate of 10−2. The difference in the weight distribution is not very large, though the
recycling seems to be a bit faster.
I-flow calculates an Integral estimate with a relative error of 1.7·10−4 (∆I = 0.027),

while the last estimate with BiG-flow with the relative error of 9 · 10−4 (∆I = 0.15)
is less precise.

42

9 OUTPERFORMING I-FLOW BENCHMARK

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Projection on first dimension

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

(b) Projection on second dimension

Fig. 46: Sample distribution for BiG-flow recycling with learning rate of 10−2

10 3 10 1 100 101 103>103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0

(a) BiG-flow, only recycling

10 3 10 1 100 101 103>103

weights

100

101

102

103

104

105

no
rm

al
ize

d

(b) I-flow, learning rate of 10−2, 100 batches

Fig. 47: Comparison of BiG-flow and I-flow in weight distribution

Combined training

As we had good experiences with switching between generating and recycling quite
frequently, we tried the same schedule as in subsection 8.3, but four times of each.
All in all we generated 100 batches and recycled 250, which took round about 43
seconds on a GPU. This time we scheduled the learning rate by a decay of 0.4 after
50 generated batches, respectively by the 1cycle policy for recycling.
This and the integral evaluations are also illustrated in the loss curves Figure 48.
In the second generating period we see the loss turning again upwards, but then
this gets stopped and reversed by the next recycling period. As we know it from
before, the recycling loss is again increasing after every generating period - again,
this rather seems to be a sign of correct training. The last integral evaluation gives
a relative error of 3 · 10−4, making ∆I = 0.047 and thus it is not more precise than
I-flow trained for 100 batches and with learning rate of 10−2.

43

9 OUTPERFORMING I-FLOW BENCHMARK

10 2

10 1

lo
ss

generate

0 20 40 60 80 100
batches

0.5
1.0

ch
i2 gen

rec

10 4

10 3

10 2

10 1

Tr
ue

gen
rec

(a) Generating loss curve, with relative deviation of in-
tegral estimates

0 50 100 150 200 250
batches

10 1

9.4 × 10 2

9.6 × 10 2

9.8 × 10 2

1.02 × 10 1

1.04 × 10 1

lo
ss

+0
.1

recycle

(b) Recycling loss curve

Fig. 48: Loss curves of combined training types with BiG-flow

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Sample distribution projected on first dimension

10 3 10 1 100 101 103>103

weights

10 6

10 4

10 2

100
no

rm
al

ize
d
0
1
2
3
4
5
6
7

(b) Weight distribution after every period

Fig. 49: Results for combined training types with BiG-flow

Digression: Comparison with vegas

To compare our network with vegas also on a factorisable function, we integrate the
four Gaussian toy function from Figure 18a. Judging by the weight distribution in
Figure 50b, this function obviously simplifies the task also for our INN. The relative
error of the last estimate is 7 · 10−5 - this time with 2 · 105 evaluations like vegas in
section 7.2. ∆I is then calculated to 0.034.

44

9 OUTPERFORMING I-FLOW BENCHMARK

10 2

10 1

lo
ss

generate

0 20 40 60 80 100
batches

1
2
3

ch
i2 gen

rec

10 4

10 3

Tr
ue

gen
rec

(a) Generating loss curve, with relative deviation of in-
tegral estimates

10 3 10 1 100 101 103>103

weights

10 3

10 2

10 1

100

no
rm

al
ize

d

0

(b) Weight distribution

Fig. 50: BiG-flow as in section 9.4 trained on four Gaussian toy function

Long training

Lastly we look what the training converges to by training for longer time (∼8
minutes). We reduce the learning rate for both training types a bit, but use again
the 1cycle policy for recycling and the exponential decay for generating.
The loss in Figure 51a goes down to values of 10−4, though not so far as I-flow in

10 3

10 2

10 1

lo
ss

generate

0 100 200 300 400
batches

0.5
1.0

ch
i2 gen

rec

10 4

10 3

10 2

Tr
ue

gen
rec

(a) Generating loss curve, with relative deviation of in-
tegral estimates

0 1000 2000 3000
batches

10 1

9.6 × 10 2

9.8 × 10 2

1.02 × 10 1

1.04 × 10 1

lo
ss

+0
.1

recycle

(b) Recycling loss curve

Fig. 51: Loss curves of combined training types with BiG-flow for long training

Figure 36b training with higher learning rate for 1000 batches. The last estimate,
again determined with 25000 samples, is with a relative error of 1.0 ·10−4 as precise
as I-flow in the mentioned run. ∆I is accordingly low with 0.017.
Though the weight distribution in Figure 52b is significantly more narrow than,
what we have seen so far for the double Gaussian toy function. Also in Figure 53,
there are no significant deviations visible.

45

10 SUMMARY

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

pure_samples

(a) Sample distribution

10 3 10 1 100 101 103>103

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0

(b) Weight distribution

Fig. 52: Results of combined training types with BiG-flow for long training

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Sample distribution, projected on first dimension

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

(b) Sample distribution, projected on second dimension

Fig. 53: Sample distribution projections of BiG-flow for long training

10 Summary

We built up a benchmark with vegas for the simple QCD process gg → ggg. This we
could compare with the commonly used framework for event generation Madgraph,
which also estimates the integral. The result of Madgraph is (15.296± 0.015). Un-
fortunately vegas estimate deviates with (12.78 ± 0.16)GeV−2 from Madgraph by
multiples of its standard deviation. One possible explanation is that vegas underes-
timated its error, because it did not sample in the regions, with very high integrand
values. This can also motivated by the high complexity of the integrand and a look
on the sample distribution of vegas, so in Figure 16: This deviates still strongly
from the integrand.

Subsequently we switched to simpler toy functions in two dimensions. As conse-
quence of vegas assumptions about the integrand, the double Gaussian toy function
was a big challenge for it. The weight distribution in Figure 17b is extremely wide
and also the integral estimate is not as precise as for factorisable toy functions. For
the latter ones we picked the four Gaussian toy function and obtained a much more

46

10 SUMMARY

narrow weight distribution, showed in Figure 18b. Though for both functions we
managed to design a comparably fast training for our BiG-flow with equally good or
better results. In Table 5 and 6 we compare the results of vegas and BiG-flow. For
better comparability of the integral precision, we list ∆I, which is again calculated
by the standard deviation of the estimate, relative to the true value and multiplied
with the root of evaluation number. For assessing the weight distribution we count
the number of bins filled by the weights in the plots linked in the tables.

This shows that at least in low dimensions our network can compete with vegas

.

Double Gaussian

vegas (Fig. 17b) BiG-flow (Fig. 49b)

∆wtr [bins] > 20 11

∆I 7 · 10−1 5 · 10−2

Tab. 5: Comparison of vegas and BiG-flow in weight distribution and integral estimate on
double Gaussian toy function

Four Gaussian

vegas (Fig. 18b) BiG-flow (Fig. 50b)

∆wtr [bins] 4 3

∆I 7 · 10−2 3 · 10−2

Tab. 6: Comparison of vegas and BiG-flow in weight distribution and integral estimate on
four Gaussian toy function

even in integrating factorisable functions.

In subsection 8.1 we learned that our generating training strongly depended on
the type of toy function. The double Gaussian lead with high learning rate often
to unstable training, where our network converged not to the target function as in
Figure 22 or even diverged. In Figure 23a we could observe that in these cases the
Jacobian of the INN evolves numerically unstable in the regions, where the network
starts to sample only very rarely. In these runs we were missing the term 1/g(r)
in our loss, which cancels the contribution of the sampling distribution. When we
noticed this, we assumed this might be the reason for this behaviour. Though when
we continued with the correct loss in subsection 9.3 we observed still the same un-
stable training, when setting the learning rate too high.
For this reason we used for the generating baseline a low learning rate of 10−5. After
700 batches it was clearly not converged, but we stopped the training to compare
the efficiency. The same values as in Table 6 are calculated also for the two baselines
of our combined training schedule in Table 7.
For the recycling training we found that the 1cycle policy for the learning rate
worked the best. For this baseline we already used both types of training, but

47

10 SUMMARY

strictly separated by just one switch.
Finally we trained the network, switching between both types of training periodi-
cally. Also here we kept the 1cycle policy for recycling. We obtained a few more
outliers in the weight distribution than for the recycling baseline, though the inte-
gral estimate was a bit more precise as visible in Table 7. Also the error plots in
the plots 33a and 33b the errors are bit smaller than in plots 29a and 29b.
Thus we have to state that our periodic alternation did help not significantly.

generating (Fig. 26) recycling (Fig. 30) combined (Fig. 32a)

∆wtr [bins] > 20 15 17

∆I 4 · 10−1 11 · 10−2 9 · 10−2

Tab. 7: Comparison of generating and recycling baselines with combined training in weight
distribution and integral estimate on double Gaussian toy function

Lastly we let us guide by the publicly available code of I-flow, written in tensorflow
and tried to mimic this network. This made our network training a lot faster, since
we downsized it to only one percent of the size before. Unfortunately we did not
manage to create a precise copy of I-flow in pytorch. The main problem was still
the instability of our generating training as observed before. Though we fixed our
mistake in the loss, our network would still diverge or when reducing the learning
rate would not be able to decrease the loss as low as I-flow. We assume there might
be still some differences in the implementation of the splines or in some built-in
tensorflow methods.
When applying the two main changes, which we assume to show their superiority
in higher dimensions and more complex integrands, we could improve our results.
This is firstly the Gaussian latent space, where I-flow just uses a flat space and
secondly the recycling training. We call the resulting architecture BiG-flow. A
pure recycling training with data generated by a untrained model, already showed
comparable results as I-flow. Only the integral estimate was not as precise as I-flow.
Finally we again applied our combined training as before, once in a short training
and then in a long one.
In Table 8 we compare I-flow training for 100 batches and a learning rate of 10−2

(I-flow100), BiG-flow only recycling for 100 batches (BiG-flowrec) and BiG-flow with
combined training processing all in all 350 batches (BiG-flowshort). For the long
runs we compare in Table 9 I-flow training with the same learning rate for 1000
batches (I-flow1000) and BiG-flow processing all in all 3800 batches, but generating
only 400 (BiG-flowlong).
What we can read out of Table 8 is that the recycling training does very well in
decreasing the range of weights. Though in estimating the integral with high pre-
cision, I-flow is still much more efficient.
When we consider the evaluation of the integrand as bottle-neck of the process, as
it is the case for the matrix element, the situation assessment changes: If we would
assume the evaluation of the integrand to last around five to six times longer than
processing a data point through the network, the two networks in Table 9 would be
equally fast. Though BiG-flow is again superior in decreasing the range of weights.

48

11 CONCLUSION/OUTLOOK

Short

I-flow100 (Fig. 47b) BiG-flowrec (Fig. 47a) BiG-flowshort (Fig. 49b)

∆wtr [bins] 20 11 11

∆I 3 · 10−2 15 · 10−2 5 · 10−2

Tab. 8: Comparison of I-flow and BiG-flow in weight distribution and integral estimate on
short training

Long

I-flow1000 (Fig. 36a) BiG-flowlong (Fig. 52b)

∆wtr [bins] 11 7

∆I 16 · 10−3 17 · 10−3

Tab. 9: Comparison of I-flow and BiG-flow in weight distribution and integral estimate on
long training

11 Conclusion/Outlook

We could show that the task of vegas can be solved by INNs at least equally well. On
problems, where vegas makes wrong assumptions, our INN clearly stripped vegas
out.
In the generating training we had to state problems until the very end. Nevertheless
we managed to combine this training with a second type of training, such that both
types of training would preserve their strengths and were not working against each
other. While recycling seemed to narrowing the range of weights more quickly, the
generating I-flow has a very high precision in it’s estimates.
For some circumstances we showed that a connection with a second training has an
advantage over training with only one type of training.

Unfortunately we did not manage in the frame of this thesis, to experiment with
higher dimensions. The task here is to find a generalisation of how to increase the
size of the network and in which manner does the training time increase with more
and more dimensions. Also the schedule of changing the training type could get
generalised. For instance the network could check if it reached a loss plateau and
then switch to the other training.
After the networks trains reliably on higher dimensional toy functions, the compar-
ison with our vegas benchmark on the gluon process is due. Since the benchmark
clearly showed its weaknesses, we would expect that a BiG-flow architecture in
seven dimensions should do better.
Additionally other processes can be chosen to experiment with. One question is, if
the network has to be initialised completely for every new process or if a pre-trained
version could be used for several different processes.

49

12 References

12 References

1G. Peter Lepage, “A new algorithm for adaptive multidimensional integration”,
Journal of Computational Physics 27, 192–203 (1978).

2C. Gao, J. Isaacson, and C. Krause, “I- flow: high-dimensional integration and
sampling with normalizing flows”, Machine Learning: Science and Technology 1,
045023 (2020).

3M. Felcini (ATLAS Collaboration, CMS Collaboration), Searches for Dark Matter
Particles at the LHC, tech. rep., 10 pages, 7 figures, Proceedings of the 53rd
Rencontres de Moriond on Cosmology, March 17-24 2018, on behalf of the ATLAS
and CMS collaborations (CERN, Geneva, Aug. 2018).

4A. Canepa, “Searches for supersymmetry at the large hadron collider”, Reviews
in Physics 4, 100033 (2019).

5D. J. Rezende and S. Mohamed, Variational inference with normalizing flows,
2016.

6I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: an introduction
and review of current methods”, IEEE Transactions on Pattern Analysis and
Machine Intelligence 43, 3964–3979 (2021).

7L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real nvp, 2017.

8D. P. Kingma and P. Dhariwal, Glow: generative flow with invertible 1x1 convo-
lutions, 2018.

9M. E. P. D. V. Schroeder, An introduction to quantum field theory, https :

//ebookcentral.proquest.com/lib/kxp/detail.action?docID=729240

(Addison-Wesley, 1995).

10J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S.
Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-
level and next-to-leading order differential cross sections, and their matching to
parton shower simulations”, Journal of High Energy Physics 2014, 10.1007/

jhep07(2014)079 (2014).

11A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M.
Schönherr, and G. Watt, “Lhapdf6: parton density access in the lhc precision
era”, The European Physical Journal C 75, 10.1140/epjc/s10052-015-3318-8
(2015).

12R. Kleiss, W. Stirling, and S. Ellis, “A new monte carlo treatment of multiparticle
phase space at high energies”, Computer Physics Communications 40, 359–373
(1986).

13S. Plätzer, Rambo on diet, 2013.

14I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, http://www.deeplearningbook.
org (MIT Press, 2016).

15G. V. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math-
ematics of Control, Signals and Systems 2, 303–314 (1989).

50

https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/https://doi.org/10.1016/j.revip.2019.100033
https://doi.org/https://doi.org/10.1016/j.revip.2019.100033
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=729240
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=729240
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/https://doi.org/10.1016/0010-4655(86)90119-0
http://www.deeplearningbook.org
http://www.deeplearningbook.org

12 References

16M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function”,
Neural Networks 6, 861–867 (1993).

17M. Straka, Deep learning – úfal course npfl114, https://github.com/ufal/
npfl114, 2021.

18D. P. Kingma and J. Ba, Adam: a method for stochastic optimization, 2017.

19L. N. Smith and N. Topin, Super-convergence: very fast training of neural networks
using large learning rates, 2018.

20L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L.
Maier-Hein, C. Rother, and U. Köthe, Analyzing inverse problems with invertible
neural networks, 2019.

21L. Dinh, D. Krueger, and Y. Bengio, Nice: non-linear independent components
estimation, 2015.

22B. Stienen and R. Verheyen, “Phase space sampling and inference from weighted
events with autoregressive flows”, SciPost Physics 10, 10.21468/scipostphys.
10.2.038 (2021).

23J. A. GREGORY and R. DELBOURGO, “Piecewise Rational Quadratic Inter-
polation to Monotonic Data”, IMA Journal of Numerical Analysis 2, 123–130
(1982).

24C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows,
2019.

25T. Kloek and H. K. van Dijk, “Bayesian estimates of equation system parameters:
an application of integration by monte carlo”, Econometrica 46, 1–19 (1978).

26G. Lepage, Vegas 5.1.1 documentation, https://vegas.readthedocs.io/en/
latest/vegas.html, Last accessed 14 February 2022, 2018.

27E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and S. Schumann, “Exploring
phase space with Neural Importance Sampling”, SciPost Phys. 8, 69 (2020).

28C. Gao, J. Isaacson, and C. Krause, I-flow repository, https://gitlab.com/i-
flow/i-flow, Last accessed 26 February 2022, 2022.

29M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, Tensorflow: a system for large-scale machine learning, 2016.

51

https://doi.org/https://doi.org/10.1016/S0893-6080(05)80131-5
https://github.com/ufal/npfl114
https://github.com/ufal/npfl114
https://doi.org/10.21468/scipostphys.10.2.038
https://doi.org/10.21468/scipostphys.10.2.038
https://doi.org/10.21468/scipostphys.10.2.038
https://doi.org/10.21468/scipostphys.10.2.038
https://doi.org/10.1093/imanum/2.2.123
https://doi.org/10.1093/imanum/2.2.123
http://www.jstor.org/stable/1913641
https://vegas.readthedocs.io/en/latest/vegas.html
https://vegas.readthedocs.io/en/latest/vegas.html
https://doi.org/10.21468/SciPostPhys.8.4.069
https://gitlab.com/i-flow/i-flow
https://gitlab.com/i-flow/i-flow

List of Figures

1 Scheme of a simple neural network with one input layer, one hidden
layer and one output layer . 8

2 Approximation by ReLU taken from [17] 9
3 Example of STEPLR for stepsize=20 and decay=0.4 11
4 Example of One cycle learning rate scheduler for maximum learning

rate = 0.001 . 11
5 Scheme of a coupling block in an INN 13
6 Example of rational quadratic spline fitting, taken from [22] 13
7 Example of vegas grid after training on the integrand in Equation 5.6 15
8 Scheme of integration pipeline with vegas 19
9 Scheme of integration pipeline with INN 20
10 pT distribution of the first gluon in the final state with parameters

as in Table 2 . 22
11 pT -distribution, sampled uniformly and M=PDF=1 23
12 pT -distribution, sampled with vegas and PDF=1 23
13 pT -distribution, sampled with vegas and M=1 24
14 pT -distribution, sampled with vegas and the 1/x2 pdf approximation 25
15 η-distribution, sampled with vegas and the 1/x2 pdf approximation 25
16 ∆R12-distribution, sampled with vegas and the 1/x2 pdf approximation 26
17 Toy function from Equation 5.6 and trained vegas weights 26
18 Toy function with four Gaussians and trained vegas weights 27
19 Toy function of Gaussian ring . 28
20 Generating with 1cycle policy on Gaussian ring - beginning 28
21 Generating with 1cycle policy on Gaussian ring - final results 29
22 Generating with 1cycle policy on double Gaussian - beginning . . . 29
23 Generating with 1cycle policy on double Gaussian - unstable training 30
24 Results of generating 700 batches 30
25 Projections of sample distribution 31
26 Normalised weight distribution after every 100 batches. The labels

numerate these intermediate states (0 means after the first 100 batches). 31
27 Results of recycling for 100 epochs on 5 batches 32
28 Results of recycling for 5 epochs on 100 generated batches 32
29 Projections of sample distribution 33
30 Weight distribution after generating (0) and every epoch (1-3) . . . 33
31 Loss for recycling every 25 batches over total data - 6 times 34
32 Results of recycling after every 25 generated batches over total data

- 6 times . 34
33 Projections of sample distribution 35
34 I-flow results after 1000 batches with norm1 and learning rate of 10−3 37
35 Loss curve for I-flow in default configuration 37
36 I-flow results for learning rate of 10−2 38
37 I-flow results for normalisation as in eq. 9.2 38
38 Comparing initial states of I-flow and our copy Torch-flow 39
39 Torch-flow weight distribution without training 39

40 Torch-flow loss curves for training with norm1. Additionally the
relative deviations of the intermediate integral estimates and the re-
sulting χ2-values are plotted with the corresponding axis on the right
side. 40

41 Comparing I-flow and Torch-flow after 40 batches 40
42 Divergence of Torch-flow with norm1 40
43 Training of Torch-flow with norm2 41
44 Results of Torch-flow with norm2 41
45 Training of G-flow with learning rate of 2.5 · 10−4 42
46 Sample distribution for BiG-flow recycling with learning rate of 10−2 43
47 Comparison of BiG-flow and I-flow in weight distribution 43
48 Loss curves of combined training types with BiG-flow 44
49 Results for combined training types with BiG-flow 44
50 BiG-flow as in section 9.4 trained on four Gaussian toy function . . 45
51 Loss curves of combined training types with BiG-flow for long training 45
52 Results of combined training types with BiG-flow for long training . 46
53 Sample distribution projections of BiG-flow for long training 46

Acknowledgements

I want to thank the whole group for sharing with me a nice semester with good
talks. My supervisors Tilman and Anja I want to thank for making a great job in
directing us through the jungle of Machine Learning results and especially Theo for
being a constant advisor on our side. My ally Simon I am grateful to for forcing
me to learn how to handle git and joining me through all the desperate searches
for bugs. Finally I want to thank also Mr Bittner for being extremely patient with
us and writing polite mails, when we filled up again all the memories in the GPU
farm.

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 28.2.2022, Joran Valentin Köhler

	Introduction
	LHC Physics and numeric approximations for event generation
	Matrix element and cross section
	Parton Distribution Function and LHAPDF module
	Phase space parametrisation and RAMBO algorithm
	gg ggg

	Fundamentals of Neural Networks
	Universal Approximation Theorem
	Loss and Optimiser
	Learning Rate Schedules
	Generative Models

	Invertible Neural Networks
	Monte Carlo Integration with Importance Sampling
	vegas
	INN Generating
	INN Recycling

	Integration pipeline for the cross section
	vegas benchmark
	gg ggg
	Toy example

	INN toy integration
	Getting to know INN Generating
	Getting to know INN Recycling
	Combined training

	Outperforming I-flow benchmark
	I-flow setup
	I-flow training
	Torch-flow - mimicking I-flow in pytorch
	BiG-flow - Bijective Gaussian iflow

	Summary
	Conclusion/Outlook
	References

