
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Noah Kriesch

born in Wernigerode (Germany)

2023

Challenging VEGAS with DIRT

This Bachelor Thesis has been carried out by Noah Kriesch at the
Institute for Theoretical Physics in Heidelberg

under the supervision of
Prof. Dr. Tilman Plehn

Abstract

Numerical methods have undergone a significant surge in popularity since the mid-20th
century. For particle physics simulations, numerics has become indispensable. Monte Carlo
integration, for instance, is employed to solve scattering cross sections. A frequently used

integration algorithm is VEGAS, which, despite its applicability, faces some inherent issues.
This inspires the search for more efficient sample generation techniques. A recently developed
concept, known as Deep Squared Inverse Rosenblatt Transport (DIRT), aims to approximate
target functions through functional tensor trains. This thesis examines the feasibility of DIRT

as a sampling algorithm for numerical integration in particle physics. As test functions,
four-dimensional Gaussian mixtures are employed. The results indicate that DIRT and VEGAS
display similar levels of performance. It is worth noting that in some cases a 100 times smaller

sample size is sufficient to allow DIRT to achieve comparable accuracy to VEGAS.

Zusammenfassung

Numerische Methoden haben seit Mitte des 20. Jahrhunderts einen enormen Aufschwung
erlebt. In der Teilchenphysik sind sie unverzichtbar geworden, um Simulationen durchzuführen.
Zum Beispiel wird Monte-Carlo-Integration zur Berechnung von Streuquerschnitten eingesetzt.
Ein dabei häufig verwendeter Algorithmus ist VEGAS, der trotz seiner guten Anwendbarkeit

mit einigen Problemen zu kämpfen hat. Dies gibt Anlass zur Suche nach effizienteren Verfahren
zur Erzeugung von Stichproben. Eine kürzlich entwickelte Idee ist der so genannte Deep
Squared Inverse Rosenblatt Transport (DIRT), welcher Funktionen durch Tensor Trains

approximiert. In dieser Arbeit wird untersucht, ob DIRT für die numerische Integration in der
Teilchenphysik eingesetzt werden kann. Als Testfunktionen dienen vierdimensionale Gaussian
Mixtures. Es wird festgestellt, dass DIRT und VEGAS ähnliche Leistungen zeigen. Allerdings
genügt DIRT in manchen Fällen eine bis zu 100-mal geringere Stichprobengröße, um gleiche

Genauigkeiten wie VEGAS zu erzielen.

Acknowledgements

Writing a thesis proved to be quite an adventure, marked by surprising twists and turns over
the course of four months. I am especially grateful to Prof. Tilman Plehn for his invaluable
guidance throughout this project. Special thanks go also to Dr. Karina Koval for helping me

understand the mathematics behind DIRT and to Prof. Robert Scheichl for inspiring Tilman to
supervise a Bachelor thesis on this interesting topic. I would also like to thank Prof. Björn

Malte Schäfer willing to provide time and effort as the second examiner of this thesis.

Dear Jonas and Theo, thank you for providing such interesting physical use cases for DIRT and
your assistance during implementation. It is a pity that these examples did not allow for more

investigation.

To Clara, Marius and Mathis, thank you for your remarkable proofreading efforts, ensuring the
clarity and coherence of this work.

I am grateful for the collective support of Tilman’s work group. Thank you all for the inspiring
lunches and interesting talks!

Contents

1 Introduction 7

2 Theoretical tools 9
2.1 Monte Carlo Methods . 9

2.1.1 Importance Sampling . 10
2.1.2 Stratified Sampling . 11

2.2 VEGAS . 11
2.2.1 Classic VEGAS . 11
2.2.2 The Problem with VEGAS . 12
2.2.3 VEGAS+ . 13

2.3 (D)IRT . 14
2.3.1 Rosenblatt Transport and Functional Tensor Trains 14
2.3.2 SIRT . 16
2.3.3 DIRT . 17

2.4 Physical motivation . 17

3 Implementing DIRT 21
3.1 DIRT in MATLAB, VEGAS in Python . 21
3.2 Attempts to DIRTipy . 22
3.3 Implementation of the physical case study . 22

4 Discussion of results 23
4.1 Gaussian Mixtures in four dimensions . 23

4.1.1 Diagonal Gaussian mixture with σ2=10-3 . 23
4.1.2 Diagonal GM with σ2=10-2, 10-4 . 29

4.2 Non-Diagonal Gaussian Mixture . 35
4.3 Case study: Using DIRT to constrain new Physics 36

5 Summary and Outlook 39

6 Bibliography 41

5 / 45

Chapter 0. Contents

7 Appendix 43
7.1 MATLAB Code: MC integration with DIRT . 43

6 / 45

1Introduction
Determining cross-sections of particle interactions in Quantum Field Theory is one of plenty
cases where numerical integration can be applied. Improving the computational efficiency can
provide more accurate estimates. With this objective it is natural to look for new integration
schemes which might enhance the status quo. A frequently applied algorithm is VEGAS1, ori-
ginally proposed in 1978 and enhanced in 2021 by Gerard Peter Lepage [9, 10]. It iteratively
exploits both importance sampling and since its major update adaptive stratified sampling to
perform multidimensional integration. With the 2021 update VEGAS faced large improvements
for complex integrand structures, such as non-axis aligned peaks [10]. However, the enhancement
was not able to eliminate the causes of these previous problems, as some of them are design-
related. This inspires to ask whether mathematical findings of the past decades could introduce
even more efficient schemes for particular use cases. In my thesis I take a closer look at one
recent idea, namely Deep Squared Inverse Rosenblatt Transport (DIRT). This algorithm was
proposed by Tiangang Cui and Sergey Dolgov in 2021 and uses tensor train approximations to
iteratively approach the integrand [3]. On the following pages it is investigated whether playing
with DIRT can be an actual improvement over VEGAS. For this I compare VEGAS and DIRT
on the basis of four-dimensional Gaussian mixtures. Later on, DIRT is challenged by an example
from particle physics.

1When I name VEGAS in this thesis, I both refer to the classic VEGAS and VEGAS+.

7 / 45

2Theoretical tools
In this chapter I briefly discuss the conceptual frameworks of both the VEGAS algorithm and the
Deep Squared Inverse Rosenblatt Transport (DIRT). While the principal ideas of both algorithms
are connected, a closer look reveals that DIRT is based on a much more complex and sophisticated
approach than VEGAS. Whether this is of advantage is investigated in the subsequent chapters.
I will also provide a rough introduction to the physical example that will be used for practical
comparison between VEGAS and DIRT.

2.1 Monte Carlo Methods

For a given non-negative function f ∶ Ω→ R, the expectation value with respect to an underlying
probability density function (p.d.f.) π(x) on the domain D ⊆ Ω is defined as

Eπ[f] = ∫
D

dxπ(x)f(x) . (2.1)

If f itself is a p.d.f. and one wants to determine the probability under f of a random variableX to
be in D, the prior π can be constructed such that it is uniform on D and π(x) = 0 otherwise.

For larger dimensions integrating over an arbitrary p.d.f. becomes more difficult and analytical
solution typically cease to exist. In such cases numerical integration using Monte Carlo methods
becomes the mathematical tool of choice. The probably best-known Monte Carlo integration
method is the »hit-or-miss« Monte Carlo scheme, where N i.i.d. random points Xi = (x⃗i, yi) are
drawn in the volume V ≡ D × [min f(D), max f(D)] ⊆ Ω × R. Then, an integral value estimate
can be obtained by determining the fraction of points located underneath the curve created by
f and the volume of V,

ÎMC = #{Xi = (x⃗i, yi) ∣ yi ≤ f(x⃗i)}
N

⋅ vol(V) . (2.2)

The second moment

Î
(2)
MC = #{Xi = (x⃗i, yi) ∣ yi ≤ f(x⃗i)2}

N
⋅ vol(V) (2.3)

9 / 45

Chapter 2. Theoretical tools

then allows to compute the variance of the estimate,

var(ÎMC) =
Î
(2)
MC − Î2

MC

N − 1
. (2.4)

Another slightly more sophisticated approach is to sample N uniformly distributed random
points x⃗ ∈ D and then compute the mean of images under f ,

Î(m) = vol(D)
N

N

∑
i=1

f(x⃗i)m , with variance (2.5)

var(Î) =
Î(2) − (Î(1))2

N − 1
. (2.6)

Looking at the variances it becomes evident that the accuracy of both approaches converges
with 1/√N as N → ∞. The computational cost however scales with N . Hence, it is desirable
to improve the sampling efficiency before increasing the (absolute) sample size. The most used
approach to this is increasing the effective sample size. In the following I will present two Monte
Carlo methods which can be applied in such cases and are of relevance to this thesis.

2.1.1 Importance Sampling

In Importance Sampling, a new reference density g(x) (non-negative and non-zero on D) is
introduced so that we can write

I = ∫
D

dxf(x) = ∫
D

dxg(x)(f(x)
g(x)) . (2.7)

The samples Xi are now drawn according to g. This requires the introduction of a weight
ω(x) ≡ 1

g(x) in the mean of images, yielding a modified formula for the integral estimate

Î
(m)
IS = vol(D)

N

N

∑
i=1

ω(xi)f(x⃗i)m , with (2.8)

var(ÎIS) =
Î
(2)
IS − (Î(1)IS)

2

N − 1
. (2.9)

Unsurprisingly the variance is reduced if g is similar to f , i.e. if the Hellinger error

DH[f, g] = 1√
2
∫
D

dx (
√
f(x) −

√
g(x))

1/2

(2.10)

is reduced. The efficiency of variance reduction can be measured by calculating the Effective
Sample Size ESS, defined as

ESS[ω;N] ≡ N

1 + var(ω(x)) . (2.11)

10 / 45

Chapter 2. Theoretical tools

2.1.2 Stratified Sampling

Assuming that only a small fraction of the integrated domain is of interest for a good estimate
of the integral (which typically holds for large dimensions), it makes sense to concentrate the
drawn samples on these regions of interest. Stratified Sampling can be applied to achieve this.
Initially one creates a disjoint partition of D,D = ⋃Kj=1Dj . Then, Nj = ⌊NK ⌋ samples are drawn
for each partition Dj and the estimate and variance of the local integral

Ij = ∫
Dj

dxf(x) (2.12)

is determined. In the following iterations the number of samples Nj is varied so that the sum

of relative variances ∑Kj=1
Îj
σÎj

, and thus the overall variance var(Î) is minimized. The optimum

stratification has been achieved, Îj
σÎj

= Îi
σÎi

∀i, j = 1, . . . ,K.

2.2 VEGAS

VEGAS was first invented by G. P. Lepage in 1978. He aimed to provide a general sampling
algorithm for efficient integration in initially four or more dimensions [9]. The original, »classic«
VEGAS applies adaptive importance sampling to better approximate functions in numerical
integration. This approach lead to some issues by design - it faced huge problems to resolve
structures which were non-trivial in terms of axis-alignment, e.g. a Gaussian mixture of peaks
placed along the diagonal of a hypercube [10]. To understand where this problem originated,
I will first discuss the classic VEGAS algorithm and take a brief look onto the causes. Based
on this introduction I then continue to describe the enhanced »VEGAS+« algorithm, which has
been introduced by Lepage in 2021 [10].

2.2.1 Classic VEGAS

The underlying idea of VEGAS is to design an integration algorithm using adaptive importance
sampling to approximate the target distribution. In the following I describe this approach for
the one-dimensional case. The example is identical to the one given in [9] and can be applied for
multiple dimensions in an analogous manner.

Suppose one aims to determine the estimate Î of an integral

I[f] = ∫
b

a
dxf(x) ,

with f being a non-negative function on [a, b] ⊂ R. A useful approximate density in this case is a
step function on [a, b]. A set of equally spaced grid points {xi ∣ i = 1, ..,M} ∈ [a, b] is constructed,
demanding x1 = a ∧ xM = b. To simplify the notation, the increments ∆xi ≡ xi − xi−1 are

11 / 45

Chapter 2. Theoretical tools

introduced along with

p(s)(x) = 1

M
⋅ 1

∑M−1
i=1 ∆x

(s)
i Θ(x − x(s)i)Θ(−x + x(s)i+1)

(2.13)

as the approximate importance density (step) function for step s. Then, an iterative procedure
is followed.

In each step s the grid is adjusted as follows. N independent random samples yj ∈ [a, b], yj ∼
p(s−1)(x) are drawn, leaving ∼ ⌊N/M⌋ samples per increment. Every increment is again divided
into mi + 1 sub-increments, where

mi ≡ const. ⋅ (f̄i∆xi

∑k f̄k∆xk
) , (2.14)

and f̄i ≡ ∑yj∈(xi−1,xi) ∣f(yj)∣. Then, new increments ∆xi are constructed so that all increments
contain an equal number of sub-increments. This way, after several iterations ∆xi will increase
in size where f(x) is small and shrink where f(x) exhibits larger values. Hence, p(s) will come
to better approximate f . To complete each step, for the N drawn random samples yj ∼ p(s)(x),
the new integral estimate is computed as

Ī(m)s = (b − a)
N

N

∑
j=1

f(yj)m

p(s)(yj)
, with (2.15)

σ2
s ≃

Ī
(2)
s − (Ī(1)s)

2

N − 1
. (2.16)

For an increasing sample size N the estimates Īs follow a Gaussian distribution and can then
be used to give a cumulative weighted estimate Î [10],

Î =
∑s Īsσ2

s

∑r 1
σ2
r

with (2.17)

σÎ = Î (∑
s

1

σ2
s

)
−1/2

(2.18)

Without loss of generality this concept can be applied to the multidimensional case in a similar
manner [9].

2.2.2 The Problem with VEGAS

The grid constructed by VEGAS becomes impractical for medium-complex structures in multiple
dimensions, e.g. a Gaussian mixture which is not aligned along one of the axes. A very simple

12 / 45

Chapter 2. Theoretical tools

but illustrative example can be given by the following toy function in (only!) 2 dimensions:

g(x⃗; µ⃗i, σ
2) = 1√

8π detC
∑
i=1,2

exp [(x⃗ − µ⃗i)⊺C−1 (x⃗ − µ⃗i)] , where

µ⃗i =
⎛
⎝
i/3
i/3

⎞
⎠

, C = diag (σ2, σ2) .
(2.19)

When integrating over the domain [0,1]2, VEGAS draws large numbers of samples in the regions
around (1/3, 1/3)⊺ and (2/3, 2/3)⊺, but will make the same effort for the phantom peaks at (1/3, 2/3)⊺

and (2/3, 1/3)⊺ (c.f. figure 2.1). For d dimensions the computational complexity grows with 2d

for only two regions of interest, leaving us with 2d − 2 surplus regions of high sampling density.
In other words this approach would yield an effective sample size of only N/2d−1. This becomes
clearly not sensible for a medium or large number of dimensions.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

classic VEGAS

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

VEGAS+

0

20

40

60

80

100

#
sa

m
pl

es
pe

r
bi

n

Sampling densities for classic and enhanced VEGAS, N = 103

Figure 2.1: Sampling densities from classic VEGAS and VEGAS+ for the Gaussian mixture
model from eqn. (2.19) with a variance of σ2 = 10−3. One can see the phantom peaks
in the left plot and their remnants to the right. Both algorithms give similar results,
ÎV EGAS = 0.9940(27) and ÎV EGAS+ = 1.000 05(29).

2.2.3 VEGAS+

To circumvent this weakness, Lepage proposed in 2021 to enhance VEGAS with an adaptive
stratified sampling algorithm [10]. To achieve this, each axis is partitioned into a number of Nst

stratifications, yieldingNd
st hypercubes in the integration domain. Prior to the grid adjusting step

the number of required samples (as a fraction of the total number of N samples) is determined for
each hypercube. This allows to exclude regions of low interest which would have been included
before by pure adaptive importance sampling.

However, for this to have any effect on the results a minimum of Nst = 2 stratifications per axis is

required. This yields a constraint for the minimum number of samples, namely N
!
≥ 4Nd

st ≥ 2d+2,
where the factor of 4 is more or less arbitrary but needed to ensure that the number of samples

13 / 45

Chapter 2. Theoretical tools

per hypercube can be varied [10]. For small-dimensional use-cases, VEGAS+ thereby offers a
practicable solution. However, as Lepage also points out himself, for medium-high and large
dimensions the considered approach runs into a dead end. He provides the example that for
25 dimensions the sample size needs to be larger than 1.3 × 108 to allow adaptive stratified
sampling.

Lepage implements mixed stratified sampling as a viable solution to this issue, i.e. the option
to vary the number of stratifications for different axes. While this approach can suffer from
phantom peaks, it seems to perform nearly as good as the unmixed stratified sampling. Overall,
it appears that VEGAS+ outperforms classic VEGAS by results which are 2 - 18 times more
accurate [10].

2.3 (D)IRT

A different approach to a generalised sampling algorithm is taken by Cui et al. [3, 5]. They pro-
pose a combination of generalised inverse Rosenblatt transports and tensor-train approximations
to construct the importance density iteratively. The final product of their considerations is called
Deep Squared Inverse Rosenblatt Transport (DIRT) and in contrast to VEGA allows natively to
adapt easily to, e.g., non-axis-aligned structures. To understand this algorithm, I first will briefly
discuss the original Rosenblatt transport, its inverse and tensor-trains based construction of such
transport maps. Then, I will cover how the Squared Inverse Rosenblatt Transport (SIRT) and
DIRT work.

2.3.1 Rosenblatt Transport and Functional Tensor Trains

The Rosenblatt transport constructs a diffeomorphism T that allows to map an arbitrary but
absolutely continuous d-variate distribution into the uniform distribution on the d-dimensional
unit hypercube U = [0,1]d [15]. In this section, I follow the descriptions by Rosenblatt [15] and
Cui et al. [3] to explain the mathematical background.

Let X = (X1, . . . ,Xd) ∈ X ≡ X1 × ⋅ ⋅ ⋅ ×Xd ⊆ Rd be a random vector with the p.d.f. fX(x1, . . . , xd)
and the respective cumulative distribution function F (x1, . . . xd) = ∫ x1,...,xd−∞

dx′1 . . .dx
′

d fX(x′1, . . . , x′d).
Then, the Rosenblatt transport T ∶ X → U , x ↦ z = Tx is given by a series of marginal cumu-
lative distribution functions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = P(X1 ≤ x1) = FX1(x1)
z2 = P(X2 ≤ x2∣X1 = x1) = FX2∣X1

(x2∣x1)
⋮

zd = P(Xd ≤ xd∣Xi = xi∀ i = 1, . . . , d) = FXd∣X<d(xd∣xd−1, . . . , x1) .

(2.20)

One can then prove, by simple integration, that the random variable Z = TX is uniformly
distributed on U .

14 / 45

Chapter 2. Theoretical tools

As mentioned earlier the Rosenblatt transport is a diffeomorphism. Consequently, T can be
inverted, allowing to use samples Z ∈ U to calculate their corresponding random values X ∈ X ,
X = T−1Z. This turns out to be quite useful, as it is much easier to sample from a uniform than
an arbitrary distribution. The inverse of T is described as

x = T −1z = [F−1
X1

(z1), F −1
X2∣X1

(z2∣x1), . . . , F−1
Xd∣Xd

(zd∣x< d)]
⊺

(2.21)

and is hence called Inverse Rosenblatt Transport (IRT).

The second but more important underlying concept for this thesis is that of tensor trains (TT),
presented in [12] by Oseledets. Let T be a d-dimensional n1×n2×⋅ ⋅ ⋅×nd tensor. T has TT-format
if its elements can be written as

Ti1,...,id = ∑
α0,...,αd

G
(1)
α0,i1,α1

G
(2)
α1,i2,α2

⋯G
(d)
αd−1,id,αd

(2.22)

and the so-called cores G(k) are of size rk−1×nk×rk, with k = 1, . . . , d, r0 = rd = 1. In a shorthand
notation equation (2.22) can also be written as

Ti1,...,id =G
(1)
i1

G
(2)
i2
⋯G

(d)
id

. (2.23)

In [12] Oseledets proves that any d-dimensional tensor can be approximated by a TT-format
tensor up to arbitrary accuracy. This algorithm is called TT singular value decomposition and
provides a practical analytical approach to approximate tensors for computational operations
[12].

To further understand how this transformation can be combined with so-called functional tensor
trains, it is practical to adapt to the notation of Cui et al. in [3]. They write the target p.d.f. in
the form

fX(x) = 1

N ⋅ π(x)
±

unnormalized density

⋅
weighting function

¬
λ(x) , N = ∫

X

dxπ(x)λ(x) , (2.24)

given that π ∈ L1
λ(X), π(x) ≥ 0 ∀x ∈ X . Arguing that multivariate functions are a continuous

analogue of tensors, it is possible construct the TT approximation for a general multivariate
function π ∶ X → R , X = X1 × ⋯ × Xd. In matrix notation, π(x) can thus be written as the
product of TT-cores Hk(xk) ∶ X → Rrk−1×rk ,

π(x) ≃ π̃(x) ≡
d

∏
k=1

Hk(xk) with (2.25)

Hk(xk) ≡ [
nk

∑
i=1

φ
(i)
k (xk)Aα,i,βk]

α=1,...,rk−1 ,β=1,...,rk

, (2.26)

given a set of basis functions {φ(1)k (xk), . . . , φ(nk)} and a respective coefficient tensor Ak ∈
Rrk−1×nk×rk . The summation ranges nk are called TT ranks. For k = 1, d they are limited

15 / 45

Chapter 2. Theoretical tools

to n0 = nd (default choice being n0 = 1). Otherwise, they can be chosen freely. The TT-
approximation π̃ is determined numerically and in theory exact. However, due to limitations in
TT ranks and the choice of basis functions π̃ usually remains an approximation of π.

Assuming that the approximate TT-decomposition of π(x) is given as

π̃(x1, . . . , xd) =H1(xk)⋯Hdxd , (2.27)

the corresponding approximate target p.d.f. then is f̃X(x) = 1
c̃ π̃(x)λ(x), with the normalizing

constant set to c̃ = ∫X dx π̃(x)λ(x). Defining

H̄k ≡ ∫
Xk

dxkHk(xk)λk(xk) , (2.28)

π̃≤k(x≤k) =H1(x1)⋯Hk(xk)H̄k+1⋯ , H̄d (2.29)

the k-th marginal p.d.f. is found to be

f̃X≤k(x≤k) =
1

d̃
π̃≤k(x≤k)

k

∏
i=1

λi(xi) , d̃ = H̄1⋯H̄d . (2.30)

With that in mind one can write down the conditional probabilistic densities, define a Rosenblatt
transport and the corresponding IRT. This way one is able to draw random variables following a
uniform distribution and obtain a random variable with p.d.f. f̃X . Defining n as the maximum
number of basis functions, r as the maximum TT rank used and assuming that N samples are
drawn, Cui et al. find that the total numerical complexity can be estimated to be O(dnr2 +
dNr2 +Ndnr) [3].

2.3.2 SIRT

This functional tensor-train approach to IRT (TT-IRT) can face the problem that the approx-
imated p.d.f. may not be positive on the whole domain due to rank truncations. Cui et al. solve
this problem by approximating

√
π(x),

√
π(x) ≃ g̃(x) =

d

∏
i=1

Gi(xi) , (2.31)

instead of π(x) directly. Then, the target p.d.f. is approximated by the estimate

f̂X̂(x) = 1

ĉ
π̂(x)λ(x) ,

π̂(x) = γ + g̃(x)2

ĉ = γλ(X) + ∫
X

dx g̃(x)2λ(x)
, (2.32)

with γ > 0 as a correction constant. The so called Squared Inverse Rosenblatt Transport (SIRT)
then is obtained similarly to TT-IRT. Compared to TT-IRT, SIRT can ensure to preserve smooth-
ness and monotonicity [3]. However, this comes at the cost of increasing complexity now scaling
with increased leading terms, O(dnr3 +Ndnr2 +Ndr2) [3].

16 / 45

Chapter 2. Theoretical tools

2.3.3 DIRT

The capability of SIRT to adapt to complicated structures mainly depends on the allowed max-
imum rank for truncations. As could be seen, the IRT-algorithms scale at least quadratically
with the ranks. Hence, a direct factorisation can become costly. The Deep Squared Inverse
Rosenblatt Transport (DIRT) builds a composition of SIRT mappings to solve this.

Define a sequence of bridging measures πk, k = 1, . . . , L and set πL ≡ π. Then, equivalently to
equation (2.32), it is

fXk(x) = 1

ck
πk(x)λ(x) , ck = ∫

X

dxπk(x)λ(x) . (2.33)

In each step fXk(x) is approximated by a SIRT Tk. This yields a composition describing the k-th
bridging density (T0 ○T1 ○⋯○Tk)♯guniform(x) = πk(x). By gradually increasing the complexity of
the bridging densities, this algorithm allows to describe more and more complicated structures. A
sensible choice for the bridging densities are tempered distributions, i.e. πk(x) = π(x)βk , 0 ≤ β1 <
⋅ ⋅ ⋅ < βL = 1 [3]. This way, for the initial k the difficult structures in the distribution are smeared
out, allowing DIRT to adapt to an approximated version of the integrand first. Then, with
growing index k the algorithm will be able to »learn« the actual distribution function[3].

2.4 Physical motivation

The current Standard Model of particle physics works surprisingly well. However, experiments
indicate some possible flaws of the Standard Model (SM), such as the (g − 2)µ-anomaly [1],
the Hubble tension [18] or Dark Matter [14]. All of these phenomena can be described as
consequences of modifications of the SM [11]. One candidate for such a modification is the
extension of the SM by a dark fermion singlet χ and a vector mediator Z ′ coupling SM leptons
` and the fermion singlets χ [11]. This modification can be expressed by an additional term in
the SM Lagrangian,

LSM → LSM +Z ′

µ (g` ¯̀γµ` + gχχ̄γµχ) , (2.34)

where g`, gχ denote the respective coupling parameters1. The challenge is now to gain estimates
of these couplings. An interesting approach to this is proposed by Manzari et al. in [11]. From
neutrino flux measurements originating from core-collapse supernovae (SN) the total emitted
energy can be determined. Given the assumption that the vector mediators can be produced on-
shell in stellar plasmas, the modification predicts that χχ̄-pair will be created by `¯̀-annihilation
processes and photoproduction [11]. In this thesis I limit myself to the case of annihilation.
The corresponding Feynman diagram is shown in figure 2.2. The known classical luminosities
determined by the neutrino flux measurements set upper boundaries for the corresponding dark
luminosity. This allows to set constraints for the couplings g`, gχ with respect to the masses

1The complete extension includes a further term describing the interaction between SM neutrinos and the vector
boson Z′ [11], which is of no relevance here.

17 / 45

Chapter 2. Theoretical tools

`

¯̀

χ

χ̄

Z′

Figure 2.2: Feynman diagram of the first order annihilation process `¯̀→ χχ̄.

mZ′ ,mχ . This argument allows to cross-check the proposed theory with non-terrestrial data
and is also expected to give better constraints than current experiments on earth could [11].

Following Manzari et al. in [11] the differential luminosity can be expressed as

dQ

dR
= 1

4π4 ∫
∞

m`
∫

∞

m`
∫

1

−1
dE1 dE2 d cos θ

(E1 +E2)P̄ (E1)P̄ (E2)
F (E1;µ`)F (E2;−µ`)

s

√
1 − 4

m2
`

s
σ(s) , (2.35)

with p̄(Ei) as the absolute three-momenta of the the annihilating particles and their respective
Fermi-Dirac-distributions [F (E1;µ)]−1, where µ denotes the chemical potential of the annihilat-
ing lepton,

p̄(Ei) ≡
√
E2
i −m2

` and (2.36)

F (Ei;µ) ≡ exp [Ei − µ
T

] + 1 . (2.37)

The Mandelstam variable

s = 2(m2
` +E1E2 −

√
E2

1 −m2
`

√
E2

2 −m2
` cos θ) (2.38)

allows a more concise formula for the cross-section,

σ(s) =
g2
` g

2
µ

12π

s

(s −m2
Z′)2 +m2

Z′Γ
2
Z′

βχ(s)
β`(s)

κ`(s)κχ(s) , given that (2.39)

βi(s) ≡
√

1 − 4
m2
i

s
, (2.40)

κi(s) ≡ (1 + 2
m2
i

s
) and (2.41)

ΓZ′ =
mZ′

12π
∑
i=`,χ

g2
i κi(m2

Z′)βi(m2
Z′)Θ(mZ′ − 2mi) . (2.42)

Using the data of the SN 1987A from [2], the computations in this thesis are performed for
T = 36.8 MeV, µµ = 102.5 MeV.

After a closer look at the integrand equation (2.35) becomes interesting for DIRT and VEGAS.
The propagator in the cross-section term produces a narrow peak at

√
s = mZ′ of width ΓZ′ ∼

g2
imZ′ . For smaller couplings, VEGAS is unable to resolve this peak without further information,
at least for couplings g ≡ g` = gχ ≲ 10−2. It is therefore interesting to investigate whether

18 / 45

Chapter 2. Theoretical tools

DIRT might be better able to detect the peak and provide correct estimates. To simplify the
computations, the integrand is rendered dimensionless by substituting2

Ei → xi ≡
Ei
T

s→ y ≡ s

T 2
mj → xj ≡

mj

T
. (2.43)

This transformation leads to an additional factor of T 7 in front of the integral.

In order to directly resolve the peak in the integration variables, a change of coordinates cos θ

to y is performed. Without this change VEGAS would be unable to detect the peak [11]. For
future research it would be interesting to test whether DIRT is capable of resolving the peak
without a change of variable. The substitution gives an additional Jacobian of

Jy ≡
1

2p̄(x1)p̄(x2)
, (2.44)

where p̄ denotes the dimensionless equivalent of P̄ , i.e. p̄(xi) ≡
√
x2
i − x2

` . The same goes for f ,
f(xi, µ) ≡ exp [xi − µ/T] + 1. This yields a new expression for equation (2.35),

I = T
7

4π
∫

∞

x`
∫

∞

x`
∫

yb

ya
dx1 dx2 dy

(x1 + x2)p̄(x1)p̄(x2)
f(x1;µ`)f(x2;−µ`)

¿
ÁÁÀ1 − 4

x2
`

y
σ′(y)Jy , (2.45)

with σ′(s) ≡ sσ(s). The boundaries ya, yb are defined by the physical condition that y
!
≥

4 maxx2
χ, x

2
` ≡ ymin, otherwise the annihilation process would not take place. The formula (2.38)

further confines the domain of y, as cos θ ∈ [−1,1]. This results in

ya ≡ max(ymin, y−) yb ≡ max(ymin, y+) , where (2.46)

y± ≡ 2(x2
` + x1x2 ± p̄(x1)p̄(x2)) . (2.47)

As a last step I implement substitutions so that the integration variables can be drawn from
finite intervals, i.e. from [0,1) by defining

xi ≡ (zi) =
zi

1 − zi
; y ≡ y(zy) =

zi
1 − zi

; zj ∈ [0,1) .

This change of variables leaves us with an additional Jacobian

J1 =
1

(1 − z1)2

1

(1 − z2)2

1

(1 − zy)2
. (2.48)

2These and the following substitutions are identical to the approach taken in [17]. I do not consider all of their
choices optimal, but decided to stick as closely as possible to their notation for the sake of clarity.

19 / 45

Chapter 2. Theoretical tools

The resulting integral has the form

dQ

dV
= T

7

4π
∫

1

z`
∫

1

z`
∫

zb

za
dz1 dz2 dzy

(x1 + x2)p̄(x1)p̄(x2)
f(x1;µ`)f(x2;−µ`)

¿
ÁÁÀ1 − 4

x2
`

y
σ′(y)JyJ1 (2.49)

z` ≡
x`

1 + x`
, (2.50)

za,b ≡
ya,b

1 + ya,b
. (2.51)

Whether the peak is resolved can be tested by plotting dQ/dV ⋅ g−4. If the peak has been found,
it dominates the integral. Then, the cross-section scales σ ∝ g−2. Otherwise, the first term in
equation (2.39) dominates, yielding σ ∝ g−4. The change from dQ/dR to dQ/dV is performed by
computing

dQ

dV
= dQ

dR
4πR2 . (2.52)

For the chosen setting, it is R ≃ 9.22 km ≃ 4.70 × 1016 MeV−1.

20 / 45

3Implementing DIRT

In the beginning of this thesis the naïve aim was to implement DIRT in Python. This idea arose
due to several reasons, the main one being the widespread usage of Python in physics. However,
the currently available realisation of DIRT is written in MATLAB [4, 6]. Together with that,
only a basic implementation of IRT in Python is presented [6]. A direct implementation of DIRT
in Python would allow easier dissemination of the algorithm in Physics community. Respectively,
working in Python could have allowed for huge time savings, as the main reason for bugs and error
messages originated in the attempt to implement code written in different programming languages
into one another. Furthermore, there exists no implementation of VEGAS in MATLAB but in
Python. Testing both algorithms in the same framework would have been the most practical
approach. However, this goal could not be met.

This chapter explains the final solution and attempts to outline the previous approaches to
implementing DIRT in Python (DIRTipy).

3.1 DIRT in MATLAB, VEGAS in Python

The solution found for this project is to run DIRT and VEGAS separately, DIRT in MATLAB
and VEGAS in Python. For VEGAS I use the official Python package [10]. The integrands are
written using the numpy package [7]. Accelerated processing in VEGAS is ensured by adding the
@vegas.batchintegrand decorator in front of the respective functions.

For DIRT I use the TT-IRT package created by Sergey Dolgov [3, 6], which also requires the
TT-Toolbox [13]. The integral estimate is obtained by computing the mean of the transformed
samples, returned by tt_dirt_sample(). A minimal example of the DIRT code can be found
in the appendix (7). Contrary to VEGAS, DIRT comes with a range of tunable parameters.
For this thesis I decided to mainly investigate the influence of the sample size N , the grid size
n and the initial TT-rank R0. Unless otherwise mentioned, I choose the tempering powers to
be logβk ≡ −4 + 1, k = 0, . . . ,4. This is coarser than the choice made by Cui et al. in [3], but
should suffice for most of the presented examples. Furthermore, I set the reference density to
reference = ’n1.5’ (truncated Gaussian density with a support on (−1.5,−1.5)d).

My aim is to achieve a broad overview over the modes of operation of DIRT and VEGAS. Thus,

21 / 45

Chapter 3. Implementing DIRT

DIRT and VEGAS are run only once for each combination of parameters. If the algorithms do not
succeed to yield a result, they are run once more before leaving out this data point. Otherwise,
recording the data would have required to much time for this Bachelor thesis’ project. For
future research it is advisable to select single settings, for which DIRT and VEGAS are run
multiple times so that statistical statements can also be made, e.g. on the ability of peak
identification.

3.2 Attempts to DIRTipy

During this project I made several attempts to create an interface of DIRT that could be run
from Python. None of these attempts were really successful nor were the attempts to use Python
functions as integrands in MATLAB1. This sections aim is to briefly document the attempts I
took and thereby hopefully help similar future projects to be of more success.

In theory MATLAB / MathWorks provides the option to build Python packages from MATLAB
code. In practice this works excellently for simple applications, such as simple matrix operations,
but leads to problems when functions are passed as arguments. A huge problem that I had to face
during this thesis project was the frugal documentation of MATLAB packages. The approaches
to solutions were unnecessarily hindered by this, eventually leading up to a point where I had to
discard the idea of a MATLAB generated Python package for DIRT. Still following the approach
to run both VEGAS and DIRT from Python, I found the rather cumbersome solution to call DIRT
as a Matlab script through a shell command. This worked but proved to be highly inefficient.
Compared to a pure MATLAB solution, the Shell approach exhibited an increased runtime by a
factor of up to 75.

3.3 Implementation of the physical case study

As a case study for its implementation in physics I compare DIRT and VEGAS on the problem
described in section 2.4. I used the Python code provided in [17, 11] for testing in VEGAS. To
write the MATLAB version of the integrand, I used this code as a basis.

1However, the latter one might have been caused by a too small knowledge of MATLAB at this stage. I later
tried again to implement a Python function in MATLAB with more success considering the runtime efficiency.

22 / 45

4Discussion of results

To get an impression on how DIRT works, which parameters are the most relevant and which
issues might have to be tackled, I test DIRT using Gaussian mixtures (GM) as toy examples.
The tests are performed in four dimensions. In the end, I will compare VEGAS and DIRT on
the basis of the integral in equation (2.35).

In my comparisons, I focus mainly on the quality of the result, but leave out run times. This
is due to the fact that I do not consider the current implementations of DIRT and VEGAS
comparable in terms of performance.

4.1 Gaussian Mixtures in four dimensions

Gaussian mixtures are appropriate toy models to imitate arbitrary distributions with sharp peaks.
For the classic VEGAS, diagonally aligned Gaussian mixtures proved to be already challenging.
This issue has been partially resolved with the new VEGAS+ and should hence not be of relevance
in small dimensions. However, the question remains as to how well VEGAS can resolve small
peak distributions. I will concentrate on peak widths of σ ∼ 0.1 − 0.01 (σ2 ∼ 10−2 − 10−4) for a
integration domain of [−1,1]d. These widths are similar to typical peak bandwidths in Quantum
Field Theory and Particle Physics. As shown later on it is no challenge for both DIRT and
VEGAS to integrate in the case of σ2 = 10−2. Thus, it is more interesting to look at narrower
distributions. For this thesis I decided to examine the case of σ2 = 10−3 closely. The cases of
σ2 = 10−2,10−4 will also be covered but in less detail.

4.1.1 Diagonal Gaussian mixture with σ2=10-3

Given the case of a simple, normalized diagonal Gaussian mixture,

g(x⃗; µ⃗i,C) = ∑
i=0,1,2

1√
(2π)d detC

exp(−1

2
(x⃗ − µ⃗i)⊺C−1 (x⃗ − µ⃗i)) where

µ⃗i ≡
−1 + i

2
⋅ (1 1 1 1)

⊺

, C ≡ σ2 ⋅ I4 ,
(4.1)

I initially choose σ2 != 10−3 and define the error of an estimate Î as ∆(Î) ≡ ∣Itrue− Î ∣ = ∣1− Î ∣.

23 / 45

Chapter 4. Discussion of results

1

2

es
tim

at
e
Î

R = 2 R = 3 R = 4 R = 8

10−4

10−2

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

101 102

ngrid

10−1

101

σ
/∆

101 102

ngrid
101 102

ngrid
101 102

ngrid

DIRT estimates (diagonal GM with σ2 = 10−3)

True value
N = 104

N = 105

N = 106

errors
uncertainties

Figure 4.1: Varying the number of grid points n for different sets of (R0,N).

As a start I vary the number of grid points n for different values of R0 (initial tensor-train rank)
and N (sample size). Assuming that the number of grid points directly translates to accuracy,
my initial test runs aim at relatively high numbers of grid points1. The results can be seen in
figure 4.1. It becomes apparent that increasing n does not lead to an improvement in accuracy.
The plots in figure 4.1 and 4.2 give slight indication that increasing R stabilizes the accuracy of
uncertainty estimates σ/∆. However, this effect seems to be of minor importance and n to be the
more impactful parameter.

At first glance it is puzzling that large parameters n lead to a decrease in accuracy. Running
DIRT for grid parameters n ∈ [0,25] shows that the algorithm works best for n ∼ 20. Facing
smaller grid sizes the result and it’s accuracy also get significantly worse. For n < 6 DIRT is not
able to provide an estimate at all. A possible reason for the loss of accuracy with n→∞, n > 20

might be that overly refined grids introduce too much noise into the approximating functions,
rendering approximations more difficult. This proposed explanation is supported by a look at
the curve described by the Hellinger error, shown in figure 4.3. In this plot it can be observed
that DH becomes optimal for the pairs (R = 3, n ∼ 20) and (R = 12, n ∼ 30). Hence, I deduce that

1In their paper on DIRT Cui et al. typically vary n in the range of 10 to 30, N in the range of 103 ti 106 and
R only for small values[3]. However, I decided out of curiosity to perform the tests within a larger parameter
space

24 / 45

Chapter 4. Discussion of results

1

2

3

es
tim

at
e
Î

R = 3 R = 5 R = 6 R = 9 R = 12

10−5

10−4

10−3

10−2

10−1

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

10 20
ngrid

10−2

100

102

σ
/∆

10 20
ngrid

10 20
ngrid

10 20
ngrid

10 20
ngrid

DIRT estimates (diagonal GM with σ2 = 10−3) for n < 25

True value
N = 103

N = 104

N = 105

N = 106

N = 107

errors
uncertainties

Figure 4.2: Varying the grid resolution parameter n for smaller values and different combinations
of (R0,N).

25 / 45

Chapter 4. Discussion of results

10−1

100

D
H

R = 3

101 102

ngrid

10−1

100

D
H

R = 12

Evolution of DH(n;R) in DIRT (diagonal GM with σ2 = 10−3)

DH for N = 103 DH for N = 104 DH for N = 105 DH for N = 106

Figure 4.3: Hellinger error DH for the approximations to the diagonal GM g(x⃗; µ⃗i, σ
2 = 10−3)

constructed by DIRT.

with growing R the position of the optimum in n increases and the Hellinger error at optimal
n decreases. Interestingly, the impact of R seems to be limited to the region surrounding the
optimum.

Varying the sample size N , the naïve expectation is that the accuracy scales with N . As figure
4.4 shows, this indeed applies. Especially forR0 = 15,16,18 the uncertainty approximately follows
logσ ∼ −1

2 logN . Compared to VEGAS, I conclude that DIRT typically yields better results for
N < 105. Above that boundary not even optimized parameters allow DIRT to compete with
VEGAS.

Taking all runs into account, DIRT seems to give slightly more reliable uncertainty estimates
than VEGAS (typically 0.1 ≤ σ/∆ ≤ 10) . Furthermore, if VEGAS misses a peak, it is not able to
become aware of this, thus underestimating the uncertainty drastically (c.f. fig. 4.5).

In total increasing N by a factor of 104 allows DIRT to improve the actual deviation from the
correct result ∆ from ∼ 10−1 to ∼ 10−3 − 10−4, whereas VEGAS manages to improve from ∼ 100

to 10−4. This huge improvement is mainly due to the fact that VEGAS performs better than
DIRT for N ≥ 105, but for lower sample sizes significantly worse.

So far I only tested DIRT for its optimal configuration in the case of σ2 = 10−3. In different runs
I also tested VEGAS for varying combinations of iterations nitn and preconditioning iterations
nitn,pre. The results indicate for this specific setting that preconditioning has no significant
influence on the quality of the estimate. Especially for N ≥ 105 the quality does not depend
on the number of preconditioning or main iterations. Above this boundary VEGAS is able to
identify all peaks and the computed uncertainties also match the actual deviations. Overall, the
plots in figure 4.5 reveal that for N ≥ 105 the relative improvements in accuracy achieved by
VEGAS are similar to DIRT.

26 / 45

Chapter 4. Discussion of results

0.5

1.0

1.5

es
tim

at
e
Î

R = 4 R = 8 R = 12 VEGAS results

10−3

10−1

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

105 108

Nsamples

10−1

101

σ
/∆

105 108

Nsamples

105 108

Nsamples

105 108

Nsamples

DIRT estimates (diagonal GM with σ2 = 10−3) for R ≤ 12

0.5

1.0

es
tim

at
e
Î

R = 15 R = 16 R = 18 VEGAS results

10−4

10−2

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

10−1

101

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

DIRT estimates (diagonal GM with σ2 = 10−3) for R > 12

True value
n = 10

n = 25

n = 30

n = 50

errors
uncertainties

Figure 4.4: Varying the number of samples N for different numbers of initial TT-ranks. The
VEGAS result provided as a comparison is identical for both subfigures. The shown
VEGAS estimates stem from a VEGAS run with nitn = 25 and a preconditioning
phase of nitn,pre = 10, one of the best runs achieved with VEGAS.

27 / 45

Chapter 4. Discussion of results

0.00

0.25

0.50

0.75

1.00

es
tim

at
e
Î

nitn,pre = 0 nitn,pre = 5 nitn,pre = 10 nitn,pre = 15

10−6

10−4

10−2

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

10−6

10−4

10−2

100

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

VEGAS estimates (diagonal GM with σ2 = 10−3)

True value
nitn = 10

nitn = 15

nitn = 20

nitn = 25

nitn = 30

errors
uncertainties

Figure 4.5: VEGAS estimates for different configurations.

28 / 45

Chapter 4. Discussion of results

0.925

0.950

0.975

1.000

es
tim

at
e
Î

R = 2 R = 6 R = 8 R = 16 VEGAS results

10−5

10−3

10−1

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

100

101

102

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

DIRT estimates (diagonal GM with σ2 = 10−2)

True value
n = 25

n = 50

n = 100

n = 150

VEGAS: nitn = (5,20)

errors
uncertainties

Figure 4.6: Varying the number of samples N for different numbers of initial TT-ranks R0 and
g(x⃗; µ⃗i, σ

2 = 10−2).

4.1.2 Diagonal GM with σ2=10-2, 10-4

Taking a look at broader and smaller peaked Gaussian mixtures reveals further information. The
case of σ2 = 10−2 allows to indicate whether DIRT can also be used for less narrow structures,
where VEGAS is expected to perform better. On the other hand, a look at σ2 = 10−4 allows
predictions whether DIRT is better capable of resolving narrow features than VEGAS.

GM with σ2=10-2

For N ≤ 106, DIRT does perform better than VEGAS, independent from the parameter settings.
In the most optimal cases, R0 = 16 and n = 100,150, the results obtained by DIRT are 2 − 50× as
accurate as the results obtained by VEGAS for 5 preconditioning and 20 main iterations (c.f. fig
4.6). Comparing the results shown in figure 4.6 and 4.8 allows to deduce that VEGAS is using
samples more efficiently in the case of larger sample sizes (N ≥ 5), as log σ(N2)/σ(N1) ∼ − logN2/N1.
For N ≤ 105, it performs similar to DIRT, with log σ(N2)/σ(N1) ∼ −0.5 logN2/N1.

A further look at figure 4.6 allows to confirm what has been observed for the case of a GM

29 / 45

Chapter 4. Discussion of results

10−3

10−2

10−1

100

D
H

R = 2

101 102

ngrid

10−3

10−2

10−1

100

D
H

R = 6

Evolution of DH(n;R) in DIRT approximations (diagonal GM with σ2 = 10−2)

DH for N = 103 DH for N = 104 DH for N = 105

Figure 4.7: The Hellinger error in the DIRT approximations of g(x⃗; µ⃗i, σ
2 = 10−2) exhibits a

similar behaviour as for g(x⃗; µ⃗i, σ
2 = 10−3). The position of the optimum however is

shifted. Additionally, the approximation errors are smaller for most n, compared to
figure 4.3.

with σ2 = 10−3 before: increasing R0 allows larger grid sizes n to yield more accurate results.
This is also confirmed by the graph described by the Hellinger errors in figure 4.7. The most
apparent feature of this plot is, that the Hellinger approximation errors are up to ten times
smaller then in the σ2 = 10−3 case. This however is less surprising considering the fact that, for
less narrow features, the integrand can be easier approximated. Furthermore, it is in accordance
with the computed estimate uncertainties and actual deviations (shown in figure 4.6), which face
an improvement up to ten times compared to the σ2 = 10−3 case. Notable is that the optimum
grid parameter n lies now in the range of ∼ 75 − 100. The Hellinger errors for small n ≤ 20

however reside in similar regimes as before. This allows an important conclusion: improvements
in accuracy can be achieved by either increasing N or by increasing both n and R. It seems that
the latter option is the more effective.

Identical to the previous case, preconditioning does not have a significant effect on the results
determined by VEGAS. Surprisingly, it still faces problems to identify all peaks for N ∼ 103. For
N ≥ 104, VEGAS is able to provide reliable estimates of the integral. The uncertainty estimates
provided by VEGAS with 5 or more preconditioning iterations prove more reliable than for
DIRT.

GM with σ2=10-4

This case proves to be most challenging for both VEGAS and DIRT so far. As illustrated by
figures 4.9, 4.11, 4.10 and 4.12, both algorithms fail to provide correct results in most of the
cases.

Using DIRT with the standard tempering of logβk = −4 + k, the best results are achieved for
R0 = 12, n = 20. However, even with this set of parameters, DIRT has difficulties to identify the
correct shape of the integrand. The returned uncertainty estimates are typically to small by a

30 / 45

Chapter 4. Discussion of results

0.95

1.00

es
tim

at
e
Î

nitn,pre = 0 nitn,pre = 5 nitn,pre = 15

10−6

10−5

10−4

10−3

10−2

10−1

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

100

101

σ
/∆

104 106

Nsamples

104 106

Nsamples

VEGAS estimates (diagonal GM with σ2 = 10−2)

True value
nitn = 10

nitn = 20

nitn = 30

errors uncertainties

Figure 4.8: VEGAS estimates for different configurations in the case of g(x⃗; µ⃗i, σ
2 = 10−2).

31 / 45

Chapter 4. Discussion of results

10−1

100

101

es
tim

at
e
Î

R = 2 R = 6 R = 9 R = 12

10−5

10−3

10−1

101

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

10−4

10−1

102

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

DIRT estimates of (diagonal GM with σ2 = 10−4)

True value
n = 10

n = 20

n = 30

n = 40

n = 50

n = 100

errors
uncertainties

Figure 4.9: Varying the number of samples N for different numbers of initial TT-ranks R0 and
g(x⃗; µ⃗i, σ

2 = 10−4).

factor of 10 − 100. Figure 4.9 slightly indicates that increasing R0 also increases the probability
of peak identification, as for R = 9,12, typically two peaks can be identified.

Expecting that a slower tempering might enable DIRT to adapt to the integrand more easily,
I first change the step size, so that logβk = −4 + k/2. This refined tempering leads to minor
improvements. For R = 9, n = 25,N < 106 and R = 12, n = 20,N < 106, correct results and
satisfying uncertainty estimates can be provided. For R = 3,6 the results quality decreased,
compared to the standard tempering (c.f. figure 4.10).

As a last attempt, I run DIRT with an even more refined tempering, setting ldβk = −13 + k.
The results are shown in figure 4.11. Again, this yields no significant changes. Only one set of
parameters, R = 12, n = 25, is capable of providing correct estimates for logN = 3,4,5,6.

VEGAS, on the other hand, fails consistently to provide correct results for N < 105, but does

32 / 45

Chapter 4. Discussion of results

0.4

0.6

0.8

1.0

es
tim

at
e
Î

R = 3 R = 6 R = 9 R = 12

10−5

10−4

10−3

10−2

10−1

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

10−4

10−2

100

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

DIRT estimates for refined tempering, βk = 10−4+k/2 (diagonal GM with σ2 = 10−4)

True value
n = 20

n = 25

n = 30

n = 40

errors
uncertainties

Figure 4.10: Varying the number of samples N for different numbers of initial TT-ranks R0 and
g(x⃗; µ⃗i, σ

2 = 10−4). Note that for R = 3, n = 25, the data point at N = 103 has been
removed. It deviated by a factor of ∼ 106.

33 / 45

Chapter 4. Discussion of results

0.4

0.6

0.8

1.0

es
tim

at
e
Î

R = 3 R = 6 R = 9 R = 12

10−4

10−3

10−2

10−1

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

104 106

Nsamples

10−3

10−1

101

σ
/∆

104 106

Nsamples

104 106

Nsamples

104 106

Nsamples

DIRT estimates for refined tempering, βk = 2−13+k (diagonal GM with σ2 = 10−4)

True value
n = 20

n = 25

n = 30

n = 40

errors
uncertainties

Figure 4.11: Varying the number of samples N for different numbers of initial TT-ranks R0 and
g(x⃗; µ⃗i, σ

2 = 10−4). Note that for R = 3, n = 25, the data points at N = 106,107 have
been removed. They deviated by a factor of ∼ 106.

34 / 45

Chapter 4. Discussion of results

0.00

0.25

0.50

0.75

1.00

es
tim

at
e
Î

nitn,pre = 5 nitn,pre = 10

10−6

10−4

10−2

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

103 104 105 106 107

Nsamples

10−3

10−1

101

103

σ
/∆

103 104 105 106 107

Nsamples

VEGAS estimates (diagonal GM with σ2 = 10−4)

True value errors uncertainties

Figure 4.12: VEGAS estimates for different configurations in the case of g(x⃗; µ⃗i, σ
2 = 10−4).

yield precise estimates for N ≥ 106. The accuracies of these results are better than the best ones
provided by DIRT.

4.2 Non-Diagonal Gaussian Mixture

To ensure that the previous results were not influenced by the diagonal alignment of the peaks,
I let DIRT and VEGAS estimate the integral value of a Gaussian mixture, similar to equation
(2.19), but with σ2 = 10−3 and

µ1 = (−1

2
, −1

2
, −1

2
, −1

2
)
⊺

, µ2 = (0, 0,
1

2
,

1

2
)
⊺

, µ3 = (1

2
,

1

2
, 0, 0)

⊺

.

The results, shown in figure 4.13, do not give any reason to suspect that DIRT performs differently
than for diagonally aligned peaks. However, they indicate again that DIRT performs better than
VEGAS for small sample sizes, N ≤ 105.

35 / 45

Chapter 4. Discussion of results

0.4

0.6

0.8

1.0

es
tim

at
e
Î

R = 8 R = 16 VEGAS results

10−4

10−3

10−2

10−1

100

er
ro

r
∆
(Î
),

un
ce

rt
ai

nt
y
σ
(Î
)

103 104 105 106 107

Nsamples

10−2

10−1

100

101

σ
/∆

103 104 105 106 107

Nsamples

103 104 105 106 107

Nsamples

DIRT estimates of Non-Diagonal Gaussian Mixture with σ2 = 10−3

True value
n = 50

n = 100

errors
uncertainties

Figure 4.13: Varying the number of samples N for different numbers of initial TT-ranks R0.

4.3 Case study: Using DIRT to constrain new Physics

As discussed earlier, VEGAS requires a proper treatment to correctly solve equation (2.49).
Astonishingly, DIRT faced huge issues creating a proper mapping for it, even when the integration
domain was constrained to the peak region. Based on the code provided in [17, 11], I developed
three versions of the integrand in MATLAB. The first implementation followed Python code as
closely as possible. Trying to adapt a less Pythonic way of coding, I wrote a second version.
The last edition discarded the substitution cos θ → y, thereby allowing DIRT to deal with fixed
integration boundaries, but on the cost of more difficult peak resolution.

Of all versions, only the second approach allowed DIRT to return estimates in some distinct
cases, i.e. for g = 1, mZ′ = 1,5,10,100,1000 MeV in the case of annihilating electrons. For these
runs, I chose R0 = 20, n = 50, N = 104,105 and a very cautious tempering, ldβk = −4 + k/2, in
some cases even ldβk = −4 + k/4. These parameters allowed to run DIRT also for smaller values
of g (I tested up to g = 103). However, these runs were typically aborted at steps equivalent to
temperings of β ∼ 0.6 − 0.7 for too bad approximation quality.

For other settings of the physical parameters, AMEN (the TT approximation algorithm imple-
mented in DIRT) usually faced the issue of (close-to) singular matrices, not allowing to proceed
further2. It is unclear why this issue occurred. However, it might be related to MATLAB not

2In fact, AMEN only raises a warning if (close-to) singular matrices occur. For the physics case study, however,
the algorithm seemed to get stuck at this point.

36 / 45

Chapter 4. Discussion of results

providing support for quadruple precision floats, thus experiencing problems when dealing with
both extremely small and large numbers. A further reason might be connected to the shape of
the integration domain and the chosen substitutions. In the end, the created data did not allow
further analysis.

37 / 45

5Summary and Outlook

Contributing to the search for efficient numerical integration algorithms, this thesis investigated
the applicability of DIRT. VEGAS serves as a benchmark model. Four-dimensional Gaussian
mixtures with variances of σ2 = 10−2 (wide case), σ2 = 10−3 (medium case) and σ2 = 10−4 (fine
case) were used as target functions.

The results confirm that DIRT is capable of providing an efficient integration algorithm. The
initial assumption that DIRT could enhance fine resolution structure approximation through
inherent tempering was not fulfilled. In fact, for narrow peaks and more complex structures,
DIRT proved to be inadequate, while VEGAS could be optimised to compute correct results.
Regarding future research involving DIRT, the potential for improvements through a change of
basis functions should be considered, as this aspect remained unexplored in this thesis.

When dealing with medium-sized and wide peaks (σ2 = 10−2,10−3) in Gaussian mixtures, DIRT’s
performance increased. For sample sizesN ≲ 106 it produced similar or even more accurate results
than VEGAS. When tested on a Gaussian mixture with σ2 = 10−2, this was independent of the
initial choice of parameters. However, the combined optimisation of grid size and initial TT rank
allowed DIRT to achieve same precision results while utilising only 10 to 100 times fewer samples
than VEGAS.

Regarding the physical case study, DIRT failed to deliver. It could not be explored whether
this failure originated in the implementation of the integrand in MATLAB, MATLAB imminent
issues or an actual issue of DIRT, e.g. with complicated integration domains.

For the future, an implementation of DIRT in Python seems desirable. Such a project could use
the Python IRT version already published by Dolgov et al. [6, 3]. However, it should be noted
that the required TT library TT-toolbox relies on Fortran code, which has been experienced to
be challenging to use under Windows operating systems [13]. Alternatively, the torchTT library
may be a more promising solution, as it is compatible with PyTorch [8].

Overall, DIRT appears to be a practical sampling technique for Monte Carlo integration, possibly
more fitting for typical integration problems with limited sample sizes. In such instances, it is
anticipated to have a similar or superior performance to VEGAS.

39 / 45

6Bibliography
For translations and formulation, I used DeepL [16].

[1] D. P. Aguillard et al. Measurement of the Positive Muon Anomalous Magnetic Moment to
0.20 ppm. 2023. doi: https://doi.org/10.48550/arXiv.2308.06230. arXiv: 2308.06230
[hep-ex].

[2] Robert Bollig et al. “Muons in Supernovae: Implications for the Axion-Muon Coupling”. In:
Phys. Rev. Lett. 125 (5 July 2020), p. 051104. doi: 10.1103/PhysRevLett.125.051104.
url: https://link.aps.org/doi/10.1103/PhysRevLett.125.051104.

[3] Tiangang Cui and Sergey Dolgov. “Deep Composition of Tensor-Trains Using Squared
Inverse Rosenblatt Transports”. In: Foundations of Computational Mathematics 22.6 (July
2021), pp. 1863–1922. doi: 10.1007/s10208-021-09537-5. url: https://doi.org/10.
1007%2Fs10208-021-09537-5.

[4] DeepTransport. TT-rare. 2023. url: https://github.com/DeepTransport/TT-rare.

[5] Sergey Dolgov et al. Approximation and sampling of multivariate probability distributions
in the tensor train decomposition. 2019. arXiv: 1810.01212 [math.NA].

[6] Sergey Dolgov et al. TT-IRT. 2022. url: https://github.com/dolgov/TT-IRT.

[7] Charles R. Harris et al. “Array programming with NumPy"”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/
s41586-020-2649-2.

[8] Ion Gabriel Ion. Torch TT. 2023. url: https://github.com/ion-g-ion/torchTT.

[9] G. Peter Lepage. “A new algorithm for adaptive multidimensional integration”. In: Journal
of Computational Physics 27.2 (1978), pp. 192–203. issn: 0021-9991. doi: https://doi.
org/10.1016/0021-9991(78)90004-9. url: https://www.sciencedirect.com/science/
article/pii/0021999178900049.

[10] G. Peter Lepage. “Adaptive multidimensional integration: vegas enhanced”. In: Journal of
Computational Physics 439 (Aug. 2021), p. 110386. issn: 0021-9991. doi: 10.1016/j.jcp.
2021.110386. url: https://doi.org/10.1016%2Fj.jcp.2021.110386.

[11] Claudio Andrea Manzari et al. “Supernova Limits on Muonic Dark Forces”. In: (July 2023).
arXiv: 2307.03143 [hep-ph].

41 / 45

https://doi.org/https://doi.org/10.48550/arXiv.2308.06230
https://arxiv.org/abs/2308.06230
https://arxiv.org/abs/2308.06230
https://doi.org/10.1103/PhysRevLett.125.051104
https://link.aps.org/doi/10.1103/PhysRevLett.125.051104
https://doi.org/10.1007/s10208-021-09537-5
https://doi.org/10.1007%2Fs10208-021-09537-5
https://doi.org/10.1007%2Fs10208-021-09537-5
https://github.com/DeepTransport/TT-rare
https://arxiv.org/abs/1810.01212
https://github.com/dolgov/TT-IRT
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/ion-g-ion/torchTT
https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016%2Fj.jcp.2021.110386
https://arxiv.org/abs/2307.03143

Chapter 6. Bibliography

[12] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Computing
33.5 (2011), pp. 2295–2317. doi: 10.1137/090752286. eprint: https://doi.org/10.1137/
090752286. url: https://doi.org/10.1137/090752286.

[13] Ivan Oseledets et al. TT-Toolbox. 2023. url: https://github.com/oseledets/TT-

Toolbox.

[14] Planck Collaboration et al. “Planck 2018 results - VI. Cosmological parameters”. In: A&A
641 (2020), A6. doi: 10.1051/0004-6361/201833910. url: https://doi.org/10.1051/
0004-6361/201833910.

[15] Murray Rosenblatt. “Remarks on a Multivariate Transformation”. In: The Annals of Math-
ematical Statistics 23.3 (1952), pp. 470–472. doi: 10.1214/aoms/1177729394. url: https:
//doi.org/10.1214/aoms/1177729394.

[16] DeepL SE. DeepL. Version 4.9.0.10395. 5th Sept. 2023. url: https : / / deepl . com /

translator.

[17] spinjo. SNforMuTau. 2023. url: https://github.com/spinjo/SNforMuTau.

[18] Eleonora Di Valentino et al. “In the realm of the Hubble tension—a review of solutions*”.
In: Classical and Quantum Gravity 38.15 (July 2021), p. 153001. doi: 10.1088/1361-
6382/ac086d. url: https://doi.org/10.1088/1361-6382/ac086d.

42 / 45

https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1214/aoms/1177729394
https://deepl.com/translator
https://deepl.com/translator
https://github.com/spinjo/SNforMuTau
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d

7Appendix
7.1 MATLAB Code: MC integration with DIRT

The following code provides a minimal example of an integration algorithm utilising DIRT for
sampling.

1 % load dependencies from tt-toolbox

2 addpath(’../tt-irt -matlab/constructors ’);

3 addpath(’../tt-irt -matlab/samplers ’);

4 addpath(genpath(’../tt-irt -matlab/TT-Toolbox -small’));

5 addpath(’../tt-irt -matlab/utils’);

6
7 % set dimension and domain

8 d = 4;

9 [a,b] = deal(-1, 1);

10
11 % set sample size

12 Nsamples = 1e4;

13
14 % set grid size and create grid

15 ngrid = 20;

16 x = linspace(a, b, ngrid)’;

17 xsf = repmat ({x}, d, 1);

18
19 % set initial TT -rank

20 R0 = 1;

21
22 % set tempering powers

23 [beta_min , beta_step , beta_max] = deal(-4, 1, 0);

24 beta = 10.^(beta_min:beta_step:beta_max);

25
26 % DIRT additional parameters

27 boundary = true;

43 / 45

Chapter 7. Appendix

28 reference = ’n1.5’;

29
30 % define logarithm of target function

31 lfun = @(x,beta_km1 ,beta_k)log(fun(x,args).*(beta_k -beta_km1);

32
33 % measure time with tic --- toc

34 tic

35 try

36 % Build DIRT

37 IRT = tt_dirt_approx(xsf , lfun , beta , ’vec’, true , ’y0’, R0, ’

boundary ’, boundary , ’reference ’, reference , ’plotdiag ’,

false);

38 [z, lFapp] = tt_dirt_sample(IRT , randref(IRT.reference , Nsamples

, d));

39 true_vals = lfun(z,0,1);

40
41 % get estimates from MC integration

42 z = double(z)’;

43 lFapp = double(lFapp)’;

44 lFex = double(lfun(z, 0, 1));

45
46 mc_est = mean(exp(lFex - lFapp));

47 mc_err = sqrt((mean(exp(lFex -lFapp).^2) - mc_est ^2) / length(

lFex));

48
49 fprintf(’MC result: %f +/- %f \n’, mc_est , mc_err);

50
51 toc

52 catch ME % catch error messages

53 toc

54 disp(ME.message);

55 end

44 / 45

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 05.09.2023,

Noah Kriesch

45 / 45

n k

n k

	Introduction
	Theoretical tools
	Monte Carlo Methods
	Importance Sampling
	Stratified Sampling

	VEGAS
	Classic VEGAS
	The Problem with VEGAS
	VEGAS+

	(D)IRT
	Rosenblatt Transport and Functional Tensor Trains
	SIRT
	DIRT

	Physical motivation

	Implementing DIRT
	DIRT in MATLAB, VEGAS in Python
	Attempts to DIRTipy
	Implementation of the physical case study

	Discussion of results
	Gaussian Mixtures in four dimensions
	Diagonal Gaussian mixture with 2=10-3
	Diagonal GM with 2=10-2, 10-4

	Non-Diagonal Gaussian Mixture
	Case study: Using DIRT to constrain new Physics

	Summary and Outlook
	Bibliography
	Appendix
	MATLAB Code: MC integration with DIRT

