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Kurzzusammenfassung:

Aktuelle Studien zeigen, dass Deep Learning basiertes Jet-Tagging etablierte
Methoden, welche auf multivariaten Analysen von Jet-Observablen beruhen, über-
trifft. Wie Unsicherheiten zu diesen Deep Learning Methoden hinzugefügt werden
können und wie Stabil diese Resultate mit Hinsicht auf systematische Unsicher-
heiten sind, bleiben offene Fragen. Bayes’sche Neuonale Netzwerke stellen neben
der Standardklassifikationsausgabe eine Unsicherheit auf Jet-Ebene zur Verfü-
gung. Um zu überprüfen, wie diese Unsicherheiten mit Unsicherheiten korrelieren,
die von limitierten Trainingsdatensätzen kommen, Pile-up, oder systematischen
Unsicherheiten, wurden für diese Masterarbeit Bayes’sche Neuroanle Netze auf
einem Top-Tagging Datensatz trainiert. Außerdem wird ein Vergleich mit einem
frequentistischen Ansatz gegeben und die Abhängigkeit des Priors wird über-
prüft.

Abstract:

Recent studies showed that deep learning based jet tagging outperforms estab-
lished methods based on multivariate analyses of jet observables. However, how
uncertainties can be included to these deep learning approaches and how stable
these results are with respect to systematic uncertainties remain open questions.
Bayesian neural networks provide, in addition to the standard classification out-
put, a jet-level/event-level uncertainty. In this thesis, to investigate how these
event-level uncertainties correlate with uncertainties from finite training data,
pile-up and systematic uncertainties, Bayesian neural networks were trained on a
top tagging dataset. Furthermore, a comparison with a frequentist-like approach
is given and the prior dependence is studied.
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1 Introduction

The Large Hadron Collider (LHC) was built to study the fundamental interactions
and building blocks of nature, such as the Higgs boson, whose discovery was an-
nounced in 2012 [1]. Because of the large momentum transfer provided by the
colliding protons, boosted heavy excitations such as the W -boson, the Z-boson,
the Higgs boson or top quarks are frequently produced at the LHC. The transverse
momentum pT is often larger than the mass threshold leading to boosted decay
products. These heavy states often decay into quarks and gluons. However, quarks
and gluons are not the final states, that are observed as energy depositions in the
detector. Instead, collinear sprays of hadrons are the real final states and, thus, the
observed particles. These collections of hadrons are referred to as jets. The boosted
decay products of a heavy excitation, such as a top quark, typically lead to a jet with
a large spatial width and is therefore referred to as a fat jet. These fat jets inherit
substructures, which need to be studied to identify the underlying event [2, 3, 4, 5].
A boosted top jet, for instance, is expected to lead to a three-prong substructure.
The top quark decays in a W -boson and a bottom quark and the W -boson it-
self decays in 67% of the cases into two light quarks [6], leading to a three-prong
fat jet. This substructure distinguishes top jets from jets arising from hard pro-
cesses involving only light quarks and gluons. Therefore, it is crucial to perform
an analysis including this substructure information to be able to study processes
involving hadronically decaying Higgs bosons or top quarks. Established methods
mostly rely on jet observables [7], which are sensitive to the prong-structure or other
kinematic observables such as the jet mass. However, the studies discussed in this
thesis rely on a different approach. Instead of constructing jet observables and com-
bining them via multivariate analyses [8], deep learning methods are applied. The
high-dimensionality of jets and the Monte Carlo simulations are perfect conditions
for this approach. These methods rely on constructing neural networks with thou-
sands or millions of parameters, giving the approach the ability to learn arbitrary
relationships between a high-dimensional input, such as the energy depositions or
4-momenta of jet-constituents, and an output, such as the likelihood of having a top
jet. However, despite recent promising results showing increased performance [9, 10]
these deep learning taggers have to be evaluated not just on their performance, but
their ability of capturing uncertainties or their stability with respect to real experi-
mental conditions, involving for instance pile-up. Bayesian neural networks provide,
in addition to the standard classifier output, a jet-level uncertainty on each predic-
tion. How this jet-level uncertainty correlates with uncertainties known in physics,
such as statistical uncertainties or systematic uncertainties, will be one of the main
subjects of this thesis.
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Most of the studies presented in this thesis were published in Ref. [11]. The thesis
is structured in the following way. Chapter 2 will give a short introduction to jets and
top tagging. Chapter 3 will introduce neural networks and how they can be used for
classification. Chapter 4 will explain the concept of Bayesian neural networks, the
relation to standard regularization techniques and how an event/jet-level uncertainty
can be constructed. Chapter 5 will show how Bayesian neural networks can be
applied to top tagging. It will be shown how the output uncertainties correlate with
the statistics of the training data and how Bayesian neural networks react to effects
like pile-up or systematic uncertainties. Furthermore, some additional features will
be presented such as the calibration of classifiers and a comparison to a frequentist-
like method will be made.
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2 Jets and top tagging
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Figure 2.1: Feynman diagram of a hadronically decaying top quark.

Heavy excitations, such as the top quark, are produced frequently at the LHC, of-
ten with a transverse momentum, pT , fulfilling the condition pT

mt
& 1 and, therefore,

leading to boosted decay products. These boosted decay products contain quarks
and gluons, which produce jets. The description of this process is usually split into
three parts. The hard process, which describes the high energy process of the in-
coming partons interacting with each other and forming intermediate excitations
such as a Higgs boson or a top quark, which themselves decay further into leptons
and quarks; the showering, which refers to the collinear and soft radiation arising
from quarks and gluons of the hard process; and the hadronization, in which the
partons at an energy of around ΛQCD hadronize to mesons and baryons. Jets arising
from boosted heavy excitations are referred to as fat jets, because of their typical
large geometrical size. These fat jets inherit inner structures, distinguishing them
from QCD jets1, i.e. jets arising from hard processes only involving light quarks
and gluons. A boosted top quark decays into a W -boson and bottom quark. The
W -boson itself can decay into light quarks (see Figure 2), leading to a three-prong
structure. In contrast, a QCD jet will typically have a one-prong structure, because
the jet is created by collinear and soft radiation of just one hard parton.

Before a jet-observable or a neural network can be applied to a jet, the jet has
to be properly defined. There are various different jet algorithms, which cluster the
observed hadrons into jets. A commonly used algorithm for LHC physics is the anti-
kt algorithm [12]. These algorithms are based on a distance measure in the detector
plane. For LHC physics usually the azimuthal angle, φ, the (pseudo)-rapidity, η,
and the transverse momentum, pT , are used to describe observed particles and jets.

1QCD stands for Quantum Chromo Dynamics, which refers to the fact that these processes are
completely described by QCD without any electroweak interactions.
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The relevant distance measure for the anti-kt algorithm is defined as:

dij = ∆R2
ij min

(
p−2T i , p

−2
Tj

)
, (2.1)

where Rij is given by Rij =
√

(φi − φj)2 + (ηi − ηj)2. The additional beam distance
is defined as diB = p−2ti R

2 with R being the jet parameter, which determines the
typical scale of the clustered jets. The algorithm clusters particles iteratively to jets
by computing all possible distances dij of particles/jets and combines these with the
shortest distance. If the shortest distance is, however, the beam distance diB, the
algorithm stops and the jet i is considered a final jet. Because of the inverse power
of the transverse momentum kt, the anti-kt algorithm starts with the hardest con-
stituents, building spherical jets around it. The resulting jets can then be used for
an analysis by computing jet observables or deep learning based methods as they
are subject of this thesis. The individual particles of a jet will be referred to as
constituents throughout this thesis.

While this thesis will present studies involving deep learning based top taggers,
the methods discussed in this thesis are not in any way restricted to this case. For
instance, quark gluon discrimination [13] would be an example not relying on fat
jets.
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3 Neural networks

This chapter will give a short overview of the topic of neural networks by introduc-
ing the most common types of layers, fully connected dense layers and convolutional
layers, and the two theory-motivated layers, CoLa [14] and LoLa [14]. All four types
of layers are part of the neural network architectures studied in this thesis. Further-
more, classification in the context of neural networks will be discussed. Building up
on this overview, the next chapter will introduce Bayesian neural networks.

3.1 Fully connected and convolutional networks

Neural networks are defined by a set of layers which are described by specific linear
and non-linear operations, involving parameters which are tuned in the so-called
training process (see Section 3.2). In this context, these parameters are referred to
as the weights of the network. The output of one layer is the input of the next
layer which in turn provides the input of the following layer. Networks with many
intermediate, or inner, layers are referred to as deep neural networks. Although it
is proven that a neural network with only one hidden layer with a sufficient number
of trainable parameters, can approximate arbitrary functions [15], in practice deep
networks turned out to show significant improvements [16], which makes them pow-
erful enough to handle high dimensional input and learn arbitrary relations between
input and output.

The most common type of layers are fully connected dense layers, which are
defined as:

y = f(z), z = Wx+ b , (3.1)

where x is the input vector, y the output vector, b the bias vector and W a matrix
of model parameters. The elements of W and b are the weights1 of the layer. The
individual entries of y are usually referred to as (hidden) units. The number of units,
i.e. the dimension of y, is a free parameter and has to be chosen in advance, when
constructing the architecture of a network; f(.) is an arbitrary non-linear function
applied after the linear operation. A common choice is the Rectified Linear Unit
(ReLU) activation function [17], which is defined as:

ReLU(z) =

{
z if z ≥ 0
0 if z < 0

. (3.2)

1In some notations the bias is not referred to as a weight
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Figure 3.1: Illustration of a convolutional operation for one feature map. The figure
is taken from Ref. [19, p. 330].

Fully connected dense layer appear in almost every network architecture. As the
name suggests, every output unit is connected with every input unit. This gives
a fully connected dense network the freedom to learn various different relations
between input and output. However, connecting every input pixel with every output
unit can be very inefficient for the case of image data. Therefore, another common
choice of layers are so called convolutional layers. Convolutional layers exploit two
common properties of images. First, features can usually be found anywhere in
the image, i.e. translational symmetry, and second, features are usually local, i.e a
group of surrounding pixels makes up the eye of a dog or the ears of a cat. For this
kind of layer the standard linear operation of a dense layer is replaced by a linear
convolutional operation, which is for 2D images defined2 as:

F k
ij =

nkernel−1∑
l=0

nsize−1∑
r,s=0

W kl
rsI

l
i+r,j+s + bk with k = 0, . . . , nkernel − 1 . (3.3)

I lij stands for the input-image, where l is the index of the different input feature
maps, e.g. different colors of an image or the output of another convolutional layer;
bk is referred to as the bias vector. The expression from above is illustrated in Fig-
ure 3.1. The kernel matrix Wrs of size (nsize, nsize) is moved stepwise over the input
feature map and constructs in this way one output feature map. If the 2D image is

2The notations are taken from [18]
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flattened and represented as a vector, convolutional layer can be seen as sparse dense
layer. The sparsity arises from the convolutional operation; just neighbouring pixels
are connected to corresponding output units and the kernels lead to shared weights
across the layer. Depending on the task convolutional layers are often followed by a
series of fully connected dense layers (see architectures discussed in Section 5.7).

There are two additional types of layers used for the models studied in this the-
sis: CoLa and LoLa [14]. Both layers are especially designed to handle 4-momenta
and are in this sense theory-motivated. Section 3.4 will explain both layers in detail.

3.2 Training

The weights, ω, of a neural network are obtained by minimizing a loss function, L,
on the training dataset, D. The choice of this function depends on the problem (see
Section 3.3 for more details). To find the global minimum of L(D,ω) with respect
to the weights different optimization algorithms exist. They rely on calculating the
gradient ∇ωL(D,ω) and performing step-wise updates of the form:

ωk+1 = ωk − α∇L(D,ωk) (3.4)

with α being the so called learning rate. Because of the large training datasets
typically used in deep learning, the loss function is evaluated on N subsets Di ⊂ D
with ∪Ni=1Di = D and not on the full dataset. This is known as minibatch op-
timization and adds stochastic fluctuations to the gradients, which often help the
training to not get stuck in local minima. Iterating over all minibatches is called an
epoch and a simple update strategy as given above is known as stochastic gradient
descant (SGD). More advanced update strategies are, for example, Adam [20] or
Adadelta [21].

Besides the training dataset, D, typically two additional datasets are used, the
validation and test dataset. All three datasets are statistically independent which
means that they don’t include the exact same examples. The validation dataset is
used to monitor the performance during training and help to determine the optimal
values of the hyperparameters, i.e. parameters which have to be tuned prior to the
training such as the learning rate. The test dataset is used for the final evaluation
of the network. For a binary classification task, for instance, the final evaluation
would determine how well the trained network distinguishes two classes.

3.3 Classification with Neural networks

A classification task involves predicting a label c for each element x of a given dataset
X. For instance, X could be a set of images of cats and dogs or, as it is considered
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in this thesis, top and QCD jets. With only two classes, this corresponds to a binary
classification task. Common practice is to construct the classifier in a way to predict
a probability, p, rather than the label directly. In this case the label can be obtained
by choosing, for instance, the class with the largest probability. The classifier can
be written as:

f : X → [0, 1]× · · · × [0, 1] : f(x) = p(c|x) (3.5)

with p(c|x) being the probability vector of the image x being a member of one of the
classes. If N classes are present, p(c|x) is a vector with N entries. The probability
of one of the classes is redundant, because the individual probabilities sum up to
one. For a binary classification task, the function f can, therefore, be constructed
as predicting only one of these probabilities.

A binary classification task in physics is, for instance, distinguishing between sig-
nal and background data as it will be discussed later in this thesis for top tagging.
In this case, just the signal class is of importance and one would like to find an
optimal trade off between rejecting as much background as possible while keeping
a significant amount of signal data. For this purpose, rather than taking the class
with the largest probability, usually a receiver operating characteristic curve (ROC
curve) is constructed and, in the absence of systematic uncertainties, used to find
an optimal working point.

The function, f , can be constructed by using a neural network and its weights,
ω, which are obtained in the training process. To get an output between [0, 1] the
activation function of the last layer has to be chosen accordingly. A common choice
is the sigmoid function for a binary classification task. The sigmoid function is
defined as:

sigmoid(x) =
ex

1 + ex
, sigmoid−1(y) = ln

(
y

1− y

)
. (3.6)

For classification, the most frequently used loss function is the cross entropy,
which gives the network output its probability interpretation. Because the labels
of the training dataset have to be known for the evaluation of this loss function,
this approach falls under the category of supervised learning. If fω(xi) is the neural
network output for a given training example xi, the cross entropy can be written as:

L =
M∑
i=0

N∑
c=0

−yci log p(c|xi), p(c|xi) = fω(xi) , (3.7)

where the first sum goes over the training data D = (yi, xi), which contains M
examples, and the second sum over all possible classes c; yci is a binary label, which
is 1 if class c is the correct class, and 0 otherwise. N is the number of classes and
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p(c|xi) is the probability vector mentioned above. For binary classification, if the
probability of the class c1 is given by p(c1|xi), the probability of the second class is
just 1− p(c1|xi). In this case, Equation 3.7 can be written as:

L =
M∑
i=0

(−yi log(pi)− (1− yi) log(1− pi)) , pi = fω(xi) . (3.8)

To make the equation more easily readable, p(c1|xi) was shortened to pi and yc1i to
yi respectively.

The minimization of Equation 3.8 can be thought of as a maximum likelihood
(ML) fit. Because, if the expression for L is seen as a negative log-likelihood, the
likelihood of observing the dataset D for a given set of weights ω becomes:

p(D|ω) =
M∏
i=1

pyii (1− pi)1−yi . (3.9)

The total likelihood of observing the correct labels is given as a product of the
individual probabilities, where for each decision of the classifier either pi or 1 − pi
is the probability of observing the correct label. This likelihood interpretation is
important in the context of Bayesian neural networks (see Chapter 4).

3.4 LoLa and CoLa

The two types of layers CoLa [14], which stands for Combination Layer, and LoLa [14],
which stands for Lorentz Layer, are designed to help a neural network extract phys-
ical features from a given list of 4-momenta. Both layers are theory-motivated and
operate on 4-momenta. In this thesis, the architectures containing LoLa and CoLa
were applied to top tagging. However, they could in principle be applied to any kind
of physical task involving a set of 4-momenta.

The idea behind CoLa and LoLa is that first relevant linear combinations of con-
stituents are performed, e.g. from substructures in jets, and then physical features
like the mass and the transverse momentum of these linear combinations are con-
structed. The several linear combinations for CoLa and the repeating aspect of
LoLa gives the network enough freedom to build various kind of combinations of
physically relevant features. LoLa is typically followed by a series of fully connected
dense layers, which further process these features and combine them to a probability
output needed for classification (see Section 3.3).

CoLa builds linear combinations of 4-momenta. The number of constituents per
jet has to be fixed in advance, thus leading to the requirement of having a standard-
ized input. This can be accomplished by adding zeros to jets with fewer constituents
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and removing the softest constituents for jets with too many. The operation of the
CoLa layer can be summarized as:

p̃µj = pµi Cij (3.10)

with the trainable matrix

C =


1 0 · · · 0 ω11 ω12 · · · ω1M

0 1 ω21 ω22 · · · ω2M
... . . . ...

...
...

0 1 ωN1 ωN2 · · · ωNM

 . (3.11)

The unitary matrix is included to pass the original 4-momenta of each constituent,
in addition to the linear combinations, to the next layer. The number of combi-
nations of 4-momenta, M , i.e. the number of additional columns added to C, is a
free parameter of CoLa. Experiments showed that M = 10 is a good choice for
top tagging, however small variations do not perform significantly worse [14, p. 5].
Therefore, for all architectures discussed in this thesis M was chosen to be 10.

After CoLa, a Lorentz layer is applied. If we think of the input as a matrix
with the entries of the 4-momenta as rows and the constituents as columns, CoLa
adds entries in the constituent direction (4, Nconstit)→ (4, Nconstit +M), while LoLa
transforms the feature space. There are many different options for LoLa, but for
the architectures used in these studies the following replacements are performed:


Ẽi
p̃x,i
p̃y,i
p̃z,i

→



m2
i

pT,i∑
j ω

(E)
ij Ej∑

j ω
(m)
ij m2

j∑
j ω

(p)
ij pT,j

2×∑j ω
(d)
ij dij

5×minj ω
(d)
ij dij


, (3.12)

where mi and pT,i are the invariant mass and transverse momentum of the con-
stituent i. Note that these operations are performed after CoLa, therefore some of
the constituent entries are linear combinations of 4-momenta, leading to non-zero
invariant masses. The following three entries are the weighted sum over energies,
invariant masses and transverse momenta. The last two entries describe weighted
Minkowski distances between two constituents i and j. The Minkowski distance dij
is defined as:

dij = (p̃i − p̃j)µ (p̃i − p̃j)µ . (3.13)

For the last entry of the feature vector, the sum over the constituents is replaced
by the minimum. The factors 2 and 5 indicate that the entries are repeated with
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different weights, resulting in a total of 12 feature entries. These replacements are
performed on each individual constituent, even for the entries with a sum over all
constituents. Thus, the individual entries are Nconstit + M copies of the same op-
eration but with different weights. As for CoLa, this specific choice for LoLa was
found to perform well for top tagging, but variations do not perform significantly
worse [14, p. 5].
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4 Bayesian neural networks

While the last chapter gave a short overview of the topic of neural networks and ex-
plained how neural networks can be used for classification, this chapter builds on this
and explains the idea behind Bayesian neural networks. Bayesian neural networks
produce output distributions instead of single numbers, providing an uncertainty for
each prediction. Section 4.1 will present the theoretical background needed to un-
derstand the output of a Bayesian neural network. The following section will show
parallels to existing regularization techniques, which will be important for some of
the discussions in Chapter 5. In the Sections 4.3 and 4.4 some technical details
about the training and justifications of the approach will be given, while Section
4.5 will explain in detail the shape of the output distributions arising for binary
classification. The results of applying Bayesian neural networks to top tagging will
be covered in Chapter 5.

4.1 Bayes’ theorem and variational interference

As discussed in Chapter 3, the weights of a neural network are obtained by min-
imizing a loss function on a training dataset D. This can usually be seen as a
maximum likelihood fit (see Section 3.3). In contrast, for a Bayesian neural net-
work (BNN) [22, 23, 24] the weights are not fixed to specific values, but treated as
random variables following a probability distribution p(ω|D) (see Figure 4.1). This
distribution is obtained via Bayes’ theorem:

p(ω|D) =
p(D|ω)p(ω)

p(D)
(4.1)

and is called the posterior distribution, where p(D|ω) is the likelihood of observing
the training data D for a given network and its parameters ω. p(ω) is a the prior
and can be chosen freely. A standard choice would be a Gaussian distribution with
a mean of µprior = 0 and the width σp treated as a hyperparameter, i.e. a free
parameter which has to be chosen prior to the training. For a classification task,
we are interested in predicting the likelihood p(c|x) of an event x (see also Section
3.3), which is not a part of the training sample, to be a member of the class c. In
the Bayesian approach, p(c|x) is obtained via:

p(c|x) =

∫
dω p(ω|D) p(c|x, ω) , (4.2)

where p(c|x, ω) is the neural network output. It can be interpreted as an average
over an infinite number of possible weight configurations. The likelihood of each
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weight configuration is determined by p(ω|D). The integral from Equation 4.2 is
intractable for neural networks involving thousands or even million of parameters.
One way to solve this problem is called variational interference [25]. The posterior
is approximated by simple tractable distributions qθ(ω). In this way, the integral in
Equation 4.2 can be approximated as:

p(c|x) ≈
∫
dω qθ(ω) p(c|x, ω) , (4.3)

which can be solved by Monte Carlo integration. To obtain the parameters θ of
qθ(ω) the Kullback-Leibler-divergence (KL-divergence) is minimized:

KL[q(ω), p(ω|D)] =

∫
dω q(ω) log

q(ω)

p(ω|D)
. (4.4)

The KL-divergence is 0 for identical distributions and positive otherwise. It can be
seen as a measure for how similar two distributions are. Using Equation 4.2 leads
to:

KL[qθ(ω), p(ω|D)] =

∫
dω qθ(ω) log

q(ω)p(D)

p(D|ω)p(ω)
(4.5)

= KL[qθ(ω), p(ω)]︸ ︷︷ ︸
regularization

+ log p(D)

∫
dω q(ω)︸ ︷︷ ︸

const.

−
∫
dω qθ(ω) log p(D|ω)︸ ︷︷ ︸

log−likelihood

.

The second term can be omitted because it does not depend on the variational pa-
rameters θ. The first term depends on the prior, but not on the training data. A
non-data dependent part in the loss function can be seen as a regularization term.
The third term involves the negative log-likelihood, which would be the cross entropy
for classification (see Section 3.3), with a qθ(ω)-weighted integral over weight-space.
Both terms will be discussed in more detail in the next section.

Having optimized the parameters of the variational distributions, the prediction
can be computed with the help of Equation 4.2 as:

p(c|x) =

∫
dω q(ω)p(c|x;ω) ≈ 1

N

N∑
i=1

p(c|x, ωi) =: µpred ωi ∈ q(ω) , (4.6)

which we call the predictive mean. The mean can be seen as averaging over an
ensemble of networks with different weight configurations. In addition, we can define
the predictive standard deviation [26] as:

σ2
pred =

1

N

N∑
i=1

(p(c|x;ωi)− µpred)2 , (4.7)

which can be seen as an uncertainty for each prediction. The meaning of this
uncertainty and how it correlates with statistics and systematic uncertainties will
be one of the main aspects of this thesis.
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Figure 4.1: Illustration of the difference between a neural network and a Bayesian
neural network. The scalar weights are replaced by distributions, leading
to an output distribution, instead of a number.

4.2 Bayes, L2 regularization and dropout

Many aspects of the loss function introduced in the last section can be related to
standard regularization methods such as dropout and L2 regularization. Both are
techniques used in the machine learning community to prevent overfitting. While
this will help to understand the loss function in more detail, it will be also important
for Section 5.5, where an alternative frequentist-like method is discussed.

Deep neural networks are usually powerful enough to not just learn the general
features but also the statistical fluctuations of the training dataset. This is referred
to as overfitting and decreases the performance on a test sample. One way to
solve this problem is by reducing the model complexity, i.e. using less expressive
models [27, p. 9]. L2 regularization adds a term like:

L2 = λ|ω|2 (4.8)

to the loss function, where λ is a free parameter and |ω|2 =
∑N

i=1 ω
2
i the squared

sum over all weights. Minimizing the loss function with this additional term will
lead to smaller weights. Thus, L2 regularization restricts the parameter space of
the network and reduces the complexity. This potentially reduces overfitting. The
parameter λ determines how strongly the network weights should be restricted. It
will be shown in this section that L2 regularization is equivalent to a Gaussian prior.

For standard dropout [28], on the other hand, for each training iteration a ran-
domly chosen fraction of network weights are set to 0. The only parameter determin-
ing dropout is the dropout rate, which determines the fraction of weights set to 0.
Dropout prevents highly tuned co-adaptation between hidden units. The idea is that
these co-adaptations between hidden units, which encode learnt features, are fine
tuned on the training dataset. Thus, by randomly dropping units during training
co-adaptation is reduced and single hidden units are forced to learn features without
relying too much on other units. This is the usual interpretation given, however this

23



section will show how dropout can be understood in a Bayesian context as well.

The first part of the Bayesian loss function (Equation 4.5) involves the KL-
divergence between the prior p(ω) and the variational distribution qθ(ω). Because
of simplicity both are chosen to be Gaussian distributions (see Section 4.3 for more
details). To each weight ω a variational distribution qθ(ω) = G(ω|µweight, σweight)
and a prior p(ω) = G(ω|µprior = 0, σprior) is assigned. The prior width µprior is set to
0, because we do not assume to have positive values preferred to negative values or
vice versa. The parameters of the prior are shared across all weights. The integral
factorizes into separate integrals over each weight and each term can be computed
as:

KL[qθ(ω), p(ω)] =

∫
dω qθ(ω) log

q(ω)

p(ω)
(4.9)

∼ log

(
σprior
σweight

)
+
σ2
weight + (µweight − µprior)

2

2σ2
prior

− 1

2
(4.10)

∼ log

(
σprior
σweight

)
+
σ2
weight

2σ2
prior

+
µ2
weight

2σ2
prior

− 1

2
. (4.11)

The first two terms are specific to the Bayesian approach, while the third term can
be interpreted as L2 regularization. Identifying ω2 with µ2

weight and comparing the
term to the definition of L2 regularization (see Equation 4.8) leads to:

µ2
weight

2σ2
prior

∼ λω2 → λ =
1

2σ2
prior

, (4.12)

Thus, choosing a Gaussian prior is equivalent to L2 regularization. The purpose
of the prior for Bayesian neural networks can, therefore, be seen as restricting
the weight space and reducing the model complexity. Or turning the argument
around, L2 regularization can be interpreted as assuming a priori Gaussian dis-
tributed weights.

The last term of the loss function (Equation 4.5) involves the negative log-likelihood,
which is the standard loss used in non-Bayesian approaches (see Section 3.3). How-
ever, an additional integration of the from

∫
dω qθ(ω) is present. This can be con-

sidered as an average over weight-space. Solving the integral via Monte Carlo leads
to: ∫

dω q(ω) log p(D|ω) ≈ 1

N

N∑
i=1

log p(D|ωi) with ωi ∈ q(ω) . (4.13)

Choosing qθ(ω) to be a Bernoulli distribution and N to be 1, would lead to ran-
domly setting weights to 0 for each training iteration, which is equivalent to standard
dropout. Therefore, using dropout during training can be seen as having a Bayesian
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neural network with Bernoulli distribuitions upon the weights. This was first shown
in Ref.[29]. For the studies presented in this thesis, qθ(ω) is chosen to be a product
of Gaussian distributions, which could be seen as a Gaussian dropout.

To conclude, regularization appears naturally in the Bayesian loss function through
the prior and the integral over weight space, which helps to prevent overfitting.
Likewise, classical regularization techniques can be interpreted from a Bayesian per-
spective. A network with standard dropout and L2 regularization is a Bayesian
neural network, which shows that the Bayesian treatment is simply an extension of
the current methods and not something completely orthogonal.

4.3 The Gaussian approximation

In addition to the network and its architecture, two choices have to be made for the
Bayesian approach: the form of the prior p(ω) and the variational distribution qθ(ω).
While both distributions can, in principle, be chosen independently, for the studies
discussed in this thesis both were chosen to be Gaussian distributions. Gaussian
variational distributions are a common choice and were, for example, considered by
Ref. [30]. The reason for a Gaussian prior is mostly simplicity. Its impact on the
Bayesian network can be easily understood in terms of L2 regularization (see Section
4.2) and a closed form for the corresponding term in the loss function can be given
(see Equation 4.11). For a study about the influence of the prior see Section 5.6.

The choice of the variational distribution is crucial because it involves approxi-
mating the posterior. We assume the variational posterior to be of the form:

qθ(ω) =
N∏
i=0

G(ωi|µi, σi) , (4.14)

where N is the number of weights in the network and µi and σi are the mean and
width of a Gaussian distribution G. In principle, this involves two approximations:
first, the variational distribution is assumed to factorize, i.e. correlation terms are
omitted, and second, the factorised distributions are approximated as Gaussians.
By having a Gaussian form, a width is assigned to each individual weight which can
be seen as uncorrelated errorbars. Other than showing meaningful results, which are
presented in Section 5, a justification for these approximations is not easy to give.
The shape of the likelihood as a function of the weights ω, which is a crucial part in
the definition of the true posterior, is usually highly non-trivial. This can be seen by
looking at the loss landscape of an ordinary neural network. As discussed in Section
3.3, the loss function is just the negative log-likelihood. It usually involves many
local minima and maxima and, therefore, a non-Gaussian shape for the likelihood
is to be expected. However, the hope of the Gaussian approximation is that the
parameters, σi, of the factorized variational distributions approximate the widths of
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the true distribution and, thus, provide an uncertainty on each weight. In most of
the following studies the discussions will focus on σpred (see Equation 4.2), i.e. the
uncertainty of the prediction and not of individual weights. To give meaning to
individual weights and their uncertainties is often not possible or very difficult.
However, in the discussion of Section 5.8.1 it will be shown how individual weight
uncertainties can be understood with respect to the training data.

4.4 Training of a BNN

The minimization of the Equation 4.5 involves calculating gradients with respect
to the parameters µ and σ. For the regularization term a closed form can be given
(see Equation 4.11), which makes the computation of the gradients straight forward.
The gradients of the log-likelihood term are computed with the help of the repa-
rameterization trick [30, 31]. The idea is to solve the integral via Monte Carlo, but
to write the sampled weights as:

ω = µ+ ε σ, ε ∈ G(x|µ = 0, σ = 1) , (4.15)

which separates the randomness ε from the variational parameters. For instance,
the gradient with respect to σ can be computed as:

∇σ

∫
dω G(ω|µ, σ) log p(D|ω) ≈

N∑
i=1

∇ω log p(D|ω)
∣∣∣
ωi

εi, ωi = µ+ εi σ , (4.16)

whereN is the number of Monte Carlo samples. The gradients of the form∇ω log p(D|ω)
are the same gradients needed for non-Bayesian networks and are evaluated via the
backpropagation algorithm. For the optimization process, standard methods such
as SGD or Adam [20] can be used (see Section 3.2 for details about SGD).

4.5 Predictive distribution

The predictive mean and predictive standard deviation (see Equation 4.2) are the
first two moments of the output distribution (or predictive distribution1) given by
a Bayesian neural network. While for the rest of this thesis the discussion will be
reduced to these two quantities, this section will study the full distribution by de-
riving an analytic formula and giving a discussion about the shape as a function of
the width.

To calculate the predictive mean and predictive standard deviation, N Monte
Carlo samples are drawn from the variational distributions. Each sample of weights
generates one prediction. By creating a histogram of N predictions, a distribution

1Note that in the literature, in contrast to our notations, p(c|x) is often referred to as the predictive
distribution, which is obtained by integrating over the weight distributions.

26



Figure 4.2: Illustration of the predictive distribution for classification. The left col-
umn shows the unconstrained distribution before applying the sigmoid
activation function. The right hand side shows the transformed distri-
butions after sigmoid. The figure is taken from Ref. [11].

over the output space of the neural network can be constructed. To get an idea
about the expected shape of the predictive distribution, it is useful to look at the
distribution before applying the last activation function. For binary classification,
a common choice is the sigmoid function (see Equation 3.6). It maps the uncon-
strained output to a number between 0 and 1 or, for a Bayesian network, it maps the
unconstrained output distribution to the predictive distribution. The weight distri-
butions are chosen to be Gaussian, which led in all our experiments to approximate
Gaussian shaped unconstrained output distributions2. Therefore, to simplify the
problem the unconstrained distribution is assumed to be an exact Gaussian. This
before-sigmoid distribution is then characterized by two quantities: the mean µ and
the standard deviation σ. The predictive distribution is obtained by applying the
sigmoid function on this Gaussian. For this simplified problem an analytical form
can be derived. The mean of the after-sigmoid distribution can be written as:

µpred =
1

N

N∑
i=1

sigmoid(xi) with xi ∈ G(x|µ, σ2) . (4.17)

2Even though the weight distributions are set to Gaussian distributions, the non-linearities of the
neural network could in principle lead to non-Gaussian unconstrained distributions.
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This can be seen as an approximation of the integral:

µpred =

∫ ∞
−∞

dω sigmoid(ω)G(ω|µ, σ2) (4.18)

=

∫ 1

0

dxxG(sigmoid−1(x)|µ, σ2)
d

dx
sigmoid−1(x) (4.19)

=

∫ 1

0

dx x G

(
ln(

x

1− x)|µ, σ2

)
1

(x+ 1)x︸ ︷︷ ︸
=F (x)

=

∫ 1

0

dx xF (x) , (4.20)

where a substitution of the form x = sigmoid(ω) was introduced in the second line.
By using the general expression for an average, we can identify F (x) as the predictive
distribution. F (x) is known as the logit-normal distribution and it depends on the
two before-sigmoid parameters µ and σ, which we call the unconstrained mean and
width. To make the following discussion easier to follow, the subscript “unconstr” is
added to the parameters. There are two widths: the unconstrained width σunconstr

pred

and the width of the predictive distribution σpred and respectively for the mean
µunconstr
pred and µpred. The width of the predictive distribution is defined via Equation

4.7. Using F (x) the width is simply given by:

σ2
pred =

∫ 1

0

dxF (x) (x− µpred)2 (4.21)

On the right hand side of Figure 4.2, the after-sigmoid distribution F (x) is illus-
trated for different unconstrained widths σunconstr

pred and fixed mean µunconstr
pred . Being in

a regime with σunconstr
pred � 1 a Gaussian shape is to be expected. However, increasing

σunconstr.
pred first leads to an almost flat distribution and going even further leads to a

bipolar distribution. In the limit of sending σunconstr
pred to infinity, the after-sigmoid

width σpred reaches 0.5. This is confirmed in Figure 4.3(a). The after-sigmoid width
is shown as a function of the before-sigmoid width. The limit of 0.5 corresponds to
a perfectly bipolar distribution with symmetric peaks at 0 and 1.

The lower two plots of Figure 4.2 show the dependence on the mean µunconstr
pred

for a fixed σunconstr
pred . Starting with µunconstr

pred = 0 and shifting the mean to larger
values pushes the predictive distribution towards the boundary of 1. As closer the
distribution gets to 1, the smaller gets the after-sigmoid width σpred. This is a
result of the constrained interval. For instance, a predictive distribution with a
mean of 0.9 cannot have a width larger than 0.1. This causes a correlation between
σpred and µpred and will play an important role in many of the discussions of the
following sections (e.g. Section 5.3 and 5.8). To get some further intuition about
this correlation, we can look at the limit of small σuncosntr

pred � 1. In this limit the
relation between both widths becomes:

σpred ≈
d

dω
sigmoid(ω)|ω0σ

uncosntr
pred = µpred(1− µpred)σunconstr

pred , (4.22)
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Figure 4.3: Left: predictive standard deviation as a function of the unconstrained
width. The linear approximation is given by Equation 4.22. The two
other plots represent the integrated area as a function of the integration
interval. The values of 68% and 95% represent the Gaussian case. The
figure is taken from Ref. [11].

which is, for a fixed unconstrained width, just an inverse parabola.

Figure 4.2 shows that the predictive distribution can differ significantly from a
Gaussian distribution, if we go to large standard deviations. To make the difference
more quantitative, the middle and right plot of Figure 4.3 illustrate the integration
area as a function of the width. For a Gaussian distribution, the 1σ and 2σ-interval
correspond to an area of 68% and 95%. As expected for small unconstrained widths
this relation holds. The case of σunconstr

pred = 1.5 visualized in green in the middle plot
of Figure 4.3 corresponds to the case of a flat distribution. For this case the rela-
tion between the area and the integration interval becomes almost linear. Further
increasing σunconstr

pred leads to a bipolar distribution with the limit of reaching 100% in
a one standard deviation range.

To conclude, the predictive distribution can be seen as a logit-normal distribution,
which is similar to a Gaussian for small widths. The non-Gaussian case of a flat
distribution or the limit of a bipolar distribution are possible, but all the studies
presented in this thesis showed that these cases do not occur in practice. Therefore,
limiting the discussions to the predictive mean and predictive standard deviation
should be sufficient.

4.6 BNN and regression

The last sections focused mainly on using Bayesian neural networks for classification.
However, it should be mentioned that Bayesian neural networks can be used for
regression as well. Depending on the problem, the likelihood has to be chosen
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accordingly. A simple choice would be for example a Gaussian likelihood:

p(y|x, ω) =
1√

2πσ2
exp

(
−(y − fω(x))2

2σ2

)
, (4.23)

where fω(x) is the output of the neural network for a given data point x and σ is
either a fixed width, describing the spread of the data around the “true” y-value, or
itself predicted by the neural network. The negative log-likelihood in the loss func-
tion (see Equation 4.5) becomes the mean squared error. For further information,
for instance, see the paper [32] by A. Kendall and Y. Gall.
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5 Bayesian networks applied to particle
physics

The following chapter will present experiments involving a Bayesian neural network
applied to top tagging. Section 5.1 will give details about the top tagging samples
and the preprocessing applied on jet images. Section 5.2 will explain the toy network
used for many of the following studies. Section 5.3 will demonstrate how the pre-
dictive standard deviation scales with the overall training size. Sections 5.4, 5.5 and
5.6 will present the calibration of Bayesian taggers, a comparison to a frequentist-
like method and the prior dependence, which will help justifying the approach and
its approximations. Finally, Section 5.7 will demonstrate how Bayesian top taggers
perform on data including pile-up or systematic uncertainties.

5.1 Top tagging and jet images

The signal samples [14] of tt̄-events and the background samples of QCD dijets [14]
were generated with Pythia8 [33] at a beam energy of 14TeV. Pile-up was turned
off. The detector simulations were done with Delphes [34] and the standard
ATLAS-card. The particle flow-entries were clustered with the anti-kt algorithm
(see Section 2) and FastJet [35] into jets with a radius of R = 0.8. Jets with a
pT -range of pT ∈ [550, 650] GeV were selected. Thus, fulfilling the requirement of
pT
mt

& 1 for boosted top jets. In addition, the top jets were truth matched to include
the parton-level top and its parton-level decay products within the jet radius. For
each jet the 4-momenta of the leading 200 constituents were saved and sorted by
pT . If less than 200 constituents were present, the missing entries were filled with
zeros. If not mentioned otherwise, the training set consists of 600k top jets and 600k
QCD jets, the validation and test set of 200k top jets and 200k QCD jets. While the
validation set is used during training to monitor the performance of the classifier,
the test set is used for the final evaluation of the classifier.

Two different approaches were used for the studies discussed in this thesis. The
first approach involves applying the networks directly on the constituent data. In
this case, the network architecture includes the leayers CoLa and LoLa (see Section
3.4). In the second case, the constituent data is first converted into jet-images before
feeding it to a dense or convolutional neural network. The jet-images are constructed
by performing several preprocessing steps, before discretizing the jets to images with
40× 40 pixels. The preprocessing is based on the work of S. Macaluso and D. Shih
[36], which in turn was based on the work of G. Kasieczka et al. [37]. The idea behind
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Figure 5.1: Left: single top jet. Middle and right: average top and QCD jet. The
average jet images were created by piling up 100k jets. The figure is
taken from Ref. [10].

it is to bring the jet images into a standard form and help the network figuring out
important features. The following preprocessing steps were performed:

• calculating the azimuthal angle φ, the pseudo rapidity η and the transverse
momentum pT for each constituent.

• calculating the pT -weighted centroid in the (φ, η)-plane and shifting the cen-
troid to (0, 0). For the computation of the centroid and for performing the
shifts, the periodicity of the angle φ has to be taken into account. For cor-
rectly computing the centroid, a pre-shift to the hardest constituent is per-
formed (assuming the hottest constituent is close to the centroid) which solves
the problem of the jet being to close to the boundaries φ ∈ [−π, π] of the
parametrization.

• calculating the pT -weighted principle axis and rotating the jet such that the
principle axis is vertical.

• flipping the jet vertical or horizontal such that the maximum total pT is in the
region φ < 0, η > 0.

• putting the jet on a grid such that each pixel entry represents the total pT of
all constituents falling into this pixel. For the top tagging samples 40 × 40
images with a range of φ ∈ [−0.7, 0.7] and η ∈ [−0.58, 0.58] were created.

• normalizing the image such that the total pixel intensity (total pT ) is 1.

An example of a top jet is given in the left column of Figure 5.1. The two other
plots show average jet images obtained by piling up 100k images. In these average
jet images the substructure of the top jets becomes visible. As discussed in Chapter
2, the three boosted quarks produced in the hard process cause a 3-prong structure,
while the light quarks or gluons simulated for the background samples lead to a
1-prong structure.
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Figure 5.2: Illustration of the toy model architecture.

5.2 The toy network

The following sections will contain several experiments involving training many
Bayesian and non-Bayesian networks. Training the best availble deep learning top
taggers [10] is usually very time intensive. For this reason, we constructed a toy
network, which consists of 2 inner fully connected layer with 100 units each. The
activation function of both layers is ReLU (see Equation 3.2). The input are jet im-
ages with 40× 40 pixel (see Section 5.1). The output layer consists of 1 unit with a
sigmoid activation function. This leads to a network size of around 300k parameters.
Thus, still having many parameters to be able to learn important features, while
converging in less than an hour. Both, the variational posterior and the prior are set
to be Gaussian distributions (see Section 4.3). If not specified otherwise, the mean
and width of the prior are given by µprior = 0 and σprior = 1. The Bayesian neural
network is implemented using the Flipout Layer [38] of the tensorflow probability
library [39]. The dense layers from Keras [40] were used for the implementation of
the non-Bayesian network versions. The number of Monte Carlo samples for the
evaluation of the predictive distributions is 100, which was found to be sufficient to
get a good estimate of the predictive mean and standard deviation. Adam [20] was
used as an optimizer with a learning rate of 0.001. The training was stopped, if the
validation loss didn’t improve for 10 epochs.

5.3 Statistics and correlation

In the machine learning literature, the predictive standard deviation is usually re-
ferred to as an epistemic uncertainty [41]. This loosely translates to an uncertainty
which decreases with observing more data. In the language of physics, this would
be seen as statistical uncertainties. To check if our Bayesian neural networks cap-
ture uncertainties arising from finite training data, this section will present how the
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Figure 5.3: Histogram of the predictive standard deviation for 200k Top jets. The
size of the training data is given in the plot. The total size is 1.2M QCD
and top jets. The figure is taken from Ref. [11].

predictive standard deviation scales with the overall training size.

The toy network was trained several times on the same top tagging sample, but
each time a different fraction of the total 1.2M jets was used. After the training
converged, the network was evaluated on a given test sample. Figure 5.3 shows
the predictive standard deviation for 200k top jets. Decreasing the training size
increases the predictive standard deviation on average. This proves that the uncer-
tainty output of the Bayesian network scales with the overall number of jets in the
training data. However, as discussed in Section 4.5, the predictive mean is expected
to be correlated with the predictive standard deviation. To get the full picture the
prediction for each jet is, therefore, represented in the [µpred, σpred]-plane in the lower
plots of Figure 5.4. The correlation between the standard deviation and mean fol-
lows roughly an inverse parabola (see Equation 4.22). When decreasing the training
size, two effects are visible. First, the predictive standard deviation increases on
average, second the spread around the correlation curve increases. The correlation
curve is visualized as the solid line and was evaluated as a bin-wise average of the
standard deviation. To make the first effect more easily visible, the left upper plot
of Figure 5.4 shows the average curves for different training sizes. To see how stable
these results are with respect to different trainings and statistically independent
training datasets, the toy network was trained 5 times for each curve. Each time a
different set of training data was sampled from the full dataset. Because the maxi-
mum number of jets was limited to 1.2M, the network for the corresponding curve
was trained 5 times on the same dataset. The errorbars represent the standard
deviation of 5 curves, resulting from the 5 trained networks. The right hand side
of Figure 5.4 shows the average standard deviation of all jets falling into the range
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Figure 5.4: Dependence of the correlation between the two quantities µpred and σpred
and the training size. Below: each point represents the prediction for
one top or QCD jet. The average curve was constructed as an bin-wise
average of the predictive standard deviation. The errorbars represent the
standard deviation of 5 curves given by 5 different trainings. The upper
right plot shows the average standard deviation for jets classified with a
mean value in the range [0.45, 0.5]. The figure is taken from Ref. [11].

µpred = [0.45, 0.55] as a function of the training size. The errorbars are computed in
the same way as for the plot on the left hand site.

From Figure 5.3, it was not clear whether the effect of increased uncertainties
could be completely explained by the fact that for networks trained on less data
more jets are classified with probabilities such as µpred = 0.4, 0.5, 0.6. However,
Figure 5.4 proves that there is a non-mean correlated effect, causing the increased
uncertainties.

5.4 Calibration

If a classifier is calibrated, the output represents the probability of a data point to be
a member of a specific class. For instance for jet tagging, a 0.8 output of a classifier
tells us that 80% of all top jets classified with this number were correctly classified
as top jets. Calibration is usually not important for constructing the ROC curve
and, therefore, not important for the performance of a classifier. However, it matters
if different classifiers are compared event by event to each other (see Section 5.5).
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Both classifier outputs should have the same probabilistic interpretation, otherwise
the comparison is meaningless.

The calibration of a classifier can be illustrated with reliability diagrams. These
diagrams are constructed by discretising the probability output p ∈ [0, 1] into several
intervals Ii of equal length with I1 ∪ I2 ∪ . . . = [0, 1] and calculating the bin-wise
true positive rate for each interval/bin. The bin-wise true positive rate is plotted
against the average probability of all events falling into the corresponding bin. In
our experiments, Bayesian neural networks turned out to be well calibrated, better
than the deterministic approaches (see Figure 5.5). However, there are different post-
calibration methods [42]. An example would be Platt scaling [43], which corresponds
to a linear transformation applied to the before-sigmoid output:

z′ = a z + b p′ = sigmoid(z′) . (5.1)

The two scalar parameters a and b are obtained by minimizing the cross entropy
on the validation dataset with fixed neural network weights. The linearity ensures
that the performance of the classifier is unchanged. Figure 5.5 shows the results of
applying Platt scaling to the deterministic MAP approach, which will be introduced
in the next section. Via the post-calibration method, the deterministic approach is
as well calibrated as the Bayesian neural network.

To summarize, Bayesian networks seem to be better calibrated than deterministic
networks and badly calibrated classifiers can be recalibrated by one of many different
post-calibration methods.
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Figure 5.5: Reliability diagram of the bin-wise true positive rate over the mean pre-
diction in one bin. The bins have equal length of 0.1. The errorbars
represent the standard deviation of reliability curves for 50 trained net-
works. A diagonal curve indicates a well calibrated classifier. The figure
is taken from Ref. [11].

5.5 Relation to deterministic models and a
frequentist approach

This section will discuss an alternative frequentist-like method and compare it to
the Bayesian approach. We define the frequentist method1 as training ordinary
networks N times on statistically independent training samples, each training giv-
ing us a different set of weights and, correspondingly, a different classifier. The
ordinary neural network is obtained by minimizing the negative log-likelihood plus
regularization terms. As it will be shown in this section, the uncertainties on the
frequentist predictions depend on the regularization used for the training. There-
fore, the regularization of the deterministic models has to be chosen carefully for a
proper comparison. As shown in Section 4.2, a Gaussian prior can be interpreted
as introducing L2 regularization upon the weights. The prior width can be used to
derive the L2-parameter2 λ as:

λ =
1

2σpriorNtrain

= 2.5 · 10−6 , (5.2)

where the prior width was set to 1 (see Section 5.6) and the toy networks were
trained on Ntrain = 200k jets. Sampling from the variational posterior can be re-
lated to dropout (see Section 4.2). Similar to L2 regularization dropout effects the

1The method described here is often refereed to as an ensemble method in the literature
2The additional training size dependence arises from the fact that we divide the loss function by

the training size (for more details see appendix A)
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Figure 5.6: Dependence of the frequentist approach on L2-regularization. The re-
sults for the derived L2-parameter (see Equation 4.8) are shown in the
left column. The upper half shows a mean comparison and the lower
half a standard deviation comparison between a Bayesian network and
the frequentist approach. Dropout is not used. The figure is taken from
Ref. [11].

uncertainties on the frequentist predictions. However, while a value for the L2-
parameter λ can be derived, there is no one to one correspondence between the
Gaussian approximation, used in our set-up, and standard dropout. Therefore, the
dropout rate can be chosen freely.

The training data, introduced in Section 5.1, consists of 1.2M jets, thus making
it not possible to have more than 6 independent training datasets, if the training
size is 200k. Therefore, about 20M new events were generated3, using the same
requirements as described in Section 5.1, resulting into 100 statistically independent
training samples and 100 independently trained deterministic toy models. Figure
5.7 shows how the dropout rate effects the standard deviation and mean of the fre-
quentist approach. The predictions of the Bayesian neural network are shown on the
y-axis. While the mean-values shown in the upper part are almost unaffected by the
three different rates (0.1, 0.3, 0.5), the standard deviation decreases on average for
larger dropout rates. The L2 parameter λ was set to the derived value given above.
The best agreement between the frequentist approach and the Bayesian approach

3Jennifer Thompson generated the 20M new events.
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Figure 5.7: Dependence of the frequentist approach on dropout. The upper half
shows a mean comparison and the lower half a standard deviation com-
parison between a Bayesian network and the frequentist approach. The
L2-parameters is set to the derived value of λ = 2.5 10−6. The figure is
taken from Ref. [11].

seems to be given by a dropout rate of 0.3. Similarly, Figure 5.6 shows the impact
of the L2 parameter λ on the mean and standard deviation. For these plots the
dropout rate was set 0. The derived value, which would correspond to our Bayesian
set-up, is shown in the column of the left side. As both figures demonstrate, there
is a dependence on the regularization of the deterministic networks.

To avoid the problem of regularization, the deterministic networks of the fre-
quentist approach can be replaced with Bayesian neural networks. Bayesian neural
networks can be easily turned into deterministic models. This gives us the benefit
of having the same regularization for the “deterministic” models and the Bayesian
network. Similarly to the frequentist approach discussed above, we can calculate a
mean and standard deviation from 100 trained Bayesian deterministic-like models
and compare it to the predictive standard deviation and predictive mean given by
one Bayesian network. To turn a Bayesian network into a deterministic model, we
replace the weight distributions by their maximum values. Because we use Gaussian
distributions as the variational posterior qθ(ω), the maximum value coincides with
the mean value. It is called the Maximum a Posterior (MAP) approach and can be
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summarized as:

ωMAP = argmax
ω

qθ(ω) (5.3)

= argmax
ω

G(ω1|µ1, σ
2
1)G(ω2|µ2, σ

2
2) . . . (5.4)

= (µ1, µ2, . . .) (5.5)

Under the assumption that the variational distribution qθ(ω) is a good approxima-
tion of the true posterior p(ω|D), the MAP approach should lead to similar results
as the fixed network weights obtained by training an ordinary network. Therefore,
the MAP approach can be used to get a set of deterministic models without having
to worry about the regularization of the deterministic networks. Figure 5.8 shows
a comparison of the MAP approach and a Bayesian neural network. As discussed
in Section 5.4, two networks should be both well calibrated if one is interested in
an event by event comparison. If this is not the case, the predictions do not have
the same probabilistic interpretation and making a comparison meaningless. The
MAP approach turned out to be badly calibrated (compare Figure 5.5). Therefore,
to restore the calibration of the MAP approach, Platt scaling was applied to each
individual network. Figure 5.8 shows that the uncertainties of the MAP approach
and the Bayesian network are compatible and in a similar range. This helps jus-
tifying the Bayesian output uncertainties. While for Bayesian neural networks the
distribution over weights have to be approximated (see Section 4.3), the frequentist
approach does not rely on any approximations. However, for studies involving more
complex models with more parameters, the frequentist approach is very computa-
tionally expensive because it involves training many neural networks. This could be
compensated by reducing the number of trained networks significantly, but for the
cost of noisy uncertainty estimates.
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Figure 5.8: Comparing the MAP frequentist-like approach and the predictions of a
Bayesian neural network. The left plot shows a jet-level mean compar-
ison and the right plot a jet-level standard deviation comparison. The
MAP approach was recalibrated to restore the probabilistic interpreta-
tion. The figure is taken from Ref. [11].

5.6 Prior dependence

The prior p(ω) is meant to encode prior knowledge about the parameters ω. How-
ever, there is no prior knowledge accessible for the weights of our Bayesian neural
networks, which makes the choice for the prior p(ω) somewhat arbitrary. Therefore,
it is important to check that the decisions of our Bayesian taggers are not dominated
by this choice. For the studies discussed in this thesis, a factorized Gaussian prior
was used, which can be written as:

p(ω) = G(ω1|µp, σp)G(ω2|µp, σp) . . . (5.6)

where all network weights ωi share the same mean µp and width σp. The mean µp
is fixed to 0, because there is no reason why positive values should be preferred to
negative values or vice versa. The width σp however is a free parameter. It was
varied in a range of 6 orders of magnitude (see Table 5.1). The performance is given
as area under curve (AUC), which refers to the integrated area under the ROC
curve. Above a value of 1 the performance reaches a plateau value. As Section 4.2
demonstrated, the prior appears as a regularization term in the loss function. A
small prior width restricts the range of possible weights strongly and does not give
the network enough freedom to learn the necessary features required for top tagging.
This is equivalent to the case of using L2 regularization with a very large L2 pa-
rameter λ (see Section 4.2). The given AUC values are the average of 5 AUC-values
obtained by training the same Bayesian network with the same hyperparameters 5
times on different samples of 200k jets. Each sample was drawn randomly from the
full training dataset, which consists of 1.2M jets. The errors represent the standard
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Figure 5.9: LoLa architecture. For more information about the first two layers see
Section 3.4.

deviation and demonstrate that training and performance are stable and that there
is no significant improvement above a prior width of σp = 1. The networks trained
with large prior widths converge significantly slower leading to much longer training
times, when using the same set of hyperparameters such as learning rate and other
optimizer specific parameters. Therefore, a prior width of 1 seems to be a good
choice for the toy architecture applied on top tagging.

For classification tasks, it can be argued that the network output, before applying
the sigmoid activation function (see Equation 3.6 and toy network architecture in
Figure 5.2), should be of the order of 1. An input value of 4 already leads to a
sigmoid output of around 0.98, which shows that values of the order of 1 are suf-
ficient to reach the full sigmoid output range of [0, 1]. In addition, the jet images
are normalized to a total pixel intensity of 1 (see Section 5.1). Therefore, having an
input of the order of one and an output of the order of one, makes the assumption of
a prior width of 1 reasonable, because it limits the range of possible weight values to
this range. Because of this argument and the results shown in Table 5.1, the prior
width was set to 1 for the other architectures as well (see Section 5.7).

σprior 10−2 10−1 1 10 100 1000

AUC 0.5 0.9561 0.9658 0.9668 0.9669 0.9670
error — ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002

Table 5.1: Dependence of the prior width on the performance. For each column, the
error represent the standard deviation of 5 different trainings. The table
is taken from Ref. [11].
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Figure 5.10: CNN architecture, based on Ref. [36].

A Gaussian prior is a common and practical choice for Bayesian networks. It
is simple, because it just requires to tune one parameter, a closed form for the
prior dependent part of the loss function can be given (see Equation 4.11), and it
can be easily understood in terms of L2 regularization. However, in the literature
other prior distributions were also studied. A Gaussian mixture for example adds
additional parameters, which have to be tuned accordingly, but it may give the
network more freedom and, therefore, lead to a better performance. For instance,
Blundell et al. [30] introduced a Gaussian mixture with 2 components. The mean
values were set to 0 with one small variance σ1 � 1, causing many weights to
be concentrated around 0 and the other variance large in order to allow a few large
weights as well. However, the studies of this thesis showed that a Gaussian prior was
sufficient to reach the same performance as the deterministic versions (see Section
5.7). Therefore, a simple Gaussian prior was chosen for all studies discussed in this
thesis.

5.7 Deep learning top taggers

For the studies discussed in the previous sections a simple fully connected dense net-
work was used because the studies involved training many neural networks, which
is computationally very expensive for complex architectures. The following sections
will show studies involving Bayesian versions of more complex architectures. It will
be shown how they relate to their deterministic counterparts, whether they can reach
the same performance, and what happens if systematic uncertainties or pile-up are
included.

Two architectures were picked for these studies: an architecture based on convo-
lutional neural networks [36] using jet images as an input, and a constituent based
approach using LoLa (see Section 3.4). At the start of the studies presented in this
thesis, these architecture showed state-of-the-art performance for top tagging. How-
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Figure 5.11: Histogram of number of constituents per jet for QCD and top jets. The
total number of jets is 1.2M.

ever, because of the fast developing field of deep learning there are already networks
showing improved performance with respect to the architectures discussed in this
thesis. For instance, recent promising results were found by H. Qu and L. Gouskos
for their ParticleNet architecture [9]. An overview of many different deep learning
top taggers can be found in Ref. [10].

The last layers of the LoLa network and the CNN are fully connected dense layers
leading to a single output-neuron with a sigmoid function. For the convolutional
architecture, the other activation functions are ReLU. The theory based layer CoLa
and LoLa do not contain activation functions. The settings for CoLa and LoLa are
described in Section 3.4. A sketch of both network architectures is shown in Figures
5.9 and 5.10. For the LoLa architecture, the number of constituents per jet nconstit

has to be set by hand (see Section 3.4). For our top tagging samples the average
number of constituents per top jet is around 55 (see Figure 5.11). For QCD jets it
is around 40. The maximum number of constituents per jet is around 120. Three
different values for nconstit were tested with the largest of 200, which ensures that
every constituent is fed to the network without throwing away soft constituents. As
for the toy network, the convolutional and dense layers are implemented using the
Flipout Layer [38] of the tensorflow probability library [39]. The implementation of
the Bayesian versions of LoLa and CoLa are similar to the above mentioned dense
and convolutional layers, using the tensorflow probability library as well. The dense
and convolutional layers of Keras [40] were used for the non-Bayesian network ver-
sions.

Table 5.2 gives an overview of the performance of the different architectures. The
entire ROC curve is of importance for the given AUC values. However, that means
that the performance at very low or very large signal efficiencies could influence
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this performance measure. These regions of signal efficiency wouldn’t be used in
practice. For that reason, a reference point at εt = 0.3 (signal efficiency) was chosen
to add another performance measure. The signal efficiency at εt = 0.3 would be a
typical working point for top tagging. Both performance measures indicate that the
Bayesian approaches seems to perform similar to the deterministic versions. The
AUC values of the Bayesian and deterministic taggers coincide in almost all cases
within the given accuracy. Several trainings with the same hyperparameters showed
that the AUC values are stable up to the forth decimal place. The small fluctuations
arise, for instance, from different weight initializations. The given 1/εQCD values are
slightley more unstable. The reason for that is that the AUC values are obtained
by integrating over the entire ROC curve, while for 1/εQCD just a single reference
point is chosen.

AUC 1/εQCD for εt = 30%

CNN 0.982 820
B-CNN 0.982 900

LoLa
Nconst = 40

0.979 630
B-Lola 0.979 600

LoLa
Nconst = 100

0.981 740
B-Lola 0.980 710

LoLa
Nconst = 200

0.980 600
B-Lola 0.980 710

Table 5.2: Performance of different Top taggers and their Bayesian versions. The
table is taken from Ref. [11].
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5.8 Systematic uncertainties and stability

If we would apply our trained top taggers to actual data, the taggers would encounter
many additional effects not present in the Monte Carlo data. Pile-up or systematic
uncertainties are two examples. The next sections will show how the top taggers,
and in particular the Bayesian taggers, react to pile-up and some approximation
of a jet energy scale (JES) uncertainty. In both studies, only the test sample will
be modified. The last section will focus on the possibility of including systematic
uncertainties in the training sample.

5.8.1 Pile-up

Pile-up refers to multiple proton-proton interactions per bunch crossing. The hadronic
activity arising from pile-up is usually much softer than the hard process, which
passed the trigger system of the detector. It is not a systematic uncertainty. How-
ever, from a machine learning perspective, it is an uncertainty in the sense of an
effect which is not present in our training data. There are many existing ways to
reduce the impact of pile-up such as Softkiller [44] and Puppi [45] or recent
deep learining based approaches such as Pumml [46]. However, they are not con-
sidered here. The purpose of this study is not to accurately simulate experimental
conditions and propose a new method to handle pile-up more efficiently, but to show
how an analysis can benefit from Bayesian networks, if some inconsistencies between
training and test sample are present.

In total 1M pile-up events4 were generated with Pythia with the min-bias set-
tings. Delphes was used with the standard ATLAS-card for the detector simulation
(see Section 5.1). For each pile-up event the 400 hardest constituents were saved.
A variable number, nPU, of these pile-up events were overlaid with the jet samples
described in Section 5.1. In order to fulfil the original requirements, the jets are
reclustered with the same jet radius of R = 0.8. If several jets were found by the
algorithm, just the hardest was saved.

Figure 5.12 shows the performance of the trained top taggers as a function of
the number of pile-up events. On the left hand side the results for the convolu-
tional architecture are presented. The performance of the BNN is not any more
stable than the deterministic version. On the right hand side two versions of the
LoLa network and their Bayesian versions are compared to each other. While for
nconstit = 40 the Bayesian version performs as well as the deterministic one, for
nconstit = 200 the Bayesian network performs significantly better for large number
of included pile-up events. For the nconstit = 40 network just the 40 hardest con-
stituents are taken into account. As Table 5.2 shows, this is in principle no problem
for the network performance because the discrimination power seems to come mostly

4The events were generated by Jennifer Thompson and included to the samples by Sven Bollweg
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Figure 5.12: Impact of pile-up on performance. 1/εQCD for a given signal efficiency
of εt = 0.3. Left: Bayesian and non-Bayesian CNN-architecture. Right:
different Bayesian LoLa versions and their deterministic counterparts.
The figure is taken from Ref. [11].

from the hardest constituents. Still, some information is thrown away compared to
the nconstit = 200 case, causing the lowest AUC value. However, including pile-up
gives the nconstit = 40 version the benefit of a soft constituent cut, which makes the
network less sensitive to pile-up because pile-up adds mostly soft activity to the jets.
This can explain why LoLa performs better for nconstit = 40 in the lower nPU regime.
However, the surprising feature of the B-LoLa architecture with nconstit = 200 is that
it outperforms the other architectures in the large nPU regime. To understand this
further, in the following discussion will present the impact on the output uncertain-
ties and individual weight uncertainties.

As discussed in Section 4.1, the mean-output of a Bayesian network can be seen
as a average over network predictions. In that sense, one could expect the Bayesian
networks to be more stable with respect to noise in the data. However, just the
nconstit = 200 version shows improved performance. The Bayesian nconstit = 40
version and the Bayesian CNN do not perform better than their deterministic coun-
terparts. To understand this behavior further, it is useful to look at the individual
predictions in the [µpred, σpred]-plane. As can be seen in Figure 5.13 for nconstit = 200,
more pile-up events lead to increased output uncertainties. While the network per-
forms better on a large amount of included pile-up, at the same moment the network
also reacts with increased uncertainties on the mean values. For the CNN, we do
not observe any increased uncertainties in the correlation plane (see Figure 5.14).
However, for the mean-correlation curve a kink is appearing in the central region
around µ = 0.5. The mean-correlation curve is constructed in the same way as
described in Section 5.3. The correlation is an intrinsic property of the constrained
output interval for a binary classification task (see Section 4.5). For B-CNN, the
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Figure 5.13: Impact of pile-up on the predictive standard deviation in the
[µpred, σpred]-plane for B-LoLa with nconstit = 200. For details about
the construction of the correlation-curves, see Figure 5.4 and Section
5.3. The figure is taken from Ref. [11].

simple correlation curve does not seem to be present any longer. While the Bayesian
version is not more stable with respect to pile-up, at least the analysis in the corre-
lation plane seems to give us a hint about the fact that the network performance is
somehow unstable.

While analysing the [µpred, σpred]-plane provides a nice handle for understanding
neural network based taggers in greater detail, we can even go a step further and try
to understand the individual learnt weight distributions. Each weight is described
by two parameters, a mean and and a width. The first layer, CoLa, of B-LoLa builds
linear combinations of the form (see Section 3.4):

ω1 p
µ
1 + ω2 p

µ
2 + ω3 p

µ
3 + . . . (5.7)

Because of the pT -ordering, weight number 1 will always be associated with the hard-
est constituent, while weight number 2 will be associated to the second hardest and
so on. This gives us the benefit of being able to understand the individual weights
of B-LoLa. In Figure 5.15, the mean and width for each weight is illustrated. The
widths of the weights increase monotonically towards a threshold of around 120,
which represents the largest number of constituents per jet present in the training
sample. In red the number of jets which include at least a certain number of con-
stituents is visualized. It shows that the widths of the weights loosely correspond
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Figure 5.14: Impact of pile-up on the predictive standard deviation in the
[µpred, σpred]-plane for B-CNN. For details about the construction of
the correlation-curves, see Figure 5.4 and Section 5.3. The figure is
taken from Ref. [11].

to the statistics of the training data. With fewer examples present in the training
data which would help fixing the value of a certain weight, the weight’s uncertainty
increases. This is a nice representation of the learnt weight uncertainties, but it
also helps to understand the behavior of B-LoLa, when introducing pile-up. Pile-up
mostly introduces soft constituents to the test samples. The corresponding weights
of CoLa (and LoLa) are given large uncertainties, leading to a more careful treat-
ment of these constituents and, therefore, a better tagging performance for large
amount of pile-up. This more careful treatment for large uncertainties comes from
the fact that the prediction of a Bayesian network, which is approximated via the
predictive mean, is an integral over all weight distributions. The contribution from
these weights eventually vanish, if integrated over. Because the included soft con-
stituents will “activate” many of the weights with large uncertainties, the predictive
standard deviation will increase, which explains the behavior visible in Figure 5.13.

Another effect illustrated in the plot on the right hand site of Figure 5.15 is that
the mean-values of the weights above 120 are all trained to zero. This is the regime of
zero training statistics. It acts like a cut off for the softest pile-up constituents. The
network decisions benefit from this behavior in the same way as LoLa nconstit = 40
benefits for a small number of included pile-up events. Sending the weight values
to 0 for unused/irrelevant weights could be also accomplished by introducing L2
regularization for deterministic networks. However, the deterministic case does not
have an equivalent to the widths of each weight, which tell the network to treat soft
constituents more carefully.

The discussed benefits of B-LoLa for nconstit = 200 are not present for the B-CNN
nor the B-LoLa network with nconstit = 40 . The operations of the layers CoLa and
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Figure 5.15: lIlustration of the learnt parameters for each weight of the first layer
(CoLa). The red curve in the plot on the left side gives the number of
jets with at least this amount of constituents. The value of 1 for σweight
and 0 for µweight are the values of the prior.

LoLa are applied to individual constituents, making it very easy for the network
to encode the training statistics related uncertainties into the uncertainties of the
weights. Conversely, the B-CNN is based on convolutional operations. The kernels
of the convolutions are moved over the entire image, making it difficult for the net-
work to learn the above discussed uncertainties. This is a possible explanation for
B-CNN not being any more stable than the deterministic version. For the LoLa
architecture with nconstit = 40 the softest constituents are thrown away before even
applying the first layer, giving the network no chance to learn these uncertainties.

To conclude, the large uncertainties given to weights which are responsible for
soft constituents lead to a more careful treatment of jets with a large amount of
pile-up and, therefore, a better tagging performance. In the same moment, the
increased output uncertainties are a clear sign of having inconsistencies between
training and test data, leading to the natural next step of including pile-up in the
training sample (see Section 5.8.3 for the case of the JES uncertainty). In addition,
this section demonstrates how the additional weight uncertainties can be used to
better understand the behavior of a neural network based tagger, which are often
seen as black box algorithm.

5.8.2 JES uncertainty

To study how our Bayesian top taggers react to systematic uncertainties, we approx-
imated a jet energy scale (JES) uncertainty. The various different JES uncertainties
arise in the calibration steps, which are required for matching jets reconstructed from
the energy depositions in the detector to the truth particle-level jets. The ATLAS
colaboration lists, in total, 80 different systematic uncertainties [47]. These un-
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Figure 5.16: Impact of jet energy smearing. The shift factor describes the energy
shift of the hardest subjet. The error bar in the middle plot was cal-
culated via Equation 4.22. The error bar in the plot on the right hand
side visualize the unconstrained predictive standard deviation, which
was introduced in Section 4.5. The figure is taken from Ref. [11].

certainties arise from assumptions about event topologies, propagated uncertainties
from photon, muon and electron energy scales, imperfect Monte Carlo simulations,
pile-up and other sources. The total uncertainty is estimates as being in the range
of 1% . . . 4%, depending on the total jet pT [47, 48]. In our studies, to approximate
the total JES uncertainty the following steps5 were performed on each fat jet:

• clustering subjets with the anti-kt algorithm and a jet radius of R = 0.4.

• sampling a different random number for each subjet from a Gaussian distri-
bution ε ∈ G(µ = 0, σJES) and multiplying the 4-momenta of each subjet with
1 + ε.

The JES shifts turned out to impact the performance of our top taggers only
marginally. Therefore, the Gaussian width σJES was raised up to unphysically large
values. Similar to the pile-up study, this study is meant to give some intuition about
how Bayesian neural networks react to systematic uncertainties and is not meant
to be experimentally accurate. For that purpose, this section will focus on under-
standing the impact on the Bayesian output uncertainty of B-LoLa. A study about
the performance will be given in the next section.

In addition to the random Gaussian shifts described above, we also performed
shifts on the 4-momenta of only the hardest subjet. While the procedure described
above is experimentally a little bit more accurate, the random energy shifts make it
difficult to understand the impact on the predictions for individual jets. The plot
on the left hand side of Figure 5.16 shows the effect of smearing the 4-momenta
of only the hardest subjet. The error bar represents the predictive standard devi-
ation of a single top jet, while the mean value is represented as the central point.

5The smeared samples were provided by Sven Bollweg.
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Shifting the 4-momenta of the hardest subjet in the negative direction, e.g. lowering
pT and energy, decreases the predictive mean. That means, by lowering the energy
of the hardest subjet, the jet appears more QCD-like to the tagger. On the other
hand, increasing the energy of the hardest jet, makes the jet look more top-like.
Two possible explanations can be given. Lowering the energy of the hardest subjet
washes out some of the substructure, because the difference between the subjets is
less significant, leading to more QCD-like jets. Another explanation could be that
the total jet mass is lowered by decreasing the 4-momenta of the hardest subjet,
leading to the same conclusion. Further investigations are beyond the scope of this
thesis. However, the important observation is that by smearing energies the mean
prediction is raised or lowered which in turn impacts the output uncertainty. For top
jets, decreasing the energy and, therefore, the mean value increases the uncertainty,
while increasing the energy decreases the uncertainty. This behavior is caused by
the correlation between the mean and the standard deviation (see Section 4.5 for
details about the correlation). Going from these fixed energy shifts to the random
Gaussian energy shifts introduced above will lead to both, jets with increased and
decreased uncertainties. The correlation completely dominates the impact on the
output uncertainties.

To further illustrate the impact of the correlation, the plot on the right hand
side of Figure 5.16 shows the unconstrained predictive standard deviation. It is the
standard deviation of the unconstrained neural network output before the sigmoid
function is applied. By removing the step of applying the sigmoid function, most
of the correlation between the mean and the standard deviation can be removed.
The width seems to be almost constant as a function of the shift. For the plot
in the center σpred was replaced with σcalc

pred, which was computed from σunconstr
pred for

zero shift with the help of Equation 4.22. Both plots illustrate that the impact on
the uncertainty is mostly caused by the correlation and that the correlation can be
reduced by going into the before-sigmoid space.

As for the pile-up study, a desired effect would be to see larger output uncer-
tainties at least on average. However, these effects seem to be much smaller for
the JES uncertainty than for the pile-up study. Any possible effects are completely
dominated by the correlation. To see if there are at least small effects present, we
tried to decorrelate the uncertainty output from the mean value. Figure 5.17 shows
a histogram of a jet by jet comparison of σunconstr

pred . As argued above, the width in
the before-sigmoid space is mostly decorrelated from the mean value. In addition,
the jets were normalized to remove the dependence on the original jet pT . The left
hand side shows the effects on QCD jets, while the right hand side shows the same
for top jets. The normalized difference, which is represented on the x-axis, is defined
as:

∆σ =
σunconstr
smear − σunconstr

σunconstr
smear + σunconstr

. (5.8)
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Figure 5.17: Histogram of a jet by jet comparison of the unconstrained width for
smeared and nominal data. The Bayesian network was trained on nom-
inal data. The normalized difference is defined in Equation 5.8. The
figure is taken from Ref. [11].

For QCD jets the average difference is consistent with zero. However, for top jets,
the tagger assigns on average a larger unconstrained uncertainty to the smeared jets.
The solid line indicates a Gaussian fit. It makes a tail with increased uncertainties
in the upper part visible. The given mean values and the tail in the upper part both
demonstrate that there are more jets present with increased uncertainties than with
decreased uncertainties.

To conclude, the correlation between the mean and the standard deviation strongly
dictates how the Bayesian top tagger reacts to the JES uncertainty. However, as
this section demonstrates, this correlation can be easily understood and attempts
can be made to decorrelate both quantities. Decorrelating the uncertainty out-
put shows that there are more jets present with increased output uncertainties for
samples with the JES uncertainty included compared to samples without the JES
uncertainty. Therefore, this section shows that the output uncertainty of Bayesian
networks can, in principle, capture systematic uncertainties. The requirement is
that the systematic uncertainty is not included in the training sample. However,
how these effects can be made more easily visible such that the decorrelation step
can be removed, requires additional investigations.

5.8.3 Data augmentation

While the last two sections discussed the behavior of Bayesian neural networks tested
on samples including systematic uncertainties or pile-up, this section will demon-
strate the impact on Bayesian and non-Bayesian taggers, when the JES uncertainty
is included in the training data as well. In the machine learning community this
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Figure 5.18: Impact of including the JES uncertainty in the training sample. The
left hand side shows the impact on the performance, while the right
hand side illustrates the prediction for a single top jet. In the right
hand side, the network was trained on σJES = 0.1. The predictions
without error bars are predictions arising from deterministic networks.
The figure is taken from Ref. [11].

would fall under the category of data augmentation [49].

Data augmentation is often used for artificially increasing training statistics by
augmenting the dataset with slightly modified copies of existing data. E.g. for the of-
ten used MNIST [50] dataset, which contains images of hand drawn digits, copies of
images are taken and slightly rotated to generate “new” examples. However, limited
training statistics is in principle no problem for our Monte Carlo based approach,
because we can easily generate more training data. Instead, we will focus on the
effect of including systematic uncertainties into the training data to increase the
stability of the taggers. This data augmentation could be applied to any kind of
systematic uncertainties, pile-up or theoretical uncertainties. The only requirement
is that the uncertainty is understood well and can be simulated for the training data.

In our experiments, the JES uncertainty is included in the training set via ran-
dom Gaussian shifts applied to each jet (see previous section for details). Just one
smeared version of each jet is included in the training set to keep the total train size
constant. The left plot in Figure 5.18 shows the performance in terms of AUC as
a function of the amount of uncertainty included in the test sample (σJES). As the
pink curve indicates, introducing energy smearing in the training data can decrease
the performance on unsmeared data. The trained network performs the worst on
data without any smearing. However, the network shows also the best performance
on the dataset with largest smearing included. Thus, by simply including the sys-
tematic uncertainty in the training set the taggers show improved performance on
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samples with systematic uncertainties.

The right hand side of Figure 5.18 illustrates the prediction for a single top jet
and how smearing the hardest subjet does not effect the prediction for a classifier
trained on smeared data. The points without error bars indicate the predictions of a
non-Bayesian version of the top tagger. Both network versions react in the same way
to the data augmentation. They become stable with respect to the random energy
shifts. The networks learnt to not trust the absolute values of the 4-momenta any
longer and, therefore, rely more on features which are unaffected by small random
energy shifts. In this sense, depending on the strength of the included uncertainty
the network output decorrelates from the systematic uncertainty.

For even further decorrelation of the uncertainty from the tagger output, an ad-
versarial network could be included to the training. An adversarial network is an
additional neural network working against the classifier and trying to guess in which
direction the uncertainty shift was performed by only relying on the output of the
classifier. This was for example considered by Ref. [51] and applied on a theoretical
uncertainty.

To conclude, the simple idea of including systematic uncertainties in the training
sample shows promising results. An improved performance on samples with un-
certainties included is observed. Depending on the strength of the included energy
shifts the tagger output starts decorrelating from the uncertainty. A full decor-
relation could be accomplished by adding an adversarial network. However, fully
decorrelating the uncertainty from the tagger output doesn’t necessary have to lead
to the best performance. The network could possibly learn the uncertainty distribu-
tion and the performance could benefit from a remaining slight dependence on the
strength of the uncertainty. Further investigations have to be made to answer what
the best strategy would be.
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6 Conclusion and outlook

The studies discussed in this thesis showed that Bayesian neural networks provide
many features, which could potentially be useful for LHC physics. The Bayesian
neural networks were trained on distinguishing top and QCD jets. It was demon-
strated that they reach the same performance as their deterministic counterparts
(see Section 5.7), thus, proving that they are as good as deterministic models, while
providing additional information in terms of an output uncertainty.

Is was shown that Bayesian neural networks are better calibrated as the determin-
istic versions and that badly calibrated taggers can always be recalibrated via the
help of post-calibration methods (see Section 5.4). To justify the Bayesian output
uncertainty and the approximations needed for the approach, several experiments
were performed. The comparison to a frequentist-like method demonstrated that
both approaches lead to similar results (see Section 5.5). However, when consider-
ing complex architectures the Bayesian networks are less computational expensive.
Furthermore, the dependence on the prior was investigated and it has been shown
that the prior doesn’t dominate the Bayesian output distributions.

Several sections of this thesis investigated if the Bayesian output uncertainty cor-
relates with uncertainties known in physics. Section 5.3 showed that the output
uncertainties of Bayesian classifiers correlate with the overall training size and, thus,
proving that the jet-level uncertainty correlates with uncertainties which arise from
finite training data. These effects were found to be orthogonal to the correlation be-
tween the predictive mean and standard deviation. Furthermore, Section 5.8 showed
that the output uncertainties correlate with systematic uncertainties and pile-up, if
these effects are not present in the training data. For pile-up, increased uncertainties
were found for the Bayesian LoLa version. For the JES uncertainty, it was demon-
strated how the correlation between mean and standard deviation usually dominates
the jet-level uncertainty. However, after going into before-sigmoid space, small un-
correlated effects were visible, proving that the Bayesian output uncertainty provides
additional information, not contained in the mean output. These additional decor-
relation steps were not required for pile-up nor the study about training statistics.
Whether these steps which are needed for uncertainties with small impact on the
tagger can be removed in the future, requires additional investigations.

Furthermore, an increased stability with respect to pile-up was proven for B-Lola
(see Section 5.8.1). This improved stability can be easily understood by studying
the individual weight uncertainties of the first two layers, demonstrating that the
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Bayesian approach provides an additional handle, which can be used to better under-
stand the decision of neural networks, which are often seen as black box algorithm.
These improvements were found for Bayesian neural networks not trained on pile-up.
However, large Bayesian output uncertainties, as they were present for pile-up, can
be understood as a warning about inconsistencies between training and test sample,
leading to the natural next step of including these inconsistencies in the training
data. This was demonstrated for the JES uncertainty (see Section 5.8.3). By in-
cluding the uncertainty in the training sample increased performance was found on
datasets with included uncertainty. For further decorrelation of the tagger output
from uncertainties adversarial networks could be introduced. However, whether a
full decorrelation is really the best strategy, requires additional investigations.
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A Implementation of the loss function

In Section 4.1 the KL-divergence was introduced as the loss function for Bayesian
neural networks. For the implementation one has to be careful about the correct
pre-factors. In Section 4.1 the loss function was derived as:

L = KL[qθ(ω), p(ω)]−
∫
dω qθ(ω) log p(D|ω) (A.1)

The second term involves the negative log-likelihood, which can be written as (see
Equation 3.7):

log p(D|ω) =
N∑
i=1

M∑
c=0

yci log p(c|xi, ω) (A.2)

where N is the number of samples in the training dataset and p(ci|xi, ω) is the
network output and likelihood of observing the class c for a given input xi and
network parameters ω. yci is a binary label which is 1 for the correct class and 0
otherwise. However, usually the loss function is not evaluated on the entire training
dataset, but on minibatches of size L. Minibatch optimization approximates the
negative log-likelihood as:

log p(D|ω) ≈ N

L

L∑
i=1

M∑
c=0

yci log p(c|xi, ω) (A.3)

where the prefactor comes from the fact that we assume the average over one mini-
batch approximates the average over the entire training dataset. It is common prac-
tice to divide the loss function by he number of samples N of the training dataset.
In this way the sum turns into an average. The loss function becomes:

L =
1

N
KL[qθ(ω), p(ω)]− 1

L

L∑
i=1

M∑
c=0

∫
dω qθ(ω) yci log p(c|xi, ω) (A.4)

It is important to notice the different prefactors in front of the first and second term.
As mentioned in Section 4.4 the integral over the log-likelihood can be computed
via Monte Carlo integration and the gradients can be computed with the help of the
reparameterization trick. The term in the loss function becomes:

L =
1

N
KL[qθ(ω), p(ω)]− 1

L

L∑
i=1

M∑
c=0

1

K

K∑
k=1

yci log p(c|xi, ωk) (A.5)
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Where K is the number of Monte Carlo samples and ωk are samples from the vari-
ational distribution ωk ∈ qθ(ω). Section 4.2 showed that it is possible to give a
closed form for the first term, if the variational distribution and the prior are factor-
ized Gaussian distributions. In this context a parameter for L2 regularization was
derived

λ =
1

2σ2
prior

(A.6)

However, because of the additional prefactor from above the factor has to be cor-
rected by the training size:

λ =
1

2σ2
priorN

(A.7)
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comparison between a Bayesian network and the frequentist approach.
The L2-parameters is set to the derived value of λ = 2.5 10−6. The
figure is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Comparing the MAP frequentist-like approach and the predictions
of a Bayesian neural network. The left plot shows a jet-level mean
comparison and the right plot a jet-level standard deviation compari-
son. The MAP approach was recalibrated to restore the probabilistic
interpretation. The figure is taken from Ref. [11]. . . . . . . . . . . . 41

5.9 LoLa architecture. For more information about the first two layers
see Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 CNN architecture, based on Ref. [36]. . . . . . . . . . . . . . . . . . . 43
5.11 Histogram of number of constituents per jet for QCD and top jets.

The total number of jets is 1.2M. . . . . . . . . . . . . . . . . . . . . 44
5.12 Impact of pile-up on performance. 1/εQCD for a given signal efficiency

of εt = 0.3. Left: Bayesian and non-Bayesian CNN-architecture.
Right: different Bayesian LoLa versions and their deterministic coun-
terparts. The figure is taken from Ref. [11]. . . . . . . . . . . . . . . . 47

5.13 Impact of pile-up on the predictive standard deviation in the [µpred, σpred]-
plane for B-LoLa with nconstit = 200. For details about the construc-
tion of the correlation-curves, see Figure 5.4 and Section 5.3. The
figure is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . . . 48

5.14 Impact of pile-up on the predictive standard deviation in the [µpred, σpred]-
plane for B-CNN. For details about the construction of the correlation-
curves, see Figure 5.4 and Section 5.3. The figure is taken from Ref. [11]. 49

5.15 lIlustration of the learnt parameters for each weight of the first layer
(CoLa). The red curve in the plot on the left side gives the number
of jets with at least this amount of constituents. The value of 1 for
σweight and 0 for µweight are the values of the prior. . . . . . . . . . . . 50
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5.16 Impact of jet energy smearing. The shift factor describes the energy
shift of the hardest subjet. The error bar in the middle plot was
calculated via Equation 4.22. The error bar in the plot on the right
hand side visualize the unconstrained predictive standard deviation,
which was introduced in Section 4.5. The figure is taken from Ref. [11]. 51

5.17 Histogram of a jet by jet comparison of the unconstrained width for
smeared and nominal data. The Bayesian network was trained on
nominal data. The normalized difference is defined in Equation 5.8.
The figure is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . 53

5.18 Impact of including the JES uncertainty in the training sample. The
left hand side shows the impact on the performance, while the right
hand side illustrates the prediction for a single top jet. In the right
hand side, the network was trained on σJES = 0.1. The predictions
without error bars are predictions arising from deterministic networks.
The figure is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . 54

B.2 List of Tables

5.1 Dependence of the prior width on the performance. For each column,
the error represent the standard deviation of 5 different trainings.
The table is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . 42

5.2 Performance of different Top taggers and their Bayesian versions. The
table is taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . . . . 45
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