
Department of Physics and
Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Thomas Lübbert
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Abstract

We discuss two complementary approaches to account for the leading logarithms of QCD
calculations to all orders in perturbation theory: The Monte Carlo parton shower and the
method of resummation. These approaches are implemented in the programs sherpa [1]
and caesar [2]. We show that the integrated form of the splitting probabilities used in
sherpa have next-to-leading logarithmic (NLL) accuracy in the limit of massless partons.
We present results obtained with sherpa for distributions of a range of dijet event shapes
at the Tevatron collider. These results will be compared to predictions of NLO+NLL
accuracy obtained by caesar in [3]. We find agreement between the two complementary
approaches within theoretical uncertainties.
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1 Introduction

Particle physics aims to describe the properties of matter and its interactions down to very
small distances. The currently best established theory of elementary particle physics, the
Standard Model, predicts, for reasons of self-consistency, the existence of a yet unobserved
particle, the Higgs boson. While direct searches give a lower limit on its mass of order 100
GeV, electroweak precision data from the LEP experiments limit its mass from above by
about 200 GeV. Hence, if the Standard Model is correct, the Higgs boson should be observ-
able in this energy range. Moreover, many models for physics beyond the Standard Model
predict additional heavy particles, which might be discovered at high energies. Tests for the
existence of the these particles and the Higgs boson, to falsify or support the corresponding
theories, require a sufficiently high center of mass energy in scattering experiments. The
only accelerators that provide such high energies are the hadron-hadron colliders “Teva-
tron” at Fermilab and “LHC” at CERN. Since they collide hadrons, whose constituents,
the partons, are color charged, most of the scattering events that occur involve only color
charged particles which are described by the theory of Quantum Chromodynamics (QCD).

For new physics searches, however, these have to be considered as a background and need
to be reduced. Thus, to describe the physics of hadron colliders and eventually extract
signals of new physics, one needs to understand QCD very well and describe its observ-
able implications with high accuracy. For this goal, fixed order calculations turn out to
be insufficient, but methods are required that resum the dominant effects of higher order
corrections to all orders. Two of these methods will be the main subjects of this work.
Besides discussing their theoretical foundations, their predictions for the distribution of
dijet event shape observables will be studied in detail. Event shape variables measure the
geometrical properties of the momentum flow in events and, notably, its deviation from
pure lowest order predictions. Hence, they provide a laboratory to test perturbative QCD,
both its fixed order and its resummation approaches. This is our main motivation to look
at them. Moreover, they might serve as tools for new physics searches, as the energy flow
of most new physics events deviates considerably from pure QCD events. While event
shapes for other collider types are know to high accuracy, at hadron colliders still a better
understanding is needed. A contribution in this direction has been given in [3].

The structure of this work will be as follows. In chapter 2, we will introduce the relevant
theory of QCD in form of its Lagrangian and show, how it is used to obtain experimen-
tally testable predictions. Along the way, we will encounter difficulties related to strongly
enhanced or even divergent contributions. We will introduce the basic concepts that allow
to control these difficulties. Related to this, we will look at general properties of QCD
matrix elements and the multi particle phase space in chapter 3. We will find that the
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1 Introduction

emission of soft and collinear particles is strongly enhanced and that its leading effects can
be factorized from a hard core-process for hard scattering events.

Using this factorization property, we will discuss methods to account for the dominant
effects of this radiation to all orders in perturbation theory in chapters 3.4, 4 and 6.
For the methods of Monte Carlo parton showers and resummation, we consider explicit
examples of programs, which are sherpa [1] and caesar [2], respectively. While those
topics are known in the literature, we extend the understanding of the accuracy of sherpa

in this work. In section 3.3, we show that the shower ordering parameter used in sherpa

respects next-to-leading logarithmic (NLL) accuracy as defined later. In chapter 5, we proof
the same accuracy for the integrated form of the splitting probabilities used in sherpa.
During reviewing the discussion of resummation, we find that sherpa itself can provide
NLL accuracy only in the limit of a large number of colors (Nc → ∞). In chapter 8, we
will compare predictions from sherpa and caesar for the event shape observables, which
we already mentioned above and which will be defined in chapter 7. In chapter 9, we will
conclude.
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2 General aspects

In the first section of this chapter, we will introduce the theory of Quantum Chromody-
namics (QCD), which describes the interaction of the constituents of hadrons and which
is the theory discussed throughout this work. In section 2.2, we will outline, how a quan-
tum field theory as QCD can be used to predict experimentally measurable observables by
perturbative calculations, and what kinds of problems are encountered on the way.

2.1 Quantum Chromodynamics

The current theory describing elementary particle physics is the Standard Model (SM).
It contains fermions, i.e. quarks and leptons, as well as bosons, i.e. gauge bosons and
Higgs bosons. The gauge bosons transmit interactions between the appropriately charged
fermions. They have to be introduced, to make the Lagrangian invariant under the
SU(3)C × SU(2)L × U(1)em gauge group, which is a local symmetry of the theory. The
strength of various gauge interactions is governed by the corresponding coupling constant
α.

For particles charged under SU(3)C , i.e. they carry color charge, the “strong interaction”
is the dominant one. It is transmitted by the gluons, the gauge bosons of SU(3)C , and
it is described by the theory of QCD. In this work, we will discuss jet physics at hadron
colliders. Since hadrons consist of color charged constituents, which are (anti)quarks ((q̄))
and gluons (g), we will concentrate on QCD in the following.

SU(3) Symmetry

Quarks are fermions, i.e. spinors with respect to Lorentz symmetry, which, of course, is a
symmetry of the QCD Lagrangian. Quarks are in the fundamental (“3”) representation
of SU(3), i.e. in color space they are three-vectors labeled by the color index a = 1, 2, 3
which transform as

qa(x) → q′a(x) = Uab(x)qb(x) , (2.1)

where Uab(x) is in the fundamental representation of SU(3), i.e. a unitary 3×3 matrix with
determinant 1. In terms of the 8 = 32 − 1 generators tA, A = 1, ..., 8 of SU(3), we can
write

U(x) = e−α
A(x)tA , (2.2)

3



2 General aspects

where, as in eq. (2.1), a sum over repeated indices is understood. The generators tA are
hermitian and traceless matrices as implied by the corresponding requirements on U . They
fulfill the relations

[tAr , t
B
r ] = fABCtCr , (2.3)

tr(tAr t
B
r ) = Trδ

AB with TF =
1

2
, TA = 3 , (2.4)

∑

A

tAr t
A
r = Cr 1d(r) . (2.5)

These relations hold in any representation r of the group. The constant Cr in eq. (2.5) is
called Casimir operator of the representation r. The constant Tr is related to it by

Tr =
d(r)

d(A)
Cr , (2.6)

where A labels the adjoint representation. The latter is d(A) = 8 dimensional, and ful-
fills the special relations (tB)CD = −ifBCD and TA = CA. In eq. (2.4), we fixed the
normalization of tAr and fABC by the choice TA = 3.

In eq. (2.3), fABC are the structure constants of SU(3), which are totally antisymmetric
and independent of the representation. The non-vanishing structure constants that are not
related by symmetries are

f 147 = f 156 = f 246 = f 257 = f 345 = f 367 =
1

2
,

f 123 = 1, f 458 = f 678 =

√
3

2
. (2.7)

Lagrangian of QCD

To get the QCD Lagrangian, we start with the Dirac Lagrangian

LD = ψ̄(x) (i 6∂ −m)ψ(x) , (2.8)

where ψ represents a quark and 6∂ = ∂µγ
µ with the Lorentz gamma matrices γµ. Performing

a local SU(3) transformation as in eq. (2.1), this transforms as

ψ̄ (i 6∂ −m)ψ → LD + ψ̄a

[
iU †ab(x)∂µUbc(x)

]
γµψc . (2.9)

Thus, eq. (2.8) does not obey local SU(3) symmetry. To restore the symmetry, we need
to add an additional term, which transforms as minus the second term of eq. (2.9). Since
again it has to contain ψ and ψ̄, we only need to look at the expression in the squared
bracket in eq. (2.9), which carries a vector index µ, two color indices a,c and depends on
x. Therefore, we introduce the fields Aµ ab(x) = AAµ (x)tAab, which interact with the fermions
in the following way

LI = gSψ̄aAµabγ
µψb . (2.10)
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2.1 Quantum Chromodynamics

The fields AAµ (x) are called gluons. In order to guarantee gauge invariance of LD + LI ,
Aµab(x) has to transform in the appropriate way. Under Lorentz symmetry, it transforms
as a vector. In color space, where it is a matrix, it has to transform as

Aµab(x) → Uac(x)Aµ cd(x)U
†
db(x) −

i

gS

(
U †ac(x)∂µUcb(x)

)
. (2.11)

With this choice, LD+LI is obviously gauge invariant. Introducing the covariant derivative

Dµ ab = ∂µδab − igSAµ ab(x) , (2.12)

we can write the Lagrangian as

LD + LI = ψ̄ (i 6D −m)ψ , (2.13)

where we suppressed the color indices as we did for the spinor indices from the very
beginning. Only one other invariant and renormalizable term, which is build from ψ and
Aµ, is relevant. It is

LG = −1

2
tr (FµνF

µν) = −1

4
FA
µνF

Aµν , (2.14)

where Fµν is defined as

Fµν =
i

gS
[Dµ, Dν ] . (2.15)

Using the relation eq. (2.3), this can be expressed in terms of the gluon fields and the
SU(3) generators as

Fµν,ab = FA
µνt

A
ab with (2.16)

FA
µν = ∂µA

A
ν − ∂νA

A
µ + gSf

ABCABµA
C
ν . (2.17)

Our discussion so far was only for a single kind of quark. In nature have been observed
six flavors of quarks [4] which are down, up, strange, charm, bottom and top. For each of
them there is a term as eq. (2.13) with ψ replaced by ψflavor. Adding these terms and LG,
we arrive at the classical QCD Lagrangian

LclQCD =
∑

f

ψ̄f (i 6D −mf )ψf −
1

4
FA
µνF

Aµν . (2.18)

Including all indices and sums explicitly, this is

LclQCD(x) =

6∑

f=1
flavor

3∑

µ=0
lorentz

4∑

αβ=1
spinor

3∑

a,b=1
color

ψ̄f,a,α(x)(iDµ,ab(x)γ
µ
αβ−mf δabδαβ)ψf,b,β(x)+ (2.19)

−
3∑

µ,ν=0
lorentz

8∑

A=1
gluon

1
4
FA

µν(x)FAµν(x) .
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2 General aspects

Since this is difficult to read, we will suppress spinor and color indices in the following.
The usual way to quantize a theory is to impose (anti)commutator relations for the

fields or use the path integral formalism (see e.g. [5], [6]). In case of the classical QCD
Lagrangian, we will run into trouble. In the path integral formalism, for example, the
generating functional will diverge. The divergence comes from the integral over the gauge
field, which is performed not only over really distinct AAµ , but also over the various AAµ s that
are related by gauge symmetry. To cure this problem following Faddeev and Popov [7], we
introduce a gauge fixing term in the Lagrangian

Lfix = − 1

2λ

(
∂µ∂νAAµ (x)AAν (x)

)
− c̄A(x)∂µDAC

µ cC(x) , (2.20)

where λ is the gauge fixing parameter and we introduced the new (non-physical) fields cA

called Fadeev-Popov-ghosts. These are complex scalar fields carrying color. They appear
only in loops. The covariant derivative in the adjoint representation is

DAB
µ = ∂µ − gSf

ABCACµ . (2.21)

The Lagrangian

LFPQCD = LclQCD + Lfix (2.22)

can be quantized leading to the Feynman rules given in Figure 2.1. The first three are
propagators and the following four are vertices. Using the Feynman rules, we can evalu-
ate Feynman diagrams in terms of which matrix elements needed in calculations of cross
sections can be expressed perturbatively.

2.2 Perturbation theory

In this section, we will recall, how a quantum field theory as QCD can be used to predict
experimentally measurable observables by perturbative calculations. In these calculations,
divergences of various kinds arise. We will outline the types of these divergences and the
concepts, which are needed to control them.

Cross section

Given any QCD scattering process a → b with some initial state a and final state b, the
probability for this scattering to occur is given by the cross section

σa→b =
1

fa
·
(
∏

f∈b

∫
d3pf

(2π)32Ef

)
· |Ma→b|2 · δ4(

P

i∈api − P

f∈bpf) . (2.23)

The first factor is the initial state flux. For two initial particles it is given by

1

fa
=

1

2E12E2|v1 − v2|
. (2.24)
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2.2 Perturbation theory

Figure 2.1: Feynman rules for QCD in covariant gauge. Two further rules are: conserve
four-momentum at each vertex and integrate over undetermined four-momenta.
In the figure quarks are represented by solid, gluons by curly and ghosts by
dotted lines. p, q and r label momentum, A, B, C and a, b label color in the
adjoint and the fundamental representation respectively, α, β, γ, δ are Lorentz
indices labeling the polarization of the gluon. Figure extracted from [8].
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2 General aspects

The second factor is the phase space of the final state. Removing integrals in eq. (2.23),
but keeping the corresponding integration measures, we get a differential cross section.
The third factor is the absolute value squared of the invariant matrix element Ma→b. The
fourth factor corresponds to total four-momentum conservation.

The invariant matrix element M can perturbatively be expanded in powers of the strong

coupling gs, given the latter is sufficiently small, i.e.
g2S
4π
< 1. Then M can be expressed

as the sum of all (connected, amputated and distinct) Feynman diagrams, which can be
drawn for the given initial lines a and external lines b. Each diagram is build from the
pieces shown in Figure 2.1 and is a shorthand notation for the corresponding (algebraic)
term. To connect several lines, we have to include the appropriate vertices from Figure 2.1.
Each vertex contributes a factor of the perturbation parameter gS (the four-gluon-vertex
a factor of g2

S). Hence, each Feynman diagram is suppressed by some power of gS. A
perturbative expansion of M in gS means to represent M as

Ma→b = gnS

∞∑

k=0

g2k
S M̃(n+2k)

a→b (2.25)

and abort the sum at some order k of the perturbation. All powers of gS have been extracted
from M̃. In the truncated series, only a finite number of diagrams will appear, since
n+k (the maximal number of vertices) is finite. These diagrams we can straightforwardly
calculate by using the Feynman rules. The effort to do this will drastically increase with
each order.

Naively, one may expect that the next order in gS is only suppressed by one not by two
powers of gS. However, the number of external legs is fixed. Increasing the power of gS by
one means to include one additional three-vertex, but than one vertex would have an end
not connected to any line. Thus, we have to include two additional three-vertices or one
four-vertex. Both correspond to raising the power of gS by two. In addition to g2

S there
usually appear factors of 1

4π
. Therefore, one chooses

αS =
g2
S

4π
(2.26)

as perturbation parameter, i.e.

Ma→b = α
n/2
S

∞∑

k=0

αkSM(n/2+k)
a→b . (2.27)

The term with the lowest power of αS is the leading order (LO) expression; the summand
with an additional factor αS is the next to leading order (NLO) correction and the term
suppressed by a factor of αkS relative to the LO expression is the NkLO contribution.

Divergences

In the LO diagrams all internal propagators have usually a fixed momentum given by
four-momentum conservation at each vertex. Since the corresponding diagrams look like

8



2.2 Perturbation theory

branches of trees, they are called tree level diagrams. The higher order diagrams in general
include loops, i.e. some internal lines are linked in a way, that they form a closed loop.
Adding a four-momentum k to the four-momenta of all loop propagators still preserves
momentum conservation at each vertex. Therefore, we have to integrate over all values of
k. Thus, loops create expressions like

p
k

∼
∫

d4k

(2π)4
γµ

6p+ 6k +m

(p+ k)2 −m2 + iǫ
γµ

1

k2 + iǫ
.

When we try to perform such integrals, problems will arise. First of all the propagators
have poles, when the propagating particle is on mass-shell (i.e. p2

i = m2
i ). Thanks to the

+iǫ prescription, we avoid the actual pole, but merely encourage the virtual particle to
be on-shell. However, if k vanishes or is collinear to p (in the example above), several
denominators can vanish (up to the iǫ) at the same time and we may find divergences.
They are called virtual infrared (IR) and collinear (C) divergences. “Virtual“, as they
arise from propagators of virtual particles.

The infrared and collinear (IRC) sector will be the main focus of this work. We will
mostly discuss methods to account for the emission of real, i.e. external, particles. For
them, too, IRC divergences arise. The crucial observation, allowing us to remove the
singularities later, is that the real and virtual IRC singularities cancel for appropriately
inclusive observables [9,10,11]. ”Inclusive“ means that the emission of additional external
particles, which are very soft or collinear to another particle, should not change the value
of the observable much.

There is still another problem with integrals like the one above. That is when k′1 gets
large. Then the other momentum and mass scales are negligible and we naively expect the
integral above to be

lim
Λ→∞

∫ Λ

0

dk′k′3
k′

k′4
= lim

Λ→∞
k′
∣∣∣∣
Λ

0

, (2.28)

which diverges strongly. 2 Divergences like these are called ultraviolet (UV) divergences.
A first step to deal with them is to regulate and quantify them. A method to achieve this
is dimensional regularization (see [5]). There the integral over the loop momenta is not
done in four, but in d = 4− 2ǫ space-time dimensions. One then gets a finite piece, a term
proportional to 1/ǫ and terms that vanish for ǫ→ 0.

One can absorb these 1/ǫ terms by the method of renormalization. To do so, we reinter-
pret the quantities gs, m, ψ,Aµ in our Lagrangian as ”bare“ quantities, which differ from

1We use a Wick-rotation to get the Euclidean version of k.
2Actually the divergence of our diagram is only like log(Λ), since the k′ in the numerator vanishes in the

integral due to symmetry.
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2 General aspects

the corresponding physical quantities by a ”Z factor“

gs,0 = Zgs · gs,phys . (2.29)

Writing then Zgs = 1 + (Zgs − 1) etc. we get the old Lagrangian with the bare quantities
replaced by the physical ones plus counterterms containing the Z factors. The counter-
terms introduce some additional Feynman rules, whose contribution we want to cancel the
divergences. This determines the counterterms and from that the Z factors. The nontrivial
fact that this is possible with these fixed number of Z factors and therefore a finite number
of counterterms at all orders of perturbation theory, means that QCD is ”renormalizable“
and follows from the fact that αS is dimensionless and the form of our Lagrangian.

Running coupling constant

In the regularization step, we are forced by dimensional reasons to introduce a new mass
scale - the renormalization scale µr - in our Lagrangian. It appears in various terms
and hence also in the expressions for the formerly divergent integrals, that are regulated
now. Therefore, the Z factors will depend on that scale, too. Since the bare parameters
cannot depend on this arbitrary scale, our physical parameters have to depend on it. This
dependence is described by differential equations called renormalization group equations.

The one, most important to us, is the dependence of the renormalized coupling ”con-
stant” on the renormalization scale, which is described by

β(αS(µ
2
r)) = µ2

r

∂αS(µ
2
r)

∂µ2
r

=
∂αS(µ

2
r)

∂ logµ2
r

. (2.30)

The perturbative expansion of β is

β(αS) = −αS
∞∑

n=0

βn

(αS
4π

)n+1

. (2.31)

Here in the MS scheme and with nf the number of active quark flavors we have up to
third perturbative order [12]

β0 = 11 − 2

3
nf , β1 = 102 − 38

3
nf , (2.32)

β2 =
2857

2
− 5033

18
nf +

325

54
n2
f . (2.33)

Then the running coupling constant to second perturbative order is given by

αS(Q
2) =

αS(µ
2)

1 + β0

4π
αS(µ2) log Q2

µ2

[
1 − β1

4πβ0

αS(µ
2) log(1 + β0

4π
αS(µ

2) log Q2

µ2 )

1 + β0

4π
αS(µ2) log Q2

µ2

]

+ O
(
αk+3
S logk

Q2

µ2

)
. (2.34)
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2.2 Perturbation theory

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 2.2: The running of the strong coupling constant. The theory prediction (yellow
band) is compared to measurements from various experiments (markers). Fig-
ure extracted from [4] .

That is, choosing Q2 instead of µ2 as the renormalization scale, the renormalized coupling
changes in a well defined manner. The running of αS is also shown in Figure 2.2, where
the theory prediction is compared to measurements from various experiments. Although
the choice of µr is arbitrary and in fact for physical observables calculated to all orders its
dependence cancels, some choices for µr are more convenient than others, since corrections
from higher orders are smaller for them. A good choice of µr is the typical momentum scale
Q of the process. In hadron-hadron collision this can be the transverse momentum of the
final jets; in deep inelastic scattering (DIS) the typical scale is the transferred momentum.
In an expression for an observable in terms of αS(µr), logarithms of Q2/µ2

r will appear with
each power of αS. If we choose µ2

r very different from Q2, these logarithms are large and
enhance higher order corrections. To keep higher order corrections small, it is, therefore,
best to account for them by choosing a proper scale for αS.

We observe, αS in eq. (2.34) decreases, when Q2 increases. This means, for processes at a
sufficiently large scale Q2 we will have αS(Q

2) ≪ 1 and perturbation theory is well justified
there. However, for Q < µ the logarithm in eq. (2.34) will become negative. At some point
Q = ΛQCD the denominator will vanish giving αS(Λ

2
QCD) → ∞. Thus, perturbation theory

is not justified there. Hence, at low Q non-perturbative effects will be important. One
such effect is confinement: We do not observe free partons, i.e. quarks or gluons, but in
free particles several of them are combined to form a color singlet called hadron.3

3Since we do not observe quarks and gluons directly, one may be worried there is no evidence for them
in nature. However, scattering experiments involving hadrons have clearly shown, that they are not
elementary [13, 14], but are build from constituents. Moreover, the spectrum of the hadrons hints to
the symmetry of QCD [4]. Many other experiments have been performed all agreeing with theoretical
predictions .
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2 General aspects

In a simplified picture, this can be seen as follows. When we try to separate a quark and
an antiquark of the corresponding anticolor, with their increasing distance r, the relevant
αS(Q

2) would increase, too, since roughly Q2 ∼ 1/r2 - recall De Broglie’s relation λ = h/p.
The potential energy of the color dipole then grows ∼ r. At some point, it is large enough
to create a quark-antiquark pair from the vacuum. Thus, instead of a separated quark and
antiquark, we now have two color neutral quark-antiquark pairs, which can form hadrons.

Factorization

To summarize, we discussed how to calculate scattering amplitudes between partons in
perturbation theory. However, in an experiment we cannot observe partons directly or
prepare an isolated parton in the initial state. Instead, hadrons will appear there, whose
formation out of partons cannot be calculated perturbatively, since this happens at low
momentum scales, where αS is large.

Is there a way to use perturbative QCD to predict observables in scattering experiments?
There are two essential observations helping here, which are factorization [15] and asymp-
totic freedom [16,17]. At small distances (large Q2), αS is small and the partons inside the
hadrons are, therefore, quasi free. This is called asymptotic freedom. Moreover, for large
momentum transfers (“hard process”), scattering amplitudes for partons can be calculated
perturbatively. This hard process happens at large Q2, i.e. small distances. The large
distance physics (of small Q2), which are the non-perturbative effects, should, therefore,
not affect the hard process significantly, but will happen in space-time far away from the
hard interaction. Hence, we expect the cross section to factorize in the hard core-process
and a non-perturbative part. This is referred to as factorization.

To establish this intuitive argument on a theoretical level, is highly non trivial. A
complete proof is not found yet for all observables [15].

In general, one has to rethink carefully, what exactly is measured in experiments at
hadron colliders and what is not measured. A detector measures energy and momentum
flow. It always has a finite resolution, thus, particles of very low energy cannot be resolved
and two particles, which are collinear to each other, may look like a single particle. More-
over, a detector in a scattering experiment can never cover the whole phase space, but will
have blind areas around the beam pipes. Hence, of all the constituents of the hadrons in
the initial state we will mostly measure the particles originating from partons that took
part in a hard scattering and received a large transverse momentum in this way, while the
pieces that did not interact hard, and therefore still move approximately parallel to the
beam, mostly will go to the blind areas of our detector. Thus, in an experiment, we never
have the full information of the complete final state. Instead, we expect that there are a
lot of additional particles, which we did not observe: a group of particles, which are close
to the beam pipe, and a group of particles, which are unobserved, since they are soft or
collinear to other particles.

Therefore, useful observables should also be approximately insensitive to these particles.
Given the factorization of the long and short distance parts and allowing remnants close
to beam direction, we do not need to completely describe the initial hadrons, but we only

12



2.2 Perturbation theory

need to know the chance to find the parton, which participates in the hard scattering,
inside the hadron. This simplification will allow factorization in the initial-state. When
we look at jets of particles in the final-state, these jets will be approximately insensitive to
emissions of additional soft and collinear particles as well as to soft interactions. Hence,
we do not need to describe the formation of hadrons in the final state.

Note that factorization is usually not an exact result, but holds up to corrections that are
suppressed by inverse powers of the hard momentum scale Q. The form of the factorized
cross section is [18]

Q2σphy(Q,m) = ωSD(Q/µ, αS(µ)) ⊗ fLD(µ,m) + O(1/Qp) . (2.35)

Here Q is the hard scale and m collectively denotes various soft scales like masses. SD
abbreviates short distance, LD long distance. ⊗ is a convolution. For DIS and hadron-
hadron collisions the convolution is in the partonic momentum fraction x, f are the parton
distribution functions and ωSD are partonic cross sections. By applying a Mellin trans-
formation, i.e. f̄(N) =

∫ 1

0
dxxN−1f(x) etc., we get a simple product. The Q and the m

dependence are separated in the short and long distance part. The short distance part ωSD

does not depend on the soft scales m and is calculable in perturbation theory, while the
long distance part fLD depends on the soft scales m and is not calculable perturbatively.

To actually achieve this separation, the new scale µ, the factorization scale, had to be
introduced. It arises during the regularization of the integrals of the scattering cross section
to remove the divergences from ωSD , which we now calculate in the zero mass limit, and
absorb them in fLD. A widely used method of regularization is dimensional regularization,
where the scale µ appears due to dimensional reasons. Dimensional regularization was
already mentioned during the discussion of UV divergences, but here the ǫ in d = 4− 2ǫ is
negative. Other regularization prescriptions set a lower bound on the transverse momentum
or the virtuality of particles attending the hard scattering.

How can we use eq. (2.35), although fLD is not calculable in perturbation theory? Since
fLD factorizes from the short distance part, they are portable from one process to another.
The useful fact is that we can determine their dependence on the factorization scale. This
follows directly from the Mellin transformed version of eq. (2.35). The physical cross section
cannot depend on the factorization scale, since it was introduced arbitrarily to perform the
calculation. Hence,

µ
d

dµ
log σ̄phy(Q,m) = 0 . (2.36)

Thus, the µ dependence of the long and short distance part have to cancel:

µ
d

dµ
log ω̄SD = −P̄ (αS(µ)) = −µ d

dµ
log f̄LD , (2.37)

where P̄ can only depend on the common variables of ω̄SD and f̄LD, which are αS(µ)
(or equivalently µ) and the (Mellin transformed) convolution variables. Eq. (2.37) is an
evolution equation for f̄LD with respect to µ. Since we can calculate ω̄SD, taking its
derivative we obtain P̄ . In the next chapter we will determine P̄ .
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3 Parton splitting

The aim of this chapter is to find a simplified form to describe emissions of collinear
particles from a core process. This form will be used in the end of this section to describe
the evolution of parton density functions. Moreover, it is also the underlying relation of the
Monte Carlo parton shower and the resummation, which will be discussed in subsequent
chapters.

For hadron-hadron scattering, which is the process we will discuss in subsequent chapters,
factorization, as outlined in the last chapter, means more explicitly

σh1h2→Y =
∑

a1,a2

∫
dx1

∫
dx2fa1/h1

(x1, µf)fa2/h2
(x2, µf)σ̂a1a2→Y (x1, x2, µf , µr, ...) , (3.1)

where σ̂a1a2→Y is the hard, partonic cross section of the partons a1 and a2 to produce the
final state Y . fai/hi

(xi, µf) are the parton distribution functions (pdf), which give the
“probability“ to find parton ai with a longitudinal momentum fraction xi and a virtuality
absolute value |t| ≤ µ2

f inside the hadron hi.
In QCD, fai/hi

cannot be calculated perturbatively. Nevertheless, perturbation theory
tells us, in which way f depends on µf , which is given by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation [19, 20]. Moreover, f does not depend on the hard,
partonic process. Thus, eq. (3.1) has predictive power. Once determined in some process
for one scale, we can use fai/hi

for any other process and any scale, which is still in the
perturbative regime.

To derive the DGLAP equations in the end of this chapter, we will now look at splittings
of partons. Since we aim for an expression like eq. (2.35), where the dependence on soft
scales like masses has been removed from the perturbatively calculable short distance part,
we will also go to the limit of vanishing masses for all partons. As depicted in Figure 3.1,
for a given hard partonic matrix element Mn involving n external partons, we take, for
example, the outgoing line of some parton a and attach a vertex, which splits parton a in
the two partons b and c. We will find that the contribution of such diagrams to the cross
section is not suppressed by a factor of αS relative to the diagram without the additional
splitting, but just by αS times some potentially large logarithm.

3.1 Final state splitting

We consider the branching of parton a to partons b and c in Figure 3.1a. The partons b
and c should be (approximately) on shell, because we want to consider them as external,
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3 Parton splitting

Mn

a

b

c
c

b

(a) outgoing

a

b

c
c

b

Mn

(b) incoming

Figure 3.1: An external parton from the hard partonic process which is depicted by the
shaded circle is involved in an additional splitting. This parton is (a) the parton
a in the final state that splits to partons b and c or (b) the parton b in the initial
state that was produced together with parton c in a splitting of parton a.

whereas parton a is virtual and therefore can be off-shell. In fact, it has to be off-shell to
produce two non parallel partons - recall that we perform our calculation in the massless
limit. Thus, we assume

p2
b , p

2
c ≪ p2

a = t > 0 . (3.2)

The energy fraction, carried by parton b, is

z =
Eb
Ea

= 1 − Ec
Ea

, (3.3)

where the last equality follows from energy conservation at the vertex. The scattering
angles of partons b and c with respect to parton a are θb and θc respectively. Hence, the
opening angle between them is θ = θb + θc. For small angles θ and for massless on-shell
partons b and c, we have

t = p2
a = (pb + pc)

2 = 2pbpc = 2EbEc(1 − cos θ)

= 2z(1 − z)E2
a(1 − cos θ) ≈ z(1 − z)E2

aθ
2 . (3.4)

Depending on the choice, we make for the type of partons a, b and c, in QCD there exist
three different types of splittings:

• a gluon splitting to two gluons as shown in Figure 3.2(a),

• a gluon splitting to a quark-antiquark pair as shown in Figure 3.2(b),

• a quark emitting a gluon as shown in Figure 3.2(c).

Different choices of quark-flavors and the emission of a gluon from an antiquark are related
to these by symmetries.
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3.1 Final state splitting

g g

g

(a) A gluon splits into two
gluons.

q

q
_

g

(b) A gluon splits into a
quark-antiquark pair.

q q

g

(c) A quark emits a gluon.

Figure 3.2: The three distinct splittings of QCD.

For all three splittings, the calculation is performed in a similar way. As a first step, we
express the propagator between the new splitting vertex and the old partonic part by a
sum of all physical polarization and color states

6p
p2

=
1

t

∑

s,c

us,c(p)ūs,c(p) for a quark, (3.5)

6p
p2

=
1

t

∑

s,c

vs,c(p)v̄s,c(p) for an antiquark, (3.6)

1

p2
(−gµν +

nµpν + nνpµ
n · p ) =

1

t

∑

s,c

ǫs,cµ (p)(ǫs,cν (p))∗ for a gluon. (3.7)

In this notation we condensed the spin and color dependence in a single vector.1 For the
gluon ǫ · p = 0 = ǫ · n and the sum is only over the transverse polarizations. The sums
over s and c extend over all relevant spin and color states, which are, of course, different
for the quark and the gluon.

The next step is to split the full matrix element Mn+1 with partons b and c in the final
state into the old matrix element Mn with a in the final state and the splitting vertex
Ma→bc. To do so, we use the above expressions for the propagator of a. For all explicit
choices of momentum, color and helicity of the external particles in the diagrams of Mn+1,
the conservation of these attributes will project the parton a on a single state. For each
explicit choice, we then have [8]

|Mn+1|2 ∼ |Ma→bc|2
1

t2
|Mn|2

∼ 4g2

t
Ĉa→bcFa→bc(z)|Mn|2 , (3.8)

where C is the color function and, for each choice of polarizations, F is a function of z.
One power of t of the squared propagator has been canceled by a power of t in the splitting

1 One can also split them. E.g. for the first relation, one can write δij
6p αβ

p2 = 1

t

∑
s,c us

α(p)dc
i ū

s
β(p)(dc

j)
∗,

with the usual Lorentz spinors u and a color vector d obeying
∑

c dc
i (d

c
j)

∗ = δij .
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3 Parton splitting

a→ bc Ca→bc 〈F 〉a→bc P̂b←a = C · 〈F 〉
g → gg 3 = 1

8
fABCfABC = CA

[
1 − z

z
+

z

1 − z
+ z(1 − z)

]
P̂g←g(z)

g → qq̄ 1
2

= 1
8
Tr(tAtA) = TF

[
z2 + (1 − z)2

]
P̂q←g(z)

q → qg 4
3

= 1
3
Tr(tAtA) = CF

[
1 + z2

1 − z

]
P̂q←q(z)

Table 3.1: The three splittings of QCD. P̂b←a = C · 〈F 〉 are the splitting kernels. CA = TA,
CF and TF have been defined in eqs. (2.4) and (2.5).

vertex. We assume that, when summing over color and helicity of all other partons, Mn

does not depend on the color and helicity of parton a. Then, summing over final and
averaging over initial colors and helicities (as depicted by the bar over |M|2), gives

|Mn+1|2 ∼
16παS
t

Ca→bc〈F 〉a→bc(z)|Mn|2 . (3.9)

For the three distinct splittings, the results are given in Table 3.1.
P̂b←a = C · 〈F 〉 are the splitting kernels containing all information, which will be relevant
in the following. The other possible splitting kernels are related to those in Table 3.1 by
the relations

P̂q̄←g(z) = P̂q←g(z) , (3.10)

P̂g←q(z) = P̂g←q̄(z) = P̂q̄←q̄(1 − z) = P̂q←q(1 − z) . (3.11)

They are diagonal in the quark flavors. The splitting kernels are also known to a higher
order in perturbation theory than the LO results given above. They can be found e.g.
in [8].

The third step is to establish the relation corresponding to eq. (3.9) on cross section level.

For this purpose, we have to look at the phase space, which is
∏

f∈final
d3pf

(2π)32Ef
. There, due

to the splitting, we have to replace d3pa

(2π)32Ea
by d3pb

(2π)32Eb

d3pc

(2π)32Ec
. Using pc = pa − pb, we can

write

d3pc
(2π)32Ec

=
d3pa

(2π)32Ea
· 1

1 − z
(3.12)

to get back the old phase space times the integration over the phase space of b. The latter
can be rewritten in the limit of a small scattering angle by a variable transformation from
(θb, Eb) to (t, z), which are defined in eqs. (3.4) and (3.3), as

d3pb
(2π)32Eb

=
1

2(2π)3
EbdEbθbdθbdφ =

1

2(2π)3
(1 − z)dzdtdφ . (3.13)
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3.2 Initial state splitting

Therefore, we can write the new phase space in terms of the old one, times three additional
integrations,

dΦn+1 = dΦn
1

4(2π)3
dtdzdφ . (3.14)

Furthermore, using eq. (3.9), we find for the cross section

dσn+1 = dσn
dt

t
dz

dφ

2π

αS
2π
C〈F 〉 . (3.15)

Integrating over φ and using the splitting kernel P̂ = C〈F 〉, yields

dσn+1 = dσn
dt

t
dz
αS
2π
P̂b←a(z) . (3.16)

Due to the factors 1
t
and P̂ , which can contain a term with z or 1−z in the denominator, the

splitting is dominated by phase space configurations, in which the virtuality of a is small or
partons b or c carry a small energy fraction. These are the collinear and soft configurations.

3.2 Initial state splitting

The results and discussion is similar for splittings in the initial state. In the process under
consideration, we now create the parton b, which has been in the initial state of Mn, from
a splitting of parton a to partons b and c, as shown in Figure 3.1b. The propagator of b
can be split as in eqs. (3.5) - (3.7). On matrix element level, we then find the same kind
of factorization as in eq. (3.9) with the same splitting kernels at LO. In two places, we
encounter differences to the final state splitting: First, the definition of t, which is now
given by

− t = −p2
b ≈ EaEcθ

2
c ≈ z2(1 − z)E2

aθ with (3.17)

− p2
b ≫ |p2

a|, |p2
c| , (3.18)

and, second, the phase space integration. This time, the phase space dΦn is trivially
contained in dΦn+1 = dΦn

d3pc

(2π)32Ec
and we write

d3pc
(2π)32Ec

=
1

4(2π)3
dt

dz

z
dφ . (3.19)

Moreover, to get back dσn, we have to replace 1
Eb

in the initial state flux factor by 1
Ea

= z
Eb

.

Hence, we again find eq. (3.16)

dσn+1 = dσn
dt

t
dz
αS
2π
P̂b←a(z) . (3.20)
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3 Parton splitting

3.3 Large logarithms

For small splitting angles and for the approximation in eq. (3.18) or (3.2), we can replace
the t integration in eq. (3.20) or (3.16), respectively, by an integration over the transverse
momentum ~p 2

⊥ of the splitting products. We than have

dσn+1

dσn
=

d~p 2
⊥

~p 2
⊥

dz
αS
2π
P̂b←a(z) . (3.21)

There are potential divergences, when we try to perform the ~p 2
⊥ and z integrations. Ob-

viously, the ~p 2
⊥ integral diverges at ~p 2

⊥ → 0. Moreover, the splitting kernels given in
Table 3.1 contain terms as 1/z and 1/(1− z). After integration the latter two will lead to
log( z+

z−
) = − log( 1−z+

1−z− ) with z+ and z− being the upper and lower bound of the z integration,
respectively. This, too, diverges, for z− → 0 and z+ → 1.

We want to discuss in this section, how we can regulate these divergences by introducing
an explicit lower cut-off on the ~p 2

⊥ integration and what the most relevant contributions of
the regulated terms will be. We will also consider multiple successive splittings.

For a given value of ~p 2
⊥, the energy of the two created particles is limited from below by

|~p⊥| ≤ E. Thus,

z− = 1 − z+ =
|~p⊥|
Ea

(3.22)

with the energy Ea of the splitting particle, which in turn is limited by the total energy
of the scattering process. Here, the first equality follows from energy conservation and the
corresponding limit for the other emitted particle. Energy conservation also dictates

|~p⊥| ≤ |~p⊥,max| =
1

2
Ea . (3.23)

Thus, the z integration gives

∫ z+

z−

dz
αS
2π
P̂b←a(z) = αS2A log

(
~p 2
⊥

~p 2
⊥,max

)
+ αSB + subleading (3.24)

with some constants A and B, which will be determined in section 5 for a similar case.
“Subleading” is anything that vanishes if ~p 2

⊥ → 0. This also includes the contributions

from log(z+) = log(1 − z−) = log(1 − |~p⊥|
2|~p⊥,max|), which is limited by log 1

2
and vanishes as

|~p⊥| does.
To regularize the ~p 2

⊥ integration, we introduce a lower cut-off ~p 2
⊥,0 to control the diver-

gence there. With the help of the general result

∫ xm

x0

dx

x
logn x =

∫ log(xm)

log(x0)

d(log x) logn x =
1

n+ 1
logn+1 xm

x0

, n ≥ 1 , (3.25)
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3.3 Large logarithms

...

...

p
1

p
2

hard

Figure 3.3: A quark, which took part in a hard interaction, emits multiple gluons. The
dots refer to further emissions.

we then find

∫ ~p 2
⊥,max

~p 2
⊥,0

d~p 2
⊥

~p 2
⊥

= log

(
~p 2
⊥,max

~p 2
⊥,0

)
≡ L and (3.26)

∫ ~p 2
⊥,max

~p 2
⊥,0

d~p 2
⊥

~p 2
⊥

log

(
~p 2
⊥

~p 2
⊥,max

)
=

1

2
L2 . (3.27)

Hence, for one splitting, the strongest enhanced terms are

AαSL
2 and BαSL , (3.28)

i.e. a leading logarithmic (LL) term, which has two powers of the large logarithm L for
a single power of αS and a next-to-leading logarithmic (NLL) term, which has one power
of the large logarithm for a power of αS. From which regions of phase space did the
logarithms arise? The relevant contribution to both the LL and NLL terms was from the
collinear region, where 1/~p 2

⊥ gets large and produces a logarithm in the integration. The z
integration just led to a constant for the NLL term, but for the LL term it already produced
a power of the logarithm log(~p 2

⊥/~p
2
⊥,max), as we see from eq. (3.24). This logarithm was

due to the terms 1/z and 1/(1− z) in the splitting kernels, which get large if one splitting
product becomes soft, i.e. z → 0, 1. Hence, the LL term corresponds to splittings, which
are both, collinear and soft while the NLL terms corresponds to splittings, which are just
collinear.

Multiple splittings

For multiple splittings, which are ordered in ~p 2
⊥, we can apply eq. (3.20) or (3.16) iteratively.

By ordered in ~p 2
⊥ we mean ~p 2

⊥,1 > ~p 2
⊥,2 > ..., where splitting “1” happens closest to the

hard core-process, as depicted in Figure 3.3. The ~p 2
⊥,n are with respect to the direction of

21



3 Parton splitting

the particle entering the nth splitting. For two emissions, we find

∫ ~p 2
⊥,max

~p 2
⊥,0

d~p 2
⊥,1

~p 2
⊥,1

αS

(
2A log

~p 2
⊥,1

~p 2
⊥,max

+B

)∫ ~p 2
⊥,1

~p 2
⊥,0

d~p 2
⊥,2

~p 2
⊥,2

αS

(
2A′ log

~p 2
⊥,2
~p 2
⊥,1

+B′

)

=

∫ ~p 2
⊥,max

~p 2
⊥,0

d~p 2
⊥,1

~p 2
⊥,1

αS

(
2A log

~p 2
⊥,1

~p 2
⊥,max

+B

)
αS

(
A′ log2

~p 2
⊥,1
~p 2
⊥,0

+B log
~p 2
⊥,1
~p 2
⊥,0

)
(3.29)

= α2
SC2 log4

(
~p 2
⊥,max

~p 2
⊥,0

)
+ α2

SD2 log3

(
~p 2
⊥,max

~p 2
⊥,0

)
+ O(NNLL) .

In the last step, we used log(~p 2
⊥,1/~p

2
⊥,0) = log(~p 2

⊥,1/~p
2
⊥,max)− log(~p 2

⊥,max/~p
2
⊥,0). Accordingly,

for n splittings ordered in ~p 2
⊥, we find

Cnα
n
S log2n

~p 2
⊥,0

~p 2
⊥,max

+Dnα
n
S log2n−1

~p 2
⊥,0

~p 2
⊥,max

+ O(NNLL) . (3.30)

Therefore, at order n of perturbation theory, there will arise a LL term ∼ αnSL
2n and a

NLL term ∼ αnSL
2n−1 of the large logarithmic term L = log(~p 2

⊥,0/~p
2
⊥,max). For the LL

term, all emissions have to be collinear and soft, while for the NLL term, one emission
can be just collinear. From eq. (3.30) we also see, that for a series of collinear and soft
emissions, the effective expansion is not anymore in terms of αS(µr), but in terms of
αS(µr) multiplied by large logarithms. These slow down or even spoil the convergence of
the perturbative expansion. Hence, we should try take the effect of the splittings enhanced
by large logarithms into account to all orders. Methods to do so will be presented in
chapters 4 and 6.

The logarithms represent the collinear and infrared divergences of QCD. In an analogous
form, they are also present in Quantum Electro Dynamics (QED), as can be seen from
our discussion for QCD, when ignoring color and the triple-gauge-boson-vertex and with
αS → αem. In QED, these divergences can be seen as a manifestation of the correspondence
principle. To this end, let us recall, what we expect in classical electrodynamics for a fast
moving charge, which takes part in a scattering process, i.e. which is accelerated. We
expect it to radiate. Since the charge moves fast, the radiation should be mostly collinear.
The best quantum approximation for a classical field are almost infinitively many, very
soft photons. Thus, finding our collinear (~p 2

⊥ → 0) and infrared (z → 0, 1) singularities in
the corresponding quantum theory (eq. (3.16)) is maybe even reassuring.

Let us now look at two emissions disordered in ~p 2
⊥, i.e. this time we have ~p 2

⊥,1 < ~p 2
⊥,2. The

virtuality of the parton, propagating to its first splitting, is therefore not of order ~p 2
⊥,1,

but of order ~p 2
⊥,2. As discussed along with eq. (3.8), it is the virtuality, that enters the

nominator. Given that an analogous relation to eq. (3.20)/(3.16) still holds, we then have

22



3.4 Parton distribution functions

for the inner two integral, which are now for particle “1”,

∫ ~p 2
⊥,2

~p 2
⊥,0

d~p 2
⊥,1

~p 2
⊥,2

∫ z+(~p 2
⊥,2)

z−(~p 2
⊥,2)

dz1
αS
2π
P̂ (z1) ∼

∫ ~p 2
⊥,2

~p 2
⊥,0

αSA
~p 2
⊥,1
~p 2
⊥,2

+ αSB

= αSA(−
~p 2
⊥,0
~p 2
⊥,2

log
~p 2
⊥,0
~p 2
⊥,2

−
~p 2
⊥,2 − ~p 2

⊥,0
~p 2
⊥,2

) + αSB
~p 2
⊥,2 − ~p 2

⊥,0
~p 2
⊥,2

. (3.31)

If we perform additionally the ~p 2
⊥,2 and z2 integration, we find that non of this terms

gives a LL or NLL contribution. As we see from eq. (3.29), this would require at least
three powers of the large logarithm log(~p 2

⊥,max/~p
2
⊥,0), but both |~p 2

⊥,0/~p
2
⊥,2 log(~p 2

⊥,0/~p
2
⊥,2)|

and |(~p 2
⊥,2 − ~p 2

⊥,0)/~p
2
⊥,2| are smaller than 1 in the whole integration range of ~p 2

⊥,2. Hence,
the largest contribution, which can arise, is αSL

2, which is NNLL.
Therefore, we find that at NLL accuracy, just emissions ordered in ~p 2

⊥ need to be con-
sidered. This in turn motivates the assumptions in eq. (3.18) and (3.2).

3.4 Parton distribution functions

When we try to evaluate the successive splittings perturbatively, this will work for a notably
amount of them, but when we reach a point in our cascade, where the involved transverse
momenta get too small or, equivalently, the virtuality of the internal parton comes close to
zero, we cannot use perturbative methods anymore. Whatever their effect might be, due
to the effective ordering in t, this kind of splittings will effectively just appear after (for
final state splitting) or before (for initial state splittings) the splitting cascade, which we
can describe perturbatively.

Thus, for an initial parton, we can consider these splitting as some approximately contin-
uous process, which evolves a parton of very low virtuality to a parton of large (negative)
virtuality, which participates in a hard scattering. This parton will just carry a fraction
z of the energy of the parton it originates from, because the other emitted partons will
carry the rest of that energy. Moreover, since there are also splittings, where the type of
the parton changes (like g → qq̄ or q → gq), the type of parton may have changed.
Formulated differently, when we probe a parton a at a given virtuality scale t, for each
parton type b and energy fraction z, there is a chance f̃b/a(z, t) to scatter with a parton of
type b carrying the fraction z of the energy of parton a. Probing at a scale tp, i.e. scat-
tering at sufficiently large energies, we resolve all partons of virtuality −t ≤ −tp. This is,
because a high virtuality corresponds to a small lifetime (before being involved in another
interaction) and at a given energy we can just resolve particles, which have more than
some minimal lifetime.
Since the partons b are created by successive splittings staring with parton a, we can use
what we learned about splittings in the proceeding part to learn something about the
distributions f̃ .

Given the distributions fg(z, t), fqf (z, t) and fq̄f (z, t) at some scale t, the corresponding
distributions at the scale t − ∆t (keep in mind t < 0) should follow from the former by
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3 Parton splitting

taking an additional splitting into account. As argued above, we will still see partons with
virtuality −t′ ≤ −t, but now we additionally see the partons with virtuality t′ ∈ [t−∆t, t],
which are generated by splittings of the other partons. Thus,

fb(z, t− ∆t) = fb(z, t) +

∫ 1

0

dx

∫ 1

0

dz′
∫ t

t−∆t

dt′

t′
αS
2π

∑

a

P̂b←a(z
′)fa(x, t)δ(z − z′x)

−
∫ 1

0

dz′
∫ t

t−∆t

dt′

t′
αS
2π

∑

a

∣∣∣∣
no 2×

P̂a←b(z
′)fb(z, t) (3.32)

= fb(z, t) +
∑

a

∆t

t

∫ 1

0

dz′

z′
αS
2π
P̂b←a(z

′)fa(
z

z′
, t) −

∑

a

∣∣∣∣
no 2×

∆t

t

∫ 1

0

dz′
αS
2π
P̂a←b(z

′)fb(z, t) .

The second term accounts for the new partons of momentum fraction z and high (negative)
virtuality t′ ∈ [t−∆t, t]. The first and the third term instead account for the partons b of
momentum fraction z and virtuality −t′ ≤ −t, which are the old ones fb(z, t) (first term)
minus the number of partons that are gone, since they split (third term). To not count
the removal of a single parton twice, the sum in the third term is restricted to a subset
of possible partons a. For b = q (q̄) [g], we choose a = q (q̄) [g, q], since e.g. for b = q also
including a = g, in addition to a = q, would mean to count the splitting of a = q → qg
twice. The sum in the second term extends over all partons a. Here, the splitting P̂g→g
needs to be included two times, since the splitting g → gg produces two gluons (this
splitting is symmetric under z → 1 − z, thus, we can just include the same term twice).

When we look at eq. (3.32), we see the singularity at t′ → 0 is avoided, since the integral
is bounded from below. The non-perturbative splittings at low virtuality, about which we
were concerned, are absorbed in f . Due to energy conservation fb(z̃, t) vanishes for z̃ > 1.
Hence, in the second term there is no contribution from z′ < z and the singularities of
the splitting kernels at z′ → 0 are avoided. The only possible pole left in this term is for
z′ → 1. Looking at the splitting kernels in table 3.1 and how the other splitting kernels
are related to them (eqns. (3.10,3.11)), we see that just the diagonal splitting kernels, i.e.
P̂q←q, P̂q̄←q̄ and P̂g←g, have a pole at z′ → 1. All of these diagonal splittings also appear
in the third term of eq. (3.32), which also has poles like this, but with the opposite sign.
Since in the limit z′ → 1 the integrands for diagonal splittings of the second and third
term are equal2, the poles will cancel. To make this more explicit, we combine the second
and the third term:

∆t

t

∫ 1

0

dz′

z′
αS
2π
P̂a←a(z

′)fa(
z

z′
, t) − ∆t

t

∫ 1

0

dz′
αS
2π
P̂a←a(z

′)fa(z, t)

≡ ∆t

t

∫ 1

0

dz′

z′
αS
2π

(
P̂a←a(z

′)
)

+
fa(

z

z′
, t) , (3.33)

where for any smooth functions f(z′) and g(z′) with z′ ∈ [0, 1[, f smooth in z′ = 1 and g

2The gluon term needs a closer look, which is done after eq. (3.38).
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3.4 Parton distribution functions

with a simple pole there, we did define the plus prescription:

∫ 1

0

dz′ (g(z′))+ f(z′) =

∫ 1

0

dz′ (f(z′) − f(1)) g(z′) (3.34)

or written differently

(g(z′))+ = lim
ǫ→0

(
Θ(1 − z′ − ǫ)g(z′) − δ(1 − z′)

∫ 1−ǫ

0

dz′g(z′)

)
. (3.35)

Form eq. (3.34) it is obvious that for the given functions the integral is finite. We now
define the new splitting functions (without a hat) as

Pq̄←q̄(z) = Pq←q(z) =
(
P̂q←q(z)

)

+
= CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
, (3.36)

Pg←g(z) = 2
(
P̂g←g(z)

)
+
− nfδ(1 − z)

∫ 1

0

dyP̂q←g(y)

= 2CA

[
z

(1 − z)+

+
1 − z

z
+ z(1 − z)

]
+

1

6
[11CA − 4nfTF ]δ(1 − z) , (3.37)

Pb←a(z) = P̂b←a(z) if a 6= b . (3.38)

Writing the ’+’ index just on the divergent nominator and not on the whole term makes
a difference at z → 1, where an additional term with a δ-function appears, as can be seen
from eq. (3.35), where it corresponds to a change of g(z′). Some words on Pg←g are in
place: In the second term of eq. (3.32) it appeared twice, since we had to consider both
gluons in the process g → gg. We used the symmetry P̂g←g(1 − z) = P̂g←g(z) to combine
both contributions resulting in the factor 2 in eq. (3.37). In the third term of eq. (3.32) the
integral ranges from 0 to 1. The gluon splitting kernel has a pole at 1 and at 0. For the
contribution of the pole at 0 we again used the symmetry of the gluon splitting kernel to

map it on a pole at 1. Hence, we end up with the correct terms to define 2
(
P̂g←g(z)

)

+
in

eq. (3.37). We also included the term involving
∫ 1

0
dyP̂q←g(y) in the gluon function times

the number of active quark flavors nf . Now we can rewrite eq. (3.32) as

t

∆t
[fb(z, t− ∆t) − fb(z, t)] =

∑

a

∫ 1

0

dz′

z′
αS
2π
Pb←a(z

′)fa(
z

z′
, t) , (3.39)

where now the sum is over all partons (Pg←g not counted twice anymore). In the limit
∆t→ 0 this is

t
dfb(z, t)

dt
=
∑

a

∫ 1

0

dz′

z′
αS
2π
Pb←a(z

′)fa(
z

z′
, t) (3.40)

≡
∑

a

αS
2π

(Pb←a ⊗ fa) (z, t) .
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3 Parton splitting

These are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [19,20]. They
govern the evolution of the parton density functions (pdf) fb(z, t). Once determined at one
scale t, the pdfs can be found at any scale, that still justifies the perturbative approach.
Moreover, since we did not assume anything about the hard process, in which the parton
attends, the pdfs and their evolution do not depend on it. All that is set by the hard
process are the parton types and the scale t at which the pdfs are evaluated.

The pdfs will, of course, depend on the type of hadron h from which the parton orig-
inates. Before attending in a hard scattering process, the parton is involved in many
interactions with the other partons of the hadron. To describe all of them properly in
perturbation theory, is not possible, especially because many of them are soft and thus
enhanced. However, we noted before, that the emissions are effectively ordered in pT , such
that the virtuality |t| of the parton will increase during its evolution. At some sufficiently
large scale |t| = µ0 we can start to describe the evolution of the pdfs perturbatively. All
that enters from the preceding evolution is the distribution fp/h(z, µ0) at the scale µ0, which
cannot be determined perturbatively, but must be measured experimentally. Nevertheless,
the evolution of the distribution can be determined from the DGLAP equations. This
works for both directions, to larger or smaller values of µ0, as long as we do not enter a
non-perturbative region. A commonly used set of pdfs for the proton is shown in Figure
3.4 for two different scales. One sees that the pdfs increase rapidly for small values of the
momentum fraction x; large values of x are usually just carried by the valence quarks,
which define the quantum numbers of the hadron. As one increases the scale µ, the chance
to observe a gluon increases.

If we collide two hadrons, any of their partons may interact with each other. Therefore,
the scattering cross section of two hadrons to some final state Y is3

σh1h2→Y (s, ...) =
∑

a1a2

∫
dx1

∫
dx2fa1/h1

(x1, µf)fa2/h2
(x2, µf)σ̂a1a2→Y (x1, x2, ..., µf , µr)

+ O(1/Q) , (3.41)

as already stated in eq. (3.1). The pdfs will appear in all calculations of cross sections in the
following chapters. With the choice µf , we can steer, where the corrections due to splittings
up to the hard scale are taken into account. For a small choice of scale µ2

f ≪ p2
T,hard we

should include corrections from splittings in σ̂. With a choice µ2
f ∼ p2

T,hard these effects are
contained in the pdfs. Hence, this will be our usual choice.

Factorization is actually not an exact result. In our discussion for example we made
several approximations. In addition to the ordering in pT , which was a next-to-leading
logarithmic approximation, we also ignored the masses of the partons with respect to the
hard scale. Corrections to factorization are suppressed by inverse powers of the hard scale.
If this scale is sufficiently high, we can ignore these corrections.

Connecting back to the discussion in the end of chapter 2.2, we find that eq. (3.41) can
be written in the form of eq. (2.35): It is a convolution in the partonic momentum fractions

3We assume that only one pair of partons is involved in the hard scattering process under consideration.
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Figure 3.4: The parton distribution functions of the proton multiplied by the energy frac-
tion x for two different scales µ using MSTW2008 NNLO parameterization.
Figure extracted from [4].

x, which can be written as

σh1h2→Y (s, ...) =
∑

a1a2

(fa1/h1 ⊗ fa2/h2 ⊗ σ̂a1a2→Y )(µf , µr, s, ...) + O(1/Q) . (3.42)

Moreover, the evolution of f , eq. (3.40), is after a Mellin transformation of the form of eq.
(2.37). We also argued that by the choice of µf we can decide, in which part (σ̂ or f) we
account for the splittings of high virtuality. Hence, we found what we proposed in chapter
2.2.
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4 Monte Carlo parton shower

We have seen in section 3.3 that the contribution of higher order terms is logarithmically
enhanced if partons in the final state are collinear to each other or soft. Since in this
limit these logarithms become large, we want to account for the dominant effect of soft
and collinear emissions to all orders in perturbation theory. A method to achieve this is
the Monte Carlo parton shower, which will be discussed in this chapter. It allows for in
principle arbitrarily many particles in the final state. Emissions of additional particles
from a hard core-event are generated with a Monte Carlo method, until a stop criterion
is reached. Thereby, the four momenta of these additional particles are generated with a
probability distribution, which is in accordance with eq. (3.16). In this way the leading
logarithmic terms can be accounted for to all orders.

In our discussion, we will first introduce the Sudakov form factor, which is the central
ingredient of all parton showers. Then, we will discuss, how it can be used to generate
successive splittings. Finally, we will introduce the Monte Carlo parton shower program
sherpa, whose logarithmic accuracy we will discuss in chapter 5 and which we will study
numerically in chapter 8.

4.1 General ideas

Sudakov form factor

Let us start this chapter along the lines of [8, 21] by introducing another formulation of
initial state splitting. To this end, we introduce the Sudakov form factor as

∆b(t) ≡ exp

[
−
∑

a

∫ t

t0

dt

t

∫
dz
αS
2π
P̂a←b(z)

]
, (4.1)

where P̂ are the unregularized splitting kernels and the sum is over all allowed splitting
processes. With the Sudakov, we can rewrite the ∆t→ 0 limit of eq. (3.32) as

t
dfb(z, t)

dt
=
∑

a

∫ 1

0

dz′

z′
αs
2π
P̂b←a(z

′)fa(
z

z′
, t) − fb(z, t)

∆b(t)
t
d∆b(t)

dt
. (4.2)

Integrating this equation, we get an expression for fb(x, t) in terms of the initial parton
distributions fb(x, t0) :

fb(z, t) = ∆b(t)fb(z, t0) +

∫ t

t0

dt′

t′
∆b(t)

∆b(t′)

∫
dz′

z′
αs
2π
P̂b←a(z

′)fa(
z

z′
, t) . (4.3)
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4 Monte Carlo parton shower

The structure of this equation together with our discussion about pdfs in chapter 3.4
suggests the physical interpretation of the Sudakov form factor ∆b(t) to be the probability

for a parton b to evolve from t0 to t without resolvable branching. The factor ∆b(t)
∆b(t′)

represents the probability to evolve from t′ to t without resolvable branching.
The interpretation of the Sudakov as a non-branching probability can also be motivated

in another way. We recall that the Poisson distribution

P(n, λ) =
λne−λ

n!
(4.4)

gives the probability that an event with expected rate λ is observed n times. Thus, the
chance to not observe any occurrence is P(0, λ) = e−λ. This is exactly the form of the
Sudakov with λ =

∑
b

∫ t
t0

dt′

t′

∫
dz αS

2π
P̂b←a(z). To better understand this term we rewrite eq.

(3.16) as

dσn+1

dσn
=

dt′

t′
dz
αS
2π
P̂b←a(z). (4.5)

When we integrate this for all t′ ∈ [t0, t] and z ∈ [0, 1] and sum over all splitting processes,
the right hand side gives λ. As we see from the equation’s left hand side, this describes the
rate of any splitting to occur. Hence, we again arrive at the interpretation of the Sudakov
as a non-splitting probability. We assume here that the probabilistic interpretation of
the splitting is valid and that the chosen parameterization of the splitting is a sufficient
approximation in the whole integration range.

The integrals in eq. (4.1) involve the unregularized splitting kernels P̂b←a. Since some of
them have divergences at z = 0 or z = 1, we have to take care of these by e.g. introducing
an infrared cut-off ǫ(t) on the z-integration. In this way the very soft splittings, which we
will classify as unresolvable, do not appear in the exponent. Similarly, the splittings with
t < t0, which are very collinear and therefore are considered as unresolvable, do not appear
in the Sudakov. Although we did not show this, the Sudakov form factor does not just
sum enhanced real contributions (parton emissions), but also virtual contributions (parton
loops) to all orders. In fact, the coupling constant αS in the above and following equations
is understood to be evaluated at a scale of order ~p 2

⊥, e.g. in the MS scheme to second order.
The virtual corrections affect the non-branching probability. Unitarity dictates that the
sum of branching and non-branching probability must be unity. Hence, the divergences for
the unresolved real and the virtual contributions have to cancel and our discussion above
is sensible.

Generating splittings

The Sudakov form factors are essential for Monte Carlo parton showers. The latter are
tools that aim to include the leading effects of soft and collinear emissions to all orders in
the calculation of cross sections. Given a hard core-process with n final-state particles the
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parton shower generates for each of them successive splittings. In each of these splittings,
a given parton reduces its virtuality t and its momentum fraction x. In this way it runs
through a series of momentum-virtuality points (xi, ti). From the point (xi, ti) the following
point (xi+1, ti+1) can be generated by a Markov process. We choose a random number rt,
which is equaly distributed in [0, 1]. Then, for given ti, we get ti+1 as the solution of

∆a(ti)

∆a(ti+1)
= rt with ti > ti+1 > t0 > 0 . (4.6)

For the gluon, several kinds of splittings are possible. We can choose a splitting a→ b with

the probability
∫ 1−ǫ(t)
ǫ(t)

dz αs

2π
P̂b←a(z)/

∑
c←a

∫ 1−ǫ(t)
ǫ(t)

dz αs

2π
P̂c←a(z). For the chosen splitting, we

get xi+1 from xi, in analogy to eq. (4.6), as the solution of

∫ xi+1/xi

ǫ(t)
dz αs

2π
P̂b←a(z)

∫ 1−ǫ(t)
ǫ(t)

dz αs

2π
P̂b←a(z)

= rx with xi > xi+1 > 0 , (4.7)

where rx is again a uniformly distributed random number in [0, 1]. Hence, the probability
of choosing the next point (xi+1, ti+1) depends on the current point (xi, ti), but not on
the points before the ith, i.e. we are dealing with a Markov process. Eqs. (4.6) and (4.7)
generate ti+1 and xi+1 with the relevant probability distributions. In general, solving

F (y)

F (ymax)
= ry with ry flat in [0,1], (4.8)

generates a random number y, which is distributed according to the probability distribution

g(y) =
1

Nf
f(y) , where (4.9)

f(y) =
∂F (y)

∂y
and Nf = F (ymax) .

Therefore eq. (4.7) generates the momentum fraction z = xi+1

xi
with the probability dis-

tribution 1
NP

αS

2π
P̂ (z), which gives the desired distribution for the value of xi+1. Eq. (4.6)

generates ti+1 with the probability distribution ∆a(ti)
∆a(ti+1)

∑
b←a

1
ti+1

∫
dz αS

2π
P̂b←a(z), which

properly gives the probability that the parton a evolves from ti to ti+1 without resolvable
branching, as is given by the ratio of Sudakovs, and then branches, as given by the rest of
the equation.
ti+1 and xi+1 fix two of the four momentum entries of the radiated parton. Demanding

that it is on mass-shell, fixes a third. Neglecting spin correlations, we generate the az-
imuthal angle of the splitting randomly in [0, 2π), to fix the last entry of the momentum.
For each leg we stop the shower if rt < ∆(ti), then eq. (4.6) has no solution ti+1 > t0. The
solutions with ti+1 < t0 are not considered, since these are classified as unresolvable.
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4 Monte Carlo parton shower

To generate the splitting cascade for the initial state, we use a backward evolution. That
is, we start from the initial lines of the hard core-process and for each parton generate
stepwise the parent parton. For a parton b carrying a momentum fraction xi = x, the
probability to evolve backwards from ti to ti−1 without branching is given by the function

Π(ti−1, ti, xi) =
fb(x, ti−1)∆b(ti)

fb(x, ti)∆b(ti−1)
, (4.10)

where fb are the parton density functions. This expression can be derived with the help
of eq. (4.3). Due to the equation above, we can generated a random number rt, uniformly
distributed in [0, 1], to receive ti−1 as the solution of

Π(ti−1, ti, xi) = rt . (4.11)

To get the corresponding momentum fraction xi−1, we solve

∫ xi/xi−1

0
dz αs

2π
P̂ (z)fb(xi/z, ti−1)∫ 1

0
dz αs

2π
P̂ (z)fb(xi/z, ti−1)

= rx (4.12)

with a random number rx, which is equally distributed in [0, 1]. The azimuthal angle is
again generated equidistributed in [0, 2π).

In the algorithm above we did not account for spin correlations and for color correlations
apart from the leading 1/Nc terms. Moreover, we assumed a strict ordering in our evolution
variable t. These simplifications allowed for the probabilistic interpretation of the splitting
process in terms of a simple Markov process. Obviously, this picture breaks down, when
higher correlations are considered, since then the probability of a splitting would depend on
more than just the last splitting. However, the aim of the shower is not to account for all
higher order terms, but just for the terms, which are strongly logarithmically enhanced. As
discussed in section 3.4, the leading logarithmic terms in fact arise from emission cascades
ordered in t or p2

t . In addition αS has to be evaluated at a scale of order p2
t . To also

properly account for the NLL terms requires a close look at the exact choice of integration
boundaries, ordering, scale and scheme dependence of the involved terms. A consideration
to this point is done in chapter 5 for the shower in the program sherpa 1.2.

QCD coherence

There is another attribute of QCD radiation, we can take care of in the shower. That
is QCD coherence. Due to quantum interference, the nature of an additional emission
from a pair of partons, which originate from the same splitting, will depend on whether
its angle of emission is smaller or larger than the opening angle of the parton pair. If the
emission angle is smaller than the opening angle, we can, in the large Nc limit, regard both
partons as independent emitters and apply a shower algorithm. If instead the emission
angle is larger than the opening angle, the new parton will be radiated coherently from
both partons and just sees their total color charge, i.e. the charge of their common mother
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parton. The probability to radiate a soft gluon at such an angle is found to be zero. Since
the (next-to-)leading logarithms, which the shower aims to resum, just come from collinear
or soft splittings, the effect of coherence can be accounted for to NLL accuracy by ordering
the shower additionally in the opening angle.

Different implementations

The example of the shower algorithm above shows a general procedure how to generate
splitting cascades. However, distinct Monte Carlo parton shower programs may differ from
this example and among each other in various points. Examples are the choice of evolution
variable as t, p2

⊥ or one of them multiplied by a function of z. The shower cascade may be
ordered in the evolution variable or in the opening angle. It might or might not take local
recoil effects into account. The cut-offs of the integrals might be chosen differently as well
as the scheme and scale of the running coupling and parton distribution functions.

Another important point is the specification of the “hard core-process”. The simplest
choice would be a tree level 2 → 2 process. For each “event” a phase space configuration
of the four legs can be chosen with a chance given by the matrix element. Then the shower
can be run for this event. Restricting to these kind of processes is comparatively easy to
implement, but does not properly account for hard emissions. That is, because the shower
just correctly accounts for the collinear and soft splittings, but not for hard ones. For the
latter, eq. (3.16), which is the basis for the paton shower, is not a good approximation
to the actual cross section. Although the collinear and soft emissions happen much more
frequently, additional hard emissions will significantly change the energy flow of the event.
For example later on we discuss the distribution of dijet event shapes as defined in chapter
7. The inclusion of properly described hard jets improves the accuracy of the shapes of
the observable’s distribution.
A hard emission can be correctly accounted for by the matrix element, but we have to
include more than two outgoing legs. One way to do this is to consider the NLO correction
to the Born 2 → 2 process. Here, one correctly accounts for a single hard emission and
improves the normalization to NLO accuracy.
Another way to properly account for hard emissions is the CKKW approach [22]. It
accounts for hard emissions of multiple jets by taking into account the tree-level 2 → N
matrix elements. In both approaches, new difficulties arise. A major point is to consistently
merge the matrix element with the parton shower. In the following we will focus on the
sherpa program version 1.2, which uses the Catani-Seymour dipole factorization for the
shower [23,24] and an extended version of the CKKW approach [25,22] to match tree-level
multi-jet events with the shower.

4.2 Sherpa

In this section, the Monte Carlo event generator Sherpa is introduced. Sherpa [1] is a
general-purpose tool for the simulation of particle collisions at high-energy colliders. It
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contains very flexible tree-level matrix-element generators for the calculation of hard scat-
tering processes within the Standard Model and various new physics models [26, 27]. The
emission of additional QCD partons from the initial and final states is described through
the parton-shower model of [23]. To consistently combine multi-parton matrix elements
with the parton shower, a modified version [25] of the original approach [22] by Catani,
Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used
to account for underlying events in hadron–hadron collisions [28]. The fragmentation of
partons into primary hadrons is described by a phenomenological cluster-hadronisation
model [29]. A comprehensive library for simulating tau-lepton and hadron decays is pro-
vided. Where available, form-factor models and matrix elements are used to allow the
inclusion of spin correlations. Effects of virtual and real QED corrections are included by
the approach of Yennie, Frautschi and Suura [30].

Of all this features, we will mostly be concerned with the parton shower, which will be
discussed in the next section. The matching procedure will be outlined in section 4.2.2.
The numerical study, which we will perform with sherpa in section 8, will be restricted
to partonic final-states and QCD interactions.

4.2.1 The parton shower

To systematically improve event generation by including higher order corrections, also the
parton shower algorithm itself must be adjusted.

At NLO infrared divergences are encountered both in the real and virtual parts. The
Kinoshita-Lee-Nauenberg theorem [9,10] guarantees their mutual cancellation for physical
observables. In an explicit calculation, especially in a numeric one, it might be technically
involved to achieve this cancellation. Usually one regularizes the divergences by going to
d = 4− 2ǫ dimensions. Then, they yield poles in 1/(4− d) or 1/(4− d)2. Since these poles
follow a universal pattern for real corrections, we can choose subtraction terms, which
have the same pole structure and are analytically integrable over the phase space of the
additional particle. Subtracting these terms from the real corrections and adding them
to the virtual corrections, the poles there cancel and both correction terms can be safely
integrated numerically in four dimensions.

Motivated by this, the shower, as implemented in sherpa 1.2 [23], uses the Catani-
Seymour dipole formalism [24, 31] and its corresponding subtractions as a starting point.
The catch with the subtraction terms is that they can be constructed locally from the
Born matrix element. The Catani-Seymour method interprets pairs of particles as emitting
particle and spectator, which are subject to a splitting kernel creating a third particle.

The essence of the Catani-Seymour method lies in the dipole factorization formula

|Mm+1|2 =
∑

i,j

∑

k 6=i,j
Dij,k +

∑

i,j

∑

a

Da
ij +

∑

a,i

∑

k 6=i
Dai
k +

∑

a,i

∑

b6=a
Dai,b + . . . . (4.13)

The individual dipole contributions D provide the correct approximation of the (m + 1)-
parton matrix element squared in the different singular regions of phase space. The dots
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k

i j
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j

~

Figure 4.1: Effective diagram for the splitting of a final-state parton ĩj into partons i
and j. The splitting parton is connected to a final-state spectator k through a
matrix element, which is denoted by the blob.

denote finite terms, which do not have any divergence. i , j and k denote final-state partons
while a and b label initial-state partons. The first sum runs over the two particles, which
will be combined to the emitter by the formalism. The second sum specifies the spectators.

Of the four possible emitter-spectator combinations in eq. (4.13), which are final-final,
final-initial, initial-final and initial-initial, we will focus on the combination were both are
in the final state. A more complete discussion can be found in [24] for the massless case,
in [31] for the massive case and in [23] for the shower implementation. In the massless case
the final-final dipole contributions read

Dij,k =
1

2pipj
〈m1, . . . , ĩj, . . . , k̃, . . . , m+ 1|TkTij

T2
ij

Vij,k|1, . . . , ĩj, . . . , k̃, . . . , m+ 1〉m .

(4.14)

As shown in [23], they give the correct form of the factorized matrix element in the soft
and collinear limit. In the equation above, the m-parton states are constructed from the
(m+1)-parton matrix element by replacing the partons i and j with the emitter ĩj and the
parton k with the spectator k̃, as illustrated in Figure 4.1. The corresponding momenta
are given by

p̃µij = pµi + pµj −
yij,k

1 − yij,k
pµk and (4.15)

p̃µk =
1

1 − yij,k
pµk (4.16)

with the Lorentz-invariant, dimensionless quantity

yij,k =
pipj

pipj + pipk + pjpk
. (4.17)

The total four-momentum is conserved

pµi + pµj + pµk = p̃µij + p̃µk ≡ Q (4.18)

with all particles on mass shell. T in eq. (4.14), which are matrices in color-space, are the
color charges of the emitter and spectator. Vij,k, which are responsible for the branching
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of the emitter, are matrices in its spin space. They also depend on the type of partons i
and j. sherpa does not take spin correlations into account and therefore only uses the
polarization-averaged forms. For the massless case the spin averaged splitting kernels are

〈Vqi,gj ,k(z̃i, yij,k)〉 = CF

[
2

1 − z̃i + z̃iyij,k
− (1 + z̃i)

]
, (4.19)

〈Vgi,gj ,k(z̃i, yij,k)〉 = 2CA

[
1

1 − z̃i + z̃iyij,k
+

1

z̃i + yij,k − z̃iyij,k
− 2 + z̃i(1 − z̃i)

]
, (4.20)

〈Vqi,qj ,k(z̃i)〉 = TF [1 − 2z̃i(1 − z̃i)] . (4.21)

These describe the QCD splittings q → qg, g → gg and g → qq̄. Splittings with q
interchanged with q̄ are formally identical. In addition to yij,k the splitting kernels depend
on the dimensionless, Lorentz-invariant variable

z̃i = 1 − z̃j =
pipk

pipk + pjpk
. (4.22)

In terms of the Lorentz-invariants z̃i, yij,k and Q2 defined above, we can express the trans-
verse momentum of partons i and j as

~q 2
⊥ = Q2yij,kz̃i(1 − z̃i) . (4.23)

Solving this for yij,k, we see that for fixed ~q 2
⊥ the Catani-Seymour splitting kernels are

not singular at z̃i → 0, 1. Therefore, the soft divergence has properly been regularized.
Another approximation, which is done in sherpa, is the large Nc limit. Color correlations
beyond 1/Nc are lost, but the color operators present in eq. (4.14) are then simply

− TkTij

T2
ij

→ 1 + O
(

1

N2
c

)
for a splitting quark, (4.24)

− TkTij

T2
ij

→ 1

2
+ O

(
1

N2
c

)
for a splitting gluon. (4.25)

This can be combined to the notation

−TkTij

T2
ij

→ 1

N spec
ij

+ O
(

1

N2
c

)
, (4.26)

with N spec
ij the number of possible spectators.

In the large Nc approximation only the planar diagrams contribute. We thus can assign
a color flow to each parton configuration. Since the fixed order matrix elements are usually
summed and averaged over color, this assignment is done a posteriori. However, the partons
entering the shower have a well defined color and one (for a (anti)quark) or two (for a gluon)
uniquely assigned color partner(s), which are the possible spectators.
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With the help of the splitting kernels eqs. (4.19)-(4.21), we can express the (m+1)-parton
matrix element as

|Mm+1|2 = |Mm|2
∑

ij

∑

k 6=ij

1

2pipj

1

N spec
ij

8παS〈Vij,k(z̃i, yij,k)〉 . (4.27)

The full phase space for the emission is given by z̃i ∈ [0, 1], yij,k ∈ [0, 1] and φ ∈ [0, 2π).
Hence, the factorized form of the (m+ 1)-parton phase space is

dΦm+1 = dΦm

∑

ij

∑

k 6=ij

2pipj
16π2

dyij,k
yij,k

dz̃i
dφ

2π
(1 − yij,k)Θ(z̃i(1 − z̃i))Θ(yij,k(1 − yij,k)) . (4.28)

From the last two equations, we receive the factorized form of the differential cross section

dσm+1 = dσm
∑

ij

∑

k 6=ij

dyij,k
yij,k

dz̃i
dφ

2π

αS
2π

1

N spec
ij

J(yij,k)〈Vij,k(z̃i, yij,k)〉 , (4.29)

with the Jacobian

J(yij,k) = 1 − yij,k . (4.30)

Analogously to our discussion after eq. (4.1), we can get the Sudakov form factor from the
right hand side of eq. (4.29) divided by dσm by integrating and exponentiating this expres-
sion. The yij,k integration can be replaced by an integration over the ordering parameter,
the transverse momentum, according to

dyij,k
yij,k

=
d~q 2
⊥

~q 2
⊥
. (4.31)

We cut the available phase space by the requirement of a minimal relative transverse
momentum 0 < ~q 2

⊥,0 < ~q 2
⊥ and an upper limit ~q 2

⊥,max > ~q 2
⊥. While the upper limit follows

directly from the kinematical constraint by the total energy, the lower limit is introduced
as a cut-off to avoid the integration in the collinear region. The emissions in this region
are classified as unresolvable. Due to the cuts on ~q 2

⊥, also the z̃i integration range reduces
to z̃i ∈ [zo−, z

o
+] with

zo∓(~q 2
⊥,max, ~q

2
⊥,0) =

1

2

(
1 ∓

√
1 −

~q 2
⊥,0

~q 2
⊥,max

)
. (4.32)

For the massless final-final dipole, the Sudakov is then given by

∆FF(~q 2
⊥,max, ~q

2
⊥,0) = (4.33)

exp

(
∑

ij

∑

k 6=ij

1

N spec
ij

∫ ~q 2
⊥,max

~q 2
⊥,0

d~q 2
⊥

~q 2
⊥

∫ z+

z−

dz̃i
αS(λ~q

2
⊥)

2π
J(yij,k)〈Vij,k(z̃i, yij,k)〉

)
.
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The constant λ, which we introduced in the scale of αS, is of order 1. We will come back
to it in chapter 5.3. The Sudakov yields the non-branching probability. From it, we can
generate the ~q 2

⊥ value of the branching as in eq. (4.6) and with the splitting kernels we
can generate the corresponding z̃i value as in eq. (4.7). The four-momenta of the splitting
products and the spectator, which takes the recoil, are then

pi = z̃ip̃ij +
~q 2
⊥

z̃i2p̃ij p̃k
p̃ij + q⊥ , (4.34)

pj = (1 − z̃i)p̃ij +
~q 2
⊥

(1 − z̃i)2p̃ij p̃k
p̃ij − q⊥ , (4.35)

pk = (1 − yij,k)p̃k . (4.36)

The corresponding expressions for other emitter-spectator combinations can be found
in [23]. For them, there are some changes regarding kinematics, the definition of vari-
ables and splitting kernels. The major difference is, however, the appearance of a ratio of
parton density functions in the corresponding Sudakov form factors. The corresponding
expressions for the massive case can also be found in [23]. For the observables, which we
want to discuss in subsequent chapters, only the massless case is relevant, because they are
dominated by two jet events with large transverse momenta with respect to the masses of
the light quarks.

In writing down explicit expressions for the Sudakov, a couple of scales had to be chosen.
The transverse momentum ~q 2

⊥ of the produced parton with respect to its emitter was cho-
sen as evolution variable. Related to it the evolution cut-off ~q 2

⊥,0 was introduced. To avoid
the non-perturbative region, but still assign much of the phase space of particle creation to
the shower, a cut-off ~q 2

⊥,0 of order 1 GeV seems to be a suitable choice, as it is sufficiently
separated from the Landau pole at ΛQCD.

In eq. (4.33) the choice µ2
r = λ~q 2

⊥ was made for the renormalization scale. An analogous
choice of order ~q 2

⊥ is made for the factorization scale µf , which appears as argument of the
parton density functions in connection with initial sate partons.

4.2.2 The merging algorithm

The idea in sherpa is to slice the phase space available for emissions in a hard part, which
is described by the matrix element, and a collinear and soft part, which is described by
the parton shower. The separation is done by a jet criterion Q, as defined in eq. (4.38).
The parton shower is restricted to emissions, which obey Q < Qcut, while the matrix
element is applied for Q > Qcut. An event, which is classified as a n jet event by the jet
criterion, has n well separated jets of particles in the final state. Due to the matching
procedure, the distribution of the n jet events is generated with the precision of the matrix
element reweighted with the appropriate Sudakovs for the legs. As shown in the original
paper [25], the applied merging algorithm, which is shortly summarized below, respects the
logarithmic accuracy of the parton shower. For the discussion in chapter 5, we therefore
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only need to look at the shower.
The generation of events in sherpa proceeds as follows [25]:
For all jet multiplicities n ≤ Nmax and parton identities δ, the corresponding matrix element
Mn,δ and cross section σn,δ are calculated at tree level with the phase-space restriction
Q > Qcut. The strong couplings are evaluated at a low scale to give an overestimate, which
will later be reweighted. The pdfs are evaluated at the scale set by the core-process. For
each matrix element the probabilities of the possible color assignments are determine in
the large Nc limit, where only planar diagrams contribute.
Iteratively events are generated:

1. Select an event of jet multiplicity n with parton identities β with probability

P (n, β) =
σn,β∑Nmax

m

∑
δ σm,δ

. (4.37)

2. Distribute the momenta according to |Mn,β|2.

3. By backwards clustering determine the most probable shower history restricting to
those, which correspond to a Feynman diagram, and assign the corresponding colors
to the partons.

4. Accept or reject the event with a probability given by the ratio of the strong couplings
in the reconstructed branchings once evaluated in the shower scheme and once in the
scheme used in the matrix element.

5. Start the parton-shower evolution with suitably defined scales for intermediate and
final-state particles. Intermediate partons undergo a truncated evolution. Any emis-
sion harder than Qcut leads to the rejection of the event.

The last two points differ from the CKKW method, where the probability to accept or
reject an event additionally depends on the Sudakovs corresponding to the reconstructed
shower history and shower emissions harder than Qcut are vetoed. In the case above, these
Sudakovs are generated by the shower by the use of appropriate Sudakovs and the possi-
bility to reject events. Moreover, intermediate partons undergo truncated evolution, which
means that the intermediate partons are allowed to radiate between their reconstructed
emissions if these emissions obey Q < Qcut. The kinematics of the following splittings is
adjusted properly. This removes a short coming of the CKKW approach, where this was
not possible.

The effective restriction of the shower to emissions with Q < Qcut ensures that the n jet
rates for the jet resolution Qcut are generated with the rate given by the matrix element
multiplied by the corresponding Sudakovs. While the procedure gives the correct rates for
final-state jet multiplicities with n ≤ Nmax jets, it does not allow for more than Nmax jets.
To overcome this problem, events from a matrix element with n = Nmax final states are
treated specially, by the method of highest multiplicity treatment. After the last emission
given by the matrix element has been reconstructed by the shower, the shower evolution
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continues without the restriction Q < Qcut. In this way we can account for events with
higher jet multiplicities, however, the additional jets are not generated and distributed
with the accuracy of the matrix element, but only with that of the shower. The choice
Nmax = 2 for example corresponds to the plain shower without merging. Thus, in this case
not a single hard emission is generated with the accuracy of the matrix element.

The jet criterion used to distinguish the two phase space regions is for two partons i
and j, whose flavor and color allows them to originate from a common mother parton ĩj,
defined as

Q2
ij = 2pipj min

k 6=i,j

2

Ck
i,j + Ck

j,i

, (4.38)

where k refers to possible spectators and for final state partons i and j we define

Ck
i,j =

pipk
(pi + pk)pj

− m2
i

2pipj
, if j = g , (4.39)

Ck
i,j = 1 , else. (4.40)

For initial state partons a, we define

Ck
a,j = Ck

(aj),j , (4.41)

where (aj) is created in the splitting process a → (aj)j and hence paj = pa − pj . Because
Q2
ij is proportional to pipj, it vanishes in the soft and collinear limit as needed. A more

detailed discussion can be found in [25].

4.2.3 Uncertainties

There a several sources of uncertainties. Among them, we can distinguish merging-related
and non-merging-related uncertainties. The latter are due to the perturbative nature of
the calculations performed and would also appear without merging. They include:

• The choice of renormalization and factorization scale in the calculation of the matrix
element.

• Their choice in the shower.

• The choice of parton distribution functions, which are relevant for the calculation
of both the cross section and the branching probabilities for the initial-state parton
shower.

• The choice of the leading-order process.

The uncertainties, which are introduced by the merging algorithm are:

• The value of the phase-space separation cut Qcut.
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• The choice of the jet criterion.

• The maximum number Nmax of jets generated by the hard matrix element.

In chapter 8 we will look at the predictions from sherpa for the distribution of dijet
event shapes, which are defined in chapter 7. We will study the effect of various of these
uncertainties and compare the distribution to results from resummation. Resummation is
another approach to incorporate the effects of soft and collinear enhancements to all orders
up to a given logarithmic accuracy. It will be introduced in chapter 6. In the next chapter,
we will look at the logarithmic accuracy of the parton shower in sherpa 1.2.
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5 Logarithmic accuracy of Sherpa

The aim of this chapter is to determine the logarithmic accuracy of the parton shower
as implemented in sherpa 1.2. To this end, we will compute the anomalous Sudakov
dimensions Γij,k in

log ∆FF = −
∑

ij

∑

k 6=ij

∫ ~q 2
⊥,max

~q 2
⊥,0

d~q 2
⊥

~q 2
⊥

αS(~q
2
⊥)

2π
Γij,k , i.e. (5.1)

Γij,k =

∫ z+

z−

dz̃i
1

Nij
J(yij,k(z̃i, ~q

2
⊥, Q

2))〈Vij,k(z̃i, yij,k)〉 . (5.2)

Where J is given in eq. (4.30), 〈Vij,k〉 in eqs. (4.19) - (4.21) and yij,k in eq. (4.23). The
calculation is performed up to the next-to-leading logarithmic (NLL) term. The next-
to-next-to-leading logarithmic (NNLL) term is not accounted for in sherpa, because the
shower in sherpa is strictly ordered in ~q 2

⊥. This ordering is necessary for the implementa-
tion of the shower in terms of a Markov process. In section 3.3, we showed that emissions
disordered in ~p 2

⊥ will contribute at most a NNLL term in the expansion series.
After performing all integrations in the Sudakov, to first order in αS, the leading log-

arithmic (LL) term will be proportional to αS log2(~q 2
⊥,0/Q

2
hard), while the NLL terms will

arise as αS log(~q 2
⊥,0/Q

2
hard). Where Q2

hard is some appropriate hard scale, e.g. something
of order ~q 2

⊥,max. If we, instead, only perform the z̃i integration, the LL term should be
proportional to αS log(~q 2

⊥/Q
2
hard) and the NLL should be a constant independent of ~q 2

⊥.
Terms vanishing if ~q 2

⊥ → 0 are subleading, i.e. at most NNLL.
To simplify the notation, we write z and y instead of z̃i and yij,k in the following discus-

sion. For the z integration, there are two restrictions. On the one hand, from eq. (4.32)
we have

zo− ≤ z ≤ zo+ with

zo∓ =
1

2

(
1 ∓

√
1 −

~q 2
⊥,0

~q 2
⊥,max

)
. (5.3)

On the other hand, we also have the restriction y ≤ 1. Using y from eq. (4.23), this leads
to

zn− ≤ z ≤ zn+ with

zn∓ =
1

2


1 ∓

√

1 − 4
~q 2
⊥
Q2


 . (5.4)
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To identify, in which region which cuts is relevant, we look at the value of ~q 2
⊥ where zn∓ = zo∓.

Calling it ~q 2
⊥,t, we find

4
~q 2
⊥,t
Q2

=
~q 2
⊥,0

~q 2
⊥,max

⇔ ~q 2
⊥,t = ~q 2

⊥,0
Q2

4~q 2
⊥,m

. (5.5)

For ~q 2
⊥ ≤ ~q 2

⊥,t the zo± cut is more restrictive than the the zn± cut. For ~q 2
⊥ ≥ ~q 2

⊥,t it is the
other way around. To account for the existence of those two regions, we split the full ~q 2

⊥
integral into

∫ ~q 2
⊥,t

~q 2
⊥,0

d~q 2
⊥

~q 2
⊥

∫ zo
+

zo
−

dz +

∫ ~q 2
⊥,max

~q 2
⊥,t

d~q 2
⊥

~q 2
⊥

∫ zn
+

zn
−

dz . (5.6)

If ~q 2
⊥,t is larger than ~q 2

⊥,max, we only perform the first integral restricted to [~q 2
⊥,0, ~q

2
⊥,max].

~q 2
⊥,t will never be below ~q 2

⊥,0, because the condition y ≤ 1 implies 4~q 2
⊥,max ≤ Q2. Note,

despite this relation, we do not expect ~q 2
⊥,max to be a function of Q2, because Q2 is fixed

already by the parton configuration before the splitting (cf. eq. (4.18)), while in principle
we want to evaluate Sudakovs with an upper bound on the ~q 2

⊥ integration down to ~q 2
⊥,0. To

understand this, recall how we generate the ~q 2
⊥ value of the splitting by finding the upper

integration bound on the ~q 2
⊥ or t integration corresponding to a random number r ∈ [0, 1]

as in eq. (4.6). Thus, we see that there cannot be a fixed relation between ~q 2
⊥,max and Q2

and both the zo± and the zn± cut can be relevant.

We now perform the z integrations in the two regions, identify the LL and NLL contri-
butions and combine the results of the two regions again. The integrand in eq. (5.2) can
be written as a sum of rational functions f(z)/g(z) with f and g polynomials. Because
neither J nor 〈V 〉 do have poles in [z−, z+], the polynomials g do not have roots there.
Hence, the terms can be analytically integrated. With the shorthand notations

x =
~q 2
⊥
Q2

, s =
~q 2
⊥,0

~q 2
⊥,max

, (5.7)

the results are as follows. For the splitting q → qg

1

NqijCF

∫
dzJ(y)〈Vqi,gj ,k(z, y)〉 = − log(x+ (z − 1)2)

1 + x
− z − 1

2
z2+ (5.8)

−
2
√
x arctan

(
z−1√
x

)

1 + x
− 2x log(z − 1) +

(x− 1)x log(z)

1 + x
.
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For the splitting g → gg

1

Ngij
CA

∫
dzJ(y)〈Vgi,gj,k(z, y)〉 = (5.9)

1

1 + x

(
−1

2
log(x+ (z − 1)2) +

1

2
log(x+ z2) − 2z +

1

2
z2 − 1

3
z3

− 3xz − x2z +
1

2
xz2 − 1

3
xz3 −√

x arctan
z − 1√
x

−√
x arctan

z√
x

− x log(z − 1) + x log(z) − 2x2 log(z − 1) + 2x2 log(z)

)
.

And for the splitting g → qq̄

1

Ngij
TF

∫
dzJ(y)〈Vqi,qj ,k(z, y)〉 = (5.10)

z − z2 +
2

3
z3 + 2xz + x log(z − 1) − x log(z) .

The factor Nij is 1 if the emitter is a quark and 2 if the emitter is a gluon. Its value was
taken into account on the right hand side of the equations.By subtracting the right hand
side of one of the last three equations evaluated at z− from the same term evaluated at
z+, we find the corresponding anomalous Sudakov dimension Γ. Here depending on the ~q 2

⊥
value, z± refers to zo± or zn± respectively. From all these terms, which include subleading
contributions, we want to extract the LL and NLL terms. To do so, we focus on the limit
of small ~q 2

⊥ and use Taylor expansions in x or s if necessary.

5.1 Splitting quark

As first splitting, we discuss q → qg, i.e. eq. (5.8). Let us start with the second integral
in eq. (5.6), which uses zn± from eq. (5.4) as integration boundaries. The LL contributions
arises from the first term of eq. (5.8)

∓ log(x+ (zn± − 1)2)

1 + x
= ∓ log(1

2
∓ 1

2

√
1 − 4x)

1 + x
≈ ∓ log(1

2
∓ 1

2
± x) , (5.11)

which is the LL term − log x for the upper sign and a subleading − log(1 − x) ≈ x for the
lower sign. The prefactor 1/(1 + x) is just 1 to NLL accuracy.
The NLL contribution comes from the second and third term of eq. (5.8)

[−z − 1
2
z2]

∣∣∣∣
zn
+

zn
−

= −3

2
+ O(NNLL) . (5.12)

All other terms just give subleading contributions, as we will show now. As pointed out
before, subleading terms will vanish in the limit ~q 2

⊥ → 0, which corresponds to x → 0. To
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5 Logarithmic accuracy of Sherpa

rewrite the arctan term, we can use the relation

arctan a− arctan b = arctan

(
a− b

1 + ab

)
, for ab ≥ −1 . (5.13)

In our case, we have
zn
+−1√
x

zn
−−1√
x

= 1 ≥ −1, thus the fourth term of eq. (5.8) gives

−2
√
x

1 + x
arctan

(
z − 1√
x

) ∣∣∣∣
zn
+

zn
−

=
−2

√
x

1 + x
arctan

(√
1 − 4x√

4x

)
. (5.14)

Since | arctan y| < π/2, this vanishes if x → 0 and is therefore subleading. The fifth term
of eq. (5.8) leads to

∓2x log(zn± − 1) = ∓2x log(−zn∓) = ∓i2πx∓ 2x log zn∓ , (5.15)

which is subleading. For the lower sign this is obvious. For the upper sign we have
−2x log x+ O(NNLL), which is subleading, because

∫
dx

x
x log x =

∫
dx log x = x(log x− 1) (5.16)

vanishes if x does. Thus, after the ~q 2
⊥ integration no large logarithm arises from this term.

The same reasoning holds for the sixth term of eq. (5.8).
To summarize, for the second integral in eq. (5.6), we find the anomalous Sudakov dimen-
sion

Γq→qg = CF

(
− log x− 3

2

)
+ O(NNLL) (5.17)

= CF

(
log

(
Q2

~q 2
⊥

)
− 3

2

)
+ O(NNLL) .

The dependence on the spectator k enters only in the scale Q, which is the invariant mass
of the emitter-spectator-dipole. Therefore, we did not put an explicit index k on Γ in the
equation above.

To have a sensible result, we also have to look at the expression for Γq→qg, which arises
from the first integral in eq. (5.6) with the integration boundaries zo±. By choice of the
corresponding upper ~q 2

⊥ integration limit ~q 2
⊥,t, we now have the relation x ≤ s/4 for x and

s defined in eq. (5.7). Since we expect s/4 to be small, we however assume (s/4)2 ≤ x.
Then, the LL term arises from the first term in eq. (5.8) evaluated at zo+:

− log(x+ (zo+ − 1)2)

1 + x
= − log(x+ (zo−)2)

1 + x
≈ − log

(
x+

(s
4

)2
)

≈ − log x , (5.18)
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5.1 Splitting quark

which again yields − log(~q 2
⊥/Q

2) as LL term. The corresponding term for z0
− gives a

subleading contribution.
The NLL contribution again comes from the second and third term of eq. (5.8)

(−z − 1
2
z2)

∣∣∣∣
zo
+

zo
−

= −3

2
+ O(NNLL) . (5.19)

All following terms in eq. (5.8) are subleading. With
zo
+−1√
x

zo
−−1√
x

= s/4x ≥ 1 > −1, we can

use eq. (5.13) to write the fourth term as

−2
√
x

1+x
arctan

(
z−1√
x

) ∣∣∣∣
zo
+

zo
−

= 2
√
x

1+x
arctan

(
zo
−−zo

+√
x

1+ s
4x

)
= 2

√
x

1+x
arctan

(
−
√

1−s√
x

1+ s
4x

)
. (5.20)

This is subleading, since | arctan y| < π/2. The contributions of the sixth term in eq. (5.8)
are

∓2x log(zo± − 1) = ∓i2πx∓ 2x log zo∓ . (5.21)

This is obviously subleading for the lower sign. For the upper sign, the leading contribution
is −2x log s. This is not a NLL term, but integrating it gives

∫ ~q 2
⊥,t

~q 2
⊥,0

d~q 2
⊥

~q 2
⊥

2
~q 2
⊥
Q2 log

(
~q 2
⊥,max

~q 2
⊥,0

)
= 2

~q 2
⊥,t
−~q 2

⊥,0

Q2 log
(
~q 2
⊥,max

~q 2
⊥,0

)
(5.22)

= 2
~q 2
⊥,0

Q2

(
Q2

4~q 2
⊥,max

− 1
)

log
(
~q 2
⊥,max

~q 2
⊥,0

)
.

If 4~q 2
⊥,max is of order Q2, this is negligible, because it is suppressed by a factor ~q 2

⊥,0/Q
2.

If 4~q 2
⊥,max ≪ Q2, i.e. ~q 2

⊥,max of order ~q 2
⊥,0, its contribution is also suppressed, this time by

the logarithm. Moreover, the approximation zo− ≈ s/4 is rather bad in this case, because
s ≈ 1. We then instead find zo± ≈ 1

2
and hence the term in eq. (5.21) is subleading for all

~q 2
⊥,max.

In summary, we find for the phase space region ~q 2
⊥ ∈ [~q 2

⊥,0, ~q
2
⊥,t] the anomalous Sudakov

dimension

Γq→qg = CF

(
log

(
Q2

~q 2
⊥

)
− 3

2

)
+ O(NNLL) . (5.23)

Since this is exactly the same result as eq. (5.17) for the phase space region ~q 2
⊥ ∈ [~q 2

⊥,t, ~q
2
⊥,max],

we can combine the sum of ~q 2
⊥ integrals in eq. (5.6). Hence, for sherpa 1.2, we find to

NLL accuracy in the whole ~q 2
⊥ range the anomalous Sudakov dimension for the quark as

given in eq. (5.23) and (5.17). This is to NLL accuracy exactly the result, that was found
in eq. (2.22) of [32]. Thus, it is correct to this accuracy.
An integration of the DGLAP splitting kernels, which are used in many other showers,
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5 Logarithmic accuracy of Sherpa

gives an analogous result. The only difference there is, that the scale Q2 is not fixed,
but is usually chosen equal to the hard scale of the core-process Q2

hard. For the shower in
sherpa, instead, the scale Q2 is fixed and arises naturally as the invariant mass of the
splitting dipole. We think, that this scale choice is preferable, since all that should be rele-
vant for the splitting, in the case of uncorrelated emissions, is the kinematic configuration
of the dipole. Because the DGLAP evolution does not know about dipoles, but evolves
each parton independently, there the mass of the dipole cannot arise and the scale Q2

hard

has to be used in place. In eq. (6.31), a similar integral as for the anomalous Sudakov
dimension is solved. The scale that appears there is also the invariant mass of the dipole.
This once more encourages us, to believe that the mass of the dipole is the relevant scale
for Γ.

5.2 Splitting gluon

For the splitting g → gg, the discussion and results will be similar to the q → qg case.
This time we have to discuss the terms in eq. (5.9). The overall factor 1/(1 + x) can be
ignored to NLL accuracy.
We start with the zn± case. The LL contribution comes from the first two terms of eq. (5.9)

[
− 1

2
log
(
x+ (z − 1)2

)
+ 1

2
log
(
x+ z2

)]∣∣∣∣
zn
+

zn
−

= − log
(
x+ (z − 1)2

)∣∣∣∣
zn
+

zn
−

. (5.24)

This is exactly the term discussed in eq. (5.11). Hence, it leads to the LL contribution
− log x and additional subleading terms.
The NLL contribution comes from the third to fifth term of eq. (5.9)

(
−2z + 1

2
z − 1

3
z3
) ∣∣∣∣

z+

z−

= −11

6
+ O(NNLL) . (5.25)

All other terms give subleading contributions. For the sixth to ninth term in eq. (5.9)
this is obvious, because they are suppressed by a factor x. Due to the antisymmetry of
the arctan, the eleventh term evaluated at z+ and z− gives the same contribution as the
tenth term. This in turn is subleading, as shown for eq. (5.14). The twelfth and thirteenth
term are subleading, which follows from the discussion of eq. (5.21). With respect to them,
the last two terms in eq. (5.9) are suppressed by and additional factor x. Thus, they are
subleading a fortiori.
In summary, we find for the splitting g → gg in the region ~q 2

⊥ ∈ [~q 2
⊥,t, ~q

2
⊥,max] the anomalous

Sudakov dimension

Γg→gg = CA

(
log

(
Q2

~q 2
⊥

)
− 11

6

)
+ O(NNLL) , (5.26)

In the region ~q 2
⊥ ∈ [~q 2

⊥,0, ~q
2
⊥,t], where the zo± cut is relevant, the result will be identical: The

first two terms in eq. (5.9) can be combined as in eq. (5.24). According to eq. (5.18), they
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5.2 Splitting gluon

then give the LL contribution − log(~q 2
⊥/Q

2). The only NLL contribution comes from the
terms −2z + z2/2 − z3/3 evaluated at the boundaries zo±, which gives −11/6.
All other terms give subleading contributions. This is obvious for the sixth to ninth term
in eq. (5.9), because they are suppressed by a factor x. The terms involving an arctan
correspond to the ones present in the q → qg case, when we use the antisymmetry of
the arctan for the second of them. Hence, they are subleading. The contributions of the

twelfth and thirteenth term can be combined into −2 x
1+x

log(z − 1)|z
o
+

zo
−

+ O(NNLL) and

are, according to eq. (5.21) and the discussion below it, subleading. With respect to them,
the two last terms in eq. (5.9) are suppressed by and additional factor x. Thus, they are
subleading a fortiori.
For the phase space region ~q 2

⊥ ∈ [~q 2
⊥,0, ~q

2
⊥,t] we therefore find the anomalous Sudakov di-

mension

Γg→gg = CA

(
log

(
Q2

~q 2
⊥

)
− 11

6

)
+ O(NNLL) . (5.27)

This coincides with Γg→gg found for ~q 2
⊥ ∈ [~q 2

⊥,t, ~q
2
⊥,max] in eq. (5.26). Thus this equation

gives the anomalous Sudakov dimension for a gluon splitting to two gluons in the whole
integration range. This agrees to NLL accuracy with the result found in eq. (2.23) of [32].
Thus, it is correct to this accuracy. Again, the scale Q is the invariant mass of the dipole
and not an arbitrary hard scale as found for the DGLAP kernels.

For the third splitting g → qq̄ no LL term arises. The NLL term for both the zo± and zn±
case comes from

(
z − z2 + 2

3
z3
) ∣∣∣∣

z+

z−

=
2

3
+ O(NNLL) . (5.28)

All other terms are subleading as follows from the discussion of the other cases. Its anoma-
lous Sudakov dimension to NLL accuracy is therefore

Γg→qq̄ = TF
1

3
+ O(NNLL) . (5.29)

Having established the correctness of the anomalous Sudakov dimensions to NLL accuracy,
the same precision follows at least in the large Nc limit for the corresponding Sudakov form
factor if αS is evaluated in an appropriate scheme, up to sufficient order and at the correct
scale. The appropriate choices for these will be discussed in the next section. We therefore
find that the final-final Sudakov in sherpa is correct to NLL accuracy in the large Nc

limit. We restrict this statement to the large Nc limit, because sherpa respects only
leading terms in 1/Nc and in chapter 6 we will find that NLL terms can arise, which are
not leading in 1/Nc, and therefore negelcted in sherpa. The finding of the relevant hard
scale as the invariant mass of the splitting dipole has been discussed after eq. (5.23).
To receive a complete picture of the logarithmic accuracy of the parton shower, we would
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5 Logarithmic accuracy of Sherpa

also need to consider the Sudakovs related to dipoles, where the spectator, the emitter or
both of them are in the initial state. However, in this case, the appearance of the parton
density functions prevents us from performing an analogous analytical consideration. Since
the kinematics and the splitting kernels are appropriately adjusted in these cases, we would,
however, expect, that those Sudakovs, will also be correct to NLL accuracy in the large Nc

limit if the parton density functions are evaluated at the appropriate precision. Because
the matching procedure of sherpa maintains the logarithmic accuracy of the shower, it
would then follow that sherpa produces, in the large Nc limit, events with NLL precision.

5.3 Resummed logarithms in the coupling constant

In the running coupling constant, contributions from virtual corrections are contained.
When αS is evaluated at an appropriate scale, these corrections will also lead to powers of
the logarithms, which we are considering. The anomalous Sudakov dimensions Γ, which
we considered in the last sections, can be written as AL+B. The logarithm that appears
here is L = log ~q 2

⊥/Q
2. In the Sudakov, they appear together with αS(µ

2) inside the ~q 2
⊥

integral. To produce the same kind of logarithms L, which appear in Γ, from the running
of αS, we see that αS has to be evaluated at a scale proportional to ~q 2

⊥ and expanded in
terms of αS at the scale Q2. To do this, we apply eq. (2.34), i.e. the two-loop expansion of
αS in the MS scheme:

αS(~q
2
⊥) =

αS(Q
2)

1 + β0

4π
αS(Q2)L

− β1

4πβ0

α2
S(Q

2) log(1 + β0

4π
αS(Q

2)L)
(
1 + β0

4π
αS(Q2)L

)2 + O
(
αk+3
S Lk

)
. (5.30)

The first summand corresponds to the one-loop expression, while the second summand
gives the two loop correction. The third summand stands for higher loop corrections. Eq.
(5.30) can be Taylor expanded in αS(Q

2)L, because the large logarithm always appears
together with the strong coupling constant. The expansion will produce summands pro-
portional to αm+n

S (Q2)Lm. The additional factor αnS(Q
2) comes from the overall prefactors

containing powers of αS(Q
2). For the one-loop term n = 1, for the two-loop term n = 2

and for higher correction n ≥ 3.
For αS(~q

2
⊥)(AL + B), the one-loop expression for αS(~q

2
⊥) generates summands propor-

tional to AαmS (Q2)Lm and BαmS (Q2)Lm−1. The two-loop correction, instead, leads to sum-
mands proportional to Aαm+1

S (Q2)Lm and Bαm+1
S (Q2)Lm−1. The higher corrections are

suppressed by additional powers of αS(Q
2).

Because αS is evaluated at the scale Q2, the ~q 2
⊥ integration in the Sudakov can be performed

for each of these terms. As we see from eq. (3.25), a summand αnS(Q
2)Lm will become

αnS(Q
2)L̃m+1/(m+ 1), where now L̃ = logQ2/~q 2

⊥,0 and we ignored logm+1 ~q 2
⊥,max/Q

2, since

it should be small compared to logm+1 ~q 2
⊥,0/Q

2, because typically Q2 ∼ ~q 2
⊥,max. Thus, the

~q 2
⊥ integration produces an additional power of the large logarithm.

Therefore, the one loop expansion generates LL contributions from the AαS(~q
2
⊥)L term in
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5.3 Resummed logarithms in the coupling constant

the anomalous Sudakov dimension and NLL contributions from the BαS(~q
2
⊥) term.1 The

two-loop expression leads to an additional NLL contribution from the AαS(~q
2
⊥)L term,

while from the BαS(~q
2
⊥) term a NNLL contribution arises. The higher loop terms at most

give NNLL corrections. We therefore see, in αS evaluated at a scale of order ~q 2
⊥, logarith-

mic corrections are resummed and to account for all LL and NLL corrections, which are
leading in 1/Nc, the two-loop expression for the running of αS is necessary and sufficient.

NLL from correlated emissions

There is a further contribution, which we can account for, by the running of the coupling.
In the parton shower, the emissions were regarded as uncorrelated apart from the ordering
in ~q 2

⊥ and kinematic dependences. However, there actually is an NLL effect of correlated
emission, but as outlined in [33, 2], it can be taken into account by the expression for
uncorrelated emissions if there αS is evaluated at the scale ~q 2

⊥ at two-loop level in the
CMW scheme. The CMW scheme is related to the MS scheme by

αS,CMW = αS,MS +
K

2π
α2
S,MS

, (5.31)

where

K =

(
67

18
− π2

6

)
CA − 5

9
nf , (5.32)

with nf the number of flavors. The nice thing is that at NLL accuracy we can also obtain
the CMW expression from the MS expression by changing the renormalization scale by a
constant factor. Recall that in the exponent we call a the term αnSL

m a leading logarithmic
term in the large logarithm L if m = n+1, we call it a NLL term if m = n, and subleading
if m < n. Hence, if we multiply a LL term with αS without an additional factor L, we
get a NLL term. A NLL term multiplied by αS becomes subleading. In eq. (2.34) the
logarithm corresponding to the scale change µ2

r → λµ2
r is log λ, which is not large. Hence,

at NLL accuracy, we can stop the expansion of αS(λµ
2
r) in terms of αS(µ

2
r) at the term

∼ α2
S. That is, only the one-loop expression matters and from its Taylor expansion just

the first two terms are relevant:

αS(λ~q
2
⊥) =

~q 2
⊥

1 + β0

4π
αS(~q 2

⊥) log λ
= αS(~q

2
⊥)

∞∑

m=0

(
−β0

4π
αS(~q

2
⊥) log λ

)m

= αS(~q
2
⊥) − β0

4π
α2
S(~q

2
⊥) log λ+ O(α3

S) . (5.33)

1As pointed out before, after all integrations in the Sudakov have been performed, summands αm
S (Q2)L̃n

are LL contributions for n = m + 1 and NLL corrections for m = n, while they are subleading for
m > n.
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5 Logarithmic accuracy of Sherpa

Demanding this to agree with the right-hand side of eq. (5.31) up to O(α3
S) leads to

− β0

4π
log λ =

K

2π
, i.e. (5.34)

λ = exp

(−2K

β0

)
= exp

(
−(67 − 3π2) CA

3
− 10nf

3

33 − 2nf

)
. (5.35)

For SU(3) CA = 3, thus λ ≈ 0.382 for nf = 4 and λ ≈ 0.406 for nf = 5. sherpa adjusts its
renormalization scale by this factor λ.2 With the scale choice λ~q 2

⊥ for the running coupling
in the Sudakov, we therefore account, in the large Nc limit, for all LL and NLL if the
anomalous dimension is correct at this accuracy. Since we showed this for the final-final
dipole in the last sections, we therefore find that the corresponding Sudakov in sherpa is
also correct to this precision. If, as we suppose, the three other dipole configurations also
give the correct anomalous Sudakov dimension, the same reasoning holds for them.

2From private communication with Steffen Schumann.
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6 Resummation of dijet observables

In this chapter, we will introduce the method of resummation, which takes the effect of
strongly logarithmically enhanced terms into account to all orders. We will follow the
considerations of [2], where the resummation method, as it is implemented in the program
caesar, is described. As for the parton showers, a key ingredient of this method is the
factorization of additional soft and collinear emissions from a hard matrix element as in eq.
(3.16). In contrast to the parton showers, it, however, derives a (semi)analytical expression
for the distribution of an observable by applying approximations which are justified at a
given accuracy to solve the expression for the distribution explicitly. This derivation, of
course, is observable specific. Here, we will look at the class of observables of dijet event
shapes, which measure the distribution of momentum in the final-state of an event.

Our discussion will be structured as follows. We introduce common properties of the
event shapes, which will be considered, to allow for a combined discussion of all of them.
Then, we introduce the function that will be resummed. We will look at the effect of
allowing additional emissions of any number of final state particles and extract their leading
contributions. For these, the result for the emission of a single additional particle will be
relevant. Therefore, continuing, we will consider this term. Finally, after finding the
resumed result, we will discuss, how it can be combined with a fixed order calculation to
improve its accuracy.

6.1 Problem specification

An event shape observable V (k1, k2, ...) is a positive definite function of the momenta k1,
k2,... of the particles in the final state of a scattering event. It should be infrared and
collinear safe. Moreover, in the limit of two narrow jets the observable should go smoothly
to zero. To simplify the considerations, we will restrict to partonic final states. Then, the
very limit of two narrow jets are two partons in the final state with momenta p1, p2 = {p}.
This will be called the Born event B. To a specific Born parton we will refer to as leg l.

For a single emission q(l), which is soft and collinear to leg l and has the transverse
momentum |~q (l)

⊥ |, the rapidity η(l) and the azimuthal angle φ(l) with respect to this leg, the
observable V should be parameterizable as

V ({p}, q) = dl

(
|~q (l)
⊥ |
Q

)al

e−blη
l

gl(φ
(l)) . (6.1)

Here Q is the hard scale of the process and {p} are the Born momenta. al, bl and dlgl(φ
(l))

describe the dependence of the observable on the momentum q(l). The normalization
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6 Resummation of dijet observables

gl(π/2) = 1 is chosen. Obviously, requiring this form, restricts the range of observables
caesar can resum. The event shapes, which will be introduced in chapter 7, are examples
of observables with these properties.

Given a procedure, which selects events with 2 or more hard jets1, we can introduce the
function H(k1, ..., kN), which is one for selected events and zero otherwise. Then we define
the hard n-jet cross section as

σ =

∞∑

N=2

∫
dΦN

dσN
dΦN

H(k1, . . . , kN) , (6.2)

where dΦN is the N particle phase space and dσN

dΦN
is the corresponding differential cross

section.
Requiring, in addition to the selection cuts, that the value of the observable V is smaller

than v, we introduce the partially integrated cross section Σ(v) as

Σ(v) =

∞∑

N=2

∫
dΦN

dσN
dΦN

Θ (v − V (k1, . . . , kN))H(k1, . . . , kN) . (6.3)

This can be rewritten in the factorized form

Σ(v) =
∑

δ

∫
dBdσ(δ)

dB f
(δ)
V,B(v)H(p1, p2) , (6.4)

where dσ(δ)

dB is the leading order differential cross section for the Born event B with Born
momenta p1 and p2 in the color channel δ. We also introduced the observable dependent
function f

(δ)
V,B(v), whose form we will discuss in the following. For simplicity we will focus

on the case of a color singlet qq̄ pair in the final state. We will suppress the labels on f
(δ)
V,B.

Generalizations to other color channels with more than two hard legs and to incoming
partons are outlined in section 6.4.

6.2 Multiple independent emissions

Recalling what we learned about parton splitting in chapter 3, we expect a factorization
of the cross section of the form

dΦN
dσN
dΦN

= dσN = dσ2
1

(N − 2)!

N−2∏

i=1

d~q 2
⊥,i

~q 2
⊥,i

dzi
dφi
2π

αS
2π
P̂g←q(zi) (6.5)

for successive emissions of real gluons from the Born legs. P̂g←q are the splitting kernels
as defined in Table 3.1. ~q 2

⊥,i, zi and φi are respectively the transverse momentum, the

1In caesar this will be the kt jet algorithm combined with a cut on the transverse momentum and
rapidity.
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6.2 Multiple independent emissions

momentum fraction and the azimuthal angle of the gluon as measured with respect to the
emitting leg. The factor 1/(N − 2)! was introduced to account for the fact that gluons are
bosons. In case of N=2 the right hand side of eq. (6.5) is understood to be dσ2. Because
of eqs. (6.3) and (6.5), we expect f in eq. (6.4) to be given by

f(v) ∼
∞∑

n=0

1

n!

(
n∏

i=1

∫
d~q 2
⊥,i

~q 2
⊥,i

dzi
αS
2π
P̂g←q(zi)

)
Θ (v − V ({p}, q1, . . . , qn)) . (6.6)

The equation above has to be slightly adjusted, since on the one hand it does not include
virtual corrections and on the other hand the gluon can be emitted by both Born legs. We
therefore take

~q 2
⊥ =

(2qp1)(2qp2)

2p1p2
(6.7)

and the momentum fractions z(1) and z(2) as given by the Sudakov decomposition of the
gluon momentum q

q = z(1)p1 + z(2)p2 + |~q⊥| cosφnin + |~q⊥| sinφnout , (6.8)

where nin and nout are space-like unit vectors, which are orthogonal to p1 and p2 and whose
vector components are in and perpendicular to the ~p1-~p2 plane, respectively. The condition
that the emission is massless implies ~q 2

⊥ = z(1)z(2)Q2
12, where Q12 = 2p1p2 is the invariant

mass of the dipole. If q is approximately collinear to leg 1, i.e. if tan
θ1q

2
≪ tan θ12

2
, where

θab is the angle between the the vector components of the momenta of a and b, then ~q 2
⊥ and

φ coincide with the ones defined relative to leg 1 in eq. (6.1). In this region the rapidity of
the emitted gluon with respect to leg 1 is

η(1) = log
2z(1)E1

|~q⊥|
= η + log

2E1

2p1p2

, η =
1

2
log

z(1)

z(2)
, (6.9)

where η is the rapidity of the emission in the dipole’s center-of-mass frame. Analogous
statements hold for emissions collinear to leg 2.

We then replace
d~q 2

⊥,i

~q 2
⊥,i

dzi
dφ
2π

αS

2π
P̂g←q(zi) by [dqi]|M(qi)|2, which is a shorthand notation for

[dq] =
d~q 2
⊥

~q 2
⊥

dz(1) dφ

2π
(6.10)

and

|M(q)|2 =
αS
2π

1

2CFz(1)

(
z(1)P̂g←q(z

(1)) · z(2)P̂g←q(z
(2))
)
. (6.11)

The factor zP̂g←q/CF is between one and two. It is two if z vanishes and one if z is one.
The higher order corrections to the leading order (Born) cross section do not only include
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6 Resummation of dijet observables

real emissions, but also virtual corrections. For infrared and collinear safe observables, the
infrared and collinear divergences cancel among the real and virtual corrections by means
of the Kinoshita-Lee-Nauenberg theorem [9,10]. Since the virtual particles appear only in
loops, their momenta are not constrained by the value v in (6.4). Thus in the soft and
collinear region their contribution should correspond to the one of the real corrections as in
eq. (6.6) with the adjustments as outline above and the opposite sign. For them however
there is no Θ function of v. Because of this and their form, they can be written as an
exponential function.
Taken together, f in eq. (6.4) is given by

f(v) = exp

(
−
∫

[dq]|M(q)|2
) ∞∑

n=0

1

n!

(
n∏

i=1

∫
[dqi]|M(qi)|2

)
× (6.12)

× Θ (v − V ({p}, q1, . . . , qn)) .

The first factor represents the virtual corrections. The product of integrations comes from
real emissions and the sum over n and the Θ function are those, which appeared in eq.
(6.3). The integrals are understood to be regularized. Moreover, we are looking at the
limit of small v here, which corresponds to the soft and collinear region and allows for the
factorization of the additional emissions in eq. (6.5).

Given that all emissions can be regarded as independent, eq. (6.12) holds to NLL accu-
racy in log(1/v). There actually is an NLL effect of correlated emission, but as outlined
in [33, 2], it can be taken into account by the expression for independent emissions, if αS
is evaluated at the scale ~q 2

⊥ at two-loop-level in the CMW scheme. The latter is related to
the MS scheme by eq. (5.31).

We will use the notation

vi = V ({p}, qi) (6.13)

to denote the value the observable V would have if just the emission qi and the two Born
legs were present,

The emission qi with the largest vi we relabel as q1. We then can write

∞∑

n=0

1

n!

(
n∏

i=1

∫
[dqi]|M(qi)|2

)
=1 +

∫
[dq1]|M(q1)|2× (6.14)

×
∞∑

m=0

1

m!

(
m+1∏

i=2

∫
[dqi]|M(qi)|2Θ(v1 − vi)

)
.

Let us introduce a small parameter ǫ with 0 < ǫ ≪ 1 and log 1
ǫ
≪ log 1

v
. We then split

the sum in eq. (6.14) in two parts: the emissions satisfying vi ≥ ǫv1 and the emissions
satisfying vi < ǫv1. Ignoring the strongly suppressed constant term ’+1’ and relabeling the

56



6.2 Multiple independent emissions

qi we can write

∞∑

n=0

1

n!

(
n∏

i=1

∫
[dqi]|M(qi)|2

)
=

∫
[dq1]|M(q1)|2

∞∑

m=0

1

m!
× (6.15)

×
(
m+1∏

i=2

∫ v1

ǫv1

[dqi]|M(qi)|2
) ∞∑

n=0

1

n!

(
n+m+1∏

j=m+2

∫ ǫv1

0

[dqj ]|M(qj)|2
)
,

with the shorthand notation for the limits
∫ y

x

[dqi]|M(qi)|2 =

∫
[dqi]|M(qi)|2Θ(y − vi)Θ(vi − x) . (6.16)

This splitting is useful, because we demand the observable V to be recursively infrared
and collinear (rIRC) safe. rIRC safety means that in the presence of the comparable hard
emission q1 the emissions with vi < ǫv1, which are much more collinear and soft than q1,
do not affect the value of the observable significantly. That is

V ({p}, q1, . . . , qm+1, qm+2, . . . , qn+m+1) = V ({p}, q1, . . . , qm+1) + O(ǫpv1) , (6.17)

with some positive power p. A more explicit and extended definition is given in section 3.1
of [2]. Using this relation for V in the Θ-function of eq. (6.12) and neglecting the terms
suppressed by powers of ǫ, we can write with the help of eq. (6.15)

f(v) =

∫
[dq1]|M(q1)|2 exp

(
−
∫

ǫv1

[dq]|M(q)|2
) ∞∑

m=0

1

m!
× (6.18)

×
(
m+1∏

i=2

∫ v1

ǫv1

[dqi]|M(qi)|2
)

Θ (v − V ({p}, q1, . . . , qm+1)) .

Since the emissions with vi < ǫv1 did not appear in the common Θ-function anymore,
they could be written as exponential and combined with the virtual contributions. With
exception of the q1 integral, all integrals have the lower bound ǫv1 and are regulated by this.
Moreover, the exponential term vanishes rapidly, if v1 gets small, hence the q1 integral will
have no divergences, too. The integrand in the exponent is related to the single emission
integral and we will determine its precise form to NLL accuracy in subsection 6.3. It is a
function R(ǫv1) of the lower integral bound

−
∫

ǫv1

[dq]|M(q)|2 = −R(ǫv1) = −R(v) − R′(v) log
v

ǫv1

+ O(R′′) , (6.19)

where R′(v) = dR/d(log 1/v) and we expanded R around v in a Taylor series. As long as
f(v) is dominated by momenta q1 such that v1 ∼ v , log v

ǫv1
is not a large logarithm. Because

each derivative with respect to the large logarithm log 1
v

removes a power of this logarithm,
the nth correction term of the Taylor series lacks n powers of the large logarithm. Hence,
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6 Resummation of dijet observables

all leading logarithmic (LL) contributions are contained in R(v), while NLL contributions
are just contained in R′(v) log v

ǫv1
and R(v). The following terms in the Taylor series are

at most NNLL and can be neglected here. That f(v) is in fact dominated by momenta q1
such that v1 ∼ v is discussed further in [2].
Eq. (6.19) allows to write to NLL accuracy

f(v) = e−R(v)F(v) , (6.20)

where all LL are contained in the exponential factor, which is determined by the single
gluon emission and the one loop virtual correction. It is a kind of Sudakov form factor,
which we discussed in previous chapters. Here, however, the integration boundaries are
different, since we need V ({p}, q) > v. Recalling what we learned about the interpretation
of the Sudakov form factors as a non-emission probability in chapter 4, we understand the
presence of this factor here. To have a value of the observable smaller than v, emissions
which are such hard that they alone would already lead to V > v can not be allowed. The
Sudakov gives the probability that they do not occur.
In eq. (6.20), F is a correction factor, which accounts for the observable’s dependence on
multiple emissions. From eqs. (6.18) and (6.20), we get its form to NLL accuracy as

F(v) =

∫
[dq1]|M(q1)|2e−R

′(v) log v
ǫv1

∞∑

m=0

1

m!

(
m+1∏

i=2

∫ v1

ǫv1

[dqi]|M(qi)|2
)
× (6.21)

× Θ (v − V ({p}, q1, . . . , qm+1)) .

F can be evaluated in this form directly by Monte Carlo methods. To increase the efficiency
and to eliminate spurious contaminations from subleading terms, a further manipulated
expression is used in caesar. Its form and derivation is discussed in [2]. Here we will not
reproduce it. Instead, we will look at the single-emission integral, because it is a central
piece in eq. (6.20). The discussion in this and the following section is done for the rather
simple case of a color singlet qq̄ pair. This is the reason, why most of the complication in
comparison to a parton shower only comes from including explicitly the cut v on the value
of the observable V to get an analytical function of v.

6.3 Single emission integral

In this section, we will evaluate the single emission integral combined with the one loop
correction. This is

−R(v) =

∫
[dq]|M(q)|2(Θ(v − V ({p}, q)) − 1) (6.22)

= −
∫

[dq]|M(q)|2Θ(V ({p}, q) − v) . (6.23)

The contribution with the Θ-function in eq. (6.22) comes from the real emission, while the
-1 comes from the virtual contribution. For V ({p}, q) we will insert eq. (6.1) assuming that
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6.3 Single emission integral

this parameterization is still sufficiently precise outside of the collinear region. Sufficiently
precise means that the difference between the true observable and its parameterization just
leads to a NNLL correction. We will also insert [dq]|M(q)|2 from eqs. (6.11) and (6.10).
We will replace dz(1)1/z(1) therein by dη from eq. (6.9). Moreover, we split the η integral
in two halves separated at η = 0. Emissions with η = log z(1)/z(2) > 0, we assign to leg 1
and emissions with η < 0, we assign to leg 2. The full η integral, hence, becomes a sum of
the terms from the two legs with η integrals limited by zero. The splitting kernel from the
leg, to which the emission was not assigned, has a very small argument and we can replace
the corresponding 1

2CF
z(l)P̂g←q(z

(l)) by 1. With the replacements, as explained above, we
rewrite R(v) as

R(v) =
2∑

l=1

∫ Q2

d~q 2
⊥

~q 2
⊥

∫
η
dφ

2π

αS(~q
2
⊥)

2π
z(l)P̂g←q(z

(l))× (6.24)

× Θ(η)Θ(1 − z(l))Θ

(
v − dl

(
~q 2
⊥
Q

)al

e−blη
(l)

gl(φ)

)
,

where Q is the hard scale of the process and for l = 2 we redefined η = log z(2)/z(1). The
Θ-functions imply limits on the integration variables. The resulting integration region is
depicted in Figure 6.1. The intersections of the limiting lines, which come from the Θ-
functions in eq. (6.24) give the characteristic scales of ~q 2

⊥. One the one hand, there are the
kinematic boundaries, given by z(l) < 1, which limit the ~q 2

⊥ value from above. On the other
hand, there is the boundary for the value of V , which limits the ~q 2

⊥ value from below. The
characteristic scales arising from the intersections of the boundaries are

|~q(l)
⊥ | ∼ Q , (6.25)

|~q(l)
⊥ | ∼ v1/alQ , (6.26)

|~q(l)
⊥ | ∼ v1/(al+bl)Q . (6.27)

The first equation results from the limitation of |~q(l)
⊥ | by the total energy. At the intersection

of the two curves, which are due to the limitation by the value of V , η is zero and eq. (6.1)
leads to the second relation. The third relation, which corresponds to the intersection of a
V = v curve with a z(l) < 1 curve, also follows from eq. (6.1), but one has additionally to

recall from eq. (6.9) that for z(l) fixed the change in η(l) is proportional to − log |~q(l)
⊥ |. In

some regions the parameterizations are just approximations to the real functions, but this
does not cause trouble as long, as the difference of both just leads to a NNLL contribution,
i.e. of order αS without any large logarithm. In the region, where z(1) ∼ z(2) ∼ 1, eq. (6.11)
is a bad approximation, but this region at most contributes O(αS) without logarithmic
enhancements [2]. To establish numerically that the difference of the parameterized and
the true form of V at most leads to a NNLL effect, caesar requires and tests that for
collinear emissions ∣∣∣∣∣

∂ log V ({p}, q)
∂ log |~q(l)

⊥ |

∣∣∣∣∣
fixed z(l), φ(l)

= al + bl , (6.28)

59



6 Resummation of dijet observables

Figure 6.1: The resulting integration region for a single emission in the η − log kt

Q
plane

is given by the shaded area. It is limited by the constraints on the value of
the observable V and the kinematic bound on z(1) and z(2) respectively. η = 0
corresponds to the log kt

Q
axis, which divides the plot in the middle. Figure

extracted from [2]. In our notation kt = |~q⊥|.
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6.3 Single emission integral

for soft emissions
∣∣∣∣∣
∂ log V ({p}, q)
∂ log |~q(l)

⊥ |

∣∣∣∣∣
fixed η(l), φ(l)

= a = a1 = a2 , (6.29)

and for both kinds of emissions V is non-zero almost everywhere. According to [2], eq.
(6.29) is the condition for continuous globalness and ensures at higher orders the absence
of so called non-global logarithms. These requirements are discussed further in [2]. Finally,
we recall that V should vanish in the collinear and soft limit. Thus, collinear safety requires
al + bl > 0 and infrared safety a > 0.

We are now ready to perform the η integration in eq. (6.24). In the region, where |~q⊥| is
between the values in eq. (6.26) and eq. (6.27), the upper bound for the η value comes from

Θ
(
v − dl

(
|~q⊥|
Q

)al

e−blη
(l)
gl(φ)

)
, which limits η(l) for given |~q⊥| by 1

bl
log
[(
|~q⊥|
Q

)a
dlgl(φ)
v

]
.

Then, due to eq. (6.9), η is limited by η(l) + log Q12

2El
. Moreover, to NNLL accuracy we can

approximate z(l)P̂g←q(z
(l)) by two, since in the largest part of this region z(l) is small. This

will lead to the second term in eq. (6.31).
The first term of the same equation will come from the region, where |~q⊥| is limited by

the values in eqs. (6.25) and (6.27). Here, the upper integration bound on η is given by
Θ(1− z(l)). We can change back to a z(l) integration and perform it. η > 0 gives the lower
bound on the z(l) integration, e.g. for z(1) we have

∫ 1

z(2)
dz(1)P̂g←q(z

(1))/CF =

(
log(z(1))2 +

(z(1))2 − 4z(1)

2

) ∣∣∣∣
1

z(2)

= − log(z(1)z(2)) − 3

2
+ O(NNLL) = log

(
Q2

12

~q 2
⊥

)
+Bq + O(NNLL) . (6.30)

In the third step we defined Bq = −3/2 and used the relation ~q 2
⊥ = z(1)z(2)Q2

12, which we
introduced after eq. (6.8). For the first term in eq. (6.31) the φ integration can be performed
trivially, since no φ dependence appears there. Taken together, eq. (6.24) becomes

R(v) =

2∑

l=1

CF

[∫ Q2

Q2v
2

a+bl

d~q 2
⊥

~q 2
⊥

αS(~q
2
⊥)

2π

(
log

Q2
12

~q 2
⊥

+Bq

)
+ (6.31)

+

∫ Q2v
2

a+bl

Q2v
2
a

d~q 2
⊥

~q 2
⊥

dφ

2π

αS(~q
2
⊥)

2π
2

(
log

Q12

2El
+

1

bl
log

[( |~q⊥|
Q

)a
dlgl(φ)

v

])
 .

We can split the last logarithm of the second term into a φ independent part and into the
term log gl(φ). Defining

log d̄l = log dl +

∫ 2π

0

dφ

2π
log gl(φ) (6.32)
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6 Resummation of dijet observables

and

L ≡ log
1

v
, (6.33)

as well as using log(Q12/x) = log(Q/x) + log(Q12/Q), we can rewrite eq. (6.31) as

R(v) =

2∑

l=1

CF

[
rl(L) + r′l(L)

(
log d̄l − bl log

2El
Q

)
+ (6.34)

−Bq

2
T

(
L

a+ bl

)]
+ 2CFT

(
L

a

)
log

Q12

Q
.

The building blocks are the double logarithmic piece rl, which contains all LL and some
NLL contributions,

rl(L) =

∫ Q2

Q2e
− 2L

a+bl

d~q 2
⊥

~q 2
⊥

αS(~q
2
⊥)

2π
log

Q2

~q 2
⊥

+ (6.35)

+

∫ Q2e
− 2L

a+bl

Q2e−
2L
a

d~q 2
⊥

~q 2
⊥

αS(~q
2
⊥)

π

(
log

L

bl
+ log

( |~q⊥|
Q

)a/bl)
,

its derivative r′l = ∂Lrl and T (L) =
∫ Q2

Q2e−2L

d~q 2
⊥

~q 2
⊥

αS(~q 2
⊥)

π
, which both do just contain single

logarithmic (NLL) contributions. Taken together eqs. (6.20), (6.21) and (6.34) give the
resummed function f to NLL accuracy in the large logarithm L = log(1/v).

6.4 Final form

The discussion above was for the comparatively simple case of a color singlet qq̄ pair.
However, it can be generalized to other color channels and to the case of more than 2
color charged hard legs. Then, to NLL accuracy, R(v) and a reworked form of F(v) are
adjusted by extending the sums in them over all hard, color charged legs and by adjusting
the color-factors Cl and the constants Bl in the summands appropriately. Moreover, an
additional NLL summand appears in R(v), which accounts for the possibility that virtual
corrections mix different color channels. This summand includes traces of mixing matrices
and also includes terms, which are not leading in 1/Nc.

With these modifications, the corresponding forms of eqs. (6.20), (6.21) and (6.34) give

the resummed function f
(δ)
B to NLL accuracy in the large logarithm L = log(1/v). With

some additional work, as is done in Appendix A of [2], it is possible to eliminate spuri-
ous contamination from uncontrolled higher orders and to extract the purely LL function
Lg

(δ)
1 (αSL) and the purely NLL function g

(δ)
2 (αSL) to write f

(δ)
B in the ’standard’ form

f
(δ)
NLL,B(v) = exp

[
Lg

(δ)
1 (αSL) + g

(δ)
2,B(αSL)

]
. (6.36)
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From this equation it is obvious that Lg
(δ)
1 (αSL) accounts for all terms αnSL

n+1, which are
the leading logarithms in the exponent. Its first term is the double logarithmic piece αSL

2.
g

(δ)
2,B(αSL) accounts for the terms αnSL

n, which are next-to leading in the exponent. The

NNLL correction in the exponent would be given by αSg
(δ)
3,B(αSL) and so forth. Expanding

the exponential function, we find a series
∑

n≥0

∑2n
m=n Cn,mα

n
SL

m. In this expansion the
double logarithmic terms αnSL

2n are leading, while the terms αnSL
2n−1 are next-to leading.

NLL accuracy in the exponent implies NLL accuracy in the expansion, but not the other
way round.

In eq. (6.36), g
(δ)
2,B accounts for the effect of emissions from the two incoming legs i.

These lead in g
(δ)
2,B to the term

∑2
i=1 log

[
p

(δ)
i (x

(B)
i , v

1
a+bi µF )/p

(δ)
i (x

(B)
i , µF )

]
with µF ∼ Q. It

contains the ratio of parton density functions for the longitudinal momentum fraction x
(B)
i

of the incoming legs i at two different factorization scales. It appears, because the pdfs
at a scale µ allow for all possible incoming emissions up to |~q⊥| ∼ µ, but the requirement

V < v for the observable, restricts collinear emissions to have |~q⊥| ∼ v
1

a+biQ. Hence, the

ratio of pdfs replaces p
(δ)
i (x

(B)
i , µF ∼ Q), as used in the Born cross section, with a pdf at

the correct factorization scale.

In addition to the points we just briefly mentioned above, there are some other aspects
we did not discuss extensively here, but to which a more elaborated discussion can be
found in [2]. Among them are the recursively infrared and collinear safety and a version of
the single logarithmic function F(v), which is better suited for numerical integration. We
also did not give the explicit form of the correction term for the mixture of different color
channels.

Although we did not discuss all points extensively, our discussion highlighted important
ingredients, ideas and steps of the resummation approach. We saw that contributions
exponentiated and how the scale v entered the problem and appeared as large logarithm
log(1/v). We also saw that the observables, which caesar can resum, have to fulfill
a couple of rather specific requirements as those in eqs. (6.1), (6.29), (6.28) and (6.17).
Hence, its region of applicability is much more limited than the one of Monte Carlo parton
shower programs.

However, for multiple hard legs, the accuracy of caesar exceeds the precision accessible
by Monte Carlo parton showers, as the latter are restricted to the large Nc limit and cannot
account for the correlations of the different color channels. At this point, we also note,
although the anomalous Sudakov dimensions in sherpa, which we calculated in section 5,
are correct to NLL accuracy, the Sudakov form factors have this accuracy only in the large
Nc limit, as it does not provide for the correlations of different color channels.

For the simpler case of the outgoing color singlet qq̄ pair, the accuracy of sherpa should
match the precision of caesar, because no mixing of color channels appears there. An
interesting point to note is that the integrand of the first term in eq. (6.31) precisely
corresponds to the corresponding anomalous Sudakov dimension, which we calculated for
sherpa in chapter 5. Also the hard scale is the same, i.e. the invariant mass of the dipole.
Since for this term the Θ function of V was not relevant, the z integration had the full
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6 Resummation of dijet observables

kinematically allowed range and finding the same result here, is a consistency check to
our calculation there. The second half of that equation does, of course, not appear in the
Sudakovs of sherpa, because there the cut on the value of the observable is done after an
event has been generated.

As noted during our discussion, the derivation that led to eq. (6.20) is valid for small
values of the observable V . This ensures that the involved radiation is not too hard. Like
for the Monte Carlo parton showers programs, hard emissions are better described by a
fixed order calculation. Hence, as a last point in this chapter we will to discuss, how we
can match the resummed result to a fixed order calculation.

6.5 Matching to fixed order

We are aiming for a matched NLL+NLO expression for r(v) = Σ(v)
σ

with σ and Σ(v) as
defined in eqs. (6.2) and (6.3). To obtain such an expression we will follow [3]. The matched
expression r(v) should fulfill the following requirements: Its expansion up to relative O(α2

S)
should reproduce the corresponding exact NLO result. In the limit of small v it should
reduce to the resumed expression, which implies that in the expansion all LL and NLL
logarithms are correctly accounted for. Moreover, it should respect the physical constraints

r(vmax) = 1 and dr(v)
dv

∣∣∣
v=vmax

= 0, for the maximum value vmax of the observable.

Various matching procedures meet these requirements. Among them is the log-R [34] and
the multiplicative matching (mod-R) [35]. For both, the partially integrated cross sections
Σ(δ)(v), as defined in eq. (6.3), are calculated, once to NLO order in αS with nlojet++ [36]
and once to NLL accuracy with caesar. The expressions are then combined.

While σ has the expansion

σ = σ0 + σ1 + . . . , (6.37)

where σ0 is the LO result and σ1 is the NLO correction, Σ(δ)(v) can be expanded in powers
of αS as

Σ(δ)(v) = Σ
(δ)
0 (v) + Σ

(δ)
1 (v) + Σ

(δ)
2 (v) + . . . , (6.38)

for both, the fixed order result and for the resumed result. δ labels the distinct color
channels. Σ

(δ)
0 (v) = σ

(δ)
0 , because the observable vanishes at O(α2

S). For the fixed order

case, Σ
(δ)
1 looks like a NLO term, but it contains a part Σ̄

(δ)
1 , which is determined by the

LO α3
S term of the differential cross section of v:2

Σ̄
(δ)
1 (v) = −

∫

v

dv′
dΣ

(δ)
1 (v)

dv′
(6.39)

Σ
(δ)
1 (v) = σ

(δ)
1 + Σ̄

(δ)
1 (v) . (6.40)

2 Because the observable vanishes in case of two outgoing legs, the LO term of the differential cross
section of v is determined from the tree-level diagrams with three outgoing legs. The corresponding
NLO term is determined from the one-loop diagrams with three outgoing legs and from the tree-level
diagrams with four outgoing legs.
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6.5 Matching to fixed order

A corresponding quantity Σ̄
(δ)
2 is determined from the NLO term of the differential cross

section of v.
The resumed, partially integrated cross section will be labeled by an index r in the

following. Its fixed order terms Σr,n can be obtained by expanding eq. (6.4) in powers

of αS. To match the requirement r(vmax) = 0, we however replace f
(δ)
B therein with f̃

(δ)
B ,

which is given by eq. (6.36) with L replaced by

L̃ ≡ log

(
1

xV v
− 1

xV vmax

+ 1

)
, xV = X ·XV , (6.41)

which leads to L̃(vmax) = 0. Here, logXV = −1
2

∑2
l=1

(
log dl +

∫
dφ
2π

log gl(φ)
)
, as explained

in [37]. X is a parameter to test the systematic uncertainty of a matching procedure. Its
default value is 1.

The log-R matching scheme defines

r(v) =
r̃(v)

r̃(vmax)
, (6.42)

with

r̃(v) =
1

σ0 + σ1

(
∑

δ

Σ̃(δ)
r (v) exp

[
Σ

(δ)
1 (v) − Σ̃

(δ)
r,1(v)

σ
(δ)
0

]
× (6.43)

× exp

[
Σ̄2(v) − Σ̃r,2(v)

σ0

− 1

σ0

∑

δ′

(Σ
(δ′)
1 (v))2 − (Σ̃

(δ′)
r,1 (v))2

2σ
(δ′)
0

+ Σ
(other)
1

])
,

where Σ
(δ)
1 (v) contains the contributions of the multi-leg processes, to which a definite

QCD 2 → 2 color channel δ can be assigned, while Σ
(other)
1 (v) contains the contributions,

for which this is not possible, e.g. a process with three final-state quarks of different flavors.
The mod-R scheme leads to

r(v) =
1

σ0 + σ1

(
∑

δ

[Σ̃(δ)
r (v)]Z(σ

(δ)
0 )1−Z

[
1 +

Σ
(δ)
1 (v) − ZΣ̃

(δ)
r,1(v)

σ
(δ)
0

+ (6.44)

+
Σ̄2(v) − ZΣ̃r,2(v)

σ0

− 1

σ0

∑

δ′

ZΣ̃
(δ′)
r,1 (v)

Σ
(δ′)
1 (v) − Z+1

2
Σ̃

(δ′)
r,1 (v)

σ
(δ′)
0

]
+ Σ

(other)
1

)
,

where Z =
(
1 − v

vmax

)
. Expanding these expressions in the appropriate limits, verifies that

they fulfill the requirements listed in the beginning of this section.
From the structure of the two last equations we see the general way the matching works.

The resummed partially integrated cross section Σ̃r(v) has the expansion α2
S

∑
1≤n≤mGnm

αnSL̃
m, which correctly accounts for all terms with m ≥ 2n − 1, n ≥ 1 and for the n = 0

term. The n = 1 term, however, does not include the term without any logarithmic
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6 Resummation of dijet observables

enhancements and the n = 2 term additionally lacks the terms, which are just enhanced
by one or two logarithms. These terms are contained in the fixed order results Σ1(v) and
Σ2(v) and should be added to the combined expression for Σ(v). To extract them from the
fixed order expressions Σi(v) we have to subtract from the latter the terms Σr,i(v), which
are already contained in Σr(v). Furthermore, at large v the considerations, which led to
our expression for Σr, i.e. neglecting effects which are O(NNLL) for small v, are not well
motivated anymore. Thus, in this limit Σr should not contribute much, which is achieved
by the introduction of L̃ as well as the variable Z in eq. (6.44).
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7 Event shapes

Event shapes measure the geometrical properties of the momentum flow in an event, in
especially, its deviation from pure lowest order expectations. Their distributions can,
among others, be used to test QCD predictions, for new physics searches or to extract the
value of the strong coupling constant. General properties and specific definitions of event
shape observables in different variants will be given in this chapter. Some of them will be
studied in chapter 8 numerically. In their definition, we will follow [3].

7.1 Properties

We specifically consider dijet event shapes, which measure the extend to which an event’s
momentum flow departs from a dijet structure. The lowest order contribution to a dijet
event are two outgoing partons, which is referred to as Born event in chapter 6. In the
limit of this event, the dijet event shape observables vanish smoothly. For an event with
multiple hard emissions, the observables approach their maximal values, which are of order
one. As meaningful observables, they have to be collinear and infrared safe. We are
dealing with hadron colliders, where in an experiment the momenta longitudinal to the
beam axis are unknown for both the partonic initial-state and the total final-state. Hence,
the observables should be invariant under boosts longitudinal to the beam axis, which we
define as the z-direction. To achieve this, the observables will be build from quantities,
which are invariant under longitudinal boosts. These are the transverse momenta, squared
four-vectors, rapidity differences and differences of azimuthal angles. Moreover, they will
be chosen invariant with respect to rotations around the z-axis.

To match the requirements, which are needed by caesar for performing the resum-
mation and which have been introduced in section 6, the observables need to have the
functional form of eq. (6.1) for a single soft and collinear emission, fulfill continuous glob-
alness as introduced with eqs. (6.28) and (6.29) and have to be recursively infrared and
collinear safe as outlined for eq. (6.17). Thus, among others, the observables have to be
sensible to all outgoing particles. This demand is in conflict to experimental possibilities,
as one can typically just resolve particles with |η| < ηmax. For this reason, in addition to
the directly global observables in section 7.2, where all particles contribute in a similar
way, we will introduce other variants in section 7.3, where particles with large rapidities
enter in a suppressed or indirect way.

We will use the following notations and conventions: The beam axis is chosen as z-axis.
For particle i, qi labels its four-momentum, ~q⊥,i = (qx,i, qy,i) its transverse components, q⊥,i
the corresponding modulus, ηi = 1

2
ln

Ei+qz,i

Ei−qz,i
its rapidity and φi its azimuthal angle. To
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7 Event shapes

reduce uncertainties from the experimental jet-energy scale and to receive dimensionless
observables, the event shape variables are normalized to the hard transverse scale Q⊥,X =∑

i∈X q⊥,i with X an appropriate phase space region.

7.2 Directly global observables

Directly global observables will be labeled with the index g. All final state particles con-
tribute to their value in the same way, such that the globalness requirement is trivially
satisfied.
The global transverse thrust is defined as

T⊥,g ≡ max
~nT

∑
i |~q⊥i · ~nT |∑

i q⊥i
. (7.1)

Here and for the other global observables, the sum is over all particles in the final state. The
transverse thrust axis ~nT is the unit vector that maximizes T⊥,g. Obviously, ~nT lies in the
transverse plain. T⊥,g measures the transverse energy flow along the thrust axis, which at
lowest order coincides with the event axis, i.e. the axis given by the transverse components
of the two outgoing particles. The observable, which will be resumed is τ⊥,g = 1 − T⊥,g.
Using ~nT from (7.1), we define the directly global thrust minor as

Tm,g ≡
∑

i |~q⊥i × ~nT |∑
i q⊥i

. (7.2)

This quantity measures the energy flow that leaves the event plane.
An observable, which looks similar, is the transverse spherocity defined as

S⊥,g ≡
π2

4
min
~n⊥

(∑
i |~q⊥i × ~n⊥|∑

i q⊥i

)2

. (7.3)

The transverse vector ~n⊥ that minimizes this observable is the transverse spherocity axis.
The transverse spherocity measures whether the event is symmetric in the transverse plane.
It is maximal for circular symmetric events.
Linearizing the transverse momentum tensor

M lin =
∑

i

1

q⊥i

(
q2
xi qxiqyi

qxiqyi q2
yi

)
⇐⇒

basis transf.
M̃ lin =

(
λ1 0
0 λ2

)
, (7.4)

we use its two eigenvalues λ2 ≤ λ1 to define the F-parameter as

Fg =
λ2

λ1
. (7.5)

This event shape variable has its its maximum 1 for events of higher multiplicity symmet-
rically arranged in the transverse plane.
Finally, we consider the directly global three-jet resolution parameter y23. For its definition
we use the exclusive variant of the kt-algorithm [38]:
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7.3 Non-global and indirectly global observables

1. Given an event of n final state particles/jets i = 1, ..., n, define for all of them the
distant measure to the beam as

d
(n)
i,B = ~q 2

⊥i (7.6)

and the distant measure to the other particles/jets j as

d
(n)
i,j = min(~q 2

⊥i, ~q
2
⊥j)

(ηi − ηj)
2 + (φi − φj)

2

R2
, i 6= j (7.7)

with the rapidity η, the azimuthal angle φ and the jet-radius parameter R, which
sets the angular range of the jet algorithm. We use R = 0.7.

2. Find the minimum of all d
(n)
i,B and d

(n)
i,j :

d(n) = min
ij

(d
(n)
i,j , d

(n)
i,B) . (7.8)

3. a) If d(n) = d
(n)
i,B, remove particle/jet i from final state.

b) If d(n) = d
(n)
i,j , combine particles/jets i and j into a single jet by summing their

four-momenta.

4. Now we are left with n− 1 particles/jets.

a) If more than three particles/jets are left, go back to 1. using the decreased set
of particles/jets.

b) Else, finish the algorithm by one last clustering, such that just two jets (1, 2)
are left. Define

P⊥ = |~p⊥1| + |~p⊥2| . (7.9)

Using P⊥ from eq. (7.9) and d(n) from eq. (7.8) for all n ≥ 3, we define the directly global
three-jet resolution parameter as

y23 =
1

P 2
⊥

max
n≥3

(d(n)) . (7.10)

7.3 Non-global and indirectly global observables

Experimentally, we can not take particles into account with rapidities |η| ≥ ηmax, where
ηLHCmax ∼ 5, ηTevmax ∼ 3.5. Motivated by this, we define the central region C as the part of
phase space with |η| < ηC for some appropriate ηC .
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7 Event shapes

Central observables

We can define central variants of the event shapes of the last section by simply restricting
the sums in eqs. (7.1) and (7.2), as well as the algorithm leading to eq. (7.10), to particles
in the central region. In this way, we get the central transverse thrust τ⊥,C = 1− T⊥,C
with the new central thrust axis ~nT,C , the central thrust minor Tm,C and the central
three-jet resolution threshold y23,C .

In addition to these observables, we introduce jet-masses and broadenings. Using the
central transverse thrust axis ~nT,C , the central region C can be divided into an up part
UC containing all particles in C with ~nT,C · ~q⊥i > 0 and a down part DC containing all
particles in C with ~nT,C · ~q⊥i < 0. We define the normalized, squared invariant masses of
the two regions as

ρXC
≡

(∑
j∈XC

qj

)2

(∑
i∈C q⊥i

)2 , X = U,D . (7.11)

From them, we get the central sum of masses ρS,C and the central heavy mass ρH,C
as

ρS,C ≡ ρUC
+ ρDC

, (7.12)

ρH,C ≡ max (ρUC
, ρDC

) . (7.13)

Furthermore, let us introduce the mean transverse energy weighted rapidities and azimuthal
angles for the up and down region

ηXC
≡
∑

i∈XC
q⊥iηi∑

i∈CX
q⊥i

, φXC
≡
∑

i∈XC
q⊥iφi∑

i∈CX
q⊥i

, X = U,D . (7.14)

Under boosts along and rotations around the beam axis, all ηi (φi) transform by the same

summand. Hence, also ηXC
(φXC

) transforms by this summand and differences with other
ηi (φi) will not change under these transformations. Thus, we can define jet broadenings

BXC
≡ 1

2
∑

j∈C q⊥j

∑

i∈XC

q⊥i
√

(ηi − ηXC
)2 + (φi − φXC

)2 , X = U,D , (7.15)

which are invariant under boost along and rotations around the beam axis. The corre-
sponding observables are the central total and wide jet broadenings

BT,C ≡ BUC
+BDC

, (7.16)

BW,C ≡ max (BUC
, BDC

) . (7.17)

The central variables are better suited for experiments. However, they are non-global,
which spoils the formal NLL+NLO accuracy of the resummation with caesar. To get
global variants, we will add terms to them, which are sensitive to particles outside the
central region.

70



7.3 Non-global and indirectly global observables

Observables with recoil terms

Because of the conservation of transverse momentum, the recoil term

R⊥,C =

∣∣∑
i∈C ~q⊥i

∣∣
∑

i∈C q⊥i
(7.18)

is sensitive to particles outside the central region. Adding appropriate powers of this term
to the central observables, produces global, recoil enhanced variants

τ⊥,R = τ⊥,C +R⊥,C , (7.19)

Tm,R = Tm,C +R⊥,C , (7.20)

y23,R = y23,C +R2
⊥,C , (7.21)

ρS/H,R = ρS/H,C +R⊥,C , (7.22)

BT/W,R = BT/W,C +R⊥,C . (7.23)

Unfortunately, caesar has large uncertainties for these observables. Hence, we introduce
a further global variant of the event shapes.

Observables with exponentially suppressed forward terms

Here, we take the particles outside of the central region C into account explicitly, but in
an exponentially suppressed way.

For a given event, we introduce the mean transverse energy weighted rapidity η̄ of the
central region

η̄ =

∑
i∈C ηiq⊥i∑
j∈C q⊥j

. (7.24)

From this, we define the exponentially suppressed forward terms as

εC̄ =
1∑

i∈C q⊥,i

∑

i/∈C
q⊥,i exp(−|ηi − η̄|) . (7.25)

Note, this quantity is invariant under longitudinal boosts, because η̄ transforms by the same
summand as all ηi do. With the help of εC̄ , we obtain the exponentially suppressed
variants of transverse thrust, thrust minor, three jet resolution, sum of masses, heavy
mass, total jet broadening and wide jet broadening

τ⊥,E = τ⊥,C + εC̄ , (7.26)

Tm,E = Tm,C + εC̄ , (7.27)

y23,E = y23,C + ε2
C̄ , (7.28)

ρS/H,E = ρS/H,C + εC̄ , (7.29)

BT/W,E = BT/W,C + εC̄ . (7.30)
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7 Event shapes

7.4 Accessibility

For some observables, we have defined up to four different variants, namely directly global,
central, recoil enhanced and exponentially suppressed ones. To review the reasons for
defining all those different variants, we recall here, which variants are accessible by a
Monte Carlo parton shower, experimentally or by caesar.

With a Monte Carlo parton shower, such as sherpa, all those variants are accessible
and give stable numerical results. In contrast to the resummation, all observables can be
calculated from a single run. Moreover, we can easily include any η-cut.

Experimentally, one usually is restricted to the region of phase space with |η| < ηmax.
Hence, only the central and recoil enhanced variants are measurable. For the others, we
would need to introduce η-cuts. Due to the finite resolution of the detector, there may be
other particles we do not resolve. However those should be collinear or soft and therefore
should not effect our collinear and infrared safe observables much.

To keep the formal NLO+NLL accuracy without a leading NC limit, caesar is restricted
to global observables, i.e. directly global, recoil enhanced or exponentially suppressed vari-
ants. Unfortunately, the recoil enhanced variants are numerically unstable in caesar. The
two other global variables can not be measured in an experiment without a rapidity cut,
but introducing such a cut, spoils the formal logarithmic accuracy. However, [39] suggests,
that its effect should be negligible, specifically if the value of the event shape v is not too
small [37], i.e.

v ≥ vmin with (7.31)

vmin ∼ exp[−(a+ b1,2)ηmax] , (7.32)

where a and b1,2 are observable specific parameters defined in eq. (6.1). Including these cuts
in the resummation was checked numerically in [37] and [3] to be an effect well contained
in the errors. Therefore, in chapter 8, we will present results for directly global and
exponentially suppressed observables, which include a η-cut.
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8 Numerical study

In this chapter, we will look at the distributions obtained with sherpa and caesar for the
event shapes defined in chapter 7. We will consider a Tevatron scenario, i.e. pp̄ collisions
at center-of-mass energy

√
s = 1.96 TeV. The predictions we only perform for partonic

final states. Moreover, only particles with pseudorapidity |η| < 3.5 are taken into account.
The events are clustered by the SISCone jet algorithm [40] with a jet radius R = 0.7 and
a split-merge overlap threshold f = 0.75. The transverse momentum pt of each jet with
respect to the beam axis is determined. The rapidities y of the two hardest jets, i.e. largest
pt, are constrained to have an absolute value of at most 0.7. For the value pt,1 of the
transverse momentum of the hardest jet, a cut is performed, which is pt,1 > 50 GeV for a
low pt sample and pt,1 > 200 GeV for a large pt sample.

The discussion will be structured in the following way. After discussing the general shape
of the observables, we will look at the systematic uncertainties of the merging procedure
in sherpa. Next, we will discuss the expected size of neglected higher order corrections
in sherpa. Finally, we will compare these results to the corresponding ones obtained by
resummation with caesar. Since we are interested in the shape of the distributions, they
will be normalized to a common scale.

As can be seen from the definition of the observables in chapter 7, they vanish in the limit
of a Born event, i.e. two back-to-back particles. If in addition to the two Born legs there is a
single emission with small transverse momentum ~q 2

⊥ with respect to them, the value of the
observable is proportional to a power of ~q 2

⊥, cf. eq. (6.1). For events with multiple emissions
the most relevant emission is that with the largest transverse momentum. Emissions of
additional hard jets increase the value of the observable significantly. The observable’s
maximal value is of order 1.

To discuss the general shape and the uncertainties, we will focus on the widely known
example of the transverse thrust τ⊥. We will use the variant with exponentially suppressed
forward term. For the other observables, the distributions look similar and the effects of
systematics and expected higher order corrections correspond to the case of the thrust.

8.1 General shape

In Figure 8.1, the distribution for the transverse thrust τ⊥,E , in the variant with expo-
nentially suppressed forward terms, is given for a pt1-cut of 50 GeV (a) and 200 GeV (b).
The distribution vanishes rapidly for large values of the observable. This basically means
that there are very few events with at least three, well separated, very hard jets, since ac-
cording to the definition of the observables, it are those events, which correspond to large
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Figure 8.1: The distribution for the transverse thrust τ⊥,E, in the variant with exponen-
tially suppressed forward terms. With a pt1-cut of 50 GeV in (a) and of 200
GeV in (b).

values of the observables. In this region, results from fixed order matrix elements give a
proper description of the distribution. Towards smaller values of the observable, but away
from the Born like limit, the distribution increases - a direct and obvious consequence of
the enhancement of soft and collinear radiation in QCD. Due to their enhancement, soft
and collinear radiation is much more likely than hard radiation. Thus, the distribution
decreases for large values of the observable.

For our discussion, the most interesting part of the distribution, however, is at very small
values of the observable. Instead of increasing to arbitrary large values, as a fixed order
calculation and a naive look at the splitting probability suggest, the distribution decreases
for very small values of the observable. It vanishes, when the observable approaches zero.
This effect is physical and in fact it is this limit that both the parton shower and the
resummation aim to describe. From theory, this effect can be understood, when departing
from fixed order perturbation theory and allowing for an arbitrary number of emissions,
which, in fact, is done for both the parton shower and the resummation. Since additional
emissions are very likely, they will happen and we never observe real Born events. A cleaner
argument can be given in terms of the Sudakov form factors. The probability that a parton
created at scale ~p 2

⊥,m will evolve without further emissions resolvable at scale ~p 2
⊥,0 is given

by the Sudakov

∆a(~p
2
⊥,m) = exp

[
−
∑

b

∫ ~p 2
⊥,m

~p 2
⊥,0

d~p 2
⊥

~p 2
⊥

∫
dz
αS(~p

2
⊥)

2π
P̂b←a(z)

]
, (8.1)

cf. eq. (4.1) and chapter 4. For small values ~p 2
⊥,0, the Sudakov vanishes faster than any
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8.2 Systematic uncertainties

power of ~p 2
⊥,0, because the leading term in the exponent is −αS log2(Q2/~p 2

⊥,0). For very
small values, the observable is proportional to a power of the transverse momentum of the
hardest emission. To have a value for the observable of at most v, we therefore need to
include a Sudakov for both legs, where ~p 2

⊥,0/Q
2 is proportional to a power of v. Hence,

the Sudakov and consequently the probability to observe a small value for the observable
vanishes rapidly for small values of the observable.

Because the distribution vanishes for large values v of the observable, increases for smaller
v, but decreases again for very small v, it has a peak in the region of small to moderate
v. The position of this peak depends on the specific observable and the selection cuts
applied. Increasing the minimal value of the pt1-cut shifts the peak of the distribution to
smaller values of the observable as shows a comparison of Figures 8.1(a) and (b). Since
we cut at rather large values of pt1, the two partons entering the hard 2 → 2 core-process,
must carry a significant amount x of the (anti-)proton’s energy. Because the corresponding
parton distribution functions decrease rapidly towards large x values, most of the selected
events, will not have much more than the minimal energy required to survive the cut.
Hence, for most events there is not enough energy left, to create additional jets, which are
hard with respect to the scale set by the two hardest jets. The consequence is a shift of
the distribution to smaller values of the observable, when the ~p 2

⊥ cut is increased. The
same argument is true if an additional hard jet comes from initial state radiation. Then
we have to evaluate the parton distribution function of the emitter at a larger x scale to
acquire enough energy, which allows the additional emission. Since the parton distribution
functions decrease at large x, so will the chance of this to occur.

8.2 Systematic uncertainties

In this section, we will look at the systematic uncertainties of sherpa, which are introduced
through the matching procedure to multi-leg matrix elements. To this end, we will look at
the dependence of the distribution of τ⊥,E on Nmax, which is the maximal number of jets
generated by the matrix element, and Qcut, which separates the phase space regions, where
the shower and the matrix element are applied, respectively. Moreover, we will check, in
which way the whole distribution is build up from events with n jets in the final state.

Some of the variation between the different sets in the following discussion of systematic
uncertainties is caused by statistical effects. Because most of the systematic variation is
rather small, the elimination of all statistical effects would require large event samples.
In addition to that, the test of all systematic uncertainties needs many different runs.
Since the scale uncertainties are found in section 8.3 to be much larger than the systematic
uncertainties, we decided to not eliminate all statistical effects from the systematic samples,
but to only reduce them sufficiently enough to allow for the relevant observations.
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Figure 8.2: The distribution of τ⊥,E for a pt1 > 50 GeV. The blue rectangulars depict the
variation between the three sets with Nmax = 3, 4, 5, while the red line shows
the result for Nmax = 2. For both Qcut = 30 GeV was chosen.

Dependence on Nmax

In Figure 8.2, the variation caused by the choices of Nmax = 2, 3, 4 and 5 is shown
for Qcut = 30 GeV, where Nmax is the maximal number of jets generated by the matrix
element. While the distribution for Nmax = 2 deviates considerably from the others, the
results for Nmax > 2 agree well.

The Nmax = 2 case corresponds to the plain shower without merging: The matrix
elements are solely used to describe the 2 → 2 core-process, while all emissions from its legs
are generated by the shower. Due to the highest multiplicity treatment, also emissions with
Q >(>)Qcut will be generated by the shower and the evolution will, in fact, be independent
of Qcut in this case. However, these hard emissions are not properly described by the
shower, but would be by a matrix element. Hence, the observed deviation of the Nmax = 2
sample is expected, and shows the utility of the merging approach. For improved samples
we should therefore choose Nmax > 2. For those samples, we observe a nice agreement
in Figure 8.2 and also in corresponding plots of other observables and Qcut values. We
therefore find no sizeable systematic uncertainties on Nmax > 2 for the dijet-event shapes.

Dependence on Qcut

Next, we look at the dependence of the event shape’s distribution on Qcut, which separates
the phase space regions, where the shower and the matrix element are applied, respectively.
What choices for it are sensible? The shower evolution does not go down to arbitrarily
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Figure 8.3: The distribution of τ⊥,E for pt1 > 50 GeV. The blue rectangulars depict the
variation of the Nmax = 3 sample with Qcut = 20, 30, 40 GeV. The red rectan-
gulars the corresponding variation for the Nmax = 2 sample.

small values of Q, as we see from the cut-off on the ~q 2
⊥ integral in eq. (4.33), which is of

order 1 GeV2. Thus Qcut should be at least about 10 GeV to have some amount of phase
space left, which can be filled by the shower.

In addition to that, there is also an upper bound on sensible Qcut values, because we want
to keep some amount of the phase space for emissions, which can be filled by the multi-leg
matrix elements. The value of the pt1-cut used in the event selection sets the scale, at
which additional jets can still be expected with a sizable probability. So we conclude that
Qcut should not be much larger, than the value of the pt1-cut.

Choosing Qcut much larger than the value of the pt1-cut would effectively reproduce the
plain shower without any matching, which is also described by the choice Nmax = 2. Then
of the hard emission none would be generated with the accuracy of the matrix element.

In Figure 8.3 the dependence of the distribution of τ⊥,E on Qcut is shown for Nmax = 3
and pt1 > 50 GeV. The variation with Qcut is very small if Qcut is kept in a sensible region,
as outlined above. As can be seen in Figure 8.4, for too large Qcut values, the distribution
changes notably. This was expected, since we suppress the contribution of multi-leg matrix
elements in this way and the results then effectively correspond to the results of the plain
shower without matching, which is also described by the Nmax = 2 distribution. For the
larger value pt1,cut = 200 GeV, these larger Qcut values are still a sensible choice and the
results for them agree with the lower Qcut samples. Corresponding results are obtained for
larger values of Nmax and most of the other observables. For some observables, even the
Nmax = 2 and the large Qcut samples do not differ notably from the other samples. Those
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Figure 8.4: Same as Figure 8.3, but for Qcut = 80, 120, 160 GeV.

observables seem to be rather insensitive to the exact distribution of hard emissions, such
that the accuracy, with which these are described by the shower, is already sufficient for
those observables.

Jet decomposition

Another check, which we can do with our Monte Carlo data, is to separately compare the
contributions jn, for which n jets have been generated on matrix element level. These
are essentially n-jet events, as measured with the jet criterion of the matching scheme
with the corresponding Qcut value as resolution parameter. Due to the method of highest
multiplicity treatment outlined in section 4.2.2, the sample with n = Nmax however also
contains events with more than n jets. Thus, the jn curves for the distributions of two
different parameters Nmax,1 < Nmax,2, but the same value of Qcut, should not deviate much
for n < Nmax,1. The jNmax,1 curves, instead, will be different, because for the Nmax,1 sample
it also includes contributions from higher final-state multiplicities. We, therefore, compare
the j2, j3 and j4 curves of the sample with Nmax = 5 to the corresponding jn curves from
the Ñmax = 3, 4 samples if n < Ñmax.

This is shown in Figure 8.5 for τ⊥,E with Qcut = 20 GeV. The curves agree well. If
we increase the value of Qcut, the contributions from the jn curves with n > 2 decrease,
whereas the j2 curve increases, as shows a comparison of Figures 8.5 and 8.6. This is
exactly, what is expected, since for larger values of Qcut, fewer emissions will be generated
by the matrix element, but the shower fills the phase space region between the new and
the old Qcut value. Already for Qcut = 30 GeV the jn curves with n > 3 only give a tiny
contribution. This supports the statement, given before, that events with more than three
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Figure 8.5: The distribution of τ⊥,E for pt1 > 50 GeV. The curves depict the variation of
distributions of n-jet events (jn) with Nmax. The blue rectangulars show this
for j2 with Nmax = 3, 4, 5, the red rectangulars for j3 with Nmax = 4, 5 and the
green curve for j4 with Nmax = 5. For all sets Qcut = 20 GeV was chosen.
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Figure 8.6: Same as Figure 8.5, but with Qcut = 30 GeV.
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Figure 8.7: Dependence of the τ⊥,E distribution on symmetric scale variations (µr/µr,0 =
µf/µf,0) by a factor of 2 and 1/2 respectively.

hard jets effectively will never be relevant for the distribution of dijet event shapes. If
we recall that the Qcut variation for the full distribution in Figure 8.3 is very small, this
suggests, that the phase space region, in which Qcut was varied, is described similarly well
by the shower and the matrix element, as required for consistency of the merging approach.

We thus find, the systematic uncertainties in sherpa, which are introduced through the
matching procedure, are small as long as we choose sensible values for Nmax and Qcut, i.e.
Nmax > 2 and Qcut < pt1,cut.

Since the required computing time is shortest for small Nmax and large Qcut values, we
will choose Nmax = 3 and Qcut = 30 GeV in the following.

8.3 Scale uncertainties

Next, the uncertainties related to neglected higher order corrections are considered. They
will be estimated by varying the renormalization scale µr and the factorization scale µf
around their default values µr,0 and µf,0 by a factor of 2 and 1/2 respectively. The default
values are for the hard 2 → 2 core-process are µr,0 = µf,0 = |~pt| = (|~pt,1| + |~pt,2|)/2 , where
~pt,1/2 are the transverse momenta of the two outgoing partons in the hard core-process with
respect to the beam axis. For additional emissions, the default value for the factorization
scale is µf,0 = |~q⊥|, while the default value for the renormalization scale µr,0 = λ|~q⊥|. Here,
~q⊥ is the transverse momentum of an emission with respect to the emitting leg and λ has
been defined in eq. (5.35).
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Figure 8.8: Dependence of the τ⊥,E distribution on variations of the fragmentation scale
µf by a factor of 2 and 1/2 respectively.

The dependence on scale variations is plotted for τ⊥,E in Figure 8.7 for a symmetric
variation, in Figure 8.8 for the variation of only µf and in Figure 8.9 for the variation of
solely µr. As we observe in Figure 8.8, the shape of the distribution is essentially insensitive
to µf variations. Of course, the total cross section changes, but the shapes are normalized
to 1. In contrast, the shape of the distribution changes significantly with a change in µr.
Increasing µr shifts the peak of the distribution to the left, whereas decreasing it shifts
the peak to the right. Since the effect of changing µf is that small, the symmetric scale
variations reproduce the results of the µr variation if both distributions are normalized to
one.

Qualitatively, the effect of changing the renormalization scale by a factor of λ > 0 can
easily be understood. According to the resummed one-loop expression of αS given by the
first factor of eq. (2.34), αS will change as

αS(λ
2µ2

r) =
αS(µ

2
r)

1 + β0

4π
αS(µ2

r) log λ2
∼ αS(µ

2
r) −

β0

4π
α2
S(µ

2
r) log λ2 , (8.2)

where β0 > 0 is given in eq. (2.32). This means, αS decreases for λ > 1 and increases
for λ < 1. In fixed order perturbation theory, the leading term of the cross section for a
configuration with an additional particle in the final state is suppressed by a factor of αS
relatively to the cross section without this emission. Hence, decreasing αS, i.e. increasing
µr, reduces the chance of an emission to happen, at least if we only look at the leading
terms in αS. For λ > 1, we thus get less radiation. Since less radiation corresponds to
smaller values of the event shape variable v, its distribution is shifted to the left in this
case. For λ < 1, it is shifted to the right.

81



8 Numerical study

Tevatron 1.96 TeV  = 1
C

η| < 0.7, 
jets

 > 50 GeV, |y
t1

pTevatron 1.96 TeV  = 1
C

η| < 0.7, 
jets

 > 50 GeV, |y
t1

pTevatron 1.96 TeV  = 1
C

η| < 0.7, 
jets

 > 50 GeV, |y
t1

p

 /2R,0µ=Rµ
R,0µ=Rµ

R,0µ=2Rµ

 ,Eτ
/dσ

 dσ
1/

0

2

4

6

8

10

 ,Eτ
0 0.1 0.2

Figure 8.9: Dependence of the τ⊥,E distribution on variations of the renormalization scale
µr by a factor of 2 and 1/2 respectively. Since the normalized histograms are
basically identical to Figure 8.7, we chose to not plot a band, but the single
histograms here.

The same conclusion can be obtained by considering the Sudakov. The integrand in its
exponent is proportional to αS. Hence, its absolute value will increase if αS is increased.
Since the exponent is negative, the Sudakov and through it the probability to not radiate
decreases in that case. This again corresponds to a shift to the right in the distribution of
v.

In the following, we argue, why the variation of the factorization scale might have only
a small effect. In sherpa, the factorization scale only determines the scale, at which the
parton distribution functions are evaluated, the phase space range of the ~q 2

⊥ integration
in the Sudakov, i.e. ~q 2

⊥,0 and ~q 2
⊥,max in eq. (4.33), is, however, not affected. Apart from

the calculation of the tree level cross section, the parton distribution functions enter only
the Sudakovs, in which the emitter, the spectator or both of them are in the initial state.
There, they always appear as a ratio of two parton distribution functions of the same
parton type evaluated at two different momentum fractions. Such that a part of the µf
dependence will cancel between the two parton distribution functions there. In particular,
because in the relevant region of moderate to large x,1 a change of µf by a factor of 2 or 1/2
does not impact the general shape of the parton distribution function for a given parton
type much and, hence, it is merely a parton type dependent factor, by which the parton
distribution functions are changed in that region. Such a factor would cancel between the
parton density functions in the Sudakov and for the core-process merely affect its total

1The pt1 > 50 GeV cut requires approximately x > 0.05.
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value, but not its distribution. This might explain that the variation of the event shape’s
distributions is rather insensitive to the µf variation performed.

One effect, the change of factorization scale should have, apart from changing the total
cross section, is to reweight the contributions of the different partonic subchannels. For
a larger value of µf , the gluon-gluon fusion channel, for example, should become more
important. However, it appears that the difference in the shapes of the subchannels is not
such drastically that the variation of µf by a factor of 2 or 1/2 has a significant impact on
the total shape.

The uncertainties related to scale variations are significantly larger than the systematic
uncertainties discussed before if the improper choices Nmax = 2 and Qcut & pt1,cut are
ignored. Hence, it will be sufficient to include the former ones, when we compare the
results of sherpa with the results from caesar in section 8.5. Moreover, since the effect
of the µf variation is that small, it will be sufficient to consider symmetric scale variations
for sherpa.

We hope to gain a meaningful estimate for uncertainties in sherpa in this way. We,
however, did not test all possible sources of uncertainties, because some are hard to assess.
For example, the effect of ignoring non-leading terms in 1/Nc cannot be tested in Sherpa,
as a parton shower intrinsically cannot contribute for these terms. Another example is the
choice of the jet criterion, which we at most tested indirectly by varying Qcut.

8.4 Results from Caesar

In [3], results for global and indirectly global variants of the observables defined in chapter
7 have been obtained. The distributions were determined to NLO+NLL accuracy. For the
resummation part caesar [2] was used, while the fixed order calculation was performed by
nlojet++ 3.0 [36]. For completeness, we will shortly review the sources and typical sizes
of uncertainties in this approach. A more extended discussion can be found in the original
paper. From the matching process, as outlined in section 6.5, systematic uncertainties arise
from both the choice of the matching scheme and the scale X in eq. (6.41). In [3], they are
estimated by comparing results from two different matching schemes, which are mod-R and
log-R matching as defined in section 6.5, and by varying the scale X between 0.5 and 2.
The uncertainties from neglected higher order contributions are estimated by the variation
of the factorization and the renormalization scales by a factor of 2 and 1/2 around their
default value |~pt| = (|~pt,1| + |~pt,2|)/2 , where |~pt,1| and |~pt,2| are the transverse momenta
of the two hardest jets. Typical effects of these variations are shown for the example
of Tm,g in Figure 8.10. The general form of the shape corresponds to the one discussed
for the sherpa prediction for τ⊥,E in section 8.1. In contrast to sherpa, the systematic
uncertainties are of comparable size as the ones from scale variations. Therefore, for the
uncertainty band of the caesar sample in the next section, all combinations of separate
variations have been considered. This also includes asymmetric scale variations (µr 6= µf).
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Figure 8.10: Resummed and matched results for Tm,g at NLL+NLO accuracy as obtained
in [3], from where the figure is extracted. The pt1-cut is 200 GeV. a) distri-
bution of Tm,g; b) uncertainties from µr and µf variations by factors of 2 and
1/2; c) effect of choosing X = 0.5, 0.7, 1.0, 1.5, 2.0; d) dependence on the
choice of matching scheme.
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8.5 Comparing results of Sherpa and Caesar

In this section, we compare the results obtained by sherpa to the predictions obtained
in [3] by caesar. For both we depict an estimate for the uncertainties by an error band.
This band contains in case of caesar uncertainties from both neglected higher order
contributions and systematics, because for caesar the latter ones are not negligible. In
case of sherpa, we found the systematics to be much smaller than the scale uncertainties.
Hence, we will restrict our considerations to the latter. For both, the error bands are found
by choosing for each bin the minimal and maximal value of the considered normalized
histograms. The depicted curve itself corresponds to the default choices, which are for
sherpa Nmax = 3 and Qcut = 30 GeV as well as µf,0 and µr,0 as defined in section 8.3. For
caesar, the default choices are µ2

f = µ2
r = ~p 2

t and log-R matching with X = 1.2

As a side remark to the sherpa results: while the curve shows the µ2
r = µ2

r,0 case, we
can easily recover the µ2

r = 4µ2
r,0 and the µ2

r = µ2
r,0/4 curves from the uncertainty band. As

explained in section 8.3, increasing µr will always shift the distribution to the left. Thus,
before the narrow area close to the peak, where the curves of different µr values intersect,
the µ2

r = 4µ2
r,0 sample will correspond to the maximal value of the error band, while it will

correspond to the minimal value behind that area. For the µ2
r = µ2

r,0/4 sample it is the
other way around.

In Figures 8.11 and 8.12, the plots for all observables as defined in sections 7.2 and the
last part of 7.3 are given for pt1,cut = 50 GeV. These are the observables, which are either
directly global or have exponentially suppressed forward terms. The central observables
cannot be resummed in caesar, since they are not global. The observables with recoil
terms have with very few exceptions huge error bands in the caesar sample and seem to
be numerical unstable. Therefore, we will not show them here. In sherpa, both variants
give quite nice and stable results, which are similar to those of the other variants of the
observables.

For all observables, we find that within their uncertainties the predictions from sherpa

and caesar agree. The estimated uncertainties are of comparable size. With the exception
of the observables y23,g/E and ρH,E , the peak of the default curve from caesar is located
at smaller values of the observable compared to the peak of the default curve from sherpa.
As a consequence, the latter is located below it before the peak and above it after the peak.
Recall from the section about scale uncertainties in sherpa that an effect like this can be
obtained by varying µr and that it is the µr = 2µr,0 curve, which produces the maximum
of the error band before the peak and the minimum after it. In fact, with the exception of
y23, out of the sherpa samples always the µr = 2µr,0 sample agrees best with the caesar

default curve. To this interesting point, we will come back in the end of this section.

Now, let us look at the corresponding results for the high pt1,cut sample with pt1,cut =
200 GeV, which are shown in Figures 8.13 and 8.14. The observations correspond to the
pt1,cut = 50 GeV case: Within the error range, the two predictions agree. Exceptions are

2As we have seen in chapter 6, in the resummed function ~q 2

⊥ was chosen as renormalization scale. However,
using the running of the coupling, the scale there can be changed to ~p 2

t .
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Figure 8.11: Exponentially suppressed and global event shape distributions for the 1.96
TeV Tevatron with |ηc|=1 and the cuts pt1 > 50 GeV and |yj| < 0.7. Pre-
dictions of sherpa (blue, foreground) are compared to predictions obtained
with caesar (red, background). The bands represent the uncertainties.

86



8.5 Comparing results of Sherpa and Caesar

NLO+NLL
Sherpa

23,g
ln y

23,g
ln y23

,g
/d

 ln
 y

σ
 dσ

1/

0

0.1

0.2

0.3

0.4

23,g
ln y

-8 -6 -4 -2

NLO+NLL
Sherpa

23,E
ln y

23,E
ln y23

,E
/d

 ln
 y

σ
 dσ

1/

0

0.1

0.2

0.3

23,E
ln y

-8 -6 -4 -2

NLO+NLL
Sherpa

S,E
ρ

S,E
ρS

,E
ρ

/dσ
 dσ

1/

0

2

4

6

8

S,E
ρ0 0.1 0.2 0.3

NLO+NLL
Sherpa

H,E
ρ

H,E
ρH

,E
ρ

/dσ
 dσ

1/

0

2

4

6

8

10

H,E
ρ0 0.1 0.2 0.3

NLO+NLL
Sherpa

T,EBT,EBT,
E

/d
B

σ
 dσ

1/

0

2

4

6

T,EB
0 0.1 0.2 0.3 0.4

NLO+NLL
Sherpa

W,EBW,EBW
,E

/d
B

σ
 dσ

1/

0

2

4

6

8

W,EB
0 0.1 0.2 0.3

Figure 8.12: Like Figure 8.11, but for jet observables.
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Figure 8.13: Global and exponentially suppressed event shape distributions for the 1.96
TeV Tevatron with |ηc|=1 and the cuts pt1 > 200 GeV and |yj| < 0.7. Pre-
dictions of sherpa (blue, foreground) are compared to predictions obtained
with caesar (red, background). The bands represent the uncertainties.
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Figure 8.14: Like Figure 8.13, but for jet observables.
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τg and Fg, whose peaks are that sharp for the caesar sample that in their region the
error ranges do not overlap. The default caesar curve peaks left from the default sherpa

curve. The µr = 2µr,0 sample from sherpa agrees best with the caesar samples with the
exceptions of y23 and BW,E.

For all observables, the comparison suggests that by choosing an appropriate value of
µr, sherpa can recover the event shape distribution as predicted by caesar within its
uncertainties. For some observables, we may need to choose a different value for µr as for
others. This is a very useful result. Although the resummation approach has the higher
formal accuracy of NLO+NLL, it has the significant shortcoming that we do not know any
way to include corrections from non-perturbative effects to it. Non-perturbative effects, for
example, come from the underlying event and from hadronization. If we want to compare
our results to experimental data, we, however, want to include corrections for such effects.
At this point, the Monte Carlo parton shower programs are very useful. For them, we can
include corrections like these straightforwardly by applying phenomenological models to
describe the fragmentation of partons and the underlying event. Since those are applied
after or in addition to the event generation on parton level, the parton shower and the
merging are not affected by those. On parton level, we can adjust the program’s settings
by choice of µr to the predictions from resummation. For those settings, we can then
additionally include corrections from hadronization and the underlying event. In this way,
we probably obtain the most accurate predictions for the event shapes, which then can be
compared to data.

In [3], the results from resummation, which we use here, were generated and compared
to the Monte Carlo parton shower programs herwig 6.5 and pythia 6.4. The predictions
from herwig with the default choices of parameters are very similar to those from sherpa.
However, the estimated uncertainties from the symmetric variation of the renormalization
and factorization scales are very small for herwig and obviously underestimate the real
uncertainties, since the error band does not overlap with the error band of caesar. Similar
small error bands were found for pythia. Moreover, its default curve has worse agreement
with the caesar predictions than sherpa and herwig. Hence, of the three, sherpa seems
to perform best, especially because it leads to more realistic estimates of the uncertainties.

We showed in chapter 5 that in the large Nc limit the final-final Sudakov form factor
in sherpa has NLL accuracy in logQ2/~q 2

⊥,0 and supposed that this also holds for the
three other Sudakov form factors. Thus, the parton shower in sherpa will in the large
Nc limit generate additional emissions with NLL accuracy. Because, in the relevant region
of small values v of the observable, its value is directly related to the transverse momenta
of the emissions, we expect that in this region the accuracy of the Sudakov form factor
translates to the same accuracy of the event shape distribution in log 1/v. Thus, the
expected accuracy of the event shape’s distributions from sherpa is NLL in the large Nc

limit. The agreement of the sherpa and caesar samples within their uncertainties also
supports this. To tighten this expectation, we should, however, provide an argument for
the systematic shift of the sherpa sample to larger values of µr, which leads in case of Fg
and τ⊥,g for pt1,cut = 200 GeV to some deviation.

The two most likely reasons are related to the higher formal precision of the caesar
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Figure 8.15: τ⊥,g and Fg for pt1 > 200 GeV and |yj| < 0.7. Predictions of sherpa (blue,
foreground) are compared to the LO+NLL predictions from caesar (red,
background). The bands represent the uncertainties.

prediction. On the one hand, caesar accounts for non-leading 1/Nc terms, which con-
tribute NLL terms, while sherpa neglects these terms. These might have the effect to
shift the peak of the distribution to the left if, for example, the corresponding additional
terms suppress radiation of hard partons systematically. On the other hand, caesar pro-
vides NLO precision in the differential cross section of v, while sherpa only provides LO
accuracy.3 The NLO correction includes, the one-loop 2 → 3 terms and the tree-level
2 → 4 process. If these terms systematically reduce hard emission, this explains the shift
of the distributions. The two emissions in the tree-level 2 → 4 process might interfere
destructively and thus suppress the second emission. However, for this tree-level process
sherpa can account by the choice Nmax ≥ 4 and we did not observe a strong dependence
on the choice of Nmax > 2. Therefore, it should rather be the one-loop 2 → 3 terms, which
suppress hard emissions and thus shift the peak of the caesar distribution to the left.
In fact, the LO+NLL results from caesar are shifted to the right with respect to the
NLO+NLL predictions and when they are compared to the sherpa sample, no deviation
is observed for Fg and τ⊥,g, as can be seen in Figure 8.5. We, therefore, think that the
systematic shift between the two samples is caused by the inclusion of the NLO term.

To further investigate this point, one should vary the renormalization scales as they
appear in the hard matrix element and in the shower of sherpa separately. In this way,
one gets a tool to estimate the expected higher order corrections for both the fixed order
expansion and the resummed logarithms separately. Unfortunately, this is beyond the
scope of this work.

3 The LO term in the differential cross section of v is the tree-level 2 → 3 process, because the observable
vanishes for the 2 → 2 process. Check footnote 2 on page 64.
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For some observables the sherpa prediction agrees even better with the NLO+NLL
result than the LO+NLL result does. The reason for this should be that the emissions,
as generated by the shower, give a good approximation to the full matrix element in this
case.

The comparison of the sherpa and caesar predictions, therefore, suggests that sherpa

has, in the large Nc limit, NLL accuracy. Moreover, for a comparison to experimental data
the use of sherpa with its included models for hadronization and underlying event is a
preferable choice.
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Starting from perturbative QCD, we reviewed general properties of QCD matrix elements
and the multi particle phase space, which allowed for the factorization of soft and collinear
radiation. We saw that this kind of radiation is logarithmically enhanced and introduced
two approaches to take account for its dominant effects. On the one hand, the Monte
Carlo parton shower of sherpa, which uses a Monte Carlo method to extend fixed order
calculations by explicitly generating additional splittings; on the other hand, the method
of resummation of caesar, which follows a semi-analytical approach to account for loga-
rithmic corrections by determination of an observable specific functions.

While the latter can provide the higher formal accuracy, the parton shower is much more
flexible. It can be run independently of the specific choice of observables and detector
cuts. Moreover, it offers possibilities to include further effects, such as hadronization, the
underlying event and detector simulations. It, however, has a limited accuracy. To allow
for the probabilistic and process independent picture of a parton shower, it has to ignore
subleading color correlations and has to assume some kind of ordering among the emissions.

The approach of resummation of caesar provides the higher accuracy, as it does not
neglect subleading color contributions and can be matched to fixed order matrix elements
of higher precision, than a shower can be. This method, however, also has its shortcomings.
It can only be applied to a limited range of observables fulfilling specific requirements. The
calculation has to be performed separately for each observable and choice of detector cuts.
For typical detector cuts as a pseudo-rapidity cut, it looses its formal accuracy. No way is
know to include corrections from non-perturbative effects as e.g. hadronization to it.

Hence, a parton shower simulation and a resummed calculation offer complementary
approaches to the same physics.

In our work, we studied the logarithmic accuracy of sherpa. In case of a dipole of two
massless final-state partons, we analytically determined the anomalous Sudakov dimensions
and found them to be correct to NLL accuracy. We argued that this also holds for the other
dipoles, which include initial-state partons. We also derived an expression for a rescaling
of the renormalization scale, which allowed to include all other LL and NLL effects, which
are leading in 1/NC , in the Sudakov form factor. Hence, this is the accuracy, which can
be provided by sherpa for the generation of events and the predictions of observables.
From the discussion of caesar we learned, that there is a NLL term, which is non-
leading in 1/Nc. This term cannot be provided by sherpa. There is also no hope to get
potential NNLL terms right, as the evolution in sherpa uses an ordering in the transverse
momentum of the emitted particles, which is not correct at level of NNLL anymore. This
shows the limitation of the parton shower approach.

In addition to considerations regarding formal accuracies, we performed a numerical
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study to compare the predictions of sherpa and caesar. To this end we considered the
distributions of a range of dijet event shape variables for the Tevatron collider. These are
observables, which measure the shape of the momentum flow in a scattering event. For
pure QCD events, we mostly see events with only a few collimated jets, while for many
new physics models, jets are expected to have a more spherical distribution. Hence, event
shapes might be used in searches for new physics to improve the signal to background ratio.

Moreover, event shapes are useful to test perturbative QCD, because depending on
the considered part of their distribution, the latter is described mostly by fixed order
calculations or by the effect of successive parton splitting.

In this work, we were interested in their application to test and compare the pertur-
bative QCD methods contained in sherpa and caesar. We explained the general form
of the event shape distributions. For sherpa, we performed a detailed study of various
uncertainties. The uncertainties introduced by the matching to multi-leg matrix elements
were found to be small, which shows the consistency of the matching method used. Also
the dependence on the factorization scale turned out to be weak. The dominant source
of uncertainty was found to be the variation of the renormalization scale. Since sherpa

provides only LO accuracy in its fixed order part, sizeable corrections from higher orders
and hence a strong dependence on the renormalization scale are expected.

The predictions from sherpa were compared to predictions obtained with caesar in [3],
which provide NLO+NLL accuracy. We found both predictions to agree within their un-
certainties. However, we also observed a systematic shift of the peak of the sherpa dis-
tribution to the right, which corresponds to a more frequent occurrence of hard emissions.
Since this shift also appeared in the caesar sample with LO+NLL accuracy, we think
that it is dominantly caused by NLO effects (in the differential cross section of the observ-
able), which seem to suppress the occurrence of hard emissions. This shift could mostly
be reproduced by sherpa by increasing the renormalization scale by a factor of two.

This is a useful observation, because for a comparison of results to experimental data,
one also needs to include corrections from effects, which cannot be described in caesar,
such as hadronization or the underlying events. Since sherpa can include corrections
of this kind, it is the preferable choice for a direct comparison to experiments. With
the adjusted renormalization scale, we know, that the parton level predictions correspond
within uncertainties to the ones of NLO+NLL accuracy. In this way, we can combine the
strengths of the two approaches for obtaining predictions, which will be phenomenologically
relevant.

There are various points, which need further considerations. On the one hand, one should
try to tell apart the uncertainties from the fixed order matrix element and the subsequent
shower by varying the renormalization scales independently for both. On the other hand,
one should also look at the distributions for other experiments. In especially to those of
the LHC, where they might be relevant or searches for new physics.
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