
Department of Physics and Astronomy
Heidelberg University

Bachelor thesis in Physics
submitted by

Christopher Lüken-Winkels

born in Trier (Germany)

2020





Applying Capsule Networks on boosted
Higgs-tagging

This Bachelor thesis has been carried out by

Christopher Lüken-Winkels
at the

Institute for Theoretical Physics
at

Heidelberg University

under the supervision of

Prof. Tilman Plehn





Applying Capsule Networks on boosted Higgs-tagging
Christopher Lüken-Winkels

Abstract

In this thesis we use Capsule Networks to distinguish boosted Higgs-bosons decaying
into bottom pairs against QCD-background in calorimeter images. We show that these
networks are able to reach the performance of, so far established, Convolutional Neural
Networks. By additionally representing their outputs as vectors, Capsule Networks offer a
better representation of the input in their predictions. We present an analysis of the latent
space the vectors are embedded in, to show their ability to extract event and subjet infor-
mation and use it to enhance the Capsule Networks to even outperform the Convolutional
Neural Networks.

Zusammenfassung

In dieser Arbeit verwenden wir Kapselnetzwerke, um Zerfälle schneller Higgs-Bosonen in
bottom-Paare von QCD-Untergrund in Kalorimeter Bildern zu unterscheiden. Wir zeigen,
dass diese Netzwerke vergleichbare Ergebinsse zu bisher etablierten Convolutional Neural
Networks erzielen. Da sie ihr Klassifikationsergebnis zusätzlich als Vektor darstellen, ist da-
raus mehr Information über die klassifizierten Daten zu gewinnen. Wir stellen eine Analyse
des Raumes, indem diese Vektoren eingebettet sind, vor, um ihr Potetial Event- und Sub-
jetinformationen gleichzeitig darzustellen zu zeigen und mit deren Hilfe eine Verbesserung
der Kapselnetzwerke möglich ist, womit die Convoltional Neural Networks übertroffen
werden können.
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Chapter 1

Introduction

As in many fields of research, neural networks are also applied in analysing events, mea-
sured at the Large Hadron Collider (LHC). Their capability to separate special decays form
background events in calorimeter images is already demonstrated [1–3]. An application of
Convolutional Neural Networks (CNNs) on classifying H −→ bb̄ against QCD background
is shown in [3], producing a higher detection significance in contrast to standard two-prong-
tagging methods. The proposed architecture consists of two streams: one analyzing the
double-b-tagged jet image and the other one analyzing the global event structure. Since
most standard Convolutional Neural Networks lack the possibility of propagating spacial
information of the input through the full network [4], the classification is less likely to
extract useful information from the global event properties. As the performance studies of
[3] showed, the networks accuracy is mostly dependent of the double b-tagged jet image.
In Capsule Networks (CapsNets) the Dense part of the CNN is replaced by Capsule Layers,
which use the geometrical information by construction which enables them to classify full
calorimeter images in a single stream network [1]. First, we compare the performance of
the two approaches. Our second point of interest are the relations between the input and
the output capsules and whether the events are organized in a physically meaningful way
in the output latent space. Taggers that are not based on machine learning [5] mostly
focus on the subjet structure and thus loose the possibility to use the full event level in-
formation. Capsule Networks offer a great opportunity to combine both event and subjet
information in their classification outcome.
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Chapter 2

Neural Networks

In the recent years, neural networks became a powerful tool for data-analysis by system-
atically finding and exploiting general patterns in large sets of data. In this chapter we
introduce the tools used in our application.

2.1 Layers

A network consists of a collection of neurons. Each neuron returns an output given its input
and parameters, with the parameters being separated into weights and biases. Additionally,
an activation function is applied that introduces a non-linearity to the neuron. This is
important to describe complex dependencies using a set of neurons. To do so they are
organized in layers, with the input propagating form layer to layer to calculate an output.
Fully connected layers are the most basic of such layer structures.

2.1.1 Fully Connected Dense Layers

Looking at two layers of this type, with one providing the input for the other, each input
neuron xi is connected with each output neuron yj . Connected in this manner means that
there is a weight wji which determines the influence of input neuron i to output neuron j.
The output of such a layer can be described as the vector y:

y = ϕ (Wx + b) , (2.1)

where the components of y, x and b are yj , xi and bj respectively and W is the matrix
consisting of the entries wji. The activation function is applied component-wise. An
example is presented in Figure 2.1, with black and red lines representing weights and
biases and nodes representing the activation of each neuron. Networks constructed from
an input layer, one hidden layer and an output layer of this type are proven to be able to
approximate any Borel measurable function from one finite dimensional space to another,
if a sufficient amount of parameters are available and a suitable activation function is used
[6]. Yet to retrieve a more efficient approximation, other layers such as Convolutional and
Capsule Layers are required.
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Chapter 2. Neural Networks

y1 y2

x2x1

y3

b

Figure 2.1 Example for fully connected Dense Layer with inputs xi, outputs yi and bias-
vector b.

2.1.2 Convolutional Layers

Convolutional Layers consist of a set of kernels, which contain weights that are applied
to neighboring input nodes. Thereby, each kernel constructs a so called channel from the
input and uses the same weights for all input regions. The scheme of the two dimensional
convolutional operation is shown in Figure 2.2.

This yields the possibility to exploit correlations in the input, which is important in, for
example, pattern recognition and image analysis. Additionally, the number of weights is
drastically reduced in contrast to a fully connected layer. For comparison: A fully con-
nected version of the example shown in Figure 2.2 with 12 input and 6 output neurons,
would consist of 72 weights while it takes just 4 parameters using the convolution. To con-
struct Convolutional Layers that are suitable for specific tasks, there are some parameters
that determine the properties of the networks operation: kernel size, stride and padding.

The kernel size describes shape of the kernel, used for the convolutional operation. If, for
example, a rather fine structure in the input is to be observed the kernel should be rather
small and vice versa.

To preserve spacial dimensions in convolutions with bigger kernel sizes and not reduce it
as in Figure 2.2 or to fulfill boundary conditions, padding is used. By attaching additional
nodes to the edge of the input, padding increases its size. The activations of the newly
constructed nodes are typically set to zero, but to include, for example, periodic boundary
conditions the, values of the other end of the input can be used.

Stride is the property that determines the step width in which the kernel moves along the
input data for the different output nodes of one channel. If it is set to a number bigger
than one along any dimension the size of the channels is reduced, which is often combined
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2.2. Activation Functions

Figure 2.2 Scheme of a two dimensional convolutional operation. Figure taken from [7,
p.330].

with an increase of channels to keep the number of neurons.

2.1.3 Pooling Layers

A Pooling Layer is a common substitute for stride being set to a greater value than one, to
reduce the size along the spacial dimension. It takes a given number of input neurons in
form of a kernel and applies a simple operation without parameters to calculate an output.
In most cases max pooling or average pooling is used which return either the maximum
or the average of all neurons in the kernel region.

2.2 Activation Functions

Without activation functions, neural networks would only be able to model linear functions.
The non-linearity introduced by the activation functions are an important part of the
capability of networks to model such a wide range of functions.
A rectified linear unit (ReLU) is often used for this purpose. It is defined by:

ReLU(x) =

x, if x ≥ 0 ,

0, otherwise .
(2.2)
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Chapter 2. Neural Networks

If the outcome of a network is desired to be a probability distribution, as in most classifi-
cation problems, a common choice for the activation is the softmax function:

softmax(xi) = exi∑N
j=1 exj

, (2.3)

where xi is a component of the N-dimensional input vector x.

The activation function referred to as squashing, which is most commonly used in CapsNets
[8] (see Section 2.5) is defined for vectors, which represent neurons for this network type.
The length of the vector is pushed towards zero for short and slightly lower than one for
long vectors:

s(x) = ∥x∥2

1 + ∥x∥2
x

∥x∥
, (2.4)

where s is the output vector of the activation function.
Besides these three, many more activation functions are used but are not needed our
studies. A collection can be found in [9].

2.3 Losses

To determine the quality of the outcome of a neural network, loss functions are used. They
can be designed to measure its performance with respect to any desired property. If the
information is given, a direct comparison between desired outcome and network prediction
is possible. For classification purposes where the outcome of the network is a probability
distribution of the input corresponding to a set of classes, cross-entropy loss is the most
common choice. It is defined by:

L(y, ŷ) = −
C∑

i=1
yi log ŷi , (2.5)

where y is the probability distribution the network is to reconstruct, referred to as the
target vector. ŷ is the networks prediction and C the dimension of the vectors and thereby
number of classes.

For Capsule Networks this is replaced by the margin loss. It is applied separately to a
set of vectors, y(i) where each vectors length represents the membership of an input to a
certain class. The target is denoted by ŷ(i). It has value of one if class i is present and
zero otherwise. The loss for one of the vectors is then defined by:

L
(
ŷ(i), y(i)

)
= ŷ(i) max

(
0, m+ −

∥∥∥y(i)
∥∥∥)2

+ λ
(
1− ŷ(i)

)
max

(
0,
∥∥∥y(i)

∥∥∥−m−

)2
, (2.6)
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2.4. Training and Optimizers

with m+/− being the target length for the vectors if the input belongs/doesn’t belong to
its class and λ weighting the influence of instance of different classes. The complete loss
is then derived by summing over all classes. Analogously to [1] we choose m+/− to be 0.9/
0.1, and λ as 1.

To measure the distance between a predicted probability distribution and a target distri-
bution the Kullback–Leibler Divergence (KLD) can be used [10]. For discrete distributions
it is defined by:

DKL(P ||Q) =
∑
x∈X

P (x) log
(

P (x)
Q(x)

)
, (2.7)

where P and Q are the distributions, defined on the domain X . When used on network
outputs P represents the target and Q the prediction.

2.4 Training and Optimizers

Having the loss for the desired property at hand the goal is to minimize this quantity,
which means to choose the optimal parameters. This task is automatized by calculating
the gradient of the loss for a given input and target w.r.t. the networks parameters (the
weights and biases) and feeding this to an optimizer which updates the weights. This is
referred to as training. Ideally, the loss function is minimized and the network learns the
desired connection between in- and output. As it is highly optimized and commonly used
we use the optimizer Adam [11]. If the dataset the network is training on is too small
or the network trains for too long it can memorize this set rather than generalize the
connection of input and output, which is called overfitting. To prevent this, regularization
methods are applied, for example Dropout [12]. When using dropout, the activations of a
randomly chosen subset of the network is set to zero and are not optimized in one training
iteration. This way subsets of the network can be trained and if the complete network is
tested without dropout the outcome is comparable to the average of all these subsets.

2.5 Capsule Networks

Capsule Networks were introduced in [8] and are based on the idea that the networks
neurons are grouped into vectors also referred to as capsules. Each capsule represents
a certain abstract feature, with its length denoting the probability of this feature being
present in the input and the entries representing its properties. Layers of this type consist
of a set of these vectors. The implementations used for this thesis are based on [1] and
[13].
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Chapter 2. Neural Networks

2.5.1 Primarycaps

A main advantage of the Capsule Layer is the retention of the positional information of
the represented feature. As we use the Capsule Layers as subsequent layer of convolutional
ones a special reshaping routine is needed, which is done by the Primarycap layer. The
positional information of the input in a convolutional network is contained in the pixel
positions of each channel. To construct a capsule, neurons along the channel axis of the
Convolutional Layer are used. If the number of channels is larger than the desired capsule
dimension, multiple capsules per channel are constructed. If a Convolutional Layer of
shape X×Y×C is the input to a Primarycap with desired capsules of dimension D, the
resulting number of capsules N is given by X×Y×C

D , where the capsule dimension has to
be chosen as a denominator of the channel number.

2.5.2 Capsule Layers

To calculate the output vectors from input capsules a new layer is defined. Each input
vector has a contribution to every output capsule, defined by different weights for each com-
ponent. For N D-dimensional input capsules x(j) and N′ D′-dimensional output capsules
y(j′), N×N′ new vectors u(j,j′) are calculated using the weights W (j,j′). The components
of the intermediate vectors u(j,j′) are calculated by:

u
(j,j′)
i′ =

D∑
i=1

w
(j,j′)
ii′ x

(j)
i , (2.8)

with u
(j,j′)
i′ , x

(j)
i and w

(j,j′)
ii′ denoting the components of u(j,j′), the input capsule x(j) and

the D×D′ matrix W (j,j′) respectively. As in [1] the arrangement of the indices has no
meaning besides offering clarity in the notation.

These vectors are combined using another set of weights b(j,j′) which are normalized using
the softmax function (2.3) to obtain the weights c(j,j′):

v(j′) =
N∑

j=1
c(j,j′)u(j,j′) . (2.9)

By using the squashing function (2.4) on these vectors the output capsules y(j′) are con-
structed. The layer calculations for N = 2, D = 3, N ′ = 3 and D′ = 2 is shown in Figure
2.3.

The weights b(j,j′) are calculated by so called routing which iteratively collimates the output
vector with one of its inputs. It replaces the activation function to use the vector properties.
The weights b(j,j′) are modified according to the scalar products of the corresponding vector
u(j,j′) with the output vector y(j′):
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2.5. Capsule Networks

u
(j, )j′

i′

D' = 2
N' = 3

D = 3
N = 2 x

(j)
i

w
(j, )j′

ii′

y
( )j′

i′

c(j, )j′ routing
softmax

Figure 2.3 Capsule Layer procedure for a layer with two three-dimensional to a layer
with three two-dimensional vectors.

b(j,j′) ← b(j,j′) + u(j,j′)y(j′) . (2.10)

Lastly, the softmax function is applied on these weights and the new set of squashed
vectors y(j′) is calculated. This redefinition can be done multiple times. Iterating this
process three times improved the performance the best in former analysis [8] which is why
it is also used in our network architectures.
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Chapter 3

Particle and Jet Physics

3.1 The Standard Model

The standard model (SM) is a theory describing a set of elementary particles together
with their interactions. The models predictions are in good agreement with experiments
on a large energy scale and thus presents us with the best tested theory in this field of
research. It proposes the existence of mainly two classes of particles: fermions and bosons
with half-integer and integer spins respectively. The fermions are further divided into
quarks and leptons namely up, down, strange, charm, bottom and top and the electron,
muon and tau with a neutrino being assinged to each of the three leptons. Additionally
an anti-particle is assigned to each fermion. All fermions except the neutrinos posses a
mass in the standard model. Further information is presented in Figure 3.1.
Interactions of these particles are described by the exchange of bosons. The force of two
ferminos acting upon each other is described by three types of forces in the SM. The
strong force couples to all quarks through gluons, the electromagnetic force acts on to
all particles that carry electric charge and is mediated via photons and the weak force
effects all fermions and is transported by the W+/− and Z bosons. The Higgs boson
explains the origin of mass and thus only couples to the massive particles. However the
SM cannot describe all fundamental aspects of physics as the gravitational force is not
included. Additionally differences from experimental observations such as the oscillation
of massive neutrinos or particles, explaining dark matter. To include such effects new
models with new particles beyond the standard model (BSM) are developed. The search
for these particles is the main task of todays colliders.

3.2 Colliders and Jet Production

The biggest of these colliders is the Large Hadron Collider (LHC). By accelerating and
colliding two proton beams it reaches a center of mass system (CMS) energy of

√
s = 13TeV.

During the collision new particles (final state particles) can form if enough energy is
provided. These decay further as they travel towards the calorimeters where the products
can be observed. If the final state particles are strongly boosted, their decay products will
enter the detector collimated and result in a high number of counts in a small detector
region. These are referred to as jets. The goal of analysing the detector data is to
reconstruct the final state particle with significant precision to prove its existence or to
measure its production rate. Focusing on the jet structure has been shown to be the most
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Figure 3.1 Particles of the standard model. Image taken from [14].
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g
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Figure 3.2 Example Feynman diagramms of bottom-pair production via Higgs boson
(left) and quark anti-qurak annihilation (right).

effective way of reconstruction. The Higgs boson was the last fundamental particle to be
newly detected at the LHC by the ATLAS and the CMS collaboration [15, 16].

3.3 H −→ bb̄

As the Higgs boson is coupling to proposed dark matter particles in many theories, it is an
interesting particle to investigate for the search for BSM particles. Yet the detection of the
Higgs via its decay channel into a bottom pair with a high branching ratio (B(H → bb̄) ≈
58% [17]) is a challenging task due to a strong QCD-background. Examples of the two
production channels are shown in Figure 3.2. The events of interest are the, ones where
a strongly boosted bottom pair is produced. In the detector, the resulting jets show two
subjets (one for each bottom quark), referred to as Higgs candidate jets. The seperation
of boosted Higgs decays against the signal-like QCD-background was approached by the
CMS collaboration [18] by analyzing the subjet structure and Joshua Li et al. [3] using
Convolutional Neural Networks on both, event and subjet information. During our analysis
we want to study the performance of Capsule Networks on the task of discrimination.
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Chapter 4

Application of Capsule Networks on H −→ bb̄

4.1 Dataset

For a good comparison the same data as in [3] is used. It includes pp collisions with
√

s = 13TeV, simulated using MadGraph5_aMC@NLO 2.6.2 [19] and Pythia 8.226
[20]. The background consist of two, three and four jet events and signal events contain a
Higgs-jet with either one or two other jets. To filter the events that contribute to boosted
Higgs jets as they are described in 3.3, the jets in the data were clustered using Fast-
jet [21, 22] and the anti-kT algorithm [23] with R = 0.8. To extract subjet information
R = 0.2 was used. Only data with the hardest jet having a pT > 450GeV and fulfilling a
double b tag are used. Having applied these cuts, the hardest jet is always the two prong
Higgs candidate. For more details concerning the event generation, please consider [3].
The dataset was split into a training, test and validation set with about 58000, 19000 and
19000 instances respectively that are statistically independent. For performance evalua-
tions different parts of the dataset where used for the three categories.

To allow a distinction between signal and background, the network has to learn the input
features that deviate strongly between signal and background. The most obvious difference
is the mass distribution of the hardest jet in the event (see Figure 4.1a). While the signal
data has its distribution centered around the Higgs mass, the background distribution is
wider. However this feature is not directly included in the data presented to the network
and can only be learned indirectly. As the Higgs candidate jet always contains a two
prong structure, we can define the split of its two subjets by measuring their distance in
η and ϕ. The distribution of this split in the hardest jet varies strongly between signal
and background data and is directly obtainable from the input data, as it is a geometrical
feature (see Figure 4.1b). Other distributions such as the transverse momentum or the
positions of the events jets are almost identical for both inputs.
In addition, correlations of different observables can differ from signal to background. Even
though only a small difference is visible in pT itself (Figure 4.1c), its connection with the
earlier mentioned jet split yields is a clear distinction 4.2.

For the background data there is no strong correlation visible in contrast to the signal.
Subjets of strongly boosted Higgs decays are more collimated, which is well visible in the
data. Especially in the high pT regime a smaller jet radius can be seen. This is an inter-
esting connection to be observed and exploited by the network, since a correlation of an
event and subjet information has to be learned.
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Figure 4.1 Normalized distributions of mass (a), subjet split (b) and pT (c) of hardest
jet of 50,000 signal and background instances.
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Figure 4.2 Correlation of pT and subjet split of the hardest jet for signal (left) and
background (right).
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Figure 4.3 Average of 5000 images of the input types. Left: high resolution event, middle:
low resolution event, right: jet image.
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4.2. Architectures

The data is presented to the networks in form of calorimeter images. To study the Cap-
sNets output, we train it on three different input types: A low resolution global event
image with a resolution of 40×40 pixels, the corresponding image of the hardest jet with
the same resolution and a high resolution event image with 160×250 pixels. The event
images represent the positions according to the azimutal angle ϕ with its full range from
−π to π and the pseudo rapidity η with the range |η| < 5. The jet-clustering to extract
the jet images is done using Fastjet. Each image consists of four channels, containing
the information about the pT of all, only the charged and only the neutral particles and
the charge deposited in each pixel. An average image of the first of these channels can be
see in Figure 4.3.

4.2 Architectures

The benchmarking of the Capsule Networks performance is done with respect to the CNN
architecture of [3]. For the first part of the evaluation we reconstruct the CNNs archi-
tecture and build a Capsule Network, with the Dense Layers being replaced by Capsule
Layers. The input consists of two of the input images, the low resolution event image and
the jet image. The images are propagated through distinct streams in a set of convolu-
tional blocks, before being flattened and concatenated to be further processed in Dense
Layers, with the final output of two neurons, indicating the probability of the input being
signal or background. In construction of the CapsNet we substitute the flattening with
a PrimaryCap and the Dense Layers with Capsule Layers. The lengths of the two out-
put vectors are then used for classification with their difference denoting the classification
outcome. The downsampling in the convolutional blocks is done by Pooling Layers and
the event stream includes padding along the azimutal direction to incorporate the peri-
odic boundary condition. For all Convolutional and Dense Layers we apply ReLU, except
for the last Dense Layer, where the softmax activation is used. The Capsule Layers are
normalized by the squashing activation. The used CNN has about 2.8 million trainable
parameters while the Capsule Network has about 450 thousand weights and biases, with
the Capsule Layers being modeled after default networks that where used for early anal-
yses. To ensure that the disadvantage in the number of trainable parameters does not
prevent the CapsNet from reaching the CNNs performance, we introduce the architecture
referred to as Capsule big with larger Capsule Layers resulting in about the same amount
of parameters as the CNN. The structures of the networks can be seen in Figure 4.4.
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Figure 4.4 Architectures of the CNN (upper) and CapsNet (lower) two stream networks.
If multiple labels are attached to an arrow, the operations are applied consec-
utively.

For the application on high resolution event images only a single stream network is re-
quired. We build the models as for the event stream using PhiPadding layers and pooling.
Additionally Dropout is used as regularization with a droprate of 0.25. For evaluation
we use a CNN of this kind with about 1.6 million and a CapsNet of about 450 thousand
parameters. The output capsules are eight-dimensional. All implementations are done
using Keras [24] with Tensorflow [25] backend.

4.3 Performance Evaluation

To measure the performance we use the ROC-curve and significance plots. Both use the
ratio of correctly classified signal events to the their total number (ϵS) and the number
of background events being falsely classified over the total number of background events
(ϵB). Both are calculated for different thresholds for the hard classification on the smooth
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Figure 4.5 ROC and significance curves for trainings on different inputs for CNNs with
average and max pooling and CapsNets: (a): low resolution event, (b): jet
image, (c): jet and event image, (d): high resolution event. The upper plots
show the significance and the lower ones the ROC curves. Five trainings per
plot, strong lines denote the mean, colored areas show the standard deviation.

output of the networks. For the ROC-curve for each of these values 1
ϵB

is plotted against
ϵS . The significance is calculated by:

Significance(ϵS) = ϵS√
ϵB(ϵS)

(4.1)

The quality of the network is measured by the maximum of the significance curve. To
improve reliability we train each model on five randomly shuffled training sets. The results
can be seen in Figure 4.5.

Both network types perform almost equally well on the low resolution event and jet image
input, with the CNNs doing slightly better on the latter. For the two stream architectures
the CNN outperforms the CapsNets regardless of its parameters. For the high resolution
input the opposite is the case: The Capsule Network seems to be more capable to extract
meaningful information from the full event image. However the best CapsNets and CNNs
do perform equally well within the precision of the evaluation as we see in the direct
comparison of the two in Figure 4.6.

4.4 Criteria of Classification

As the CapsNets perform well we want to examine its criteria of classification by looking at
correlations of its classification output with the observables we determined to be important
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Figure 4.6 Comparison of best setups of CNN and CapsNet. Left: Significance curves,
Right: ROC curves

500 1000
pT of hardest jet [GeV]

0.2

0.4

0.6

0.8

S
p

lit
of

h
ar

d
es

t
je

t

500 1000
pT of hardest jet [GeV]

0

200

400

0

5

10

Figure 4.7 Correlation of pT and subjet split of the hardest jet for signal data classified
as signal (left) and signal data classified as background (right).

for the task. The connection to the split of the subjets of the hardest jet is a clear criterion
for the classification as the correlation is well visible in Figure 4.2. To check if the network
also learned the correlation of the transverse momentum with its subjet-split we look at
signal data being correctly and falsely classified by a network that was trained on the
high resolution images. The less ”signal-like” events should diverge from the curve which
is visible Figure 4.2. If no correlation is learned both correlation plots should resemble
the general shape of the signal data with only showing differences along the axis of the
subjet-split. Yet in Figure 4.7 we see that the falsely classified signal events resemble the
correlation plot of the background data. It is thus clearly visible that the connection of
these observables is learned. However the data representation of this kind is also given
by the standard CNN-based classifiers and doesn’t need the capsule architecture. Their
special property is the representation of the classification as vectors in their latent space
which we want to analyse further.
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4.5 Data Organization by the Capsule Network

The discriminative power of the networks is clearly visible from the performance evaluation.
Yet to confidently use them on real data in physics research it is crucial to have an
understanding of how the networks operate. By representing their classification output
as vectors Capsule Networks provide a more detailed description of the features they
are sensitive to. We want to analyse the additional information the CapsNets encode in
contrast to CNNs at different input types. To do so, we look at the angular distributions
in the latent space of the output capsules.

To visualize their output, we train Networks with two or three dimensional output capsules
and plot histograms of the classification of many input instances in the latent space. For
two dimensions the representation is straight forward on a flat two dimensional plot. For
three dimensions we only look at the angular distribution of the output latent space, with
the angles being constructed using standard spherical coordinates. The angular positions
of the classifications are then directly shown in a flat coordinate system. This represen-
tation of the sphere leads to a strong distortion but general shapes such as closed curves
can still be well seen. To understand the criteria of organization we look at the referring
input or its observables of certain latent space regions. To make the differnent plots easily
distinguishable, the average input images will be presented in logarithmic scale in a more
colorful colormap and the latent space is shown as standard two dimensional histogram
with darker colors. Observables and are represented by scatterplots.

Because the CapNets are not motivated by any loss to distribute the input in any direc-
tion besides the radial one, we want to understand the information encoded in the outputs
angular direction. The input types as they are used in Section 4.3 provide different infor-
mation to the network and thus result in a variation of the latent space representation.
We want to study these in order to better understand the networks learning process.

4.5.1 Two Stream Network

To examine the discrimination of the two stream Network we separately look at each
stream, starting with the event stream. While the signal is spread out far in the latent
space the background capsule is more collimated. The three dimensional representation in
a closed curve is already indicating the distribution according to an observable with cyclic
boundary conditions. Looking at the differences in the input of different regions, the main
criterion of organization is the ϕ-coordinate of the hardest jet (Figure 4.8a). The back-
ground capsule on the other hand is learning a combination of both: the η and ϕ position.
It is used for a differentiation as it is seen in the different correlations of the coordinates
in different regions (Figure 4.8b). This leads to the conclusion that the network is able to
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Figure 4.8 Differences in input data in different regions of the output latent spaces of
(a) the signal and (b) the background capsule for three dimensional networks,
trained on low resolution event images.

locate the hardest jet to focus on regions in the input that contain the crucial information,
namely the hardest jet.

If the network is only presented with this information in its second stream, other features
have to be learned. The populated region in the latent space is smaller than before. For
the events, geometrical information was used to distribute the data in the angular direc-
tion of the output latent space. The differencies in the input images are more subtle in the
jet images, which offers less criteria to organize by. For the background a clear distinction
by the split of the subjets is visible as it can be seen in Figure 4.9b. The signal capsule
orders the jets according to the disbalance of the pT of the subjets. This can occur due
to the one of the bottom particles being more boosted in the laboratory frame. As before
the geometrical information is used in for the classification in the angluar direction.

If the Capsule Network is presented with both inputs in its full architecture, the interesting
question is whether the stronger varying geometrical information of the event or the,
classification wise more important, jet information is used for the angular distribution.
Looking at Figure 4.10 we see big differences in the average jet images for different regions.
The average event images only show slight changes. The background capsule organizes
the data by the subjet split as before. The signal capsule on the other hand learns a
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Figure 4.9 Differences in input data in different regions of the output latent spaces of
(a) the signal and (b) the background capsule for three dimensional networks,
trained on jet images.

more detailed structure of the hardest jet differentiating, not just by the imbalance of
the transverse momentum of the subjet, but also by its direction. As it appears to be
an information not being highly interesting for the classification task itself it organized
in the angular direction of the capsule. Even though the event data isn’t organized itself,
its seems to help to gain information on the subjet structure which we can see in the
better distinction of the input by the signal capsule. As the subjets are the most sensible
information for the classification, this might be the reason for the improved classification,
seen in the performance evaluation.

4.5.2 One Stream Network

The one stream Capsule Network provides a much better classification performance than
the two stream architecture. Its difference in the performance gives rise to the a useful
connection between event and subjet information. Looking at the representation of the
high resolution input, the network again, as for the low resolution images, learns features
of the position of the hardest jet. While the signal capsule is more sensitive to the ϕ-
coordinate of the Higgs candidate jet, the background, as on the low resolution input,
learns a correlation of its ϕ and η position. A two dimensional example is shown in Figure
4.11 in the appendix. This shows the capability of the network to locate the hardest jet
as this is the region with the most useful information. This way the sparsity of the input
images can be circumvented.
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Figure 4.10 Differences in input jet images in different regions of the output latent spaces
of (a) the signal and (b) the background capsule for three dimensional net-
works, trained on and event and jet images.

However being a symmetry of the physical process, the azimuthal angle is no reasonable
feature to learn for the classification besides its role in finding the jets. To take the ne-
cessity to learn this feature, we rotate all images such that all hardest jets of the events
share the same ϕ coordinate. This way the networks signal capsule has the possibility to
focus on features with more discriminative power. The background capsules capability to
obtain the pseudo rapidity from the image is further enhanced by this preprocessing, pro-
ducing a sharp resolution for this coordinate (see Figure 4.12b). Being the most dominant
geometric feature of the input we would expect the same for the signal. However only a
slight organization with respect to η of the hardest jet can be seen. The orientation of the
subjet is clearly different in distinct latent space regions. The more refined data allows for
a better representation of the input in the latent space.

As a last manipulation of the input, we additionally shift all η-coordinates in such a way
that the hardest jet is located in the center of the input images. The last geometrical
features extractable from the input are now the position of the remaining jets and the
structure of the hardest one. As before a focus on the most informative region is expected
and clearly visible in Figure 4.13). The structure of the hardest jet is the main criterion to
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Figure 4.11 Differences in input data in different regions of the output latent spaces of
(a) the signal and (b) the background capsule for two dimensional network,
trained on high resolution event images. Average input images are shown
for signal and correlations of ϕ and η position of the hardest jet are visible
for the background.

order the data in the latent space with the background capsule again learning the split of
the subjets (see Figure 4.13b). The signal capsule only learns a more subtle differentiation
in the orientation of its jets (see Figure 4.13a). The even stronger focus on the hardest jet
again shows the focus of the CapsNet on the most informative region. As it was visible
for the two stream network, we expect the better distinction of the events according to
the subjet structure to be accompanied with an improvement in performance.

To verify whether this is again the case, we compare the performance to the CapsNet that
was trained on the original images as it was used for the performance evaluation. Net-
works with the same architectures and hyperparameters are again trained five times on
the different input types. The results can be seen in Figure 4.14 and show an improvement
due to the centering of the ϕ coordinate of the hardest jet outperforming the former best
CNN and CapsNet models. The second modification seems to have no influence within
the precision of the evaluation.
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Figure 4.12 Differences in input data in different regions of the output latent spaces of
(a) the signal and (b) the background capsule for two dimensional network,
trained on high resolution event images with a centered ϕ-position of the
hardest jet. Zoomed jet images are shown for signal, full event images for
background
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Figure 4.13 Differences in zoomed jet images of the input data in different regions of
the output latent spaces of (a) the signal and (b) the background capsule
for two dimensional network, trained on high resolution event images with
a centered ϕ and η-position of the hardest jet.
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Figure 4.14 Comparison of CapsNets with different input types. Left: Significance
curves, Right: ROC curves

4.5.3 Populating the Latent Space

To better understand the criteria for the angular distribution in the latent space we want
to force the network to populate a larger part of it. To achieve this, we introduce an
additional loss. We want the network to use as much of the latent space as possible and
thus define the target of its angular distribution to be a uniform distribution. We define
a differentiable function which constructs a histogram for the given data, approximating
the steps by sigmoid functions. The distributions of the azimuthal and the polar angle of
the latent space representiation of a batch, are fed seperatiely to the loss function. Using
the Kullback–Leibler divergence of the constructed histogram with a uniform distribution
as target, a new loss is calculated and added to the loss for the classification task, with a
weight regulating its influence. The differentiability of the histogram function is crucial to
the learning process since otherwise no optimization of this task would take place. In two
dimensions the performance completely collapsed if the additional loss was applied. For
three dimensions the classification accuracy also decreases a lot (about 67% in contrast
to about 75% for other three dimensional models). Yet some classification is learned and
the consequences of the further spread in the latent space can be observed. The task of
populating a larger region of the latent space worked out well as the range of both angles
is fully used. Looking at the criteria of the split, a clear correlation with the hardest jets
position is visible. As one can see in Figure 4.5.3 both, ϕ and η of the hardest jet, are
organized by the network in a more precise way as before. Thus the new loss reached its
goal to encode more refined information in the angular classification but with the huge
payoff in the performance it has to be refined further to be put to reasonable use.

25



Chapter 4. Application of Capsule Networks on H −→ bb̄

0 50 100 150
Capsule angle 1

0

50

100

150

200

250

300

350

C
ap

su
le

an
gl

e
2

−2.5 0.0 2.5
φ of hardest jet

−2

0

2

η
of

h
ar

d
es

t
je

t

(a) Signal capsule

0 50 100 150
Capsule angle 1

0

50

100

150

200

250

300

350

C
ap

su
le

an
gl

e
2

−2.5 0.0 2.5
φ of hardest jet

−2

0

2

η
of

h
ar

d
es

t
je

t

(b) Background capsule

Figure 4.15 Differences in input data in different regions of the output latent spaces of
(a) the signal and (b) the background capsule for three dimensional network
with additional loss, trained on high resolution event images.
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Chapter 5

Conclusions and Outlook

In this thesis we analyzed the application of Capsule Networks in distinguishing the
boosted Higgs decay into a bottom pairs against QCD-background, also producing boosted
bottom pairs. First, we compared the performance to a CNN based approach. While the
CNN performed better in a two stream architecture given low resolution event and jet
images, the CapNets outperformed it, when the networks were presented only with high
resolution event images. Yet in comparison of the best models within all categories, the
CNNs and the CapsNets could distinguish signal and background events equally well (see
Section 4.3).
For the second part, we focused on the representation of the input in the output latent
space of the classification capsules. Experiments to motivate the network to use the full
latent space in Section 4.5.3 showed good results in this manner, but also resulted in a
strong decrease in the performance. As it was probed in this thesis, it is thus no viable
option to include more information in the latent space. Yet, also without the additional
loss, the Capsule Networks encoded interesting information in its output capsules. The
representation of both, event and subjet level information is clearly visible. The radius of
classification is most sensitive to subjet information (Section 4.5) and the angular distri-
bution in the latent space corresponds to the position of the Higgs candidate jet in the
event, if this varies in the input images. As the networks represent the jets position in the
classification angle, it represents the input region it focuses on and gives a better insight
on its classification criteria. It does not just represent the geometrical feature of the input
that varies strongly, but the most interesting one for the classification as we could see
on the analyses of the two stream network in Section 4.5.1. Consecutively stripping the
information the network encoded in its latent space in Section 4.5.2 and presenting it with
the information it needed to learn before, the focus of the network on the hardest jet got
more precise. This also lead to better models, outperforming the former best Capsule
Network and the best CNN. Showing an even better performance than the CNNs, giving
better insights in its classification process and being able to use and represent event and
subjet information simultaneously, Capsule Networks are great tools to better distinguish
Higgs decays against QCD-background.

As the performance of the networks is connected to its ability to organize the data in
the latent space, it would be interesting to investigate Capsule Networks with higher
dimensional output capsules, as these show a better performance. For an analysis as
in this thesis, their dimensionality could be reduced by applying a Principle Component
Analysis (PCA) [26]. Additionally, to study whether more detailed information, than the
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one we can perceive in our analysis, is encoded in the output latent space, one could
use a well trained Capsule Network as encoder for an Autoencoder [27]. The decoder
is then trained to reconstruct the input images from the CapsNets output. This yields
the possibility to fully extract the information, encoded by the network regardless of the
dimensioanlity of the model.
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