
Department of Physics and Astronomy

Heidelberg University

Bachelor Thesis in Physics
submitted by

Tobias Krebs

born in Annweiler am Trifels (Germany)

1999

GeneratINNg LHC events

Using invertible neural networks to generate LHC event

samples with high precision.

This Bachelor Thesis has been carried out by Tobias Krebs at the
Institute for Theoretical Physics in Heidelberg

under the supervision of
Prof. Tilman Plehn

Abstract

This thesis is about generating LHC events using invertible neural networks (INNs)
trained on data which again is generated using standard Monte-Carlo approaches.
Our main focus lays on the precise reconstruction of the Breit-Wigner peaks in the
mass distributions of intermediate W and Z bosons and t quarks. We try to improve
the generated mass distributions by employing MMD and Wasserstein losses as well
as by training a discriminator to teach the generator network where it still performs
badly. Furthermore we discuss different preprocessing steps one can do to achieve
higher accuracy.

Zusammenfassung

Diese Arbeit behandelt die Generierung von LHC Events mittels invertierbarer neu-
raler Netzwerke (INNs), welche auf Monte-Carlo simulierten Daten trainiert werden.
Dabei ist für uns vorallem die präzise Rekonstruktion der Breit-Wigner Verteilun-
gen der Massen von W und Z Bosonen sowie t Quarks von Interesse. Wir versuchen
diese Massenverteilungen zu verbessern, in dem wir MMD und Wasserstein Loss-
funktionen verwenden und einen Diskriminator darauf trainieren, dem Generator
Netzwerk zu zeigen, wo es noch Unterschiede zwischen echten Daten und Simulatio-
nen gibt. Zusätzlich diskutieren wir verschiedene Transformationen die wir auf den
Input des Netzwerks anwenden, um die Genauigkeit der Rekonstruktion zu erhöhen.

Contents

1 Introduction 1

2 LHC Physics 1
2.1 tt̃ Production . 2
2.2 Drell-Yan Process . 3
2.3 ZW Production . 4
2.4 Parametrization . 4

3 Machine Learning 5
3.1 Neural Networks . 5
3.2 Network Training . 5
3.3 Invertible Neural Networks . 7
3.4 GANs . 9
3.5 Regularization . 9

4 Preprocessing 10

5 Event Generation 12
5.1 Architecture . 13

6 Getting the Mass Right 14
6.1 The right parametrization . 15
6.2 MMD-Loss . 17
6.3 Wasserstein . 20
6.4 Discriminator . 21

7 Conclusion/Outlook 26

8 References 27

9 Acknowledgments 30

1 Introduction

The Large Hadron Collider (LHC) at the CERN in Switzerland has currently been
upgraded for Run 3 to a ten times higher luminosity at its LHCb experiment com-
pared to the previous run 2. In the future it will undergo additional constructions
resulting in even higher event rates before 2030[1]. Comparing these events with
standard model calculations requires around as many simulated events as real ones
which means that the simulation rate has to be sped up as well. Currently, event
simulation is done using standard Monte Carlo techniques, as in the Pythia pack-
age[2] or Madgraph[3]. Those might however become too slow to match the ever
growing production rate of the new LHC runs. To solve this problem, neural net-
works can come in handy, as they are, once fully trained, capable of sampling new
events at a very high rate. However, as those do not calculate the events from theory
but instead just mimic the distribution of given samples (which are still generated
using Monte Carlos), the precision of those networks is not yet on a high enough
level to really use them to probe the standard model. This shows most prominently
in high dimensional, narrow, correlations of the inputs. Those correlations are no-
toriously hard to learn for a network, compared to the 1D distributions it gets as
input. The aim of this thesis is to lower the deviations between the test set and
generated events to as low as one percent in the bulk, and to the order of statistical
fluctuations in the tails.
In the following we will start with the physics and machine learning background. We
then present our baseline results using an INN and describe the different methods
we employed on top to get better mass distributions. For most of those methods
we first show how they work on easier low dimensional toy-models, then discuss
their impact on training and whether they actually helped by improving the masses
or not. Finally we summarize our results and give an outlook on further possible
improvements to the event generation chain for even higher precision.

2 LHC Physics

Particle colliders like the LHC are used to probe the standard model of particle
physics on high energy scales, searching for new physics like dark matter[4] or SUSY
partners of already known particles[5]. This is mostly done by colliding massive
particles like protons or electrons at high center of mass energies

√
s. At the LHC

we reach around
√
s = 14TeV for proton-proton collisions. This is enough to create

pairs of top quarks which are the heaviest known particles at around 173GeV/c,
or also Higgs particles whose detection is one of the most prominent findings at
the LHC[6]. The data those experiments collect and which we want to simulate
is given by the four momenta of the final state particles p = (E, px, py, pz) which
is measured at the LHC using various detectors like calorimeters, vertex locators
and trackers[7]. Those detectors also alter the signal and add unwanted detector
effects to it like smearing. While event generation often also takes this into account
and generates the data on detector level, in this thesis we chose to generate the
data without those effects. Later on it can be added using detector simulations like
Delphes[8], or instead the detector effects can be computationally removed from the

1

experimental data to compare experiment and theory on a pre-detector level. This
so called detector unfolding can also be done using neural networks[9].
For this thesis we used three quite different processes to test our networks precision:

2.1 tt̃ Production

Fig. 1: Feynman diagram of the tt̃ process.

Our, for the generator, hardest data set consisted of tt̃ final state momenta. Those
events are the result of proton proton collisions at the LHCb experiment: When two
hadrons collide, their constituents scatter off of each other. One possible outcome is
to create a tt̃ pair by e.g. gluon decay or quark-anti-quark annihilation[10]. Those
t quarks have such a short lifetime of around 5 · 10−25s that instead of producing
more quarks or gluons in strong processes, they instead decay weakly into W bosons
and an additional bottom, strange or down quark. We focus on processes where
the t and t̃ decay in W++b and W−+b̃ respectively as those are the processes
the LHCb‘s detector architecture is designed for. The W bosons again decay in a
lighter quark-anti-quark pair each, which will then produce whole jets of particles
due to their strong interaction. Those jets produce many events in the detectors,
and clustering the events back together to the jets they belong to can be done using
many different algorithms like kT [11], Cambridge-Aachen[12] or anti-kT [13], but
there are also approaches using neural networks[14]. As the t and t̃ are produced by
constituents of the protons colliding which may have different shares of the proton
momenta, we do not have momentum conservation in beam direction, however we
do have momentum conservation perpendicular to the beam. As we can assume
the hard jets to be massless at E2 ≈ p2 and since we know the b quarks mass to
high precision already, we can use energy conservation to reduce the phase space
dimensionality from 6 · 4 = 24 to 18. Enforcing the momentum conservation can

2

reduce this further to 16 dimensions and we will test whether this reduction will
help our network or not.

2.2 Drell-Yan Process

Fig. 2: Feynman diagram of the Drell-Yan process.

After a while of testing we realized that the tt̃ data set was to complex for our ap-
proach. We therefore also used an additional data set of Drell-Yan processes where
a Z boson, created again by quark anti-quark annihilation in pp collisions, decays
into an electron-positron pair. Having only two final state particles reduces the di-
mensionality to 8, given that we have again momentum conservation perpendicular
to the beam direction as well as energy conservation, we can reduce this further to
4 dimensions. Also using that the global phase of the process is irrelevant as it is
uniformly distributed, no direction in the xy-plane is favored, we can even reduce
this to 3. Having such a simple data set helps in testing different architectures with-
out having to train the network for sometimes even days before getting any results.
Even though this process is so much simpler than the tt̃ decay, it still features a
hidden Breit-Wigner peak in the Z mass distribution which means that we can test
our full machinery developed to get such masses right here as well.

3

2.3 ZW Production

Fig. 3: Feynman diagram of the ZW process.

Our third data set consisted of ZW pairs also produced at the LHC. In this process,
there is first a single W produced from (most of the time) quark anti-quark annihi-
lation. The off-shell W then splits into a ZW pair, where the Z then subsequently
decays into an e+e− pair like in the Drell-Yan, and the W decays into a pair of jets,
as in the tt̃ data set. Like that we had three possible processes at hand, a very easy
one with the Drell-Yan process, a pretty hard and high dimensional one which has
been used for benchmarking various event generation frameworks in the past, the
tt̃, and with the ZW an additional process which lays in between the previous ones
in terms of complexity, with two hidden particle masses and a 12 dimensional phase
space (already using energy conservation).

2.4 Parametrization

While our data sets were given as four-momenta (E, px, py, pz) of the final state par-
ticles, it can be beneficial to change the basis and we therefore introduce some more
common choices of phase space coordinates: Choosing the direction of the colliding
beams to be the z direction, the part of the momentum which is perpendicular to
the beam axis then becomes

pT =
√
p2x + p2y (1)

called the transverse momentum. We call the angle between beam and particle θ
and the angle between the x axis and the particles momentum projected on the xy
plane φ. The pseudo rapidity is then given as η = − ln

(
tan θ

2

)
. We can exchange

the energy with the particles mass and obtain e.g. (m, pT , η, φ) as coordinates. The
choice of parameters also has an influence on training performance and we will test
whether using four momenta, (m, pT , η, φ) or a mix like (m, pT , pz, φ) as basis works
best. As the final state particles have given fixed masses, we do not use them as
inputs but instead reduce the coordinates given to the network to (pT , η, φ) etc.

4

3 Machine Learning

Computer programs which are built to get better by learning from provided data are
summarized under the term machine learning (ML). This class of programs can be
further distinguished in supervised and unsupervised learning. While in the case of
supervised learning the program not only gets the input data but also the expected
output, unsupervised learning only provides the unlabeled data to the computer.
As we only impose a fixed prior distribution on the output, but do not give unique
labels to the data, our approach belongs to the unsupervised learning strategies.

3.1 Neural Networks

Nowadays many ML applications are implemented using neural networks. Those are
built upon many neurons which take an input, perform very basic functions on it and
output the result. While those single neurons are pretty limited in what they can do,
the combination of multiple neurons can become a powerful tool to map pretty much
any input data to any desired output[15]. Most of the time the multiple neurons are
structured in layers with transformations in between which distribute the output
of the previous layer onto the inputs of the next layer. There are multiple types of
transformations in use like convolutions or up-sampling, which are often used for
e.g. image processing, but in our application we only use basic dense layers, which
are connected using affine transformations. The neurons themselves only apply the
so called activation function to their input. They need to be non linear as otherwise
the whole network would only be a combination of the linear transformations and
therefore the network as a whole would be just a linear transformation, rendering
the multi layer approach useless. A basic example of an activation function is the
rectified linear unit (ReLU):

ReLU(x) = max(0, x) (2)

Other popular activation functions are the leaky ReLU, softplus and sigmoid func-
tions. A comparison of their graphs is given in fig. 4.

3.2 Network Training

The parameters (or weights) of the transformations are first initialized. While there
are many different methods out there to choose the initialization[16], in this thesis
we stick to the default version of the pytorch package, which simply draws the pa-

rameters of a linear layer from a uniform distribution in the interval
(
−
√

1
nin
,
√

1
nin

)
with nin the number of inputs of the given layer. During training, the network then
changes the weights in order to minimize a so called loss which is computed using
the network output and, in the case of supervised learning, the known true output.
Possible losses are for example the mean squared distance between N true outputs
ẑi and the network outputs zi,

MSE(ẑ, z) =
1

N

∑
i

(ẑi − zi)2 (3)

5

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0
f(x

)
ReLU
Leaky ReLU
Softmax
Sigmoid

Fig. 4: Comparison of different activations.

In our studies we use the Kullback-Leibler Divergence as a loss to measure how far
the distribution of the network output varies from the prior distribution we impose
on the output space (in our context also called latent space). Given probability
distributions p and q, the Kullback-Leibler Divergence is defined as:

DKL(p, q) =

ˆ
X

p(x) log

(
p(x)

q(x)

)
dx (4)

Where the integration is done over the underlying space X, in our case this would
be the final state phase space of the process at hand. Note that this formulation
in general is non-commutative regarding the distributions: DKL(p, q) 6= DKL(q, p).
Using DKL(ptrue, pgen) as loss, minimizing this term becomes equivalent to maximiz-
ing the log-likelihood of the generated data. Using the change-of-variables formula,
we can calculate this directly on the latent distribution:

log(pgen(x)) = log(platent(z(x))) + log(J) (5)

where J denotes the jacobian of the network. For a standard normal distribution
on the latent space, this simply becomes

log(pgen(x)) =
−z(x)2

2
+ log(J) + const. (6)

During training we then pass a batch of input data through the network, calculate
the loss for each output and average over them. Using the torch.autograd package
we can calculate the gradients of the networks weights w.r.t the loss, which basically
tells us which change to the weights might result in a lower loss for the next iteration.
The weight updates are done using an optimizer, which takes the current weights

6

w and the gradients ∇w to calculate the new weights w′. In its most simple form,
the update can be performed as:

w −→ w′ = w − τ∇w (7)

This specific method is called gradient descent and is the foundation of most
other, more involved, optimizers[17]. The parameter τ is called the learning rate
and determines how much the weights change in one iteration. Using this simple
procedure can be pretty slow, as the gradients are taken over all training set points
and also the gradients can change much between different iterations, making the
weight values fluctuate instead of converging towards the local optimum. Those
problems can be solved by computing the gradient only on subsets of the training
set called batches and by introducing a momentum which also takes into account
the previous gradient, which makes the gradients and therefore the training more
stable[18]. In this thesis we use the ADAM[19] optimizer which adds some changes
to the momentum approach to make the training even faster. Additionally, one can
choose different behaviors for the learning rate: While a large learning rate might
at the beginning be very useful to not get stuck in a bad local minimum of the loss
right from the start, later on during training a large learning rate might prevent
the loss from converging closer towards the found minimum, as the update steps
can then be larger than the distance to the minimum, making the weights shoot
over their optimal values. During training this can be seen as a plateau in the loss
value. A simple approach is to reduce the learning rate by a fixed percentage after
a given amount of epochs. Another common approach is to reduce the learning rate
automatically when the loss plateaus. We chose to use the one-cycle learning rate
scheduling during our trainings, which first raises the learning rate and then lets it
fall off again to a much smaller value. We chose to start at a learning rate of 1

25
of

the maximal learning rate, and end with a learning rate only 1
10000

of it. This kind
of learning rate scheduling can speed up the training convergence significantly[20].

3.3 Invertible Neural Networks

For the loss introduced above, it is already clear that our network architecture needs
a tractable, fast to compute log-jacobian. To really use the trained network after-
wards, we also need to be able to compute the inverse of the network equally fast.
The basic architecture of dense layers with ReLU activations does not full-fill those
requirements, as ReLUs are neither invertible nor have a well defined derivative at
0. While other activations like the softmax do not have those problems, they are
still not a good choice for an invertible network as their jacobian is expensive to
calculate. We solve this issue using coupling blocks. The basic idea here is to split
the input of a layer up into two parts. While the first part gets through the block
unaltered, we perform a transformation on the second part. The parameters θ of
this transformation f are chosen based on the first part using a dense network:
For f we can use any differentiable and invertible function like an affine function
f : x→ x′ = Ax+ b with parameters θ = (A, b) from the dense network. It is easy
to see that this block can be used backwards without the need of inverting the dense

7

Fig. 5: Coupling Block

network, just the transformation f needs to be inverted. Additionally, the jacobian
is independent of the dense network and for simple functions like polynomials it
is easy to calculate. As the upper half of the input is unchanged by such a block,
we also need to add many blocks up with some mixing of the input dimension in
between. This can be done by eg. just permuting the output vectors or by using a
rotation matrix. For our networks we always use the rotation matrices. Both trans-
formations are again easily invertible and have a tractable jacobian. To implement
the INN architecture, we rely on the FrEIA framework by the Visual Learning Lab
Heidelberg[21], with some minor changes to improve stability. In this thesis we will
primarily use coupling blocks where the transformation is built of a cubic spline,
which is just a piece wise cubic function with differentiable transitions between the
pieces[22]. How those splines interpolate between given data points can be seen for
some example functions in fig. 6.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

sin(x)

Spline
True
Given Points

0 2 4 6 8 10

2

4

6

8

10

12

exp(x/4)

0 2 4 6 8 10

400

200

0

200

400

600

800
x4 + 10x3 5x2

Fig. 6: Spline interpolation for some example functions, using 7 data points each for the fit.

8

3.4 GANs

A common strategy for training a generator is doing so by letting it compete against
an additional discriminator which tries to find the flaws in the generator outputs.
This setup is commonly called a generative adversarial network (GAN) and is nor-
mally used with a standard dense network as generator. Those GANs have already
been used for LHC event generation[23], image super-resolution[24] or image gen-
eration[25] to only name a few applications. The discriminators goal is then to
differentiate between generator output and true data, mapping true events to 1 and
fake events to 0. In contrast, the generators goal is to make this task as hard as
possible by trying to change the discriminators output for fake events to 1 as well.
Those goals can be encoded in the loss functions of both networks. Based on N
samples xi from the generator output and samples yi from the true data, we can
write the losses as:

LossD = − 1

N

∑
i

log(1−D(xi))−
1

N

∑
i

log(D(yi))

LossG = − 1

N

∑
i

log(D(xi))
(8)

The discriminators output layer is a sigmoid to restrict the output to [0, 1]. As
the combination of sigmoid and the logs in the loss function cancel out some com-
putations, we do not use the sigmoid layer when computing the loss. Instead we
use a numerically more stable and slightly altered version of the loss function to
accommodate the cancellations and which is already implemented in pytorch. In
addition to making the generator learn the right distributions, the discriminators
can also be used to reweight the generated data post-hoc. If the GAN is not in the
Nash-equilibrium after training, where the discriminator can not discriminate any-
more between true and fake events, we can therefore use the left over information
in the discriminator to better the generators precision, however at the cost of get-
ting weighted events. When using an INN as the generator with its own maximum
log-likelihood loss, we have to couple both loss terms together:

Loss = LossINN + λadvLossG (9)

3.5 Regularization

Neural networks in general, and the GANs discussed later on even more so, are prone
to exploding weights and therefore unstable training. Excessively large weights
can be due to overfitting to some minor details in the data distributions. Very
large networks can also tend to ”memorise” the training data instead of really
learning the underlying structures, which can also lead to such large weights and bad
performance on new data. To counter this, there are some common regularization
which limit the growth of the weights:

• Dropout: During training, one can ”shut down” random subsets of the neu-
rons by setting their inputs to zero, which mostly prevents that the network
clusters into sub-parts each memorising certain aspects of the training set.[26]

9

• Weight Decay: Another option is to reduce the network weights by some
chosen percentage at each update step, which limits their growth and also
reduces overfitting.[27]

• Spectralnorm: Interpreting the weights of an e.g. linear transformation
between an n dimensional and an m dimensional layer of neurons, as an n×m
matrix, one can divide this weight matrix by its spectral norm (which is its
largest singular value) as an alternative way of regularizing it. This has been
proven to bound the Lipschitz constant of the network to be smaller than one
which is especially important for the discriminator when training a GAN[28],
but it helps stabilizing the training also for other architectures.

Underfit
Real Distribution
Overfit
Noisy Data

Fig. 7: Example of how a model can overfit or underfit to data points. In this toy example
we sample points from the 4th order polynomial also shown in fig. 6 with some noise
added and fit a simple quadratic (underfit) and a 10th order polynomial (overfit).

Those regularizations come however with the cost of lower expressiveness of the
network, and they therefore need to be used carefully. E.g. a high weight decay can
make training nearly impossible, and deactivating almost all of the neurons during
training is obviously not a good choice either.

4 Preprocessing

Using the (pT , φ, η) vectors as direct network input is a bad idea as all of them
are in different intervals. For example the φ distribution is a uniform distribution
between −π and π which comes with steep edges at the borders. Those steep
edges are generally hard for the network to learn, and we can speed up the training
process by instead feeding tanh−1

(
φ
π

)
into the network, a comparison between the

preprocessed and unpreprocessed pdfs can be seen in 8.

10

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

pd
f(x

)

x =
x = tanh 1(/)

Fig. 8: Comparison between the unpreprocessed and preprocessed pdf of φ.

We also transform the pT to ln (pT −min(pT)) which reduces the long tails of
the pT distributions and makes them more similar to a Gaussian distribution. Sub-
tracting the minimal pT value also has the added benefit, that the network does
not have to learn cutoffs at low pT values which are present in e.g. the Drell-Yan
data. Those cutoffs are due to restrictions in the perturbative expansion used for
calculating the training data, which fail for low momenta.

0 25 50 75 100 125 150 175
pT/GeV

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

pd
f(x

)

0 2 4 6 8 10
log(pT/GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 9: Comparison between the unpreprocessed and preprocessed pdf of pT .

Additionally we normalize the input by subtracting the mean and dividing by the
standard deviation. Like that the input becomes already more similar to the latent
Gaussian which also comes with a mean of zero and standard deviation of one. To
reduce correlations between the inputs we also employ a whitening technique based
on performing a principle component analysis on the set of input vectors. After
this whitening step the covariance matrix of the input data should be close to the
unit matrix. To demonstrate how well this works in a toy example, we sample from
a Gaussian with randomly initialized covariance, perform the whitening and then
plot both covariance matrices next to each other in fig. 10.

11

Fig. 11: Covariances before and after whitening for the preprocessed tt̃ events. Observable
type is indicated on the y axis for both plots, the further splitting into the Jets and
bs is indicated on the x axis.

Fig. 10: Covariances before and after whitening for a Gaussian with randomly initialized
Covariance matrix.

We also plot the covariance for the preprocessed tt̃ data, and again the whitened
covariance becomes a unit matrix as can be seen in fig. 11. In this case the non-
whitened covariance matrix also gives us some insights on the given data: It is
clearly separated into quadratic blocks, where the upper left belongs to the pT
distributions, the middle block to the φ and the lower left to η. Between those
variable groups the covariance tends to vanish or at least becomes way smaller in
comparison. The pT and η blocks again split up in two sub-blocks, corresponding
to the decay products of the t and t̃.

5 Event Generation

Using the previously described INNs, it becomes easy to generate new events by
sampling from the latent space distribution and then feeding those samples back-
wards through the network. We then also have to undo the aforementioned pre-
processing steps, but as those were just basic transformations this is a simple and
computationally fast step. To make the high dimensional generated data accessible
for examination, we marginalize over all dimensions but one or two and then plot
1D histograms for the resulting pT , η, φ, etc. distributions and 2D histograms for
the various correlations between pairs of them. We also look at the latent distribu-

12

tions to see how well they match the imposed Gaussians, again only regarding the
1D and 2D marginals.

5.1 Architecture

While we experimented a lot with different network architectures, learning rates,
optimizers etc, for the presented runs we used the same standardized network setups
with cubic splines, only the node amount and training durations were depending
on the data set used:

Input Observables (pT,l1 , ηl1 , ηl2)
Optimizer ADAM

Number of Blocks 10
Layers per Block 3
Nodes per Layer 128

Activation ReLU
Bounds 10

Parameters to Optimize 330k
Spectralnorm No
Weight Decay 0.0
Learning Rate 2 · 10−4 (OneCycle)

Batchsize 4096
Epochs 50

Tab. 1: Generator setup for the Drell-Yan data set.

Input Observables (pT , η,φ)
Optimizer ADAM

Number of Blocks 24
Layers per Block 3

Activation LeakyReLU
Nodes per Layer 128

Bounds 10
Parameters to Optimize 330k

Spectralnorm No
Weight Decay 0.0
Learning Rate 2 · 10−4 (OneCycle)

Batchsize 4096
Epochs 500

Tab. 2: Generator setup for both tt̃ and ZW .

The discriminator we only used on the Drell-Yan and the ZW data set, and the
parameters were chosen based on the amount of inputs:

13

Inputs 1 2 4 12
Optimiser ADAM ADAM ADAM ADAM

Layers 3 8 8 8
Nodes per Layer 64 128 128 256

Parameters to Optimize 4.5k 100k 100k 400k
Spectralnorm No No No No
Weight Decay 0.0 0.0 0.0 0.0
Learning Rate 1 · 10−4 2 · 10−5 2 · 10−5 2 · 10−5

Tab. 3: Discriminator setups for varying input dimensions.

6 Getting the Mass Right

While our network architecture is already capable of producing events with accurate
pT , φ and η distributions from the start, it has some issues with predicting the
Breit-Wigner peaks in the mass distributions of the intermediate t quarks and W±,
Z bosons. As already mentioned this behavior is expected as those masses only
appear as high dimensional correlations of the network inputs. E.g. in the MW

distributions, all information of the two daughter jets is combined which makes
them a 6D correlation of those quantities. For the top masses this is even worse,
as they only appear hidden behind such a W and an additional b. Most previous
methods which used networks to generate tt̃ or similar events with intermediate
particles also had those mass-related issues[29]. A baseline run of a plain INN
without anything added to improve the masses is shown in fig. 12 and fig. 13 for
the ZW data set.

10−6

10−5

10−4

10−3

10−2

d
σ

d
p
T
,j

1
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0 50 100 150 200

pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
η
l 1

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−6 −4 −2 0 2 4 6

ηl1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

d
σ

d
η
j 2

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−6 −4 −2 0 2 4 6

ηj2

0.1

1.0

10.0

δ[
%

]

0.075

0.100

0.125

0.150

0.175

0.200

0.225

d
σ

d
∆
φ
j 1
j 2

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

−3 −2 −1 0 1 2 3

∆φj1j2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
Z

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

70 80 90 100 110 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100

MW [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 12: Example distributions for a baseline INN run on the ZW data set. Upper panel:
Distributions of the training set, the test set (label ”True”) and the INN output.
Second panel: Binwise ratio between the test set and the generated and training
set respectively. Below: Percentage deviation of generated and training from test
set. While the relative error of most other distributions is already on the level of
the training statistics, the mass distributions are clearly still too broad.

14

0 100 200
pT,j1

0

20

40

60

80

p
T
,j

2

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

n
u

m
b

er
of

ev
en

ts

0 100 200
pT,j1

0

20

40

60

80

p
T
,j

2

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

n
u

m
b

er
of

ev
en

ts

0 100 200
pT,j1

0

20

40

60

80

p
T
,j

2

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

n
u

m
b

er
of

ev
en

ts

−2 0 2

φj1

−3

−2

−1

0

1

2

3

φ
j 2

0.00

0.01

0.02

0.03

0.04
n
u

m
b

er
of

ev
en

ts

−2 0 2

φj1

−3

−2

−1

0

1

2

3

φ
j 2

0.00

0.01

0.02

0.03

0.04

n
u

m
b

er
of

ev
en

ts

−2 0 2

φj1

−3

−2

−1

0

1

2

3

φ
j 2

0.00

0.01

0.02

0.03

0.04

n
u

m
b

er
of

ev
en

ts

−10 0 10

∆ηl1l2

−3

−2

−1

0

1

2

3

∆
φ
l 1
l 2

0.00

0.02

0.04

0.06

0.08

0.10

n
u

m
b

er
of

ev
en

ts

−10 0 10

∆ηl1l2

−3

−2

−1

0

1

2

3

∆
φ
l 1
l 2

0.00

0.02

0.04

0.06

0.08

0.10

n
u

m
b

er
of

ev
en

ts

−10 0 10

∆ηl1l2

−3

−2

−1

0

1

2

3

∆
φ
l 1
l 2

0.00

0.02

0.04

0.06

0.08

0.10

n
u

m
b

er
of

ev
en

ts

Fig. 13: Additional 2D correlations for the ZW baseline. From left to right, the panels are
correlations on the test, training and generated data sets. Only the rings in the
∆φ∆η correlations are in the generated set not as sharp as in the test and train
sets.

6.1 The right parametrization

For our simplest data set, the Drell-Yan, choosing a parametrization which captured
the symmetries of the process was enough to get masses which deviated from the
test set only on the order of statistical fluctuations. We chose a single pT and the
two leptons’ ηs. Having only two final state particles, the momentum conservation
could therefore be implemented symmetrically, by using that both particles have to
have the same pT . Momentum conservation also implied that the particles need to
be emitted back to back, so we could just set φ for one of them to 0 and for the
other one to π. This procedure was however not so easily applicable to the other
data sets, as the choice of picking a single jet, a b Quark or another lepton, and then
using momentum conservation to get its px and py, introduced some asymmetry.
For example fixing the momentum of the positron in the ZW data, the W mass
actually got better, but the Z mass got worse as also the small errors in the jet
momenta got added in the positrons momentum which in turn were reflected in
the Z mass getting broader. Omitting the global uniform phase by turning e.g.

15

a jet to φ = 0 introduced a similar bias, and had no effect on training anyways.
We therefore did not use momentum conservation nor did we subtract the global
phase for the ZW and tt̃ in the final results. As inputs we experimented with using
(px, py, pz), (pT , φ, η) and (pT , φ, pz), and we found that the combination of (pT , φ, η)
with our above described preprocessing worked best. Looking at the distributions
this is pretty much expected as, after preprocessing, all those observables were
almost Gaussian shaped. The Cartesian momenta (px, py, pz) however were not and
we also had no simple preprocessing like for pT or φ to make them ”more” Gaussian.
η has an easy shape from the start without any preprocessing needed. Training on
η was however very unstable on the ZW data set, until we found out that this was
just due to two single events in the training data which had an η of ∞ from the
start due to rounding errors in the calculation of η. Removing those two points
stabilized training and we could stick to (pT , φ, η) also for the ZW . Regarding the
whitening we employed, we saw that it had a positive effect on all the trainings,
which showed mostly in better mass distributions. We expected this to happen, as
the masses only show as high dimensional correlations between the four momenta,
and the whitening absorbed some of these correlations which the network therefore
did not have to explicitly learn.

10−3

10−2

10−1

d
σ

d
p
T
,l

1
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0 10 20 30 40 50

pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

d
σ

d
M
Z

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0 20 40 60 80 100 120

MZ [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
η
l 1

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

−6 −4 −2 0 2 4 6

ηl1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

d
σ

d
η
l 2

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

−6 −4 −2 0 2 4 6

ηl2

0.1

1.0

10.0

δ[
%

]

Fig. 14: Observable Distributions for the Drell-Yan process.

For the ZW data set, we also compared having the two jets ordered after their
pT or not. While we expected the unordered inputs to yield better results, as this
would retain the symmetry between both jets, we found out that in fact the pT
ordering actually helped the network. On a second thought this makes sense, as

16

the ordering made some minor correlations between high pT and the η distributions
easier to learn for the network, which would otherwise be hidden in some higher
dimensional correlations instead of the the 1D distributions of the jet ηs. In fig. 15
we show those differences between the η distributions for the pT ordered jets.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

al
ise

d

High pT

Low pT

Fig. 15: Differences in the jet η distributions for pT ordered jets. In all other plots, the jet
with higher momentum is labeled jet1, the jet with lower pT is labeled jet2.

6.2 MMD-Loss

A common tool to measure the discrepancy between different distributions is the so
called maximum mean discrepancy (MMD). Given N samples xi from a distribution
and M samples yi from another, the squared MMD is approximately calculated via:

MMD2 =
1

N2

∑
i

∑
j

k(xi, xj) +
1

M2

∑
i

∑
j

k(yi, yj)−
2

N ∗M
∑
i

∑
j

k(xi, yj)

(10)
Here k denotes a kernel function we apply to pairs of samples. The kernel function

allows us to set a scale, using the kernel width σk, on which the two distributions
are compared. Common choices of kernel functions are the Gaussian kernel and the
Breit-Wigner kernel. They are given as:

kGaussian(x, y) = e
(x−y2)
σ2
k (11)

kWigner(x, y) =
σ2
k

(x− y)2 + σ2
k

(12)

The scale becomes crucial during training as we need the gradients of the MMD
to train our network: When the generated and true distributions are at first com-
pletely different, we need a large kernel width to resolve those differences. Later on

17

0 5 10 15 20 25 30 35 40
 of y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
M

M
D

2 (
x,

y,
)

k=1
k=15
k=30

Fig. 16: MMD2 for different kernel width σk of a Gaussian kernel and varying width of
the Gaussian input data, where one distribution is fixed to a width of one and the
other width is noted on the y axis. We choose 4096 data points which matches the
batch-sizes used during the network training.

during training when the fake distribution has further converged towards the real
distribution, a small kernel width is needed to resolve the now smaller differences
between the two distributions. To visualize the differences, we created data points
xi sampled from a standard normal Gaussian. The yi data points were sampled
from Gaussians with different widths σy and we used a Gaussian kernel for this
toy model. We then plotted the MMD2 value as a function of the width of the yi
distributions in fig.fig:mmd.

For different kernel width, the results varied greatly: For large σk, the MMD2

had no minimum at σy = 1 where the two distributions are the same. During
training, this means that σk much larger than the width of the true data would
push the fake distribution too narrow. Choosing σk = σx on the other hand has
a steep minimum at σy = σx, but if the fake distribution is way broader than the
true distribution, the MMD2 does not change much when varying σy which means
that when our fake distribution initially is very flat, the MM2 does not generate a
large gradient towards the true distribution. We therefore also added the kernels
with different widths up, shown in fig. 16 with label ”

∑
”. All kernels combined

now have non vanishing gradients for flat fake distributions and still remain the
minimum at σy = σx. While this toy model is a huge simplification in comparison
to the real problem at hand which does not have a fake distribution with fixed
shape and σy as its only parameter, this model can still give us an insight on how
to choose the kernel widths during training:

• Fixed, multiple kernels: Our first approach was to use multiple kernels
added up which was also shown in the toy model plot. We chose the scales

18

such that σ of the first kernel matched the true width of the Breit-Wigner
distributions of the W and t masses which can be calculated from theory. For
the second kernel we chose σ to match the initial width of the fake distribution
which we got from printing it out during a normal training run without MMD
enabled. This ensured good gradients on all scales between the initial width
and the true width. While we plotted three different kernels added up in the
toy model, we found out that two where enough to retain gradients everywhere
and therefore we sticked to using two kernels only.

• Variable scale: Next we tried changing the scale during training, by cal-
culating the current width of the fake distribution and adapted the scale
accordingly. Like that only one kernel was enough to get good gradients for
broad fake distribution as well as for fake distribution at the end of the train-
ing which already matched the true distribution more closely. To estimate
the current width we tried fitting a Breit-Wigner distribution to the data as
well as reading the width off of the data using the distance between the 1

4

and 3
4

quantiles. We also tried an estimation free version, were we chose an
exponential decay for the width with fixed decay rate.

Additionally, we tried schedulers for varying the λMMD which couples the MMD
term to the normal latent loss. Our reasoning here was that at the beginning,
when the masses, and all other observables as well, were still really bad, the MMD
should not contribute or only slightly, while later on when the other observables
where already learned, the MMD term could then be activated to push the network
towards better mass distributions. The schedulers we used are:

• 0 to const: The first simple approach was to just choose an epoch and only
add the MMD after this epoch, giving the network time to learn the other
distributions and then activating the MMD at once.

• tanh: We also tried slowly rising the λMMD from 0 up to a predefined value

over multiple epochs, using λmax · tanh
(

epoch
epochmax

)
to interpolate between van-

ishing λMMD at the beginning and λmax later during training.

• Reference Distribution: As the MMD had a huge impact on the other
observables, making them way worse, we added a reference distribution like
pTjet1 and measured how far this distribution varied from the true data. When
the difference was to big, we lowered the λMMD until the network learned the
reference distribution again well enough and then we raised λMMD back up.
We also tried to couple it instead to the latent loss as a reference value,
meaning high latent loss −→ low λMMD, low latent loss −→ high λMMD.

We experimented with many different combinations of the aforementioned widths
and λ schedulers, different learning rates, different amount of epochs, batch-sizes,
network depths etc, but all of them had in common that they only produced one of
two different results:

19

• Good masses, bad (pT , η, φ) Choosing a large λMMD, the network became
exceedingly good at predicting correct mass distribution, but at the same
time completely destroyed all other observable distributions. Example plots
for this behavior can be seen in fig. 18

10−3

10−2

d
σ

d
p
T
,j

4
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0 25 50 75 100 125 150 175

pT,j4 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.02

0.04

0.06

0.08

0.10

d
σ

d
η
j 4

[p
b

/G
eV

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−6 −4 −2 0 2 4 6

ηj4 [GeV]

0.1

1.0

10.0
δ[

%
]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
W

+
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100

MW+ [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 17: Example distributions for a training with large λMMD = 10−2 on the tt̃ data set.

• Good (pT , η, φ), bad masses: On the other hand, λMMD too low or strong
coupling to a reference distribution which pulled λMMD down during training
had the opposite result: The MMD did not change the result at all, (pT , η, φ)
stayed the same as well as the masses.

10−3

10−2

d
σ

d
p
T
,j

4
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0 25 50 75 100 125 150 175

pT,j4 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.01

0.02

0.03

0.04

0.05

d
σ

d
η
j 4

[N
or

m
al

iz
ed

]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

−6 −4 −2 0 2 4 6

ηj4

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
W

+
[N

or
m

al
iz

ed
]

True

INN

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

60 70 80 90 100

MW+ [GeV]

0.1

1.0

10.0

δ[
%

]

Fig. 18: Example distributions for a training with small λMMD = 10−5 on the tt̃ data set.

Even though we thoroughly searched for hyperparameters which resulted in a bal-
ance of good masses and good (pT , η, φ) at the same time, somehow we did not
find them. Our assumption is that the MMD pushes the loss towards a different
local minimum at which the other observables are very distorted and there is no
intermediate loss region in between at which all observables are good.

6.3 Wasserstein

Another approach for getting the intermediate masses right, akin to using an MMD
term, is to instead use the Wasserstein metric as a measure between true and fake
distributions and then feeding this number back into the network. It has the added
benefit of being interpretable as the minimal distance which events have to be
shifted to make the two distributions equal. In comparison to shifting dirt from
one pile to another in the most effective way, it is also called the earth mover
distance (EMD). While the EMD becomes computationally unfeasible in higher
dimensions, in 1D it actually only involves sorting the samples and is therefore of

20

order O(N logN) in the batch-size N , whereas the MMD is O(N2) as we there had
to calculate all N2 differences between true and fake events. The EMD of order p
in 1D is approximately given for sorted samples as:

EMDp(X, Y) =

(
1

N

∑
i

(xi − yi)p
) 1

p

(13)

0 10 20 30 40
 of y

0

200

400

600

800

1000

1200

1400

1600 Wasserstein
(y x)2

MMD

0 10 20 30 40
 of y

0

1

2

3

4

5

6

7
log(1+wasser)
mmd

Fig. 19: EMD and log(1 + EMD) for varying width of the Gaussian data, where one distri-
bution is fixed to a width of one and the other width is noted on the y axis. For
reference, also the MMD2 is plotted using kernels with width 1 and 30 added up.

Using the same plots as used to compare the gradients of different MMD kernel
sizes, we can also see that the EMD produces larger gradients on all scales. In
fact it even produces too large gradients which make the training unstable and we
therefore also tryed log(1 + EMD2) as loss term to regularize the steep EMD at
the beginning of training, where the two distributions have a large separation. The
EMD of the Gaussian toy distributions can actually be calculated in closed form to
be (σx−σy)2 +(µx−µy)2. We plot this on top of the EMD we get from the samples
and the curves match well on the scale of statistic fluctuations of the samples.

Again this method only produces the two results already mentioned in the dis-
cussion of the MMD. Since the MMD and EMD approaches are fairly similar, this
behavior was expected. Nevertheless we checked this approach to rule out some
implementation errors we could have had in the MMD.

6.4 Discriminator

We next introduce an additional discriminator like in a GAN setup: At first we only
train the generator as before, without any discriminator or MMD input and only
afterwards train a discriminator on the generator output while keeping the gener-
ators weights fixed. Training the discriminator solely on the intermediate masses

21

and then reweighting the events as described yields already better distributions of
those masses, as can be seen in fig. 20.

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
Z

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)
Fig. 20: Reweighted mass distributions for the baseline run in fig. 12, discriminator trained

on MZ and MW .

An important step to enhance the reweighting was to introduce some additional
preprocessing of the discriminators input: Normalizing the MW and MZ distribu-
tions boosted our reweighting precision a lot, shown in fig. 21, 22

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
Z

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 21: Example plot for the reweighted MZ distribution, training was exactly the same
as in fig. 20, but with normalized masses as discriminator input. The reweighted
curves are hardly visible as they overlap with the True and Train distributions.

22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]
True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 22: MW for the same run as in fig. 21

Using this reweighting, we can get the mass distributions for the ZW up to
an error of around only 1%. It is notable that training the discriminator only
on the masses also resulted in a precision increase of the other observables, most
prominently in the pT tails, shown in fig. 23

10−4

10−3

10−2

d
σ

d
p
T
,l

1
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

10−4

10−3

10−2

d
σ

d
p
T
,l

2
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l2 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

10−3

10−2

d
σ

d
p
T
,j

1
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,j1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 23: Reweighted pT tails of the baseline run, with the discriminator only trained on the
W and Z masses.

Afterwards the weighted data we produce can then be unweighted via an ad-
ditional neural network[30] or by standard unweighting techniques like rejection
sampling. As our generated data is already close to the real data, the weights
only span a range of around 0.3 to 1.7 which would result in a rather efficient
unweighting. The main goal here is however to directly produce unweighted data
and we therefore feed the discriminator output back into the the generator using
the GAN loss (8), with a coupling λadv to control the balance between the max-
imum likelihood and the adversarial loss terms. Training the discriminator solely
on the masses again results in the scheme known from the MMD, where either the
adversarial loss term does not contribute at all or it helps producing precise mass
peaks, but on the cost of worse pT , φ etc. depending on the value of λadv. In the
region between good masses and good other observables, the training simply be-
comes unstable with some runs resulting in good masses and bad other observables,

23

10−4

10−3

10−2

d
σ

d
p
T
,l

1
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

d
σ

d
φ
l 1

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−3 −2 −1 0 1 2 3

φl1

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 24: Example distributions for a training with large λadv = 1 on the ZW data set,
discriminator trained on both masses.

10−4

10−3

10−2

d
σ

d
p
T
,l

1
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

d
σ

d
φ
l 1

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−3 −2 −1 0 1 2 3

φl1

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 25: Example distributions for a training with λadv = 1 on the ZW data set, discrimina-
tor trained directly on the discriminators output without undoing the preprocessing.

while other runs with the exact same parameters result in bad masses and also
bad other observables. However with the discriminator we also have the possibility
to train it on other observables in addition to the masses, to make it learn the
underlying correlations which produce the mass peaks as well, therefore also pro-
ducing correct other observables. Additionally we tried feeding the generated, still
preprocessed data directly into the discriminator instead of first undoing the pre-
processing, calculating the observables we wanted to use like the masses, and then
using an additional preprocessing before giving it to the discriminator. While both
methods, adding some other observables to the discriminators input and inputting
the raw generated data, reduce the artifacts in the pT , η, φ distributions, they still
overall reduce the precision of the network compared to the baseline run in fig. 12,
especially in the mass distributions as shown in fig. 25. While this might just be a
problem with some hyperparameters we have not fine tuned enough, it could also
hint for a general incompatibility of the latent and adversarial loss terms, like we
also suspect for the MMD and EMD.

As all previous attempts of MMD, Wasserstein and adversarial loss terms were
all based on introducing the second loss term on the physical input side, rather than
the latent space on which the log-likelihood loss was defined, we thought that the
previous problems might all be tied to having different losses on both sides of the
network. We therefore shifted our focus towards using the discriminators feedback
instead on the latent space. First we just tried to train the discriminator on the
latent space itself, to make it learn differences between the generated latent space
and the imposed Gaussian, and then use the discriminator in the normal adversarial
loss, but now on the same space as the log-likelihood loss. This approach did not
work out, most probably because the differences on the latent space are way smaller

24

and harder to detect than the obvious differences between true and generated mass
distributions on phase space. Next we tried to train the discriminator on the phase
space again, but now we used its feedback as a weight on the latent space during
training: By simply weighting each events latent representation by 1 over its weight
w in the log-likelihood loss term, we made the generator focus more on the areas
where it was still performing badly:

Lmod(x)) =
z(x)2

2w
− log(J)

w
(14)

The generators goal of minimizing this modified loss function would then cause
the discriminator weights to converge to one, which is also the goal when training
it as a GAN, but without the need of introducing a second loss term at all. This
approach yielded good results out of the box. Training the discriminator solely on
the masses and using this feedback in the modified loss term resulted in sharper
mass peaks compared to the baseline model in fig. 12, without distorting the other
observables.

0.00

0.05

0.10

0.15

0.20

0.25

d
σ

d
M
Z

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

70 80 90 100 110 120

MZ [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

d
M
W

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d

el

0.1

1.0

10.0

δ[
%

]

60 70 80 90 100

MW [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

10−4

10−3

10−2

d
σ

d
p
T
,l

1
[N

or
m

al
iz

ed
]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

0 25 50 75 100 125 150 175

pT,l1 [GeV]

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

0.20

d
σ

d
η
j 1

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−6 −4 −2 0 2 4 6

ηj1

0.00
0.25
0.50
0.75
1.00

D
(x

)

0.00

0.05

0.10

0.15

d
σ

d
φ
l 1

[N
or

m
al

iz
ed

]

True

INN

INN reweighted

Train

0.95
1.00
1.05

T
ru

e
M

o
d
el

0.1

1.0

10.0

δ[
%

]

−3 −2 −1 0 1 2 3

φl1

0.00
0.25
0.50
0.75
1.00

D
(x

)

Fig. 26: Example distributions for a training with latent space reweighting.

While there are still some problems in the jet ηs and the φ distributions also
have wrong boarders, those problems occurred in the baseline runs without the
discriminator as well. We can most probably fix the η distributions in the future
by training the discriminator additionally on the ηs. For these runs we can also see
that the reweighting still adds precision, which means that there is still information
left in the discriminator. Additionally looking at the loss curve for the training in
fig. 27, we see that the training had not yet converged which means that there
really is the possibility of further improvements with higher epoch counts, different
learning rate etc. We will do the necessary testing in the near future and the results
will be published in our upcoming paper.

25

0 100 200 300 400 500 600 700 800

Epochs

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

L
os

s

Total Loss

Total Loss

0 100 200 300 400 500 600 700 800

Epochs

10−9

10−7

10−5

10−3

10−1

L
os

s
(c

li
p

p
ed

to
1e

-1
0)

Logarithmic Total Loss

Total LossFig. 27: Loss curve for the training with latent reweighting. Here 800 epochs correspond to
training the generator for 400 epochs, as half of the training steps are used on the
discriminator. While only declining very slowly, it is still visible that the loss has
not yet plateaued and further improvements with more training time seem realistic.

7 Conclusion/Outlook

This thesis was basically all about studying whether an INN for event generation can
profit from an additional loss function on phase space or not. While we have used
various different losses like MMD, Wasserstein and adversarial, our final conclusion
has to be that at least for our application, it is very hard to combine the different
losses on different sides of the network in a constructive way if not impossible. We
have not found a theoretical obstruction why this would be the case though, so it
is completely possible that we just did not use the right hyper-parameters. For us
it is at least plausible that the back-propagation of different losses from both sides
of the network is the cause of this unstable behavior.

However using the discriminators information gathered on phase space in the la-
tent loss function, instead of introducing an additional loss on phase space, worked
really well. Combining our optimal parametrizations using (pT , η, φ), our prepro-
cessing and the discriminator we were finally able to generate:

• Weighted ZW events with an error of less than 1% in the bulk and errors
comparable to the statistical fluctuations in the tails. It is also notable that
the weights lay in a close range around 1, compared to Monte-Carlo sampling
where the weights can span multiple orders of magnitude. This means that
unweighting of our events could be done very efficiently compared to the
unweighting needed in Monte-Carlo based approaches.

• Non-weighted ZW events with the discriminator solely used to reweight the
latent loss during training. While we are not yet on the same level of precision
for those events compared to the reweighted events, we are positive that we
can achieve the same precision with some more tuning in the near future.

• Non-weighted Drell-Yan events with errors comparable to the statistical fluc-
tuation of the training data in all phase space regions.

In the future we will try to employ our event generation methods from the ZW also
again on the tt̃ and an additional Z + Jets data set, to see how well our gained
insights on event generation translate to more complicated data sets.

26

8 References

1Lhc schedule, https://home.cern/news/news/accelerators/new-schedule-
lhc-and-its-successor.

2T. Sjöstrand, “The pythia event generator: past, present and future”, Computer
Physics Communications 246, 106910 (2020).

3J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S.
Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-
level and next-to-leading order differential cross sections, and their matching to
parton shower simulations”, Journal of High Energy Physics 2014, 10.1007/

jhep07(2014)079 (2014).

4M. Felcini, “Searches for dark matter particles at the lhc”, (2018).

5A. Canepa, “Searches for supersymmetry at the large hadron collider”, Reviews
in Physics 4, 100033 (2019).

6S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo,
T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, and et al., “Observation of a new
boson at a mass of 125 gev with the cms experiment at the lhc”, Physics Letters
B 716, 30–61 (2012).

7“Lhcb detector performance”, International Journal of Modern Physics A 30,
1530022 (2015).

8J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemâıtre, A. Mertens,
and M. Selvaggi, “Delphes 3: a modular framework for fast simulation of a generic
collider experiment”, Journal of High Energy Physics 2014, 10.1007/jhep02(2014)
057 (2014).

9M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, and R. Winterhalder, “How to
gan away detector effects”, SciPost Phys. 8, 070 (2020).

10N. Kidonakis, “Top quark production”, (2013).

11S. D. Ellis and D. E. Soper, “Successive combination jet algorithm for hadron
collisions”, Physical Review D 48, 3160–3166 (1993).

12Y. Dokshitzer, G. Leder, S. Moretti, and B. Webber, “Better jet clustering algo-
rithms”, Journal of High Energy Physics 1997, 001–001 (1997).

13M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet clustering algorithm”,
Journal of High Energy Physics 2008, 063–063 (2008).

14X. Ju and B. Nachman, “Supervised jet clustering with graph neural networks
for lorentz boosted bosons”, Physical Review D 102, 10.1103/physrevd.102.
075014 (2020).

15K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators”, Neural Networks 2, 359–366 (1989).

16M. Skorski, A. Temperoni, and M. Theobald, “Revisiting initialization of neural
networks”, (2020).

17S. Ruder, “An overview of gradient descent optimization algorithms”, (2017).

27

https://home.cern/news/news/accelerators/new-schedule-lhc-and-its-successor
https://home.cern/news/news/accelerators/new-schedule-lhc-and-its-successor
https://doi.org/10.1016/j.cpc.2019.106910
https://doi.org/10.1016/j.cpc.2019.106910
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/https://doi.org/10.1016/j.revip.2019.100033
https://doi.org/https://doi.org/10.1016/j.revip.2019.100033
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1142/s0217751x15300227
https://doi.org/10.1142/s0217751x15300227
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.21468/SciPostPhys.8.4.070
https://doi.org/10.1103/physrevd.48.3160
https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1103/physrevd.102.075014
https://doi.org/10.1103/physrevd.102.075014
https://doi.org/10.1103/physrevd.102.075014
https://doi.org/10.1103/physrevd.102.075014
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8

18N. Qian, “On the momentum term in gradient descent learning algorithms”, Neu-
ral Networks 12, 145–151 (1999).

19D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”, (2017).

20L. N. Smith and N. Topin, “Super-convergence: very fast training of neural net-
works using large learning rates”, (2018).

21L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L.
Maier-Hein, C. Rother, and U. Köthe, “Analyzing inverse problems with invertible
neural networks”, (2019).

22C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Cubic-spline flows”,
(2019).

23R. P. Winterhalder, “How to GAN : Novel simulation methods for the LHC”,
PhD thesis (U. Heidelberg (main), 2020).

24P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F. Keilbach, T. Plehn,
G. Kasieczka, and D. Whiteson, “How to GAN Higher Jet Resolution”, (2020).

25I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks”, (2014).

26G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors”,
(2012).

27I. Loshchilov and F. Hutter, Decoupled weight decay regularization, 2019.

28T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks”, (2018).

29A. Butter, T. Plehn, and R. Winterhalder, “How to GAN LHC Events”, SciPost
Phys. 7, 075 (2019).

30M. Backes, A. Butter, T. Plehn, and R. Winterhalder, “How to GAN Event Un-
weighting”, SciPost Phys. 10, 089 (2021).

28

https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.10.4.089

List of Figures

1 Feynman diagram of the tt̃ process. 2
2 Feynman diagram of the Drell-Yan process. 3
3 Feynman diagram of the ZW process. 4
4 Comparison of different activations. 6
5 Coupling Block . 8
6 Spline Interpolation . 8
7 Overfitting . 10
8 Comparison between the unpreprocessed and preprocessed pdf of φ. 11
9 Comparison between the unpreprocessed and preprocessed pdf of pT . 11
11 Covariances tt̃ . 12
10 Covariances toymodel . 12
12 Baseline ZW . 14
13 2D Baseline ZW . 15
14 Observable Distributions for the Drell-Yan process. 16
15 η for pT ordered jets . 17
16 MMD toy . 18
17 MMD large . 20
18 MMD small . 20
19 EMD toy . 21
20 Non-normalized Reweighting . 22
21 Normalized Reweighted MZ . 22
22 Normalized Reweighted MW . 23
23 Reweighted pT . 23
24 Large adversarial . 24
25 Input adversarial . 24
26 Latent Loss Reweighting . 25
27 Loss Curve Latent Reweighting . 26

29

9 Acknowledgments

I would like to thank our whole group for the great atmosphere and nice lunch talks.
Namely I would like to thank Tilman and Anja, who were great supervisors and
helped us stay on track when we got lost in trying out way to much different stuff
at the same time. Also to Theo and Armand who wrote the codebase and always
had an open ear for our questions. Last but not least I would like to thank Ramon
for listening to my ”innovative” ideas which mostly turned out to be rubbish and
to Sander, with whom working was always a delight, especially when discussing
Gumbel related distributions.

30

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 8. August 2021,

31

	Introduction
	LHC Physics
	t Production
	Drell-Yan Process
	ZW Production
	Parametrization

	Machine Learning
	Neural Networks
	Network Training
	Invertible Neural Networks
	GANs
	Regularization

	Preprocessing
	Event Generation
	Architecture

	Getting the Mass Right
	The right parametrization
	MMD-Loss
	Wasserstein
	Discriminator

	Conclusion/Outlook
	References
	Acknowledgments

